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Abstract
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Hofstadter’s Law: It always takes longer than you expect, even when
you take into account Hofstadter’s Law.

—Douglas Hofstadter,
Gödel, Escher, Bach: An Eternal Golden Braid (1979)

1 Introduction

Broad swaths of the modern economy are dedicated to the execution of projects,

“temporary endeavor[s] undertaken to create a unique product, service or result . . .

The development of software for an improved business process, the construction of a

building or bridge, the relief effort after a natural disaster, the expansion of sales into

a new geographic market all are projects.”1 Given the prevalence of projects, it is

important to understand the intrinsic characteristics of this mode of production and

– in particular – how best to improve its efficacy.

Indeed, the annals of project management are rife with jobs that ran notoriously

over time and over budget, some of which were ultimately canceled by their sponsors

resulting in little if any residual value. A prime example is South Carolina’s V.C.

Summer nuclear power plant construction project, canceled in 2017 after a series

of setbacks generated substantial overruns in schedule and budget. Palmetto-State

taxpayers were ultimately saddled with a bill of $9 billion and “nothing to show

for it” (Lacy, 2019). Similarly, what might be “the most highly publicized software

failure in history” (Goldstein, 2005) is the FBI’s contracting debacle with SAIC to

develop a virtual-case-file (VCF) system for sharing files among agents. Irigoyen

(2017) summarizes the VCF project as going through “significant management and

implementation problems and cost overruns, which culminated in the cancellation of

the project in 2005, with little to show for the USD170 million investment.”

Of course, South Carolina and the FBI are not alone in there project-management

woes. According to Lineberger and Hussain (2016), “The combined cost overrun for

Major Defense Acquisition programs in 2015 was $468 billion . . . with an average

schedule delay of 29.5 months.” Similarly, according to a 2017 report from the Project

Management Institute, “14 percent of IT projects fail. . . [and] Of the projects that

1Excerpted from What is Project Management? (Project Management Institute, 2020)
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didn’t fail outright, 31 percent didn’t meet their goals, 43 percent exceeded their

initial budgets, and 49 percent were late” (Greene, 2019).

In this paper we argue that schedule and cost overruns and project cancellations

are not always the product of incompetence or inattention, but – at least to some

degree – are unavoidable consequences of optimal project management in the face

of agency frictions. In particular, we introduce a model of project development in

which setbacks arise naturally as part of the production process. Examples include

discovering: differing site conditions (construction), a design feature doesn’t work

as intended (manufacturing), or incompatibility of certain off-the-shelf subroutines

(software engineering).

In our model, as in practice, the sponsor (the principal) must hire a contractor (the

agent) to run the project. Both parties are risk-neutral, but the agent is protected by

limited liability. Setbacks occur randomly according to a Poisson process with known

intensity. There is a flow cost of running the project, and the project is completed

whenever a span of time X̄ passes without the occurrence of a setback. The first-best

policy is simply to start and run the project until completed if and only if the value

of the finished project exceeds the flow cost times expected project duration.

The agency setting we investigate is marked by both hidden actions and hidden

states. The principal is unable to observe the progress of the project or the occur-

rence of setbacks and must rely on reports from the agent. However, delivery of the

completed and working project is verifiable – the principal can use the software, fly

the plane, or occupy the building once it is complete. Because the principal can-

not observe the status of the unfinished project, the agent may surreptitiously divert

the flow of operating capital to garner private benefits. Indeed, the combination of

hidden actions and hidden states gives the agent broad scope for committing moral

hazard. Specifically, he may cover up the interruption of progress associated with

resource diversion by submitting false reports of setbacks or postponing the reports

of real ones, or any combination of these. Thus, the principal’s problem is to write

a contract, contingent only on the passage of time and project delivery, that induces

the agent to work efficiently and report honestly.

The crucial incentive constraint turns out to be the No-Postponed-Setbacks (NPS)

condition. This requires that whenever a setback occurs, the agent prefers to report
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it immediately rather than divert resources for any length of time and report it later.

We show that (NPS) always binds under an optimal incentive scheme. This has two

important consequences. First, it implies that the agent also prefers not to cover

up resource diversion with claims of false setbacks; that is, binding (NPS) is both

necessary and sufficient for incentive compatibility. Second, it allows us to fully

characterize the optimal contract, which closely resembles what the U.S. General

Service Administration defines as a cost-plus-award-fee contract (see FAR 16.401).

We discuss this more formally in Remark 2 in Subsection 4.4.

Under the optimal contract, the principal announces a time budget S0, which is

a type of soft deadline, and commits to pay the running cost until the project is

completed or canceled. The time budget counts down deterministically with calendar

time unless and until a reported setback makes project completion in the remaining

time infeasible; i.e., at St− < X̄. In this case, a binary randomization procedure is

implemented under which the project is either canceled St = 0 without payment to

the agent, or a minimally feasible schedule extension, St = X̄ is granted. Subsequent

reports of setbacks are treated similarly. Hence, the contract ultimately ends for

one of two reasons, either because the project is delivered or because it is canceled.

Upon delivery of the completed project, the agent is paid a linear reward consisting

of a fixed fee plus an incentive payment proportional to any value remaining on

the time budget. If one or more schedule extensions results in the project running

longer than S0, then an overrun (in time and operating cost) is said to occur. Given

that the first-best policy is to run the project until it is completed, overruns are not

in themselves problematic. However, a substantial overrun that ultimately ends in

project cancellation obviously involves a large waste of resources.

We characterize the principal’s value function by identifying two martingales and

invoking the optional stopping theorem. This reveals that the principal’s expected

payoff equals the probability of completion times the first-best value of the project

net of expected agency rents. The probability of project completion is increasing,

concave, and approaches 1 as the length of the soft deadline, S, tends to infinity.

On the other hand, agency rents increase linearly in S. Hence, there exists a unique

optimal initial time budget S0 = S∗.

The probability of eventual success following a setback obeys a delayed differential
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equation (DDE) that results in a focal-point kink in the principal’s value function at

S = X̄. This implies existence of a generic set of parameter values for which S∗ = X̄

is optimal. We call this a short-leash contract because the soft deadline equals the

minimal time for project completion and every reported setback results in cancellation

with positive probability. Although a short-leash contract has expected duration X̄,

the support of the stopping time is (0,∞) due to the possibilities of early cancellations

and multiple extensions. Hence, even when the principal commits to keep the agent

on a short leash, arbitrarily large cost and schedule overruns may occur. Importantly,

every optimal contract possesses a short-leash phase that is triggered whenever the

agent is granted an extension.

Our two main methodological contributions are the application of the optional

stopping theorem to characterize the principal’s value function and the bounding

techniques we use to track the continuous state variable and prove optimality of the

contract. We also present two noteworthy predictions.

The first prediction is that incentives change qualitatively over the life of the

project – the contract has two phases owing to the minimum amount of time necessary

to complete it. If a setback occurs in the first phase, at any St− ≥ X̄, then completion

of the project in the remaining time is still possible and the contract does not respond

to the setback directly, but continues to tick away the bonus the agent can earn from

early delivery. If a setback occurs in the second phase, at any St− < X̄, then it is

no longer possible to complete the project in the remaining time and the contract

calls for randomization between St = 0 (cancellation) to prevent shirking and St = X̄

(extension) to restore feasibility. From this point on, the agent earns only a flat fee if

the project is ultimately delivered. Thus, the contract exhibits a distinctive transition

from monetary to deadline-based incentives at St = X̄ corresponding to the focal kink

in the principal’s value function.

Second, as noted above, the optimal contract allows for the possibility of project

cancellation after arbitrarily large overruns in time and budget. Of course, termina-

tion is a common feature of optimal dynamic contracts. What is more surprising is

the possibility that the agent can be granted an indefinite number of extensions prior

to cancellation, even in the face of his temptation to divert resources. To be sure, it

is not difficult to imagine models in which projects may be canceled for exogenous
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reasons after operating for an arbitrarily long time (e.g., see Remark 3 and Corol-

lary 3). Our focus here, however, is on projects that remain perpetually feasible.

Thus, cancellation – when it occurs – is purely a manifestation of agency frictions.

For example, at the time the projects were canceled it was presumably still possible to

build a second and third nuclear power plant at the V.C. Summer site, where one had

previously been built, or for SAIC to develop a functional case management software

system for the FBI.2.

The rest of the paper is organized as follows. In Section 2 we review related

literature. Section 3 contains three subsections where we: introduce the model, derive

the first-best when progress is publicly observed, and define an optimal contract when

progress is only observed by the agent. In Section 4 we show that a time-budget

contract maximizes the principal’s value for any initial non-negative level of utility

for the agent, and in Section 5 we derive the principal’s value function and characterize

the corresponding optimal initial utility to grant the agent. In Section 6 we sum up

and suggest several avenues for future research. All proofs have been relegated to

appendices.

2 Related Literature

The literature on the optimal provision of dynamic incentives is extensive and re-

mains very active. Pioneering articles responsible for moving it forward include Spear

and Srivastava (1987), Phelan and Townsend (1991), Quadrini (2004), Clementi and

Hopenhayn (2006), DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Ro-

chet (2007), Sannikov (2008), Williams (2011), and Bloedel, Krishna, and Strulovici

(2021). Related to this paper, Bergemann and Hege (1998) investigate venture capital

financing in a discreet-time model where the arrival of revenues depends on whether

the project is good or bad and whether the entrepreneur (agent) works or shirks.

The dynamic agency costs may be high and lead to an inefficient early termination

of the project. Toxvaerd (2006) considers a setting in which a finite number of ob-

2In fact, SAIC offered to complete the VCF project if granted one more year and an additional
USD56 million, but the FBI’s CIO rejected this offer and canceled the cost-plus-award-fee contract
Marchewka (2010).
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servable arrivals are needed in order to complete a project. In his setting, the agent

is risk averse and the optimal contract trades off optimal risk-sharing with incentive

provision. Biais, Mariotti, Rochet, and Villeneuve (2010) analyze a model in which

large observable losses may arrive via a Poisson process, and an agent must exert

hidden effort in order to minimize the likelihood of their arrival. In a similar vein,

Myerson (2015) explores a model in which a prince must provide a subordinate gover-

nor with incentives to exert hidden effort to reduce the Poisson arrival of observable

crises. Interestingly, if the governor performs badly, then he is subjected to random

termination, which mirrors a feature of our optimal contract, albeit for quite different

reasons. In Myerson (2015) the threat of random termination induces the governor to

exert high effort, whereas the promise of random extension in our model induces the

agent to truthfully report the occurrence of late-stage setbacks. In contrast with all

of these papers, the Poisson shocks in our model, the setbacks, are privately observed

by the agent and arise as an unavoidable consequence of the production process –

that is they are discoveries.3 The potential for their occurrence gives the agent cover

to commit moral hazard; i.e., to make plausible excuses for why project completion

has been delayed.

Closest to ours are four papers that explore the optimal deadline for a project

in the context of dynamic agency. The most salient of these is Green and Taylor

(2016) (GT16 below) which, in a sense, explores the mirror image of the setting we

investigate. In GT16, the project is complete once two Poisson breakthroughs occur,

and the agent hired to run the project privately observes the occurrence of the first

one. As in our setting, the agent can surreptitiously divert the principal’s flow of

investment in the project for private benefit, delaying progress.

We consider a complementary but substantially richer setting where progress ad-

vances continuously and in which a potentially infinite number of discrete setbacks

may occur prior to completion. Methodologically this requires the contract in our

model to track two continuous state variables, the agent’s continuation utility and

the current level of progress Xt ∈ [0, X̄]. By contrast, the exogenous state in GT16

takes on only two possible values, 0 (no progress) or 1 (progress) and is irreversible.

3Indeed, if setbacks were publicly observed in our model, then they would provide evidence that
the agent was working on the project.
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Hence the agent in GT16 only makes a single report about when he observes the

first breakthrough, whereas our agent may repeatedly report the occurrence of false

setbacks or repeatedly postpone reporting the occurrence of real ones, or any combina-

tion of these. As a consequence, the agent in GT16 is eventually subjected to smooth

stochastic termination at a constant rate for not reporting a breakthrough; whereas

the agent in our model eventually faces discrete randomization between project ex-

tension and cancellation for reporting the occurrence of breakdowns. More, the prob-

ability of project termination in our model is not constant, as in GT16, but increases

in the state, i.e., is higher the later in the schedule a setback is reported. Unlike the

project in GT16, the discrete scope of our project X̄ > 0 generates a focal kink in

the principal’s value function that, among other things, results in the optimality of a

short-leash contract for a generic set of parameter values.

Economically, the most significant difference between the two papers is in the type

of enterprise they investigate. GT16 considers innovative projects for which the path

to success must be discovered through a sequence of uncertain trials; e.g., searching for

a new antibiotic by “sorting through thousands of promising compounds” Goodman

(2023). Here, by contrast, we analyze projects for which the production process

is planned and designed, but completion is subject to probabilistic mishaps; e.g.,

following blueprints to erect a building in the face of uncertainty about: differing cite

conditions Amarasekara et al. (2018), weather delays Bae (2022), or equipment failure

Baldwin et al. (1971). To be sure, many projects involve some weighted combination

of breakthroughs and breakdowns depending on where they fall on the continuum

between experimental and designed applications. The notable structural differences

between the optimal incentive schemes identified in GT16 and here highlight the

importance of understanding the predominant characteristics of the underlying mode

of production and corresponding agency environment.

As for the other three related papers: first, Madsen (2022) studies how an orga-

nization should optimally manage a project of uncertain scope when advised by an

expert with private information about the project’s state who prefers to prolong his

employment. In this model, a project turns from “good” to “bad” stochastically over

time. The agent is a “advisor”, who possesses private information regarding whether

the project quality has changed and must be incentivized to report this. Second,
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Mayer (2022) presents a dynamic contracting model in which a project succeeds if it

survives until the completion date. While the project is in operation, the agent ex-

erts unobservable precautionary effort in order to reduce the arrival rate of a privately

observed failure shock that will kill the project before it reaches completion. As in

Madsen (2022), the principal must provide incentives for the agent to report that the

project has gone bad and should be terminated. A third recent paper featuring a

single privately observed transition is Curello and Sinander (2021). Similar in spirit

but opposite in application to Madsen (2022), a technological breakthrough occurs

exogenously at some random time witnessed only by the agent. The principal would

like to adopt the innovation as soon as possible, but the agent prefers the status quo

technology. Hence, the agent must be incentivized, through non-monetary means, to

disclose the arrival of the innovation.

Our setting differs from those studied in these three papers along a number of

important dimensions. Rather than the arrival of a single irreversible transition,

our agent may observe numerous setbacks, none of which render project completion

infeasible. Our agent is not an advisor hired to monitor whether project quality

has changed – his expertise resides in the ability to operate the project itself. This

provides him with an informational advantage that the principal manages through

implementation of a delivery-contingent contract.

3 The Project, The First-Best, and the Contract

3.1 The Project

A risk-neutral principal (she/her) hires a risk-neutral agent (he/him) over an infinite

horizon to work on a project. The principal has deep pockets, and the agent has no

wealth and is thus protected by limited liability. The project requires accumulated

progress X̄ > 0 (the scope of the project) before it is completed. As the agent works,

progress Xt accumulates deterministically, but setbacks are discovered according to

a Poisson process with arrival rate λ. We denote by Nt the process that counts the

number of setbacks before or at time t. A setback at t resets progress from Xt to 0.

When progress reaches X̄, the project is complete and results in a monetary payoff
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of R to the principal. While the project is in operation, the principal must pay a flow

cost of c to keep it running.

Three points are worth highlighting. First, for simplicity we assume that an

incomplete project has no value to the principal. Second, setbacks result naturally as

a result of unforeseeable contingencies and are not due to the negligence or indolence

of the agent.4 Third, for analytic tractability, we assume that setbacks wipe out all

progress (see Remark 3 in Subsection 4.4 for further discussion of this point).

The potential for moral hazard in this setting derives from the ability of the agent

to surreptitiously divert the resource flow c to his own private benefit and cover the

resulting cessation in progress by misinforming the principal about the occurrence or

timing of setbacks. Formally, the project’s true progress follows

dXt = at(dt−XtdNt), (1)

where at ∈ {0, 1} denotes the agent’s private action. at = 0 represents shirking, which

corresponds to diversion of the resource stream c, whereas at = 1 represents working,

which corresponds to using the supplied funds to develop the project. Shirking yields

the agent a private flow benefit of b.

Assumption 1 Shirking (or diversion) is socially inefficient: b < c.

Whenever the agent shirks, progress on the project remains constant; i.e., setbacks

are discovered only if the agent is working. Both the principal and agent are perfectly

patient and possess outside options of zero.5

4In other words, we model setbacks as discoveries resulting from working on the project, not
from shirking. Unforeseeable contingencies are discovered that make the required time and resources
uncertain. One interpretation is that there is a path to complete the project, and its length must
be discovered through trial and error. Another is that there are many ex-ante equivalent paths by
which the project may be completed, and each fails with probability 1− e−λX̄ . If, instead, setbacks
occurred as a consequence of shirking, then the first-best could be implemented by setting a hard
deadline of X̄ and paying the agent a fixed award upon project delivery.

5Our main results including the form of the optimal contract continue to hold if the principal
and agent share a subjective discount rate, r > 0. This analysis is available upon request.
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3.2 The First-Best

If the agent’s actions are publicly observable, then the principal can induce his com-

pliance without incurring additional cost. Clearly, if it is worth starting the project

in the first place, then it is worth running it until it is eventually completed.

Suppose that the project is operated until complete and let FFB be the value

to the principal at inception. Because the time between setbacks is exponentially

distributed with intensity λ and the principal pays a flow cost c, we have the recursive

relationship:

FFB =

∫ X̄

0

λe−λX(FFB − cX)dX + e−λX̄(R− cX̄), (2)

where the integral in this expression corresponds to the possibility that a setback

occurs before the project is finished, resetting progress X to 0, at which point the

project must re-start. Integrating and solving yields

FFB = R− c∆, (3)

where ∆ represents the expected duration of completing the project:

∆ ≡ eλX̄ − 1

λ
. (4)

It is straightforward to verify that ∆ increases in X̄ and λ and that limλ→0 ∆ = X̄.

It follows immediately that the first-best policy is to start the project and run it

until completed if and only if F FB ≥ 0 However, in the second-best, incentivizing the

agent requires paying him rents, so a stronger assumption on the gross value of the

project to the principal is required:

Assumption 2 R− (c+ b)∆ > 0.

As we show in Proposition 6 below, this condition is both necessary and sufficient

for the principal to be willing to hire the agent to run the project. Interestingly,

although Assumption 2 implies that the principal is willing to incur the flow cost c+b

until the project is eventually completed, this is not the outcome implemented by an
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optimally designed contract. Indeed, implementing such an outcome is impossible, as

we discuss below.

3.3 Unobservable Progress

A fundamental incentive problem arises when the agent’s expertise and decision to

work on the project allow him to privately observe its state at each instant. Specifi-

cally we assume:

Assumption 3 The principal cannot observe the agent’s choice of action at ∈ {0, 1},
the state of the project Xt, or the occurrence of setbacks. The principal can observe

project completion only upon delivery, which is contractually verifiable.

This assumption allows the agent extensive latitude to commit malfeasance without

detection. For instance, he could shirk for some time and then falsely claim a setback

to cover up the lack of progress; or, following a real setback, he could shirk for a spell

before reporting it. Moreover, so long as he is not terminated, the agent may engage

in these forms of misconduct ad infinitum.

However, the agent’s reports must be consistent with some feasible path under

the recommended actions; otherwise the principal can be certain the agent has lied.

In particular, the agent cannot go longer than X̄ time without reporting a setback or

he will be fired for not delivering the completed project (see Lemma 1, below).

The agent makes a report of the project’s current state, X̂t. Given the project’s

true evolution (1), reporting the path of X̂ implicitly reports actions (â) and setbacks

(N̂), with

dX̂t = ât(dt− X̂tdN̂t). (5)

In fact, as long as the agent implicitly reports working, he need only report the

occurrence of setbacks with the understanding that “no news is good news” regarding

progress.

The principal possesses two instruments for providing incentives. She can cancel

the project prior to completion (i.e., fire the agent), or she can provide the agent

with a reward when the completed project is delivered. Both can involve public
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randomization. We also allow the principal to provide the agent with rewards based

on reported project status; however, this turns out not to be optimal in this setting

as stated in Lemma 1 below. Specifically, because both parties are risk-neutral and

are equally patient, it is without loss of generality to backload all monetary payments

into a single reward, the prize, granted upon successful completion.

Definition 1 (Contract) Denote the probability space as (Ω,F , P ), with the filtra-

tion as {Ft}t≥0 generated by the history of progress {Xt}t≥0, reports {X̂t}t≥0, and any

public randomization process (the agent’s information set). The filtration {F̂t}t≥0 is

generated by the history of reports {X̂t}t≥0 and any public randomization process (the

principal’s information set). Contingent on the filtration F̂t, the contract specifies: a

stopping time τ when the contract ends, from completion (τC) or termination (τT )

with τ = min{τC , τT}, a terminal payment process {Kt}t≥0 to the agent (a prize if

τ = τC and severance if τ = τT ), and cumulative intermediate rewards {Ct}t≥0. All

quantities are assumed to be integrable and measurable under the usual conditions.6

Contracts are characterized using the agent’s continuation utility and progress

as state variables. Given a contract, the agent chooses actions {at}t≥0 and reports

{X̂t}t≥0. His continuation utility is the expected value of the reward from project

completion plus private benefits from any shirking:

Wt = E

[∫ τ

t

b(1− as)ds+

∫ τ

t

dCs +Kτ

∣∣∣∣Ft] . (6)

The agent’s limited liability requires Kτ ≥ 0 and Ct to be non-decreasing, so Wt ≥ 0.

The principal’s objective function Ft is the expected value of the benefit from a

completed project net of the expected operating cost and the reward to the agent:

Ft = E

[
Rτ −

∫ τ

t

cds−
∫ τ

t

dCs −Kτ

∣∣∣∣ F̂t] , (7)

where Rτ = R if the project is completed and 0 if it is not.

6As is standard, we use t− to mean the left-limit at t; e.g., if a setback occurs at time t, then
Xt = 0 and Xt− is the value of progress immediately before the setback.
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Before we characterize general incentive compatibility, we can simplify the con-

tracting space:

Lemma 1 (High Action and Intermediate Consumption) (i) The principal al-

ways implements the high action (at = 1). (ii) The principal does not award the agent

intermediate consumption (dCs = 0). (iii) If the agent is verifiably detected misal-

locating resources or lying about the project’s progress, then he is terminated at that

point without severance.

These claims are standard, so formal proofs are omitted.7

A contract is incentive compatible (IC) if the agent chooses the high action and

accurately reports the status of the project:

Definition 2 (Incentive Compatibility) A contract is IC if the agent maximizes

his objective (6) by choosing at = 1 and reporting X̂t = Xt for all t.

We allow the principal to randomize termination and payoffs as part of the con-

tract. In fact, we will show that some randomization is required for the contract to be

optimal. We describe the probability of random termination for incentive compatible

contracts with

Φt(s) = E
[

1{τT > t+ s}
∣∣ F̂t] (8)

for s ≥ 0. Φt(s) is the probability that the agent survives random termination

through t + s given the history of public randomization and reports at t. Φt(s) is

weakly decreasing in s and non-negative. dΦt(s) is understood to mean the increment

over s, holding t constant.

Randomization of termination or payoffs can be discrete or continuous. Contin-

uous randomization of termination means that Φt(s) declines continuously in s. For

7Heuristically,, we note the following: (i) Shirking is never optimal because any contract that
involves an interval δ > 0 of shirking can be modified to eliminate the interval by giving the agent a
lump-sum payment equal to what he would have obtained from shirking. Because X does not change
while the agent shirks and neither party discounts future payments, this does not change incentives.
However, it strictly increases the principal’s expected payoff because bδ < cδ. (ii) Because both
parties are equally patient, payments may be delayed without loss. (iii) The revelation principle
ensures optimality of a truthful direct mechanism, and the harshest penalty for verifiable malfeasance
should be imposed; with limited liability, this is termination without severance.

14



example, the principal may control an independent Poisson process with publicly

observable path and intensity such that the agent is terminated when the Poisson

process hits. Discrete randomization of termination means that Φt(s) may drop dis-

cretely. For example, there may be a stopping time at which the agent is terminated

with positive probability, and we can have Φt(0) < 1.

We define optimal contracts as:

Definition 3 (Optimal Contract) A contract is optimal if it maximizes the prin-

cipal’s objective function (7) over the set of contracts that are IC and grant the agent

non-negative initial utility: W0 ≥ 0.

In Section 4, we show that a time-budget contract attains the principal’s maximum

value for any initial level of utility for the agent, W0, while in Section 5, we characterize

the principal’s value and derive the optimal level of utility to grant the agent, W ∗
0 .

4 Optimal Contracts

This section contains five parts. After preliminaries, we introduce and discuss a cru-

cial constraint in Subsection 4.1, the No-Postponed-Setbacks (NPS) condition, that

is necessary for incentive compatibility. Then in Subsections 4.2 and 4.3 we char-

acterize the optimal termination policy and prize for completion respectively, under

the assumption that (NPS) is also sufficient for incentive compatibility. This analysis

yields three exhaustive contractual properties. Finally, in Subsection 4.4 we present

the concept of a time-budget contract and show that it satisfies the three properties

and is IC, implying that it attains the maximal payoff for the principal for any given

value of W0.

We begin with a martingale representation of the agent’s continuation utility:

Proposition 1 (Martingale Representation) If a contract is incentive compati-

ble, there is an Ft-predictable, non-negative, integrable process {Jt}t≥0 such that

dWt = Jt(λdt− dNt) + dMt (9)
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where Mt is an integrable Ft-martingale orthogonal to Nt that captures any public

randomization. For future use, we define

Yt = Wt− − Jt (10)

to be the agent’s expected continuation utility after a setback but before any random-

ization is applied. Then, Wt is the agent’s continuation utility after randomization is

applied at t.

This proposition is proved in Appendix A.2.

To proceed, we use recursive methods for incentive compatible contracts that focus

on one attempt at completion. This means that we start at some time t for which

Xt = 0 and continue until the attempt ends at termination, a setback, or completion.

Because the contract is incentive compatible, dXt = dt until the next setback, so we

will track x ∈ [0, X̄] instead of time and suppress the t dependence to conserve on

notation. We will use Y (x) to mean Yt+x for x > 0 and Y (0) = limx↓0 Y (x); Φx(s)

to mean Φt+x(s) or just Φ(s) for x = 0; K(x) = Kt+x to mean the agent’s severance

pay if he is randomly terminated at x < X̄ and K(X̄) to mean the (possibly random)

prize on completion.

4.1 Incentive Compatibility

We begin the analysis with the No-Postponed-Setbacks (NPS) condition. This con-

straint provides the necessary incentives for the agent to report any setbacks imme-

diately, rather than delaying the report and shirking in the meantime. Later, we will

show that (NPS) is also sufficient to prevent any other deviation.

Proposition 2 (Incentive Compatibility) A necessary condition for incentive com-

patibility is that for all δ < X̄ − x

Y (x) ≥ b

∫ δ

0

Φx(s)ds+ (1− Φx(0))K(0)−
∫ δ

0

K(x+ s)dΦx(s) + Φx(δ)Y (x+ δ)

(NPS)
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If the constraint (NPS) is also sufficient for incentive compatibility, then the prin-

cipal does not award severance pay, K(x < X̄) = 0, and the constraint holds with

equality:

Y (x) = b

∫ δ

0

Φx(s)ds+ Φx(δ)Y (x+ δ) (11)

This is proved in Appendix A.3. To understand (NPS), suppose the state of

progress is Xt− = x when a setback hits. Consider two possible paths the agent can

take:

• [Work] The agent reports the setback immediately, and then works as desired.

• [Shirk] The agent delays reporting the setback and attempts to shirk for time

δ ≤ X̄ − x. Then, if he is not terminated while shirking, he reports a (bigger)

setback and works as desired.

Now, we compare the two paths, with working first. Since working is optimal, truthful

reporting gives the agent Y (x), his promised expected utility after a setback.

Next, we consider shirking. A critical feature of the shirk path is that after the

postponed setback is finally reported, the agent has dissipated his persistent private

information about the status of the project. The agent and the principal both believe

that Xt+δ is 0 and have the same information about the project and contract going

forward. Thus, the agent’s continuation utility and the principal’s beliefs about it

coincide. In this case, the agent’s continuation utility at x is

b

∫ δ

0

Φx(s)ds︸ ︷︷ ︸
benefits from shirking

+ (1− Φx(0))K(0)−
∫ δ

0

K(x+ s)dΦx(s)︸ ︷︷ ︸
severance pay

+ Φx(δ)Y (x+ δ)︸ ︷︷ ︸
late setback report

The agent has three sources of utility: the direct benefit from shirking (first term),

any severance pay from termination (middle term), and any utility granted after re-

porting the delayed setback (last term). We do not have to keep track of intermediate

changes in utility because there are only three possible ways for an attempt at progress

to end, and the third (completion) cannot happen if the agent is shirking.
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The agent’s utility from shirking is complicated by the fact that the principal can

perform random termination; the probability that the agent survives for an additional

time δ after x is Φx(δ). So, if the agent attempts to shirk for δ time, the average

length of time he will shirk before being randomly terminated is
∫ δ

0
Φx(s)ds. The agent

survives to report the setback at t+ δ with probability Φx(x+ δ), and dissipates his

private information to receive Y (x + δ). Similarly, the severance pay term captures

any payments the agent receives after random termination.8 The incentive constraint

(NPS) just stipulates that the value from the work path is at least as high as the

value from the shirk path; i.e., the agent prefers to face the music immediately rather

than to postpone reporting a setback.

Next, we observe that if (NPS) is sufficient for incentive compatibility, then the

principal will never award severance pay. Severance pay weakens incentives: Φt(s)

decreasing in s implies that the severance pay terms in (NPS) are positive, making

the incentive constraint harder to meet. The principal has fewer paths of Y (x) that

meet the constraint and are incentive compatible. As we show in the proof, this is

sufficient to exclude severance pay from the optimal contract.

Proposition 2 also implies that the agent loses expected utility between truthfully

reported setbacks. Substituting x = 0 into (NPS) or (11), Y (0) is the agent’s expected

continuation utility after truthfully reporting a setback, and Y (δ) is his expected

continuation utility after truthfully reporting a setback δ time later. If the first

setback occurs at t, Wt is the agent’s utility after the setback and any immediate

randomization. Thus, we have

Wt − Φt(δ)Yt+δ ≥ b

∫ δ

0

Φt(s)ds (12)

and the loss of continuation utility between truthfully reported setbacks is at least

equal to the expected time the agent could have spent shirking between them. We

call this a “round trip” because the agent goes from X = 0 through some path and

back to X = 0. If setbacks were observable, the agent would not be punished for

8The term (1−Φx(0))K(0) captures incentives like “if the agent does not report a setback at x,

terminate him with positive probability.” Similarly,
∫ δ

0
K(x + s)dΦx(s) captures the possibility of

random termination with severance over (x, x+ δ).

18



them because they are evidence that he is working. However, because the principal

cannot detect them, the agent can manipulate reporting setbacks so as to provide

cover for shirking. Therefore, the agent’s loss in utility between reported setbacks

must be at least the expected benefit from shirking during that spell.

The round trip penalty demonstrates how the incentive compatibility constraint

makes time into a scarce resource: as progress and setbacks accumulate, the agent’s

utility moves over round trips toward zero, where the limited liability constraint

can bind. In the next section, we show how this process determines the optimal

randomization procedure.

4.2 Termination and Randomization

We now consider the optimal termination policy when the project is still incomplete.

First, termination is required. Imagine not; then there is some path of X that

would result in the project being funded without end with positive probability. How-

ever, the agent could simply mimic that path with his reports while shirking, and

thus obtain infinite utility. Put differently, the NPS round trip penalty implies that

between any two setbacks, the agent loses at least as much expected continuation

value as he could have obtained by shirking. However, absent random termination,

termination must still occur if Wt = 0 because, given limited liability, termination is

the only way for the principal to deliver Wt = 0. Because the agent’s initial utility

W0 is finite, the agent must either be randomly terminated or eventually run out of

time.

Second, termination is random. Imagine that the principal does not randomize

termination and a setback occurs at t resulting in Wt = Yt ∈ (0, bX̄). In this case,

if the agent continues to work and makes progress δ > Wt

b
before suffering another

setback, then the drop in his continuation utility required by (12) with Φt(s) = 1

would result in Yt+δ < 0, which is not feasible. The agent would prefer to shirk

rather than to report the second setback. One option to prevent this is simply to

terminate the contract at t and give the agent a severance payment of Wt, but this is

not optimal (Proposition 2). Instead, there is a better alternative: use randomization

to either fire the agent without severance or increase Wt enough to restore incentive
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compatibility. Randomization preserves the agent’s expected continuation utility, and

thus the principal’s expected payout to the agent, but (unlike paying severance) it

allows for a positive probability that the project will be completed.

In general, randomization can be discrete or continuous. One possibility is to wait

until some randomization is required, and then randomize as much as necessary all

at once: when a setback results in Yt < bX̄, randomize immediately to Wt = bX̄ or

0. Another possibility is continuous randomization: let Φt(s) decline continuously so

as to keep Wt+s high enough after surviving random termination that the agent can

report a setback without violating limited liability. In an extreme form, the principal

could set Φt(s) to keep continuation utility from surviving termination as constant.

These methods could be combined: randomize after a setback results in Yt < bX̄, but

just enough to keep the agent’s utility non-negative after a second setback. In fact,

it is optimal only to randomize discretely and only when necessary:

Proposition 3 (Optimal Randomization) If (NPS) is sufficient for incentive com-

patibility, then the principal randomizes only when Xt = 0 and only if Yt < bX̄. The

agent survives random termination with probability Yt
bX̄

and is terminated with the

complementary probability. Upon survival, the agent’s continuation utility is set to

Wt = bX̄. The project is not otherwise terminated.

This is proved in Appendix A.4. We utilize an inductive approach, beginning by

showing the optimal randomization policy for a project where no setbacks are possible,

then applying a sequence of bounding arguments to show that the result continues to

hold for projects that may have an arbitrarily large number of setbacks.

A key friction is that the agent can always gain utility from shirking, so there

is a lower bound on how much utility the contract can promise at the start of an

attempt (Xt = 0), and that bound is higher than zero due to limited liability: Wt ≥
b
∫ X̄

0
Φt(s)ds. This constraint is still valid even in the modified no-setback economy

because the agent can still shirk, mis-report progress for X̄ time, and fail to deliver.

In this modified economy, we can fix the survival probability at completion (Φ(X̄))

and ask what is the best way to get there. Randomizing as early as possible means

setting Φ(s) = Φ(X̄) for all 0 ≤ s < X̄, and this policy reduces expected operating

cost c
∫ X̄

0
Φ(s)ds, and relaxes the incentive constraint without impacting the expected
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project return Φ(X̄)R. Hence, the principal’s problem in this no-setback economy

reduces to looking for a corner solution to the following problem:

max
Φ(X̄)

Φ(X̄)(R− cX̄)−Wt, s.t. Wt ≥ bΦ(X̄)X̄, (13)

for which the randomization policy in Proposition 3 is optimal. We apply a sequence

of bounding arguments to show that the corner solution continues to obtain in an

economy in which an arbitrary number of setbacks are possible. A setback may

trigger random termination, but, conditional on surviving, it is optimal never to

terminate the agent before the next setback.

Propositions 2 and 3 together yield the following useful result:

Corollary 1 (Round-trip Utility Loss) If (NPS) is sufficient for incentive com-

patibility, then the agent’s expected utility loss between two setbacks occurring at t and

t+ δ is bδ under the optimal contract, i.e., Wt − Yt+δ = bδ.

This is proved in Appendix A.4.

This reveals a second key feature of the optimal contract, a linear countdown.

Incentive compatibility (Section 4.1) showed that time is a scarce resource for the

agent. Optimality now shows that the relationship between time and the agent’s

utility is linear. Next we consider the prize for completion.

4.3 The Prize for Completion

Subsections 4.1 and 4.2 reveal two of the three key features of an optimal contract.

First, there is a soft deadline, meaning the agent’s utility is randomly re-set whenever

he reports a setback with Yt < bX̄. Second, there is a linear countdown, meaning

that between two reports of setbacks, the agent’s utility must decline linearly at rate

b. The third and final feature to determine is the structure of the prize for delivery

of the completed project.

In fact, randomization only at Xt = 0 and a linear countdown are enough to

fully characterize the agent’s utility process (9) and thus the prize upon completion.

For an attempt that starts at t with Xt = 0 and lasts through t + δ, there are no

setbacks and no randomization on [t, t + δ]. Because there are no setbacks and no
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randomization, we can treat Wt+δ −Wt as a deterministic function of δ. Then the

martingale representation (9), definition of Yt, and Corollary 1 show that

∂[Wt+δ −Wt]

∂δ
= λJt+δ = λ (Wt+δ − Yt+δ) = λ ([Wt′+δ −Wt′ ] + bδ) (14)

Wt+δ −Wt = −bδ +
b

λ

(
eλδ − 1

)
(15)

where the second line follows from integrating the first with respect to δ.

The prize is thus

Kt+X̄ = Wt+X̄ = Wt − bX̄ +
b

λ

(
eλX̄ − 1

)
= Wt − bX̄ + b∆ (16)

where ∆ is the expected duration given in (4).

Starting at time 0 and re-applying the results of Corollary 1 over repeated setbacks

shows the third required feature of the contract: conversion from time to money. The

agent begins with a prize of W0 + b∆. Before randomization, time spent reduces the

prize at rate b until it equals b∆. Once randomization begins, the agent is re-set to

Wt = bX̄ after each extension and (16) yields a constant prize b∆. We formalize this

below:

Corollary 2 (The Prize) The prize begins at K0 = W0 + b∆, drifts down at rate

b dt until it equals b∆, after which it remains constant.

Given a starting value for the agent’s payoff W0, having specified the law of motion

for his continuation utility after and between setbacks (equation (15) and Corollary 1),

randomization only at the time of setbacks (Proposition 3), and the prize upon com-

pletion (16), there are no remaining contractual degrees of freedom. In particular, if

(NPS) is sufficient for incentive compatibility, then all elements of an optimal con-

tract specified in Definitions 1 and 3 (i.e., stopping time τ , terminal payment process

{Kt}, and cumulative intermediate rewards {Ct}) have been determined. Thus, we

need only find an implementation that generates these elements and show that it is

IC, which we do in the next subsection.
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4.4 Optimality of Time-Budget Contracts

We are now ready to present our main result: the optimal mechanism can be imple-

mented with a time-budget contract. We do so in three steps: first, we formally define

a time-budget contract. Second, we show that a time-budget is IC. Third, we show

that the time-budget satisfies all three properties of an optimal contract obtained in

the previous subsections. Since those properties were derived under the assumption

that (NPS) is sufficient to be IC, the fact that the time-budget contract is itself IC

implies that it must be optimal.

Time-budget contracts are mechanisms that give the agent a quantity of time for

which the principal will fund the project and a reward for completion. The agent

spends time working on the project and can request extensions that are stochasti-

cally granted. If the agent runs out of time, project funding ends and the agent

is terminated without severance. If the agent completes the project, he receives a

reward that includes both a fixed payment and an amount proportional to the re-

maining time. Thus, the initial endowment of time – the time budget – is converted

into either funding for the project or a reward for early completion.

Definition 4 (Time-Budget Contracts) A time-budget contract is an initial grant

of time S0 and a payment on success at time τ of Kτ = b(∆ + Sτ ). St counts down

deterministically (dSt = −dt) unless the agent requests an extension, which he is free

to do at any time. Requests for extensions are ignored if St ≥ X̄. If St < X̄, an

extension is granted with probability St−
X̄

, resetting St = X̄. If the extension is not

granted, the agent is terminated without severance (St is set to zero).

Under a time-budget contract, the agent’s objective is to maximize (6), subject

to the evolution of the project (1) and the time budget: dSt = −dt+LtdN̂t, with N̂t

counting extension requests. Lt is the realized length of the extension; if St < X̄, Lt

takes a value of X̄ − St− with probability St−
X̄

and a value of −St− with probability

1− St−
X̄

.

A time-budget contract is IC; it is optimal for the agent never to shirk and to

truthfully and immediately report a setback (request an extension):

Proposition 4 (Time-Budget Incentive Compatibility) A time-budget contract

is IC. The agent obtains continuation utility W (X,S) = bS + b
λ

(
eλX − 1

)
.
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This is proved in Appendix A.5 using dynamic programming techniques to derive

the agent’s value function if given a time-budget contract. If St ≥ X̄, the agent is

always indifferent between working and shirking because shirking requires reporting a

setback, and the round trip penalty between setbacks exactly cancels out the private

benefits from shirking. If St < X̄, then the agent strictly prefers not to shirk if Xt > 0

and is indifferent for Xt = 0. If Xt > 0, then shirking requires him to report a setback

at some point, and he risks losing his positive progress if he is terminated. If S0 < X̄,

the agent will request an extension immediately .

A time-budget contract features the three key properties of an optimal contract

identified in the previous subsection: a soft deadline, a linear countdown, and a

conversion from time to money on completion. Because these three properties of an

optimal contract are exhaustive and were derived under the assumption that (NPS)

is IC, the fact that a time-budget contract is IC proves that it must be optimal:

Theorem 1 (Optimal Contracts) A time-budget contract with bS0 = W0 max-

imizes the principal’s objective function among incentive compatible contracts that

deliver the agent initial value W0.

This is completed in Appendix A.6.

Remark 1 (Relaxing Reporting) Optimal incentives can be implemented with

less stringent reporting requirements than specified. Rather than requiring a report of

each setback, at project inception the principal can announce a target date T = S0−X̄
and then commit to fund the project until this point no-questions-asked. If the agent

delivers the completed project at τ ≤ T , he receives Kτ as specified in Definition 4.

Once the target date has passed, the principal requires setbacks to be reported, and

she follows the random termination procedure given in the definition of a time-budget

contract from that point on.

Remark 2 (Procurement Contracts) As noted in the introduction, the imple-

mentation of the optimal incentive mechanism characterized in Definition 4 is a cost-

plus-award-fee contract. The principal commits to: cover the operating cost of the

project cτ , pay a fixed fee b∆ upon project delivery, and pay an incentive award bSτ

for early completion.
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Remark 3 (Generalizations) Although a full analysis of heterogenous setbacks is

beyond the scope of this investigation, the structure outlined in Definition 4 remains

qualitatively intact under various alternative specifications such as the one concerning

fatal setbacks, below. Other environments (e.g., partial setbacks) in which the agent’s

persistent private information is not cleanly dissipated are more technically challeng-

ing. Analysis of such settings requires development of new methods and/or stronger

assumptions (e.g., pre-specifying state variables and using Markovian contracts).

To see one way the model can be generalized, suppose that when a setback occurs

it is either an un-fixable dead end with probability γ ∈ (0, 1) or progress is wiped out

but the project remains feasible with probability 1−γ . The agent privately observes

the occurrence and the type of each setback.

Corollary 3 (Fatal Setbacks) The value-maximizing contract in this setting is a

modified time-budget contract with W0 = bS0. If the agent reports a fatal setback at τ ,

then the contract is terminated with a severance payment of bSτ . Reports of non-fatal

setbacks are treated as in Proposition 3.

We sketch a proof of this in Appendix A.7.

In this version of the model the project can be canceled for one of two reasons:

the exogenous arrival of a fatal setback or the endogenous decision not to grant

an extension. Although fatal setbacks are plausible in some settings, as noted in

the Introduction, our focus is mainly on planned or designed projects that remain

perpetually feasible.

5 The Value of the Project

5.1 The Initial Value

We can use the fact that a time-budget contract is an optimal implementation to

derive the principal’s value function F (S,X). What is most important is her valua-

tion of a given time budget when starting from scratch: F (S, 0).9 In fact, F (S, 0) is

9For X > 0 we have F (S,X) =
∫ X̄−X

0
λe−λt (F (S − t, 0)− ct) dt+ e−λ(X̄−X)(R− c(X̄ −X)).
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characterized by a Delay-Differential Equation (DDE) and is discontinuous in its first-

and second- derivatives at a focal point, St = X̄.10 So, instead of the usual techniques

involving PDEs and dynamic programming, we will derive F (S, 0) using two martin-

gales, the optional stopping theorem, and a relatively simple DDE. This allows for a

more fundamental understanding of the contract and its economic characteristics.

In order to simplify the principal’s problem, we will define two useful auxiliary

functions. The first function, π(S), is the probability that the agent is eventually

successful in completing the project. The second function, σ(S), is the expected

remaining time until the contract ends (from either completion or termination). We

have

π(S) = Et [1Xτ=X̄ |St = S,Xt = 0] (17)

σ(S) = Et [τ − t|St = S,Xt = 0] , (18)

where τ is the contract stopping time (Definitions 1 and 4). These two functions

capture the loss to the principal from the second-best contract. In the first-best, the

agent runs the project as long as necessary to complete it. In the second-best, the

principal imposes a stochastic schedule (the time budget) which reduces both the

probability of success and the time allowed.

We can now significantly simplify the principal’s problem. Starting with the prin-

cipal’s and agent’s payoffs (6 and 7), and using the auxiliary functions we have just

defined, we have:

F (S,X = 0) = π(S)R−W (X = 0, S)− c σ(S), (19)

= π(S)R− bS − c σ(S) (20)

where W (X = 0, S) = bS from Proposition 4. This gives us a very intuitive repre-

sentation of the principal’s value of the project. It is the expected reward, minus the

expected agency rents granted to the agent by the time budget, minus the expected

direct running cost.

10It is possible to derive the existence of the kink using the welfare bounding arguments of Ap-
pendix A, as we demonstrate in the On-line Appendix, Lemma C.1. This kink, and its simple
characterization using a DDE, motivate the methods of this section.
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We continue by applying the optional stopping theorem11 to two martingales in

order to relate the probability of success to the expected time remaining. First, the

agent’s continuation utility W (X,S) = bS+ b
λ

(
eλX − 1

)
is a martingale that can only

stop at two boundaries: project success or termination. Second, the randomization

probabilities (Definition 4) imply that St + t is a martingale that also only stops

upon completion or termination. , so the optional stopping theorem implies S0 + 0 =

E [Sτ + τ ]. Thus we have

bS0 = W (0, S0) = E [W (Xτ , Sτ )] = bS0 + E

[
−bτ +

b

λ

(
eλXτ − 1

)]
(21)

0 = −bσ(S0) + E

[
b

λ

(
eλXτ − 1

)]
(22)

= −bσ(S0) + b∆π(S0). (23)

The first line follows from plugging in the form of W and applying the optional

stopping theorem; the second line follows from the definition of σ(S); the third line

follows from the definitions of π(S) and ∆ and the optional stopping theorem applied

to success or termination.

Re-arranging and generalizing to any time with Xt = 0, we have

π(S) =
σ(S)

∆
. (24)

which illustrates the direct link between reducing the projects expected time and

reducing the projects expected success. In other words, the probability of successful

completion is the ratio of the expected duration of the project under the time-budget

σ(S) to the expected duration in the first-best setting. The intuition for this result

comes from the martingale property of the agent’s continuation utility. The agent’s

utility W (X,S) counts up as progress is obtained and down as time passes. Those

two changes must cancel out on average to maintain incentives. Thus, the passage of

time is exactly matched by an increase in the probability that the agent receives the

11As a reminder, Doob’s optional stopping theorem shows that the expectation of a martingale at
a stopping time is equal to the current value of the martingale. Our setting fits the version of this
result given in Theorem 5.3.1 of Cohen and Elliott (2015).
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constant part of his reward, and the average time to completion must be proportional

to the probability of success.

Taking (24) to the principal’s valuation (20), we have four equivalent expressions:

F (S, 0) =

(
R

∆
− c
)
σ(S)− bS (25)

= π(S) (R− c∆)− bS

= π(S)FFB − bS.

This highlights the principal’s trade-off in choosing an optimal schedule length. Giv-

ing the agent more time (S or σ(S)) grants an increase in the probability of success.12

However, more time also grants the agent more opportunity for malfeasance and

therefore increases the initial utility that the contract must promise the agent, bS. In

fact, the trade-off is so direct that the principal’s expected payoff is the probability

that the project is completed in the allotted time times the first-best payoff, minus

the agent’s information rents. This tradeoff manifests in the hump shape of the value

function F (S, 0). At low levels of S both the principal and agent prefer a larger time

budget. However, as S grows, diminishing marginal returns to the probability of

project completion π(S) are eventually dominated by the linear agency cost bS, and

F (S, 0) peaks at some critical value S∗ beyond which it decreases. Hence, there is an

optimal amount of time S0 = S∗ and corresponding optimal level of promised utility

W ∗
0 = bS∗0 for the principal to initially grant the agent:

Proposition 5 The principal’s initial valuation is given by any of (25). These func-

tions exist, are unique, are weakly concave, attain a single local and global maximum

in S, and are differentiable except at S = X̄. We have σ(S) = S when S ≤ X̄, and

σ(S) < S when S > X̄. Furthermore,

lim
S↑X̄

σ′(S) = 1 > 1− e−λX̄ = lim
S↓X̄

σ′(S) (26)

12In fact, a long time budget implies a small probability of cancellation, and in the limit as S →∞,
the project is never canceled so that the expected stopping time corresponds to the expected first-
best duration of the project. i.e., limS→∞ σ(S) = ∆. Similarly, (and matching (24)), the larger the
time budget S, the more likely it is that the agent will complete the project; i.e., π(S) is increasing
and converges to 1.
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The maximizing value of S is S∗ ≥ X̄. The optimal contract grants the agent initial

utility W ∗
0 = bS∗ and initial time S0 = S∗.

This is proved in Appendix B. F (S, 0) and σ(S) are plotted in Figure 1.

Figure 1: The Expected Remaining Time and The Principal’s Value Function

The left panel plots σ(S) (the expected remaining time until the contract ends, green line) and the

right panel plots F (S, 0) (the principal’s value function at X = 0) for two values of R, 2.75 (blue line)

and 4 (red line), with vertical markers indicating the maximizing value of S, labelled S∗. All plots

use a dashed line for the linear segment S ≤ X̄, exhibit a non-differentiable point at S = X̄ = 1,

and use a solid line for S > X̄. Other parameters are λ = 1, X̄ = 1, c = 1, b = 3/4.

By definition, the expected time remaining, σ(S), is the sum of the time to the

next setback or completion and any residual expected time. For S ≤ X̄, the optional

stopping theorem implies S0+0 = E [Sτ + τ ], and (18) gives us σ(S) = S. For S > X̄,

the recursive formula for σ(S) is

σ(S) =

∫ X̄

0

λe−λt(t+ σ(S − t))dt+ e−λX̄X̄. (27)

As we show in Appendix B.1, this corresponds to the DDE

σ′(S) = λe−λX̄
(
∆− σ(S − X̄)

)
(28)

which allows us to characterize the principal’s value function in Proposition 5.

Observe that the time-budget contract exhibits a strong policy switch by the

principal coinciding with the kink at S = X̄. For S < X̄ the principal extends or
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cancels the project based on the agent’s reports, and randomization after setbacks

implies that the project is never completed with extra time remaining. In contrast,

for S > X̄ the principal can simply wait, ignoring reports and paying on delivery if

and when it occurs. This policy switch at S = X̄ marks an important focal point in

the contract.

First, the focal point marks a transition in the expected duration of the project.

Since σ(S) = S for all S ≤ X̄, if a setback occurs at S ≤ X̄, then (prior to random-

ization) the expected duration of the project coincides with the remaining value of

the time budget. In contrast, for S > X̄ setbacks are responded to passively as time

simply continues to tick down. In fact, since the project still can be completed early,

before running into the S ≤ X̄ region, we have σ(S) < S (as shown in Proposition 5).

Thus although the optimal contract allows for extensions, it is not the case that

the expected duration of the project is longer than the initial time budget. Instead,

overruns in which the realized time taken τ is greater than S∗ are a probabilistic

consequence of extensions granted following late-stage setbacks. Indeed, if S∗ > X̄,

then the contract initially builds slack or slippage time into the schedule in the sense

that the expected allotted time S∗ is longer than the expected duration of the project

σ(S∗).

Second, the focal point kink at S = X̄ also delineates a transition in the opti-

mal incentive scheme from monetary-based to deadline-based incentives owing to the

minimum time required to perform the project. If St− ≥ X̄ when a setback hits, then

completion of the project in the remaining time is feasible and the optimal contract

does not respond directly to the setback, but continues to tick away the bonus for

early delivery. On the other hand, if St− < X̄ when a setback occurs, then completion

in the remaining time is not possible. As we have shown, it is optimal at this point to

randomize between St = 0 and St = X̄. Specifically, if the outcome of randomization

were any St ∈ (0, X̄), then the agent would find it optimal to shirk away the allotted

time. Hence, St = 0 (cancellation) prevents shirking and St = X̄ (extension) restores

project feasibility and induces continued working.

The kink arises from a discontinuous change in the marginal value of time, due to

the all-or-nothing nature of the optimal randomization. As we showed in Section 4.2,

the principal optimizes discretely at X = 0, and the reason is that policy allows
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the principal to grant the agent a low level of average utility in the cheapest way.

However, key to this optimization is that the principal knows how much time the

project would take to complete without a setback: the project has a known scope.

The uncertainty is over whether the agent will be able to execute, but a successful

attempt always costs cX̄ and grants the opportunity to shirk bX̄. Those values are

re-set whenever an extension is granted, and so the agent’s utility can be re-set fully.

The smooth-pasting condition that one might expect instead of a kink originates in a

continuous optimization problem over the location of a boundary, but our boundary

is discrete. Any randomization above X̄ implies an excess risk of cancellation and

thus the marginal value of time drops discretely, not continuously, at X̄.

The foregoing discussion implies that the minimum optimal value for the initial

time budget is S0 = S∗ = X̄, and, because of the kink at this point, there is a generic

set of parameter values that all result in the same optimal contract. We explore this

in the next subsection.

Remark 4 (Commitment to Randomize) In the online appendix we present an

extension of the baseline model that relaxes the commitment of the principal to use

explicit probabilities for project cancellation. As is usual in dynamic mechanisms

that use termination to provide incentives, a fully renegotiation-proof contract is

not feasible in our setting because the principal prefers extension to cancellation.

Nevertheless, the principal’s commitment to explicit probabilities can be relaxed by

considering either a very long extension granted with very low probability, or a mixed-

strategy time-budget implementation. In the latter, the principal randomizes between

cancellation and extension just as in the baseline model, and upon receiving an ex-

tension, the agent randomizes between continuing to work and shirking out the clock.

Although both relaxations reduce the initial value of the project to the principal rel-

ative to the commitment case, we show that the principal responds to her inability to

commit to randomize by increasing the time and resources allocated to the project.

By granting the agent a longer initial time budget, S0, the principal raises the prob-

ability that the project will be completed before the randomization region, St < X̄,

is reached.

31



5.2 A Short-Leash Contract

A particularly salient situation is when the principal finds it optimal to set the ex-

pected schedule to the minimal time necessary to complete the project, S∗ = X̄ and

responds to any reported setback by either canceling the project or resetting the

clock. Such a short-leash contract possesses no slack in the sense that the expected

stopping time equals the initial time allotted; i.e., early completion is not possible:

Proposition 6 (Short-Leash Contract) If S ≤ X̄, then F (S, 0) = S
(
R
∆
− c− b

)
,

which is increasing. The optimal contract involves the minimal initial time budget

S0 = X̄ and a fixed prize b∆ iff

(c+ b)∆ < R <
(
c+ b

1−e−λX̄

)
∆. (29)

This is proved in Appendix B.

The first inequality in (29) is a restatement of Assumption 2, and it ensures

that F (S, 0) is positive and increasing for S < X̄. Therefore, it is never optimal to

start the contract with S0 < X̄. The second inequality then ensures that F (S, 0) is

decreasing for S > X̄. Hence, when (29) holds, the kink in the value function at

S = X̄ corresponds to the peak and it is optimal for the principal to set an initial

time budget of S∗ = X̄. The blue line on the right panel of Figure 1 demonstrates this

case. In other words, the principal should keep the agent on a short leash: granting

him only the minimal time necessary to complete the project, requiring him to report

every setback, and canceling the project with positive probability each time one is

reported.

The key parameters in (29) are b, the agent’s per-period benefit from shirking,

and λ, the expected frequency of setbacks. If b is too large, then the left inequality

in (29) fails and moral hazard precludes the project from ever getting off the ground.

On the other hand, if b is too small, then the right inequality fails. In this case,

hidden action rents are less of a concern, and the principal prefers to give the agent

more than the minimal initial time to complete the project.

Intuitively, a short-leash contract is optimal if λ is sufficiently small. To see this,
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we calculate the limit as λ→ 0 in (29) to obtain

(c+ b)X̄ < R <∞,

which holds by Assumption 2. Hence, when the expected frequency of setbacks is

small enough, the principal allows no slack in the schedule, committing to only the

minimal expected rent of bX̄ necessary to induce the agent to work on the project.

At inception of a short-leash contract, the expected duration of the project is

σ(S = X̄) = X̄. However, if the agent reports a setback with St− left on the schedule,

then he is granted an extension of X̄ − St− with probability St−
X̄

. Hence, the support

of the stopping time τ is unbounded, implying that the project may run arbitrarily

long, incur arbitrarily large costs, and yet may still be canceled. We describe the

probability of on-time completion, early cancellation, overruns, and overruns with

cancellation analytically and graphically in On-line Appendix E.

6 Conclusion

At a general level, projects are often viewed as possessing three defining features:

scope, schedule, and budget, the so-called iron triangle. The scope of a project is the

quality of the deliverable; The schedule is the time allotted to production; and the

budget is the monetary or other physical resources dedicated to it. In this paper we

hold scope fixed, and present a model of project implementation focusing on what

appears to be the most common sources of project uncertainty, schedule setbacks and

the concomitant cost overruns.

Whether a project is under taken in-house (e.g., the Boeing Dreamliner) or out-

sourced (e.g., the FBI’s VCF system), its progress is likely to be hampered by agency

frictions. To study this, we embed a model of production involving random setbacks

into a dynamic agency environment and solve for the optimal contract. This yields a

number of novel insights and conclusions. Among the most robust are: 1) an optimal

contract can be implemented with a soft deadline and a terminal payment resem-

bling a cost-plus-award-fee contract; 2) penalties for reports of setbacks or delays are

generally more severe the later they occur in development; and 3) mishaps that are
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reported near the end of the allotted schedule either result in project cancellation or

minimally feasible project extension.

Many avenues remain open for future research. For example, expanding our cur-

rent treatment to incorporate common strategies for dealing with the time pressure

created by unanticipated setbacks is intriguing. The completion of projects is fre-

quently time-sensitive as noted by Lewis and Bajari (2011) who investigate the pro-

curement of highway construction projects where completion delays can have large

social costs. In this vein, exploring the possibility of speeding up production through

fast-tracking (running several phases in parallel) or crashing (deploying more re-

sources) to make up for unanticipated delays is a potentially important consideration.

Also, there is the question of scope itself. Throughout we assume that the project is

either incomplete (worth zero to the sponsor) or complete (worth a fixed amount). In

reality, the ultimate quality of many projects varies along a continuum. Indeed, scope

creep on the part of sponsors (demanding a higher quality deliverable than originally

specified) is often cited as a contributing factor to project failure. We leave these

considerations and others for future work, having judged this particular project to be

completed (albeit after a setback or two).
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Appendix – Proofs and Derivations

A The Optimal Contract

This section is a series of lemmas and propositions that lead up to our core result,
Theorem 1.

A.1 Re-writing the Principal’s Objective

We re-write the principal’s optimization problem for incentive compatible contracts.
We use recursive methods and the notation introduced in Section 4.1 that focuses
on one attempt at completion. This means that we start at some time t for which
Xt = 0 and continue until the attempt ends at termination, a setback, or completion.

In addition to what is mentioned in the text, we use Ŷ to mean the agent’s contin-
uation utility at the beginning of the attempt but before any discrete randomization is
applied. Notice that Ŷ 6= limx↓0 Y (x): Ŷ is the value at the beginning of the attempt
and before randomization at Xt = 0, while Y (x) is the value after the next setback
at t + x. Similarly, g(Y ) means the principal’s continuation utility from a given at-
tempt that begins with Y , before any discrete randomization is applied. If discrete
randomization is applied when a setback is reported, we have Φ(0) < 1. Social value
is denoted with h(Y ) = g(Y ) + Y .

First, the principal’s objective function (7) with X = 0 and initial agent’s utility

Ŷ can be written as

g(Ŷ ) =

∫ X̄

0

λe−λxΦ(x) [g(Y (x))− cx] dx+ e−λX̄Φ(X̄)
[
R− cX̄ −K(X̄)

]
(30)

− (1− Φ(0))K(0) +

∫ X̄

0

e−λx(K(x) + cx)dΦ(x)

This is the sum of value after a setback (first term), and value after completion
(second term), and value after paid severance (third term), which are the only three
ways a run from X = 0 can end in an incentive compatible contract.

Second, because the agent’s continuation utility is a martingale that ends in a
setback, termination and severance pay, or project completion, we have

Ŷ =

∫ X̄

0

λe−λxΦ(x)Y (x)dx+ e−λX̄Φ(X̄)K(X̄) (31)

+ (1− Φ(0))K(0)−
∫ X̄

0

e−λxK(x)dΦ(x)
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Third, through integration by parts, we have∫ X̄

0

cxe−λxdΦ(x) = e−λX̄Φ(X̄)cX̄ −
∫ X̄

0

(
ce−λx − λcxe−λx

)
Φ(x)dx (32)

Adding (30), (31), and (32) shows that the principal’s objective function (7) at
any time with X = 0 can be written as

g(Ŷ ) =

∫ X̄

0

λe−λxΦ(x)
[
h(Y (x))− c

λ

]
dx+ e−λX̄Φ(X̄)R− Ŷ (33)

where h(Y (x)) = g(Y (x))+Y (x) is the sum of the principal’s and agent’s continuation
values and the social welfare function. h(Y ) is weakly increasing because intermediate
consumption is never optimal (Lemma 1).

This re-writing of the objective function shows that we can consider the principal’s
problem to be optimization of social welfare over the path of Y and Φ, subject to the
IC constraint and the limited liability constraint (Y weakly positive).

A.2 Martingale Representation (Proposition 1)

We have dCt = 0 for all t < τ (Lemma 1), and incentive compatibility implies at = 1
(Definition 2). Therefore (6) under incentive compatible contracts becomes Wt =
E [Kτ |Ft ]. Since Wt is an Ft-martingale, and since Nt and any public randomization
are orthogonal, a martingale representation theorem (e.g., Protter (2005), Theorem
44) implies there exists a Ft-predictable, integrable process {Jt}t≥0 such that

dWt = Jt(λdt− dNt) + dMt. (34)

where Mt is an integrable Ft-martingale orthogonal to Nt that captures any public
randomization. Truthful reporting requires Jt to be non-negative.

A.3 Incentive Compatibility (Proposition 2)

This section proves Proposition 2, then Lemma A.1, which is a corollary lemma
following from Section A.1.

Following the arguments in the text (Section 4.1), we require for all δ < X̄ − x

Y (x) ≥ b

∫ δ

0

Φx(s)ds+ (1− Φx(0))K(0)−
∫ δ

0

K(x+ s)dΦx(s) + Φx(δ)Y (x+ δ)

(35)
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Next, we observe that the impact of severance pay is to increase the right hand
side of (35) by (1−Φx(0))K(0)−

∫ δ
0
K(x+s)dΦx(s) > 0. Thus, if (35) is sufficient for

incentive compatibility, then positive severance pay after termination strictly reduces
the set of possible paths of Y that the principal can use, while having no impact on the
objective function (33) for incentive compatible contracts; the principal can weakly
improve any incentive compatible contract with severance pay with one without sev-
erance pay. Thus, we can consider only contracts without termination-severance pay.
From (35) and setting K(x < X̄) = 0, we obtain

Y (x) ≥ b

∫ δ

0

Φx(s)ds+ Φx(δ)Y (x+ δ) (36)

Finally, recall that the principal’s objective function for incentive compatible con-
tracts (33) is pointwise (weakly) increasing in Y . Then, for any given randomization
policy, the path of Y is maximized point-wise if (36) binds everywhere. Thus, if
(35) is sufficient for incentive compatibility, then we can consider only contracts that
induce (36) constraint to hold with equality. �

Lemma A.1 (The Principal’s Incentive Compatible Problem) Assume (35) is
sufficient for incentive compatibility; no other constraints are required. Then the prin-
cipal acts to maximize the constrained social welfare function h characterized by

h(Ŷ ) = max
Φ

∫ X̄

0

λe−λxΦ(x)
[
h(Y (x))− c

λ

]
dx+ e−λX̄Φ(X̄)R (37)

s.t. Y (x) =
Ŷ − b

∫ x
0

Φ(s)ds

Φ(x)
(38)

Ŷ ≥ b

∫ X̄

0

Φ(x)dx (39)

Further, Φ(X̄) ≤ Ŷ
bX̄

.

Proof: The principal’s objective (37) is a rewriting of (33) using g(Ŷ ) + Ŷ = h(Ŷ ).

Since Ŷ is the agent’s utility at the beginning of the run, (11) implies (38). Limited
liability requires Y (x) ≥ 0 and implies (39); adding that Φ(x) is weakly decreasing

implies Φ(X̄) ≤ Ŷ
bX̄

. �

A.4 Optimal Randomization (Proposition 3)

This section shows that the principal optimally randomizes only at X = 0 and only

the minimally feasible amount: Φ(x) = min
{

Ŷ
bX̄
, 1
}

, a constant. To do so, we will go
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through several preliminary lemmas that follow Lemma A.1 in assuming that (NPS)
is sufficient for incentive compatibility; no other constraints are required. We then
finish with a proof of Corollary 1.

A.4.1 An Economy Without Setbacks

Lemma A.2 h(Ŷ ) ≤ min
{

Ŷ
bX̄
, 1
}(

R− cX̄
)
.

Proof: The principal’s welfare must be lower than in an economy without setbacks
(e.g. with λ = 0). In such an economy, the agent starts with utility Ŷ and setbacks

do not occur. The agent can always receive b
∫ X̄

0
Φ(x)dx from endeavoring to shirk

for time X̄, so we must have Ŷ ≥ b
∫ X̄

0
Φ(x)dx. The principal’s objective is Φ(X̄)(R−

K(X̄)) − c
∫ X̄

0
Φ(x)dx, where K(X̄) is the prize upon successful completion. In an

incentive compatible contract, we have payment only on completion, so Φ(X̄)K(X̄) =

Ŷ . Thus, the principal’s problem is

max
Φ

[
Φ(X̄)R− Ŷ − c

∫ X̄

0

Φ(x)dx

]
(40)

s.t. Ŷ ≥ b

∫ X̄

0

Φ(x)dx (41)

We observe that for any given Φ(X̄), the principal gains by minimizing Φ(x), which
both reduces the expected running cost and slackens the constraint. Thus Φ(x) =
Φ(X̄) and the principal’s problem becomes

max
Φ(X̄)

[
Φ(X̄)R− Ŷ − cΦ(X̄)X̄

]
(42)

s.t. Ŷ ≥ bX̄Φ(X̄) (43)

If Ŷ ≥ bX̄, then Φ(X̄) = 1 and K(X̄) = Ŷ , and the contract is incentive com-

patible; the principal’s value is R − cX̄ − Ŷ and the social surplus is R − cX̄. If

Ŷ ≤ bX̄, then Φ(X̄) = Ŷ
bX̄

and K(X̄) = bX̄, and the contract is incentive compatible;

the principal’s value is Ŷ
bX̄

(
R− cX̄

)
− Ŷ and social surplus is Ŷ

bX̄

(
R− cX̄

)
. �

A.4.2 Iterating the Bound on Welfare

Lemma A.3 Define α∗ such that

e−λX̄R−
∫ X̄

0

λe−λx
( c
λ

+ α∗bx
)
dx = 0 (44)
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and consider the sequence

αn+1 =αn

∫ X̄

0

λe−λxdx+
1

bX̄
max

[
0, e−λX̄R−

∫ X̄

0

λe−λx
(
αnbx+

c

λ

)
dx

]
(45)

with α0 = 1
bX̄

(
R− cX̄

)
. Then αn is decreasing and α∞ = λR

b(eλX̄−1)
− c

b
< α∗.

We have that h(Ŷ ) ≤ α∞Ŷ .

Proof: We begin with the properties of the sequence. If αn ≥ α∗, then the
maximand in (45) is zero; if αn < α∗, then the maximand in (45) is e−λX̄R −∫ X̄

0
λe−λx

(
αnbx+ c

λ

)
dx. Either way, inspection shows that the coefficient on αn is

between zero and one, the sequence is decreasing, and the limit of the sequence is

lim
n→∞

αn = α∞ =
e−λX̄R
bX̄
−
∫ X̄

0
λe−λx c

λbX̄
dx

1−
∫ X̄

0
λe−λx

(
1− x

X̄

)
dx

=
λR

b(eλX̄ − 1)
− c

b
(46)

Now we show that (45) characterizes a sequence such that h(Ŷ ) ≤ αnŶ . The
claim holds for n = 0 from Lemma A.2, and we show that if it holds for n, it must
hold for n+ 1.

Starting with (37), we have

h(Ŷ ) = max
Φ

e−λX̄Φ(X̄)R +

∫ X̄

0

λe−λxΦ(x)
(
h(Y (x))− c

λ

)
dx (47)

≤ max
Φ

e−λX̄Φ(X̄)R +

∫ X̄

0

λe−λxΦ(x)
(
αnY (x)− c

λ

)
dx

= max
Φ

e−λX̄Φ(X̄)R +

∫ X̄

0

λe−λx
(
αnŶ − αnb

∫ x

0

Φ(s)ds− Φ(x)c

λ

)
dx

≤ max
Φ

e−λX̄Φ(X̄)R +

∫ X̄

0

λe−λx
(
αnŶ − αnbxΦ(X̄)− Φ(X̄)

c

λ

)
dx

=

∫ X̄

0

λe−λxαnŶ dx+ max
Φ

Φ(X̄)

[
e−λX̄R−

∫ X̄

0

λe−λx
(
αnbx+

c

λ

)
dx

]
(48)

Since 0 ≤ Φ(X̄) ≤ Ŷ
bX̄

(Lemma A.1), (48) is maximized at either Φ(X̄) = 0 or

Φ(X̄) = Ŷ
bX̄

, and we have that h(Ŷ ) ≤ αn+1Ŷ . Since αn ↓ α∞, we have h(Ŷ ) ≤ α∞Ŷ .
�

Lemma A.4 If Ŷ ≤ bX̄, then h(Ŷ ) = α∞Ŷ with Φ(x) = Ŷ
bX̄

, constant.
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Proof: The contract of Section 5.1 is incentive compatible and attains the given

bound with Φ(x) = Ŷ
bX̄

for Ŷ ≤ bX̄. �

Lemma A.5 For all Y and δ, we have h(Y )
Y
≥ h(Y+δ)

Y+δ
.

Proof: Let Φ(x) be optimal starting from Ŷ = Y + δ, and let Φ̂(x) = Φ(x) Y
Y+δ

.

Examining (38), we see that using Φ̂ starting from Ŷ = Y and using Φ starting

from Ŷ = Y + δ generate the same path of Y (x). Because Φ(x) is optimal for

Ŷ = Y + δ but Φ̂(x) could be sub-optimal for Ŷ = Y , inspection of (37) shows that
h(Y ) ≥ h(Y + δ)

(
Y
Y+δ

)
. �

A.4.3 Randomization

Lemma A.6 If Ŷ ≥ bX̄, then Φ(x) = 1 is strictly optimal.

Proof: Ŷ ≥ bX̄ implies the feasibility constraint (39) is slack and the principal’s
maximization problem (37) is

h(Ŷ ) = max
Φ

∫ X̄

0

λe−λxΦ(x)
[
h(Y (x))− c

λ

]
dx+ e−λX̄Φ(X̄)R (49)

subject to (38). Consider any Φ(x) with Φ(X̄) < 1. We will show that the gain from
increasing Φ(x) to 1 is strictly positive.

Let Y (x) be defined as in (38) and Yφ(x) = Ŷ −bx be the analogous function after
replacing Φ with 1. Then Φ(x) ≤ 1 implies Y (x) ≥ Yφ(x). The change in (49) from
increasing Φ(x) to 1 is

G =e−λX̄
(
1− Φ(X̄)

)
R−

∫ X̄

0

λe−λx (1− Φ(x))
c

λ
dx

+

∫ X̄

0

λe−λx [h(Yφ(x))− Φ(x)h(Y (x))] dx (50)

Looking at the first line in (50), Φ(x) ≥ Φ(X̄) implies

−
∫ X̄

0

λe−λx (1− Φ(x))
c

λ
dx ≥ −

(
1− Φ(X̄)

) ∫ X̄

0

λe−λx
c

λ
dx (51)

Continuing with the second line in (50): Lemma A.5 implies
h(Yφ)

Yφ
≥ h(Y )

Y
. Mul-

tiplying by Yφ and adding −Φ(x)h(Y ) to both sides yields h(Yφ) − Φ(x)h(Y ) ≥
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−h(Y )
Y

[Φ(x)Y − Yφ]. Thus,

∫ X̄

0

λe−λx [h(Yφ)− Φ(x)h(Y )] dx ≥ −
∫ X̄

0

λe−λx
h(Y )

Y
[Φ(x)Y − Yφ] dx (52)

Next, we observe that because Φ(x) ≥ Φ(X̄), we have

0 < Φ(x)Y − Yφ = bx− b
∫ x

0

Φ(t)dt ≤ b
(
1− Φ(X̄)

)
x (53)

Substituting (53) into (52) yields∫ X̄

0

λe−λx [h(Yφ)− Φ(x)h(Y )] dx ≥ −
∫ X̄

0

λe−λx
h(Y )

Y

[
b
(
1− Φ(X̄)

)
x
]
dx

≥ −
(
1− Φ(X̄)

) ∫ X̄

0

λe−λxα∞bx dx (54)

with α∞ from Lemma A.3. Putting together (50), (51), and (54), we obtain

G ≥ (1− Φ(X̄))

[
e−λX̄R−

∫ X̄

0

λe−λx
( c
λ

+ α∞bx
)
dx

]
(55)

Since Φ(X̄) < 1 and the term in square brackets is strictly positive (Lemma A.3), we
have G > 0. Thus, there is a single optimal policy in (49) which is Φ(x) = 1. �

Lemmas A.4 and A.6 together give the randomization policy in Proposition 3.
Corollary 1 follows from substituting the policy from Proposition 3 into (11) with

x = 0. Then, (38) implies Y (0) = limx↓0 Y (x) = Ŷ
Φ(0)

= Wt.

A.5 The Time-Budget Contract (Proposition 4)

We show that a time-budget contract is sufficient to induce the agent to take the high
action and to request an extension if and only if he has a setback or the initial utility
W0 is less than bX̄. In doing so, the agent achieves continuation utility W (X,S) =
bS + b

λ

(
eλX − 1

)
.

We will first solve an altered problem in which the agent’s payoffs are higher,
creating an upper bound on his continuation utility in the original problem. In the
altered problem, in addition to the standard payment on success, the agent receives
a payment of b

λ

(
eλX − 1

)
for partially completed projects X ≤ X̄ that are delivered
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when St = 0 or when the agent is terminated.13 In the altered problem, the candidate
time-budget contract with initial time S0 > 0 is sufficient to induce the agent to report
truthfully and take the high action. In doing so, the agent achieves continuation utility
W̄ (X,S) = bS + b

λ

(
eλX − 1

)
.

The agent’s HJB equation is

0 = max

{
EW̄ (X,S + L)− W̄ (X,S),

W̄Xa+ (1− a)b− W̄S

+ aλmax
{

EW̄ (0, S + L)− W̄ (X,S), W̄ (0, S)− W̄ (X,S)
}}

(56)

where L is the length of an extension (Section 4.4), and with the following boundary
conditions:

W̄ (X̄, S) = bS +
b

λ

(
eλX̄ − 1

)
(57)

W̄ (X, 0) =
b

λ

(
eλX − 1

)
. (58)

Equation (56) represents a branched choice. The first line of (56) represents the
change of utility from requesting an extension when there is no setback. The second
line represents the flow utility from working or shirking, and the third line represents
the change of utility from requesting an extension or not when there is a setback.
The first max is over whether to announce a false setback or take the change over dt.
If there is no false setback, the agent chooses to work or shirk, and the second max
is over whether to postpone the report of a setback when one occurs.

The boundary condition (58) is the key difference between the original problem
and the altered problem. The proposed continuation utility function W̄ (X,S) =
bS + b

λ

(
eλX − 1

)
is consistent with the boundary conditions.

Outside the randomization region (for S > X̄), L equals 0. Thus (56) becomes

0 = max

{
0, W̄Xa+ (1− a)b− W̄S + aλ

{
W̄ (0, S)− W̄ (X,S)

}}
(59)

Substituting in W̄ (X,S) = bS + b
λ

(
eλX − 1

)
yields 0 = max{0, 0}, so the agent is

indifferent between working and shirking and between asking for an extension or not.
Inside the randomization region, Lt equals X̄ − St− with probability St−/X̄ and

13The original problem has a fundamental discontinuity: the agent receives the reward for success
if S = 0 and X = X̄ but zero if S = 0 and X < X̄. The altered problem does not have this
discontinuity.
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equals −St− with probability 1− St−/X̄. Thus (56) becomes

0 = max

{(
1− S

X̄

)
W̄ (X, 0) +

S

X̄
W̄ (X, X̄)− W̄ (X,S), W̄Xa+ (1− a)b− W̄S

+aλmax

{(
1− S

X̄

)
W̄ (0, 0) +

S

X̄
W̄ (0, X̄)− W̄ (X,S), W̄ (0, S)− W̄ (X,S)

}}
.

Substituting in W̄ (X,S) = bS + b
λ

(
eλX − 1

)
yields

0 = max

{
0, b
(
eλX − 1

)
(a− 1)

}
, (60)

Then (60) implies that the agent prefers working to shirking if X > 0 and is indifferent
if X = 0. The agent is indifferent between announcing a false setback or not and
is indifferent between postponing the report of a setback or not when one occurs.
Thus, working and truthfully reporting are (weakly) optimal policies. A standard
verification argument shows that our solution to the HJB equation is also sufficient.

Next, we observe that, in the original problem, if the agent reports truthfully and
takes the high action, then direct calculation shows that the agent never enters the
region S < X̄ − X, never finishes the contract with a partially completed project,
and obtains a continuation utility W (X,S) = bS + b

λ

(
eλX − 1

)
. Since the altered

problem has weakly higher payoffs than the original problem, but the continuation
utility from the altered problem is attained in the original problem with high action
and truthful reporting, then it must be the case that those policies are also optimal
in the original problem. �

A.6 The Optimal Contract Resolved (Theorem 1)

We can now complete the proof of Theorem 1: Proposition 2 shows that (NPS) is
necessary for a contract to be IC. If (NPS) is also sufficient (no other constraints are
required), then optimality implies a law of motion for the agent’s utility (Proposi-
tion 2) and the optimal randomization scheme (Proposition 3). The law of motion for
utility implies a value for Kτ (16). There are no additional degrees of freedom. The
time budget contract (Definition 4) satisfies these properties and is incentive com-
patible (Proposition 4) without any additional constraints. Thus, (NPS) is sufficient,
and the time-budget contract attains the principal’s maximum value. Since X0 = 0,
Proposition 4 shows that W0 = bS0. �
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A.7 Fatal Setbacks (Corollary 3)

Proof Sketch: If the project has suffered a fatal setback, the principal would like
the agent to report the project’s death so that she can stop paying the running
cost. To make the agent willing to report a setback’s type, the principal grants the
agent the same level of utility for both fatal setback and non-fatal setback reports.
Implementing this incentive compatibility constraint in a time-budget contract implies
that since a non-fatal setback is met with continuation utility W (X = 0, S) = bS as
the project continues, a fatal setback is met with severance pay of bS as the project
is canceled. A higher level of severance would induce the agent to report all setbacks
as fatal. A lower level would induce the agent to report a non-fatal setback and shirk
out the contract, earning bS. �

B The Value of the Project (Propositions 5 and 6)

B.1 A Formula for σ(S)

First, (24) implies σ(S) is bounded because π(S) is bounded between 0 and 1. Clearly,
limS→∞ π(S) = 1. Thus, limS→∞ σ(S) = ∆ = 1

λ

(
eλX̄ − 1

)
.

From our in-text martingale analysis, the optional stopping theorem implies S0 +
0 = E [Sτ + τ ]. Since S ≤ X̄ implies that the contract can only end with Sτ = 0, (18)
gives us σ(S) = S.

Next, define the constant ξ =
∫ X̄

0
λe−λttdt + e−λX̄X̄ = 1

λ

(
1− e−λX̄

)
. Then, for

any S ≥ X̄, we have the following recursive formula:

σ(S) =

∫ X̄

0

λe−λt(t+ σ(S − t))dt+ e−λX̄X̄ =

∫ X̄

0

λe−λtσ(S − t)dt+ ξ (61)

where a setback at time t yields an expected time remaining of σ(S− t), while success
without a setback implies that X̄ time was spent. Then, we use a change of variables
ν = S − t and some algebra to find that (61) can be re-written as

eλSσ(S) =

∫ S

S−X̄
λeλνσ(ν)dν + ξeλS (62)

This implies σ(S) is continuous for all S and differentiable in S for all S > X̄ from
the arguments in Smith (2011). Differentiating and simplifying, we obtain

σ′(S) = λξ − λe−λX̄σ(S − X̄) (63)

This is a delay differential equation (DDE), with initial condition σ(S) = S for all
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S ≤ X̄. By the arguments in Smith (2011), the solution exists and is unique.
Furthermore, because σ(S) < ∆, we have σ′(S) > λξ − λe−λX̄∆ = 0, and σ(S) is

increasing. The fact that σ(S) is continuous implies σ′(S) is also continuous for all
S > X̄. Since σ(S) = S for S ≤ X̄, we have limS↑X̄

∂
∂S
σ(S) = 1. However,

lim
S↓X̄

σ′(S) = λξ − λe−λX̄σ(0) = λξ = 1− e−λX̄ < 1 (64)

That is, σ(S) has one kink at X̄. Similarly, for all S > X̄ except at S = 2X̄,

σ′′(S) = −λe−λX̄σ′(S − X̄) < 0, (65)

while at S = 2X̄,

lim
S↑2X̄

σ′′(S) = −λe−λX̄ lim
S↑X̄

σ′(S) = −λe−λX̄ < 0 (66)

lim
S↓2X̄

σ′′(S) = −λe−λX̄ lim
S↓X̄

σ′(S) = −λe−λX̄
(

1− e−λX̄
)
< 0. (67)

implying that σ(S) is concave and attains a single local/global maximum in S.

B.2 The Value Function

Equation (25) follows directly from the arguments in Section 5.1. σ(S) increasing and
concave (Section B.1) implies F (S, 0) is concave in S and attains a single local/global

maximum. Similarly, S ≤ X̄ implies σ(S) = S and F (S, 0) =
(

λR
eλX̄−1

− c− b
)
S,

which is increasing from Assumption 2.
Following Section B.1, there is at most one kink point at S = X̄, where

lim
S↓X̄

∂

∂S
F (S, 0) =

(
λR

eλX̄ − 1
− c
)(

1− e−λX̄
)
− b (68)

< lim
S↑X̄

∂

∂S
F (S, 0) =

(
R

∆
− c
)
− b.

and (29) holds if and only if F (S, 0) is maximized at S = X̄.
The value of the prize follows from (16) and the fact that if there is a setback with

Wt ≤ bX̄, it is no longer possible for Sτ > 0 when the project is completed. �
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