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APPENDIX B: GENERAL EQUILIBRIUM SETUP

THIS APPENDIX OUTLINES THE GENERAL EQUILIBRIUM SETUP that underlies
our approximation. The preferences of the representative agents are given by
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where c(¢) is an aggregate of the goods produced by all firms, £(¢) is the la-
bor supply, M(t) is the nominal quantity of money, and P(¢) is the nominal
price of one unit of consumption, formally defined below (all variables at time
t). We use U(c) = (¢'* —1)/(1 — &), where & > 1. There is a unit mass of
firms, indexed by k € [0, 1], and each of them produces n goods, indexed by
i=1,...,n. There is a preference shock A, ;(¢) associated with good i pro-
duced by firm & at time ¢, which acts as a multiplicative shifter of the demand
of each good i. Let ¢, ;(¢) be the consumption of the product i produced by
firm k at time ¢. The composite Dixit-Stiglitz consumption good c is
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For firm k to produce y,;(¢) of the i good at time ¢ requires ¢, ;(¢t) =
Ye.i(t) Zi ;(¢) units of labor, so that W (¢)Z, ;(¢) is the marginal cost of pro-
duction. We assume that A, ;(¢) = Z;;(t)"" so the (log of) marginal cost
and the demand shock are perfectly correlated. We assume that Z; ;(¢t) =
exp (o Wx.i(t)), where W, ; are standard BM’s, independent across all i, k.

The budget constraint of the representative agent is
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where R(t) is the nominal interest rate, Q(¢) = exp (— fot R(s) ds) is the price
of a nominal bond, W (#) is the nominal wage, 7(¢) is the lump sum nominal

transfers, 7, is a constant labor subsidy rate, and I1(¢) is the aggregate (net)
nominal profits of firms.
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The first order conditions (f.o.c.’s) for the household problem are (with re-
spect to £, m, ¢, ¢i.;)
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where A, is the Lagrange multiplier of the agent budget constraint. If the
money supply follows M (1) = M (0) exp (ut), then in equilibrium
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Moreover, the f.o.c.’s for £ and for ¢ give the output equation
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From the household’s f.o.c.’s of ¢ ;(#) and £(¢), we can derive the demand
for product i of firm k, given by
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In the impulse response analysis of Section 5, we assume w =0, 7, =0, and
that the initial value of M (0) is such that M (0)/P(0), computed using the in-
variant distribution of prices charged by firms, is different from its steady state
value.

The nominal profit of a firm k from selling product i at price P ;, given
the demand shock is Ay ;, marginal cost is Z;;, nominal wages are W, and
aggregate consumption c, is (we omit the time index)
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Alternatively, collecting W Z, ; and using that A,(,,-Z,:17 =1 gives
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so that the nominal profit of firm k from selling product i with a price gap py ;
is

(36) W (t)e()' "I (py.i(1))  where
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where we rewrite the actual markup in terms of the price gap py;, defined

in equation (14), that is, % = ePki L. This shows that the price gap py.; is

sufficient to summarize the value of profits for product i. Note also that by
simple algebra, IT(py ;)/I11(0) = e "Pki[1 4+ mePki — n], which we use below.

Next we show that the ideal price index P(t), that is, the price of one
unit of the composite good, can be fully characterized in terms of the price
gaps. Using the definition of total expenditure (omitting the time index) Pc =
fol > (Prick,) dk, replacing ¢ ; from equation (35), and using the first order
condition with respect to ¢ to substitute for the ¢~¢ term gives

1 n P 1-7 1/(1—=n)
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which is the usual expression for the ideal price index and can be written in

. . Py ; X
terms of the price gaps using # =elri
N

B.1. The Firm Problem

We assume that if firm k adjusts any of its # nominal prices at time ¢, it must
pay a fixed cost equal to ¢, units of labor. We express these units of labor as
a fraction ¢ of the steady state frictionless profits from selling one of the n
products, that is, the dollar amount that has to be paid in the event of a price
adjustment at 7 is ¢, W (t) = W (¢)c'="I1(0). To simplify notation, we omit
the firm index k in what follows, and denote by p the vector of price gaps and
by p; its ith component.

The time 0 problem of a firm selling n products that starts with a price gap
vector p is to choose {7, Ap} = {7}, Ap,»(q-j)}]%'il to minimize the negative of
the expected discounted (nominal) profits net of the menu cost. The signs are
chosen so that the value function is comparable to the loss function in equation
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Letting_ IT (p)) = II(p;)/I1(0), using that equilibrium wages are constant
W (t)/W = e°, and using the parameterization of fixed cost in terms of steady
state profits ¢, = ¢ ~"°I1(0) gives (where the overbars denote steady state
values)

(38) V(7, Ap,¢; p)
=_—Wec'*"I1(0)

xE|:/ ‘”ZS c(t), pi(1)) dt—
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subject to equation (2), Ap;(1;) = limtl,j pi(t) — lim,m pi(¢t) for all i <n and
j =0, where ¢ = (c(?))=0, and where the function S: R, x R, — R gives the
normalized per-product profits as a function of aggregate consumption ¢ and
the price gap of the ith product p; as

c\' L e\
S(e, pi) = <E) II(p) = (E) e i1+ ne? —q].
Expanding S(c, p;) around ¢ = ¢, p; = 0 and using that
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in equation (38), we obtain
V(7,Ap, ¢ p)
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where V(7, Ap; p) is given by equation (1) with B = (1/2)n(n — 1). We can
then write

V(r,Ap,c; p)
=Ye’V(r, Ap; P)

+E[ / e o(|(p(0), ety = &) ) di| p0) = p] +1(3,0),
0

where the constant Y = WII(0)c'~ is the per-product maximum (friction-
less) nominal profits in steady state and where the function ¢ does not depend
on (7, Ap).

APPENDIX C: NUMERICAL ACCURACY OF THE APPROXIMATIONS

This appendix documents the precision of our analytical results in compari-
son to the exact numerical solution of a model that uses no approximations. In
particular, recall that our solution used a second order approximation of the
profit function, no drift in the price gaps, and the impulse response functions
were computed using the steady state decision rules, that is, ignoring the gen-
eral equilibrium feedback effect, which, as stated in Proposition 7, were shown
to be second order. This section explores the robustness of our approximations
compared to a model that features an asymmetric profit function, the presence
of drift, and takes into account the general equilibrium feedback on decision
rules following the aggregate shock. To this end, we solve numerically two mod-
els that can be computed: one model for the case of n =1 and one model for
the case of n = co. We compare the results with the results produced by our
approximations in Section 5. We show that the approximate results are very
close to the exact results. The reason, explained in Proposition 7, is that the
general equilibrium feedback effect on the decision rules is second order.

C.1. On the Accuracy of the Impulse Responses

First we describe the case of n = 1. We solve for the optimal policy of a firm
in steady state. This is done using the nonquadratic objective function from the
implied CES preferences described in the general equilibrium setup in Online
Appendix B. The optimal policy is of the sS nature, but given the lack of sym-
metry on the objective function, the thresholds are not symmetric (i.e., the
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distance between the optimal return point and the lowest adjustment thresh-
old, which gives the size of the price increases, is not equal to the distance
between the highest thresholds and the optimal return point, which gives the
size of price decreases). Another difference with the model in the main body
of the paper is that we reported results assuming the price gap had no drift,
due to zero inflation and no drift in the real marginal costs. In this section, we
assume that marginal cost has a negative drift, due to productivity growth Z,,
which is equal to 2%. Similar results are obtained by assuming a small infla-
tion rate. Because of these differences, the optimal return point (that is, the
optimal price upon resetting) does not need to be equal to zero, that is, the
frictionless optimal.”> A positive drift in the price gap will give the firm a mo-
tive to set a positive price gap to hedge against the anticipated depreciation of
the sale price. Another motive for the nonzero price gap is that the profit func-
tion associated with the CES demand is asymmetric, so that prices below the
optimum are more costly (in terms of foregone revenues) than prices above
the optimum. Both forces will give the firm a motive for setting a positive price
gap upon resetting.

We solve numerically a discrete time model with a very small time period
(half a day), where the shock to the (log of the) firm marginal cost follows a
discrete time analogue to the Brownian motion (used in the main model) with
drift equal to the trend growth of productivity, so that the price gap will have
a small drift. The parameterization of the nonlinear model is chosen to be the
same as that of the quadratic model (with the noted exception of the small drift
in the price gap).

Solving for the impulse response involves the following steps:

e We compute the steady state (invariant) distribution of the price gaps.
Since the thresholds are not symmetric, the distribution is not necessarily sym-
metric either.

e We draw a large number of firms (N = 500,000) with price gaps dis-
tributed according to the invariant distribution. In the cases of » = 1 and
n = oo, such an invariant distribution can be derived analytically by solving
the ODE of the associated Kolmogorov forward equation.

e We shock the nominal value of each firm’s price gap by the same propor-
tion at time ¢ = 0. This uses the fact that, as in Golosov and Lucas (2007), the
equilibrium path of nominal wages and nominal interest rates can be solved in-
dependently of the aggregate output and the distribution of prices of the final
good (see Online Appendix B).

e (i) We simulate the shocks for each of the N firms until 7 years, keeping
track of the price gap of each of the j firms in each period. We use the decision
rules obtained for a given assumed path of future aggregate consumption {c,}.

e (ii) For each time period between ¢t = 0 and ¢ = T, we use the cross section
of the N firms’s price gap to compute the ideal price index and the associated

220f course, these differences vanish as the adjustment cost ¢ goes to zero.
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FIGURE 9.—Approximate vs. exact solution after a 1% shock to money supply for n = 1. The
parameter values are n = 6.8 (so that B = 20), o = 0.10, ¢ = 0.035, and p = 0.02; the productivity
drift is 2%; in the approximate model, these produce N, =1, Std(Ap) = 0.10. Very similar values
are produced by the exact model. The simulation to compute the impulse response function uses
a cross section of 500,000 firms.

aggregate consumption. At the end of this procedure, we have a path for the
aggregate consumption and a path for the price level: {c], P,},.

e If the assumed aggregate consumption path {c,} equals the new path
{c;}, up to numerical tolerance (namely that one changes in the IRF values
are smaller than 0.03 percent), we stop the algorithm. If it does not, we let
{c:} ={c}, return to (i), and iterate again until convergence.

The left panel of Figure 9 plots the decision rules produced by this proce-
dure for the model with n = 1 for a shock § = 1%, as considered in the main
body of the paper: the threshold levels for the price gaps p, p, delimiting the
inaction range, and the optimal return point p. The vertical axis measures the
time elapsed since the shock occurred. These lines are virtually vertical, indi-
cating that the optimal decision rules are virtually overlapping with the steady
state ones. The only visible effect appears for p in the periods immediately
following the shocks. Much larger shocks are needed, in the order of 6 = 10%,
to see more actions (still rather small) in the decision thresholds. The reason
was given in Proposition 7, where it was shown that the general equilibrium
feedback effect on the decision rules is second order.

The right panel of Figure 9 plots the “exact” impulse response function
that takes into account the general equilibrium effect, the drift, and the non-
quadratic profit function as well as the impulse response produced by our
model for the analogue parameterization, which was presented in Figure 4
of Section 5. The two curves appear almost on top of each other and their
half-lives are virtually identical. The figures shows that our model provides a
very good approximation for a 1% monetary shock (which is not a small shock
historically).
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C.1.1. The Decision Rule Along a Transition for the n =1 Model

Using equation (38), we write the profit function relative to the steady state
frictionless profit. We do this for the n =1 case. Let T be the time when con-
sumption reverts to the steady state. For each ¢ € (0, T'), there is a triplet, two
inaction bands, and an optimal return point that satisfy value matching and
smooth pasting for the value functions

_ 1
v(c, p) =S¢, pHA+ mEU(CwA, DPisa)

and

pt:ﬁ)a

Ev(cisa, Pita)

N 1
v(c, pi) = mﬁB‘X(S(Cta POA— ¢+ 1+ Ar

where
¢ 1-me
Ste, p)= (—) e "[1+me? —n].
c

C.1.2. On the Exact Solution of the n = co Case

Consider a value function defined in the augmented state 17( Plseeos P T)/
n, where (p1, ..., p,) is the vector of price gaps and 7 is the time since last ad-
justment. The period return for this Bellman equationis Y, c(£)*II(pi(t))/n,
where a =1 — ne and I1( p;) is the function in equation (36) deflated by nom-
inal wages. As n — oo, the law of large numbers allows us to write the period
return as

n

> () T (pi(r)) /1~ () B[ (p(r) | p(0)] = e()*F (7, p(0)),

i=1

where F(r, p(0)) is a function that gives the expected value of I1(p(7)) after
T periods since resetting each price gap at p(0). We can write the steady state
Bellman equation as

A

T
V= mz}x/ e F(t, pydt+ eV — ],
»T Jo

where, abusing notation, we use V to denote the value of the value function
right after an adjustment of prices, that is,

V = max V(p,,...,pn,O)/n

Pl Pn
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and ¢, = I1(0)c*y, as assumed in Section B.1. Recall from equation (36) that

-n
« n _ n
11 = - | eP —1/.
P) <1+nn—1) ¢ P - }

Recall that the price gap p is given by equation (14), so it has the diffusion

dp=(y—p)dt+ odB.

Next define the function f(7, p) as the ratio between the expected profits 7
periods after resetting a price gap p and the frictionless profit term I7(0):

(p,) _] F(7, p)
Do=

11(0) P 1= F0.0)

_ ne(1—71)pe((n—l)(u—7)+(a2/2)(n—1)2)7

(39) fﬁdﬂEE[

— (0 = D)e e H@ DT

Then the firm’s value function, scaled by the frictionless profits I1(0)c?,
solves the Bellman equation

T
(40) ﬁ:maTx/ e f(t, p)ydt+e (D — ).
pT Jo

To match the model moments to the observables, note that to keep the
number of adjustments finite, let ¢y = niy;, so that as n increases, the cost

per good stays constant at ;. Thus as n — oo, we have that N, = 1297"12 and

Std(Ap) = y/o?/N,. Under the invariant, the distribution of y/y is uniform in
(0, 1) as in Section 5.2. After the shock hits, the distribution is shifted.

C.1.3. The Decision Rule Along a Tiansition for the n = oo Model

Let T be the time when consumption reverts to the steady state. For each
t € (0, T), there is a value function v,, an optimal return point p,, and a time
until the next review 7, that solve the Bellman equation (scaled by the steady
state frictionless profits I1(0)c”)

Tt 1-me
(41) 0y = max/ e‘”(ctgs> f(s, p)ds+e " (Vryr, — )
0

Pt,7t

and use 0y = 0, that is, the steady state value function. For a given guess of the
aggregate consumption profile c,, the value functions can be solved backwards.
We first determine which firms will adjust prices immediately as the shock

arrives. Let p be the price gap chosen by firms in the steady state and let T be
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the time until the next adjustment in the steady state. After a monetary shock,
all firms find their price gaps reduced by 8, so their value function corresponds
to a function on which the last price gap was reset at p — 8. This determines
a new planned date for adjusting prices: 7y, which by the first order condition
with respect to 7, in equation (41) solves

(42) f(T()’ ﬁ - 8) - r(ﬁfo - l,l’) :O

After computing the value functions v,, one can thus determine the new times

until adjustment 7. All firms that adjusted prices ¢ periods ago with ¢ € (7, T)
will immediately adjust prices. Thus the fraction of firms that will jump on

impact after the monetary shock is given by T;T". All other firms will adjust
when the age of their price reaches 7, and, at that point, use the decision rules
{7:, p:} prescribed by equation (41). Numerically, as occurred for the n =1
case, the left panel of Figure 10 shows that for a shock 6 = 1%, such as those
considered in the main text, these rules are virtually identical to the rules of the
steady state. The main difference compared to the approximate rule derived in
the main text of the paper concerns the size of the impact effect, which the
model slightly underestimates due to the fact that the rule in the paper uses
T as the optimal adjustment date whereas the exact model prescribes 7. The
right panel of Figure 10 shows that the difference between the approximate
and the exact impulse response is tiny.?
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FIGURE 10.—Approximate vs. exact solution after a 1% shock to money supply for n = oo.
The parameter values are 7 = 6.8 (so that B =20), o = 0.10, ¥ = 0.035, and p = 0.02; the pro-
ductivity drift is 2%; in the approximate model, these produce N, =1 and Std(Ap) = 0.10. Very
similar values are produced by the exact model. The simulation to compute the impulse response
function uses a cross section of 500,000 firms.

BLikewise, Figure 7 in Golosov and Lucas (2007) compares an IRF that includes the general
equilibrium feedback effect with an IRF computed ignoring this effect, that is, keeping the firms
decision rules constant. The authors conclude that “[e]vidently, the approximation works very
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APPENDIX D: EVIDENCE ON SYNCHRONIZATION OF PRICE CHANGES

We now turn to a detailed discussion of the evidence. Lach and Tsiddon
(1996) documented more synchronization of price changes of different prod-
ucts within a store than of products of the same type across stores:

Our analysis leads us to conclude that Figure 1 is the result of staggering across price-
setters, while price changes of different products are synchronized (non-staggered) within
the store. That is, the data exhibit across-stores staggering and within-store synchroniza-
tion in the timing of price changes.

This is the first piece of evidence that motivated interest in the hypothesis of a
common fixed cost, which the authors proposed.*

Levy, Bergen, Dutta, and Venable (1997) and Dutta, Bergen, Levy, and Ven-
able (1999) studied the pricing behavior of four large U.S. supermarket chains
and a large U.S. drugstore company. They found evidence of large synchro-
nization of price changes of a given type of good in both types of stores (for ex-
ample, “...96.4 percent of the weekly price changes in the supermarket chains
are done during a two-day (Sunday and Monday) period, on a regular basis”),
as well as documenting that a large component of the menu cost is common
to the pricing of all products of a given type (for example “[m]any compo-
nents of menu costs we document in this paper are indeed store-specific, rather
than product-specific”). See Section 5 and Table 4 in Dutta et al. (1999) for a
summary of their findings on synchronization across the two papers. Fisher
and Konieczny (2000) studied daily the prices of Canadian newspapers. They
proposed an index of synchronization of price changes and found that price
changes of papers owned by the same firm are synchronized. On the other
hand, independently owned newspapers do not appear to change their prices
together. Chakrabarti and Scholnick (2007) used price data from online book
retailers (Amazon.com and Barnes and Noble.com) to compute the index pro-
posed by Fisher and Konieczny (2000) and documented that the degree of
price synchronization is at least as high if not higher than that found for Cana-
dian newspapers.

Midrigan (2009) (see Section 2.C and Appendix 2) used scanner data from
Dominick’s to document that price changes in narrow product categories
within a store are synchronized (see also page 1160 of Midrigan (2011)). He

well for the effects of a one-time shock, even a large one.” Likewise, small general equilibrium
feedback effects are found in Alvarez, Lippi, and Paciello (2013) and in the Online Appendix C,
where we solve numerically a model with the general equilibrium structure of Golosov and Lucas
using values for the idiosyncratic shocks and adjustment cost values that are close to the values
used in this paper for n = 1.

%The authors analyzed monthly price changes over 18 months for 21 product groups in 55
stores that sell wine products and 25 that sell meats products. In Section IV (Within-Store Syn-
chronization), the authors rejected the hypothesis that the proportion of price changes within
a store is the result of price changes binomially independently distributed across products. In
particular, they showed a relatively large fraction of months where the stores either changed no
prices or changed the prices of all of these products; see Tables 5 and 7.
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also showed that the hazard of a good’s price change depends not only on that
good’s’ desired price change (proxied by changes in costs and the deviation of
the good’s price from that of its competitors), but also on the desired price
change of other goods within a store. Bhattarai and Schoenle (2011) studied
U.S. firm’s producer price index (PPI) prices from the BLS. They found evi-
dence for substantial synchronization of individual price adjustment decisions
within the firm by estimating logit regressions on price changes of a firm’s prod-
uct, which included other firms’ product changes as well as other firms’ price
changes of the same types of products. They documented that synchronization
within the firm is much stronger than within the industry.”

Cavallo (2010) used scraped daily data from online grocery retails stores
in four developing countries. He found that there is daily synchronization in
the timing of price changes among closely competing goods within each store.
He labeled this “synchronization within the aisle.” His measure compares the
actual distribution of price changes of closely related products with the distri-
bution that would arise if price changes across products within the aisle were
independent (and were to have the same frequency of price changes as in the
data). In words, he found that there is a higher frequency of many products
changing their prices in a day or very few products changing their prices in
a day relative to what is expected from price changes that are independently
distributed across products.

A related, but different, phenomenon is the one of “uniform pricing rules,”
where a retailer decides to charge the same price for all variants of a product,
regardless of demand and possible cost changes. Obviously, a firm that follows
this practice will have perfect synchronized price changes in of all the variants
of the product under uniform pricing rules. Anderson, Jaimovich, and Simester
(2012) documented this practice and reported a variety of statistics for a very
large U.S. retail store.

APPENDIX E: CORRELATION, DRIFT, AND CROSS-PRODUCTS

Our paper studies the problem of a firm that controls an n-dimensional vec-
tor of price gaps p € R” subject to a common menu cost . Assuming that the
individual price gaps p; had no drift and were mutually uncorrelated, and that
the objective function was to minimize the square of the price gaps, we showed
that the n-dimensional state of the problem could be collapsed into a single
state variable y =) " | p?, measuring the squared norm of the price gaps. This
delivered a lot of analytical tractability.

This appendix extends the model to the possibility that the price gaps p; are
mutually correlated and/or that the gaps have a common drift and that the

ZWe note that the results are obtained despite the fact that their measure of the number of
product that a firm produces is noisy: they used the number of product that are sampled by the
BLS for a given firm.
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objective function has nonzero cross-partial terms (all equal to a common con-
stant). These extensions impair the symmetry of the problem so that one might
fear losing the tractability that was obtained before. Surprisingly (at least to
us), we show that despite the apparent complexity of these extensions, the mod-
ified problem remains tractable: instead of the single state variable y defined
above, the state of the problem with either drift, correlation, cross-product,
or any combination of them now includes only one additional variable that
measures the sum of the coordinates of the vector, namely z = )", p;. Im-
portantly, this not only allows us to solve numerically the steady state problem
of the firm for any »n > 1, but also to compute the impulse response, since the
effect on the aggregate price level can be obtained by keeping track of z for
each firm.

For ease of exposition and because its implications are more important to
judge the robustness of the benchmark case, the next section shows how to
solve the firm problem when the price gaps are correlated but there is no drift.
The value function and decision rules for the problem are presented in Sec-
tion E.1. Section E.2 illustrates the cross-section implications of an economy
where firms follow these decision rules, presenting the implications for the
cross-section distribution of price changes—a statistic that is central to the em-
pirical analyses of the price-setting problem. Section E.3 moves on to charac-
terize how the aggregate economy will respond to monetary shocks. We show
how the response of the economy to a monetary shock varies as we change
(i) the number of goods 7 sold by each firm and (ii) the correlation p between
the shocks of the price gaps of the firm. Finally, Section E.4 shows how to fur-
ther extend the firm problem to include a common drift in all price gaps, for
example, inflation, and Section E.5 shows how to include nonzero cross-partial
derivatives (between the price gaps of the different goods) in the instantaneous
return function.

E.1. The Case of Correlated Price Gap

We assume that the price gaps are diffusions that satisfy

(43)  E[dpi(n)]=0ds, E[dpi(1)]=067ds, and
E[dp,-(t) dpj(t)] = po’dt

foralli=1,...,n and j # i, and for two positive constants 6> and p. Then we
can write that each price gap follows

(44)  dpi(t)=adWV(t) +adWi(t) foralli=1,...,n,
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where W, W(t) are independent standard BM’s, so that 2 = &2 + ¢? and the
correlation parameter is p = #202 Define

45)  yn=)_ pin) and z()=)_ piD).

i1 i1
Using Ito’s lemma,

dy(t) =[no* +na’]dt

+ ZUip,-(t) dWi(t) + 20 {Z pl-(t)j| dW(1)
i1 =

and

dz() =na dWV(1) + o Zn:dw,-(z).

=

This implies that

n n 2
(46)  E[dy(n)] =40 <Z p?(t)) dt + 452 (Z p,-(t)) dr
i=1 i=1
=40?y(t)dt + 457 z(1)* dt,
(47)  E[dz(0)]’ = o’ndt + 57n*dt,

(48)  E[dy(t)dz(H] =20 (Z pi(t)) dt 4 2né? <Z p,«(t)) dr

i=1 i=1

=2(0* 4+ na’)z(r)de.
Thus define the diffusions

(49)  dy() =n[o? + 7*]dr + 20/ y(1) AW (1) + 2G2(1) AW (1),
(50) dz(t) =nodW-(t)

z(t) z() \ iy }
dw* 1- d
+Jﬁa[ O w (t)+J ( ny(t)) We() |,

where OV, WP, W¢) are three standard independent BM’s.
Note that if o = 0, then z does not affect y and, hence, the state of the
problem is y. Also note that if & > o = 0, then the specification coincides with
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a 1-good model (n =1 and no correlation), so the state can be taken to be y
too. In the case where o and o are positive, the state of this problem will be
the pair (y, z). We offer some preliminary characterization of the problem.

(i) We require that

(51) z(1)* < ny(1).

If z(0)* < ny(0) and {y(¢), z(1)},-0 generated by equation (49) and equation
(50) satisfy this inequality. To see why, let us consider the case where z = ,/yn
and use Ito’s lemma to compute d(yn) and d(z?). At this point, the two process
have the same drift and diffusion. A similar argument follows at z = —,/yn,
where the diffusions’ coefficients differ only in their sign. Thus z?/(yn) stays in
[0, 1].

(ii) The diffusions defined by equation (49) and equation (50) satisfy equa-
tion (46), equation (47), and equation (48).

(iii) The value function has arguments (y, z), denoted by v(y, z). Alterna-
tively, V(pi, pa, ..., pu) = V(31 Pi> 2oy Pi)-

(iv) The value function is symmetric in z around zero, so v(y, z) = v(y, —z)
for all (y, z) € R3. This follows because clearly V' (p) =V (—p).

(v) The optimal policy is to have an inaction region Z = {(y, z):0 < y(2)}
for some function y(z).

(vi) At the threshold, we have value matching and if the function is C! in
the entire domain, we have smooth pasting:

(52)  Vip)=0 and V(p)=V(O)+¢ if y(Zp,-)=Zp% or
i=1

i=1
(53) v(¥(2),z) =v(0,0) +¢ and v(§(2),2)2z+ nvy(¥(2), z) =0.

Differentiating value matching with respect to (w.r.t.) z and comparing with
smooth pasting, we have

(54)  un(7(2),2)7(2) +v:(3(2),2) =0 all z
2
— u.2)]5@ - 20

We conjecture that for all z, we have v;(y(z), z) = 0 and, hence, v,(y(z), z) =0
too. These are required if v is C' in the entire domain.

(vii) The threshold y(z) satisfies y(z) = y(—z) > 0forall z> 0 and y'(z) =
—y'(—z) for all z > 0.

There are two special cases of interest for which we can solve for y(z). One
is when o = 0 < o so the correlation is zero, which is our benchmark case for
which we have an analytical solution of the problem. In this case, y(z) does not
depend on z and y'(z) = 0 for all z. The second case corresponds to perfect
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correlation, that is, when o = 0 < . This case corresponds to the case with
only one product, since for any history where p;(0) =0foralli=1,...,n, we
have p;(t) = p(t) and y(t) = np(t)*> = (1/n)[np(t)]* = z(¢)*/n. In this case,
only the values of y(z) at the edges of the state space can be achieved. The two
diffusions give

(55) dy(t) = na*dt 4+ 2z(t)a dW (1),
(56) dz(t) = nodW*(e),

where W¢ is standard BM. If y = z?/n, we can write this also as

(57)  dy(t) = (no®)de +2,/y()(na?) AWV (1),

which coincides with the law of motion of the case of one product with an in-
novation variance of na?. The common optimal value for j at these two points
can be found by solving the problem with no correlation with the same r, B,
and ¢, but with (¢’, n') = (\/nao, 1).

E.1.1. The Case of a Large Number of Products

In this section, we analyze the limit case as n — oo in the presence of cor-
relation. The process for the average square gap is the sum of two processes
obtained in the benchmark case of no correlation. One process corresponds
to the case of n = 1 with instantaneous variance ?; the other process is the
deterministic process that corresponds to the case of n = oo with drift o2. Let
us define

§(t) = yao _1 [Z O Wi(1)* + W (1)* + 206'Wi(t)W(t):|
n n

i=1

with 5(0) = 0. Thus
Var[§(1)[7(0) = {Z a E[Wi(0)*] + G E[W ()]

+ Zaz&zE[Wi(t)z]E[W(t)z]}
+ "(”T;D&“E[W(t)]“

t (n—1
=—[c*+d*+20°0°] + ) )&4,
n n
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SO we can write

(58)  dy() =[o? + &*]dt +252()dW(r) and dz(t) =& dW(1)
or

(59) J(t) =t +y,(t) where dy =a’dt+ 25y dW.

Thus we can consider a problem where the objective function depends on y;
and time since last adjustment: B(y, + o*t) and the law of motion of y, is given
by equation (59).

E.1.2. Discrete Time Approximation

Let A > 0 be the length of the time period. We approximate the pair of
diffusions as

(60) V=Y0,z,¢€)
=max {y+n[o” + o*]A+ 2V A /e’ + 2V AG ze, 0},
61)  Z=2Z2(y,y,ze¢)

= max[—,/y’n, min{z + nvAGes

il ) )

where e = {e?, €%, e} is a vector of three independent random variables, with
zero mean and unit variance. An example is three binomials, each taking the
values +1 with probability 1/2. The set of binomial shocks is denoted by E =
{e! € {—1,1} fori = a, b, c}. We let E denote the set of innovations and for
notational purposes, we use F for its c.d.f. The max and min operators in the
previous definitions ensure that y stays positive and that z*> < ny. Let the state
spacebe S={(y,2):y>0,—/yn<z<,./yn} CR, xR.
To simplify the notation, we let S:S x E— S map (y, z, e) into (¥, ') via

62)  (v,2)=8(,z,)=(V(y,2,e), Z(V(, 2, ), y, 2, €)).

The discrete time Bellman equation becomes, for all (y, z) € S,

(63) v(y, z) = min :lﬁ +v(0,0), ABy + e / v(S(y,z,e)) dF(e)}.

E

We solve v(y, z) by repeated iterations in a grid included in S. We use the
value function for the uncorrelated case (with the same volatility for each price
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gap, that is, /0> + ) as the initial function. To compute the expected value
of the value function in each iteration, we need to be able to evaluate the value
function outside the grid points. Let us denote a set of N grid points in S by G.
To do so, in each iteration, we fit a polynomial in (y, z) to the grid points that
are in the inaction region. We use the polynomial

(64) v(y,z) = Bo+ B1y + Boy’ + B3y + Baz” + Bsz*
+ Bsyz® + Bry*z* + Bsy 2

for (y, z) € G. Note that this polynomial imposes symmetry w.r.t. z and in-
cludes the third order approximation for the case of no correlation. For the
case with no correlation, we have found that this functional form gives very ac-
curate results. The coefficients of this polynomial are fitted to the grid points
(i, z;) for which v(y;, z;) < max;c; v(y;, 2;), that is, they are fitted to the inac-
tion set.

We display a numerical example of the value function and policies for the
following parameters. We measure time in years and let the real discount rate
be 5% or r = 0.05, use a markup of about 15%, which implies B = 20, and
use a volatility of each price gap of 10% with a pairwise correlation of 1/2, so
o = 0 = 0.05. The menu cost is 4% of frictionless profits per good, so ¢/n =
0.04. We solve the model for daily periods, so A =1/365. We display results
for the case of n = 10 products per firm in Figure 7 in the main body of the
paper: the left panel plots the value function as a function of y and z; the right
panel plots the decision rule of the firm. This figure plots the level of the value
function in all the grid points we have used to compute it. The values of the
value function for which control (i.e., price adjustment) is optimal are marked
with bold dots. The feasible state space for the firm is given by the region in y, z
inside the parabola. For each z, the value function has a similar shape as that
for the case of no correlation. Fixing y, the value function is decreasing in |z|.
This is because higher |z| implies higher conditional variance of y and, hence,
higher option value. As anticipated, the function y(z) is symmetric around z =
0 and increasing for larger values of |z|. The fact that y is increasing in |z|
reflects the option value effect of z just described. For comparison, we plot a
horizontal line with the value y for the case of uncorrelated price gaps but with
the same innovation variance per unit of time of each of the price gaps, that is,
with o? + & as well as the case with perfectly correlated price gaps. While the
inaction set can be summarized in an R? space, we emphasize that the state of
the problem is n, which can be much higher, for instance, it is n = 10 for this
example.

E.2. Cross-Section Implications With Correlated Shocks

We use the decision rules described above to produce the invariant distri-
bution of a cross section of firms using simulations. The model parameter-
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FIGURE 11.—Distribution of price changes: Ap;. All distributions have been standardized to
have Std(Ap) =0.1.

ization is close to that used in the main body of the paper, that is, it pro-
duces a frequency of adjustments per year N, = 1.3 and a standard devia-
tion Std(Ap) = 0.11. Figure 11 plots the standardized distribution of price
changes w(Ap) for different values of n =1, 2,3, 50 and different levels of
correlation between the shocks: p = 0, our baseline case, as well as p = 0.5 and
p=0.75.

The marginal distribution of price changes is obtained as follows. First we
solve for the optimal decision rules, which gives us the function y(-). Then we
simulate a discrete time version of the n-dimensional process {p,} described
equation (44), and use the optimal policy to stop it the first time it reaches
the adjustment region, upon which the » price gaps are set to zero. In partic-
ular, each draw of the joint n-dimensional distribution is obtained by starting
po;=0forall i=1,...,n, simulating {p,} and the associated y,, z, defined
by equation (66). Letting 7 be the first time that y, > y(z.), we obtain each
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of the n price changes as Ap; = —p,,;. We set the length of the time period
A =1/(2 x 365), that is, half a day, and simulate 50,000 price changes of the
n products.”® We represent the outcome of the simulations by fitting a smooth
kernel density to the simulated data.

The first panel contains the distribution of price changes for the case of one
product, that is, n = 1. In this case, y is flat and the correlation should make no
difference. The distribution of price changes should be degenerate, but given
that we simulate a discrete time process, albeit with a small time period, the
price changes are distributed tightly, but not degenerately, around two values.
This is included as a check of the procedure and to control the difference that
is due to the discretization of the model. The case of n =2 shows that as the
correlation increases, the distribution has more mass for small price changes.
Not surprisingly, adding correlation to the shocks makes the n = 2 case closer
to the n =1 case, a feature that is important for both its empirical plausibility
(i.e., the comparison with empirical distribution of price changes) and for the
predicted effect of monetary shocks. The case of n = 3 is particularly revealing,
since, for zero correlation, the distribution is uniform, but as the correlation is
positive, the density decreases to have a minimum at zero and two maxima at
a high values of the absolute value, as in the case of n = 1. The case of n =50
is also informative because with zero correlation, the marginal distribution of
price changes is essentially normal. Nevertheless, with positive correlation the
distribution of price changes remains bimodal, with a minimum of its density
at zero.

Interestingly, the simultaneous near normality and bimodality (or the dip
on the density of the distribution on a central value of price changes) that is
displayed in the figure for n = 50 is apparent in several data sets—such as
Midrigan (2009), who used scanner AC Nielsen data for the United States
(see Figure 1, bottom two panels) and Wulfsberg (2010), who used Norway’s
consumer price index (CPI) data (see Figure 4)—and has been explicitly tested
and estimated by Cavallo and Rigobon (2010) using online supermarket data
for 23 countries.

E.3. Impulse Responses With Correlated Shocks

In this section, we compute the impulse response function of the price level
to a once and for all shock to the money supply. We investigate the effect of
correlation on the results. In particular, for a shock of the same size and for sev-
eral values of n, we compare the IRF of prices for correlations p =0, p = 0.5,
and p = 0.75. We stress that to solve for the IRF for any 7, we only need to

26We simulate half as many, and then we use symmetry to reflect it and obtain a sample twice

as large, a standard importance sampling procedure.
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keep track of a two-dimensional object, which makes the procedure computa-
tionally feasible.

We obtain the IRF as follows. We start with the optimal steady state decision
rules, summarizing them by the function y(-).

o We simulate a discrete time version of the process for { y,j , z{ } for a large
number of firms, say j =1, ..., M. We use M = 500,000.

e We let =0 denote the first period, t = T denote the period where the
aggregate monetary shock of size & occurs, and t = T + T’ denote the last
period of the simulation.

e The first T periods discrete time versions of the firms’ state are simulated
so that at t = T, the distribution of (yf , z{ ) across j=1,..., M gives an ac-
curate representation of the invariant distribution without aggregate shocks.
During the first T periods, whenever a firm’s state reaches y{ > y(z/), we set
yl = zJ =0, corresponding to a price adjustment on the n products, and we
keep simulating the process for y/ 1> z! 41 according to its law of motion.

e At time ¢t = T, we shock the values of (z{ , y,f ) of each of the j firms by
decreasing the price gap in each of the n components by 6 > 0.

e The value of the state for each firm right after the shock but right before
the adjustment can be characterized as a the following two-dimensional shift.
We denote with Y’ and Z’ the post-monetary-shock (but pre-adjustment) value
of the state for a firm with state y, z:

Y'(8,y,2) = Z(p,- —8)?=y—26z+nd and

i=1

Z(5.y,2)=) (pi=8)=z—nd.

i=1

e At time ¢t = T before the adjusting decision takes place, we replace y! by
Y’(5,y',i, Z{) and zf by Z’(S,y,j, z!) for all j=1,...,J.

e We simulate the state process for each firm j up to the first time t =7, > T
in which it adjusts its prices. In particular, the first time 7; were y{j > j}(z_{f).
Note that at time 7;, firm j’s sum of the price changes across the n goods equals
the negative of zil_. If at time t = T + T', firm j has not adjusted its price, we
force it to change it.

e Foreachtimet=1T,..., T+ T',we compute the contribution of each firm
to the change in equal-weighted aggregate price level,

1 —
O=—3:D 2 x Ly for (=T, T+1,....,T+T),
j=1
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FIGURE 12.—Impulse response to a monetary shock: 6/ Std(Ap) =0.1.

where Z,_.. is the indicator function that takes the value of 1 if firm j adjusts
the price at time ¢ and 0 otherwise.
e The effect on the equal-weighted price level at time ¢ is

t
P(S,t):Z()t for t=T,T+1,...,T+T.

s=T

Figure 12 displays the result of IRF of the price level with respect to a mon-
etary shock. Each panel of this figure considers different values of the number
of products (n =2, 3, 10 and n = 50), and for each n, we plot three cases: the
case of n =1 (which is the same as the case with perfect correlation), cor-
relation equal to zero (p = 0), and correlation equal to one-half (p = 1/2).
Motivated by the scaling and stretching results we have shown for the case of
zero correlation, we normalize the parameters so that the expected number of
price changes per year is 1 (N, = 1) and consider a shock of 10% of the size
of the steady state standard deviation of price changes (i.e., say 6 = 0.01 and
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Std(Ap) = 0.1, i.e., 1% change in money supply and 10% steady state standard
deviation of price changes). Thus, each figure corresponds to an economy with
the same steady state. The case of n = 2 shows that going from zero correla-
tion to one-half reduces by more than half the distance between the n =2 and
n =1 cases, that is, it significantly increases the price flexibility at all horizons.
The other cases are even more extreme, that is, the vertical distance between
the IRF with correlations p = 1/2 and p = 1 is very small compared with the
distance between the IRF’s with p = 1/2 and p = 0. Recall that the effect on
output is proportional to the vertical distance between the level of the IRF
and a constant at §, so a correlation of one-half reduces the effect of output
significantly toward the case of n = 1, that is, toward the Golosov and Lucas
case.

E.4. The Case With Drift and Correlation

This section further extends the problem to the case of the joint presence of
drift and correlation. Let each price gap follow

(65)  dpi(t) =—pdt+adV(t) + ocdWi(t) foralli=1,...,n,

where W, Wi(t) are independent standard BM’s. Define

66)  y(O=) pi(t) and z()=)  piD).

i=1 i=1

Using Ito’s lemma,

dy(t) = [no® + n&? — 2uz()]dt + 20 Y _ pi(t) dW(1)

i=1
+25 {Z pi(t):| dV(1)
i=1
and
dz(t) = —nudt + nedW(t) + o Z dWi(t).
i=1

This implies that

n n 2
67)  E[dy(n)] =40 (Z pf(t)) dt +45° (Z pi(t)) de

i=1 i=1

=4o?y(t)dt + 457 z(1)* dt,
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68)  E[dz(1)]’ = o’ndt + 3*n*dt,

(69) E[dy(t)dz(t)] = 207 <Z pi(t)) dt + 2na? (Z pi(t)) dt

i=1 i=1

=2(0* 4+ na’)z(1)de.
Thus define the diffusions

(70)  dy(t) = [no® +no® — 2pz()]dt + 20/y(1) AWV (1)
+25z(1) AW (1),
(71) dz(t) = —nudt + no dW*(t)

® \
+/n [ dWw () + ( - )dwb(t)}
NG J NETO

where (W“, WP, W) are three standard independent BM’s.

E.5. Cross-Partials and Different Elasticities Within and Across Firms

In this section, we show the following results.

(i) A quadratic approximation to a cost function that is symmetric across
the n price gaps but with nonzero cross-partial derivative can be accommo-
dated by adding the term Dz for a constant D to the flow cost function, which
becomes By + Dz>.

(i) The approximation with a nonzero cross-partial derivative can be used
to consider a nested CES case, where the aggregate of products produced by a
firm have elasticity of substitution n between firms and the products produced
by a firm have elasticity o between them. This yields the expressions for the
cost function, B, and D,

(72) By+Dz2E%(9(”’7—1>y_ (Q—n)(n—l)f)’

2 2n

which becomes By = n(n — 1)/(2n)y in the benchmark case.

(iif) The effect of the different elasticities described in item (ii) in the con-
stant D of the cross-product is proportional to 1/n, so it vanishes for moder-
ately high n, as can be seen in equation (72).

(iv) The effect on B of incorporating different elasticities is that the value of
B can be greater than that implied by the elasticity n and its optimal markup
in the frictionless case or, equivalently, the model produces the same behavior
with larger fixed cost ¢. Equation (72) shows that B is essentially the product
of the two elasticities, n and o.
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(v) From the previous analysis, one can conclude that as n — oo, the dy-
namics in the model with different elasticities is identical to the dynamics in
the model with the same elasticities.

(vi) The effect of introducing two different elasticities is quantitatively very
small in both the shape of the distribution of price changes and the IRF to
monetary shocks, especially for moderately large values of 7.

The rest of this section develops the ideas presented below in detail. Before
getting into that we offer a few remarks on the results listed above.

To see that introducing symmetric cross-partials yields the expression in item
(i), just develop the squares in the relevant expressions. For completeness, we
include the relevant algebra below.

To understand the expressions for B and D as a function of the elasticities in
equation (72), and the effect in item (iv), where if the products sold by the same
firm are better substitutes than the aggregate across firms, then B is larger,
we consider two simple examples. Assume that o is almost co and, therefore,
products sold by the same firm are almost perfect substitutes. Furthermore,
just to simplify, assume that there are only two products, n = 2. We consider
two examples, where y is the same but z* differs, as a way to understand the
expressions in equation (72). In the first example, the price gaps across the two
goods are equal in absolute value and are of opposite sign, so z = 0; in the
second example, the price gaps are equal in absolute value and sign, so z* > 0.
In the first case, the firm only sells the good with the lower price. In the second
case, profits for the firm are higher (cost is smaller) since the relative prices are
same.

The reason why item (vi) holds is that is that, contrary to the case with cor-
relation, there is no change in the law of motion on y and z, just a different
optimal function y(-). But given the previous result of the expressions for D
and B, the function y is almost flat for moderate n.

Cross-Products in the Approximation of the Profit Function

Consider a profit function of the firm as a function I1(p) of the n price
gaps p=(pi, ..., p,) and assume that the price gaps are interchangeable, so
that profits are the same for any permutation of the price gaps such that, for
example, II(a,b,...)=11(b,a,...). Evaluating this function around the max-
imizing choice p; =0 for all i, we have

_ 1 aIr* (o, ..., 0)

b=— and
11(0,0,...,0)  dp;dp;

- 1 aIr* (o, ...,0

P O 0 oy

11(0,0,...,0)  dp;dp;



26 F. ALVAREZ AND F. LIPPI

where the negative sign is included to define the cost problem. We can write

H(any"'70)_H(p17p27"~apn)

11(0,0,...,0)
<Zp>+d( > pp]>+o I1pI?)
1<i#j<1
b—d d
=~y + 52 +o(IpIP) =By + Dz + o(I pIP).

Thus we can define the second order approximation of I1(-) in terms of y and
z as defined above. For JI1%/(dp dp) to be negative semidefinite around p =0
(or, equivalently, for the cost problem to be convex), we require: b—d > 0and
b+ (n—1)d > 0, since 0 < z2 < ny and y > 0. Note that if d = 0, we recover
our benchmark case setting b/2 = B.

Different Elasticities Between Firms and Within Firms’ Products

Now we consider the particular case where the cross-product comes from
a different elasticity of substitution between products produced by the firm
(denoted by g) and between the composite goods produced by different firms
(denoted by 7). Let the period ¢ utility be

c(t)lfs

1—¢

n o/(o—1)
cu(t) = [Z(Zm)cki(t))l‘”g] .

i=1

1 n/(m=1)
with ¢(¢) = [/ (D) dk] and
0

Using the CES structure of preference, we can write the demand from prod-
uct i of firm k at time ¢ as

Pu(H)\° PO\
i t)= Z,‘ t ¢ e t 5
ci(1) (Pk(t)> ki (1) PO c(t)
where P, (¢) is the ideal price index of the products produced by firm k£ and
P(1) is the ideal price index of all the goods produced in the economy:

1 1/(1-n)
P(t) = [/ P.()t " dk} and
0

., 1o/
P (1) _ Z( Pi(0) )
W (1) —\W(t)Zii(1) ‘



PRICE SETTING WITH MENU COST 27
The time ¢ nominal profits of the firm k are

n

> (Puit) = Zu(W (1)) cui(t)

i=1
_ P )\ - ot (PN (Pa()
W o(B0) o (B0) (B0 g
w -1 P o—n
—vo(55) (wo)
- Pu(t) \°( Pu®)
* ;(wmzki(t)) (W(ozk,-(r) - 1)'

Using the f.o.c. for £(¢) and c(¢),

wWoa+r) _

() ac(1)®,

we can write the nominal profit of the firm & at time ¢ as

n

> (Puit) = Zu(OW (1)) cua(t)
i=1
=) ()
1+’T[ W(t)
n ) -0 .
XZ( Pui(t) ) ( Pui(t) _1>_
—\ W (1) Zii(t) W (1) Zi(t)

Alternatively, omitting time indices and using p; for the price gap of the firm
k defined as exp(p;) = #Pk,-/(WZki), we get

(0-m)/(1-0)
H(pla"'apn):< _1) _1|:Ze171(1 0)}

x Ze—PiQ(nePi —(n-— 1)),

i=1

=i
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where the scaled profit satisfies

> (Puit) = Zu(W (1)) ewi(t)
i=1

) () I(pik(D), ..., Pra(D))

a
1+'Tg

= W(t)(
so that I1(0, ..., 0) = (;%)""1/(n — 1)n!+e—m/U-0) We have

Hj(pla"'apn)
11(0,...,0)

1M1 n (o—m)/(1-0)
—— |:_ Z epi(l—Q)j|
n|n=<
i=1

Ze*QPi
x 1e170%i | (o —mm — (0 —m)(n — 1) ———

2 ePi(I*Q)
i=1

+[(1 = 0)me’ 7 + o(n — De™]

Thus
11,0, 0) a
O—W forallj—l,...,n,
BEHJ‘}‘(O,...,O)
11@,...,0)

1 — —1
=——{(@—n)<1—9)+—(@ =1
n n

+(1-0)Pn+0*1 - n)},

- 110,...,00  1(e—m(n-1 .
d= I100,...,0) ~ n n for j#i.
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The conditions for concavity of the profit function (or convexity of the cost
function) are

b—d=—(o—-n)(1—-0)—(1—0)n—0*1—n)
=o(n—1>0 and
b+(n—-Dd=—(o—m(1—0)+(@—m(n-1
—(1-0)n—-0"d—mn)
=n(n—-1 >0,

which are satisfied provided that n > 1.

Effect of Different Elasticities for Large n

We finish this section with an asymptotic result: as n get large, the presence
of cross-products can be ignored. The form of the coefficient for the cross-
products derived above means that we can write the period return as

on-Dy (0—m(n- 1)(5>2
2 n 2 n)’

As we let n — oo, by the law of large numbers, z/n converges with proba-
bility 1 to its expected value, namely 0. In this case, the objective function, and
thus the decision rules, converge to the same expressions derived for the case
with no cross-products; thus y(z) is flat, that is, independent of z. As n — oo,
the process for y/n becomes the same deterministic process as in the bench-
mark case with one common elasticity. Thus all the analysis for the case of no
cross-product applies as n — oo. The only difference in this case is the inter-
pretation of B.
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