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APPENDIX A: IDENTIFICATION

THERE ARE TWO SETS of parameters in the model: those that are estimable
without appeal to a dynamic model, and those that depend on the contin-
uation value. The former category includes the demand curve and produc-
tion costs, while the latter encompasses the costs of investment and divest-
ment, along with the distributions of fixed costs of investment, divestment, and
exit.

The demand curve is nonparametrically identified under much weaker
monotonicity and exclusion restrictions than imposed by the linear functional
form in equation (10).! The parameters of the production function are iden-
tified by functional form.> The solution to the capacity-constrained Cournot
game is unique, as the best-response curves are downward-sloping in their ri-
vals’ production. As the residual demand curve facing an individual firm moves
in and out, it traces out the marginal cost of production. As mentioned ear-
lier, the fixed cost of production would be identified when the firm chooses
not to produce anything in a given period. However, in the present data sam-
ple, all firms produce in all periods, so this parameter must be normalized to
Zero.

With regard to the dynamic parameters of the model, I provide a novel
constructive approach to showing identification of two-step estimators, and
demonstrate that the necessary and sufficient identification conditions are met
in the present model. I also show how to estimate and identify parameters of
unknown distributions in the underlying dynamic game, such as the distribu-
tion of fixed adjustment costs, which extends the class of models previously
considered in the literature. The identification conditions are easy to verity,
and apply to a wide class of dynamic games.

The approach to identifying the dynamic parameters is constructive. With
policy functions for firms in hand, the econometrician can construct the ex
ante value function for firm i at state 5:

!See Newey and Powell (2003) and references therein for a general treatment of identification
and estimation in nonparametric instrumental variables models.

2Functional form is a sufficient but not necessary condition for the identification of these pa-
rameters; given the availability of firm-specific cost shifters (capacity), these parameters are iden-
tified under more general conditions.
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where the last equality follows by the linearity of the unknown parameters in
the payoff function defined by equation (5), and {;(o(s;)) is a vector of ex-
pected actions undertaken as state s,, such as investment. The notation Ej,;
represents the integration over all possible paths of the state space in the fu-
ture, conditional on the policy function, o, which contains the probabilities
of discrete choices and the levels of continuous choices. For discrete choices,
these probabilities reflect optimal cutoff thresholds in the firm’s private shock
for undertaking a given discrete action. Optimality in equilibrium demands
that no firm finds it payoff-increasing to make changes to these thresholds or
levels.® This implies that the derivative of the ex ante value function with re-
spect to the jth aspect (either the level of an action or the probabilities of un-
dertaking two or more actions) of o (s) at a single point in the state space, $, is
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There are two terms in the derivative: the change in the value function accruing
to changes in the profit function, holding the distribution over states constant,
and the change in the value function accruing from changes in the distribu-
tion over states expected to be visited in the future, holding per-period payoffs
constant. Equation (A.2) neatly summarizes the opposing marginal costs and
benefits that firms face when making optimal decisions. For example, firms
weigh the marginal cost of investment against the marginal increase in product
market profits when making optimal investment decisions.

Since the unknown parameters enter linearly, one can group terms such that
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3To an outside observer, deviations to the optimal threshold change the probability that a firm
undertakes an action.
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or equivalently,
(A4) y(s, O'ij(ﬁ))=9'x(§, Uij(g))-

One can evaluate equation (A.4) at k = dim(0) different states for the same
perturbation, several different perturbations at the same state, or some mix of
the two. In any case, one can then stack the resulting set of equations into a
vector, Y, and the corresponding elements on the right-hand side into a ma-
trix, X, resulting in

(A5) Y=0X.

The identification of 6 then follows from the standard uniqueness conditions
for a solution to ordinary least squares: as long as X has full rank, then 6 is
identified.

It remains to show that the estimated truncated fixed cost functions, v,;(p;),
v4i(pa), and ¢,(p.), identify their associated fixed cost distributions. It is nec-
essary and sufficient to establish that the distribution function is one-to-one
with the truncated fixed cost function. I illustrate the identification arguments
with the case of fixed costs of investment. First, I make the following support
assumption:

ASSUMPTION A.1: There exists a set of states s such that (a) p,(s) =0 for all
pi(s) € (0,1) and (b) pi(s) =0 forall ps(s) € (0,1).

Assumption A.1 is a support assumption on the equilibrium probabilities.
Analogous assumptions have been used in the games literature to simplify
multiple-factor inference problems into a single-factor problem. For example,
in Tamer (2002), similar support conditions allow simultaneous entry games
to be simplified into single-agent decision problems.* Here, the assumption al-
lows the econometrician to invert the probability of investment onto the distri-
bution of fixed investment costs, without having to worry about the convolution
of divestment costs.’

“Tamer requires payoff shifters to go to infinity to drive the equilibrium probability of one
player to zero for an action; this allows the econometrician to look at the relationship between
covariates and outcomes for the other player in isolation. Assumption A.1 has the same flavor: it
assumes that there exist states of the world where the econometrician observes the probability of
either investment or divestment as being equal to zero.

>This assumption requires zero probabilities, which are technically violated in the present ap-
plication due to unbounded support on the errors of the targets and bands; there is always an
infinitesimally small probability of having a firm receive an arbitrarily large shock, which would
induce either investment or divestment. Practically speaking, however, this is not a concern since
I have verified that the computer is incapable of resolving the infinitesimal positive probability of
this occurrence from zero. From the perspective of the estimator, you would obtain exactly the
same results using either true zeros or the arbitrarily tiny probabilities implied by the estimated
investment policy function.
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For clarity of notation, denote the value of making an investment, divest-
ment, and doing nothing as

Vi+(s§ Vi) = n}a())([—’)/il — Y2X; — ')/3fo
+ B/Ee,.V,-(S’; 0(s'),0,8)dP(s;+x",5 s, G(S))},
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and
V2(s) =B/E3,Vi(s/; o(s),0,e)dP(s;,s ;;5,0(5)).

The probability that a firm invests is equal to the joint probability
(A6)  pi(s) =Pr(V;"(s;ya) > V'(5), Vi (5 vu) > Vi (85 7ia))-

This probability depends on the continuation values for investment, divest-
ment, and doing nothing; the draw of fixed costs of investment; and, criti-
cally for identification, also the draws of fixed costs of divestment and scrap
values. Assumption A.1 simplifies this problem by ensuring that there ex-
ists a part of the state space where the probability of investment is posi-
tive while the probability of divestment is approximately zero, which implies
Pr(V"(s; yi) > V" (s; yia)) = 1. The probability of observing investment is sim-
plified:

(A7) pi(s) =Pr(V;(s; va) > V2(8), Vit (55 va) > V(85 via))
(A.8) ~ Pr(Vit(s; ya) > V(s)),

where the second line follows from the assumption that the distribution of fixed
investment costs is independent of the distribution of fixed costs of divestment.
Letting d(s) represent the direct and opportunity costs of investment, we can
relate this probability to the distribution of fixed investment costs:

(A9)  pi(s) =Pr(y; < d(s)) = F,(d(s)).
Define the inverse of the distribution function as

(A.10) F,'(pi(s)) =inf{x € R: p:i(s) < F,(x)}.
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If F is strictly increasing, F~! is unique; otherwise, it is the smallest value x such
that the inequality is satisfied. In either case, knowledge of the inverse function
fully characterizes the distribution function. By the definition of conditional
expected value,

1 Fyl(pi(s)
©) / xf,(x)dx.

(A1) Yu(pi(9) =E(nin < F,'(pi(s)) = o

Multiplying both sides by p;(s) and differentiating with respect to p;(s) results
in

d dF, ' (pi(s))
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Applying the definition of a derivative of an inverse function,
dF, ' (pi(s)) 1
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and substituting into equation (A.12) obtains

dv1(pi(s)) pi(s)
dp;(s)

which establishes that the inverse distribution function is one-to-one in
Y1:(pi(s)) pi(s). The desired identification result follows from the fact that the
inverse distribution function completely characterizes the distribution func-
tion. The distribution function can be completely nonparametrically recovered
by allowing the degree of the sieve estimator to grow as the sample size goes to
infinity.® It is possible to show the identification of the distributions of divest-
ment and sunk exit costs in an analogous fashion.

The identification of the distribution of sunk entry costs is analogous to iden-
tification of a single-agent probit. Restating equation (29),

(A.14)

= F; ' (pi(s)),

(A.15)  Pr(entry; s) = Pr(k;+yi; < EV(5)) = P(EV(S): o+ iy, O + T2),

where u, and o7 are the mean and variance of the distribution of entry costs,
which is distributed normally with CDF ®. The terms w, and o represent
the random fixed costs of investment; they enter as indicated since the sum of
two normally distributed variables is also distributed normally with mean and
variance equal to the sum of their respective components. The distribution of
fixed costs of investment is known, as discussed above. The probability of entry

See Chen (2006) for details.
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is known perfectly, and is a continuous function of the state variables, while
the expected value of entering the market, EV¢(s), is fully known from the
behavior of incumbent firms. Identification requires that there exist two states,
s and s’, such that EV°(s) # EV*(s"), which would be satisfied, for example, by
considering the entry of a monopolist into two markets with differing levels of
demand.

The present paper meets the requirements for identification. It is straightfor-
ward to check the rank condition on X in equation (A.5) for a set of deviations
required to identify the structural and reduced-form parameters in equation
(17); intuitively, nonlinearity in the per-period payoff function traces out these
parameters. The truncated expected values are also one-to-one in their under-
lying distributions, as there are several combinations of observed states where
the probability of investment varies while the probability of divestment and exit
asymptote to zero. As divestment is highly unlikely at all states, the distribution
of exit costs can be recovered by then examining states where the probability
of exit is positive.
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