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Abstract

This supplementary material to “Calibrated Incentive Contracts” provides several
extensions as well as simulations illustrating key properties of calibrated contracts. In
particular, extensions show how to allow for time discounting, describe a broader class
of high-liability contracts that can be successfully calibrated under limited liability,
and explore contract performance when the agent isn’t fully rational.

OA 1 Extensions

For clarity, references internal to this supplementary material start with the prefix OA.

Appendix OA 1.1 extends the analysis to the case where principal and agent discount

future payoffs. Appendix OA 1.2 shows how to calibrate a broader class of high-liability
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contracts, including log-scoring rules. Appendix OA 1.3 shows that the calibrated contracts

of Section 4 perform well even if the agent isn’t rational and behaves suboptimally over any

arbitrary interval of time. Appendix OA 1.4 considers the case where the principal can use

more than one agent. Finally, Appendix OA 1.5 proves improved performance bounds for

the screening contracts introduced in Section 5 when expected returns are grainy. Chassang

(2011) contains additional extensions dealing with varying wealth, varying preferences, risk-

aversion and non-convex action spaces.

OA 1.1 Discounting

The analysis of Section 4 can be extended to environments where principal and agent dis-

count the future by a factor δ so that the agent’s payoffs are E
(∑N

t=1 δ
t−1(πt − ct)

)
and the

principal’s surplus is E
(∑N

t=1 δ
t−1(wt − w0

t )
)
. Let Nδ =

∑N
t=1 δ

t. This appendix shows that

under discounting, the performance bound of Theorem 2 extends with a loss of order
√

1/Nδ

instead of
√
1/N .

Benchmark contract. The benchmark contract still gives the agent reward πt = α(wt −

w0
t ) in every period t. This linear contract guarantees the principal a payoff bound similar to

that of Theorem 1(i). For any contract (λ, π), where sequence λ = (λt)t≥1 may be constant

and equal to 1, define

rλ,π = inf

{
Ec,a

(
1

wNδ

N∑
t=1

δt−1
[
λt(wt − w0

t )− πt
]) ∣∣∣∣∣(c, a) solves max

c,a
Ec,a

(
N∑
t=1

δt−1[πt − ct]

)}

the average discounted per-period returns accruing to the principal under contract (λ, π).

Let rα denote returns accruing to the principal under the benchmark contract. In addition

define

rmax(ĉ) ≡ sup
c s.t.

E
[

1
Nδ

∑N
t=1 δ

t−1ct
]
≤ ĉ

Ec,a∗

(
1

Nδ

N∑
t=1

δt−1
⟨
a∗t − a0t , rt

⟩)
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the maximum discounted per-period returns that can be generated at an expected discounted

per-period cost of ĉ.

Lemma OA 1. For all environments P,

rα ≥ (1− α) sup
ĉ∈[0,+∞)

(
rmax(ĉ)−

ĉ

αw

)
.

Proof. The proof is identical to that of Theorem 1(i).

Calibration. The calibrated contract is built using the following regrets

R1,T =
T∑
t=1

δt−1(πt − α(wt − w0
t )) and R2,T = max

T≤T ′

T∑
t=T ′

δt−1(1− λt)(wt − w0
t )

+.

Contract parameters (λt, πt)t≥1 are computed recursively according to

λt =
αR+

2,T

R+
1,T + αR+

2,T

and πt =

 α(wt − w0
t )

+ if R1,T ≤ 0

0 otherwise
.

The following result extends Lemma 1, showing that incentives are approximately correct.

Lemma OA 2 (approximate incentives). For all T , and all possible histories,

1

Nδ

N∑
t=1

δt−1(1− λt)(wt − w0
t ) ≤

wd√
Nδ

(1)

−wd

Nδ

≤ 1

Nδ

N∑
t=1

δt−1[πt − α(wt − w0
t )] ≤

wd√
Nδ

. (2)

Proof. Let RT = (R1,T , αR2,T ) denote the vector of regrets, and ρT+1 = RT+1 −RT . Con-

tract (λ, π) is calibrated so that in every period
⟨
R+

T , ρT+1

⟩
= 0. It follows that

||R+
N ||

2 ≤
N∑
t=1

||ρT ||2.
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Furthermore, we have that ||ρT ||2 ≤ δ2Twd, which implies that

||R+
T ||

2 ≤ wd

N∑
t=1

δ2(t−1) ≤ wd

N∑
t=1

δt−1.

This implies the right-hand sides of (1) and (2). The left-hand side of (2) follows from a

proof identical to that of the left-hand side of (13).

This implies the following bounds for returns rλ,π.

Theorem OA 1. Pick α0 ∈ (0, 1) and for η > 0, let α = α0+η(1−α0). There exists m ≥ 0

such that for all environments P, all δ and all N ,

rλ,π ≥ (1− η)rα0 −
m√
Nδ

(3)

rλ,π ≥ (1− α) sup
ĉ∈[0,+∞)

(
rmax(ĉ)−

ĉ

αw
− 3d√

Nδ

)
. (4)

Proof. The proof follows the same steps as that of Theorem 2, with the bounds provided in

Lemma OA 2 replacing those provided in Lemma 1.

OA 1.2 Calibrating a broader class of contracts

This section provides sufficient conditions ensuring that a benchmark high-liability contract

can be calibrated using limited-liability contracts. Fix a family of limited liability constraints

∀t ≥ 1, 0 ≤ πt ≤ πt, (4′′)

such that for all t, wt ≤ πt, and take as given a contract with aggregate final rewards denoted

by Π0
N (where Π0

N is adapted to the principal’s information at time N). It turns out that

contract Π0
N can be calibrated by a dynamic contract satisfying limited liability constraint

(4′′) whenever the following assumption holds.
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Assumption OA 1. Benchmark contract Π0
N can be written as Π0

N =
∑N

t=1 π
0
t , with (π0

t )t≥1

such that

(i) π0
t is adapted to the information available to the principal at time t;

(ii) wt = w0
t implies π0

t ≥ 0;

(iii) π0
t ≤ πt and there exists π > 0 independent of N such that, sup |π0

t | ≤ π.

Note that π0
t may be negative and require liability from the agent. It is immediate that

Assumption OA 1 holds for all contracts of the form Π0
N =

∑N
t=1 α

0
t (wt−w0

t ) where α
0
t ∈ (0, 1)

is adapted to public information (F0
t )t≥1. Assumption OA 1 also holds for contracts of the

form

Π0
N = G

(
N∑
t=1

ϕ(wt − w0
t )

)
where ϕ(0) = G(0) = 0 and G and ϕ are Lipschitz, with constants κG and κϕ such that

κGκϕwt ≤ πt. For instance, if for all t, πt = wt, this includes contracts such that the agent

gets paid a positive reward only when returns are above a threshold, i.e contracts such that

Π0
N =


α
∑N

t=1wt − w0
t if

∑N
t=1wt − w0

t < 0

0 if
∑N

t=1wt − w0
t ∈ [0,W ]

α
([∑N

t=1wt − w0
t

]
−W

)
if
∑N

t=1wt − w0
t > W.

(5)

Another example of alternative benchmark contract is to reward the agent for probability

assessments according to a log-scoring rule. This example will be discussed in further detail

after stating the main calibration result.

Calibration. Theorem OA 2, stated below, shows that the performance of any contract

satisfying Assumption OA 1 can be approximated in a prior-free way using dynamic limited

liability contracts.

As in Section 4 an additional incentive wedge is necessary to take care of potentially
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binding global incentive constraints. For any η > 0 define the auxiliary contract

πη
t ≡ π0

t + η(wt − w0
t − πη

t ) =
1

1 + η
π0
t +

η

1 + η
(wt − w0

t ).

If contract (π0
t )t≥1 satisfies Assumption OA 1, then so does contract (πη

t )t≥1. In particular,

|πη
t | ≤ 1

1+η
π + η

1+η
wd ≡ πη.

The approach consists in calibrating the incentives provided by contract (πη
t )t≥1. Once

again, the two instruments used are rewards (πt)t≥1 and the proportion of resources (λt)t≥1

managed by the agent. Define πη
t (λt) = λtπ

η
t . The regrets R1,T and R2,T to be minimized

are:

R1,T =
T∑
t=1

πt − πη
t (λt) (no excess rewards) (6)

R2,T = max
T ′≤T

T∑
t=T ′

πη
t − πη

t (λt) (no foregone performance). (7)

The usual approachability condition yields contract parameters (λt, πt)t≥1 of the form,

λT+1 =
R+

2,T

R+
1,T +R+

2,T

and πT+1 =


[
πη
T+1

]+
if R1,T ≤ 0

0 otherwise.
(8)

As in Section 4 this ensures that the vector of regrets (R1,T ,R2,T ) remains of order
√
T , so

that incentives are approximately correct. The following performance bounds obtain.

Theorem OA 2. There exists a constant m independent of environment P and time horizon

N , such that under contract (λt, πt)t≥1, returns accruing to the principal satisfy

∀hT , rλ,π|hT ≥ 1

1 + η
rπ0 |hT −m

1√
N

(9)

Proof. The proof uses the following extension of Lemma 1.
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Lemma OA 3 (incentive approximation). For any realization of uncertainty,

−πη ≤
T∑
t=1

πt − πη
t (λt) ≤ πη

√
T (10)

−πη
√
T ≤ max

T ′≤T

T∑
t=T ′

πη
t − πη

t (λt) ≤ πη
√
T . (11)

Proof. Let RT = (R1,T ,R2,T ) denote the vector of regrets and ρT = RT −RT−1 the vector

of flow regrets. Using the fact that R2,T+1 = R+
2,T + (1 − λT+1)π

η
T+1, and exploiting the

equality R+
2,T (R2,T −R+

2,T ) = 0, we have

⟨
R+

T , ρT+1

⟩
= R+

1,T [πT+1 − λT+1π
η
T+1] +R+

2,T (1− λT+1)π
η
T+1

= R+
1,TπT+1 + [(1− λT+1)R+

2,T − λT+1R+
1,T ]π

η
T+1.

Hence, the contract (λt, πt)t≥1 defined by (8) ensures that for all realizations of rT+1,
⟨
R+

T , ρT+1

⟩
=

0.

We now prove by induction that ||R+
T ||2 ≤

∑T
t=1 (π

η
t )

2. The property clearly holds for

T = 1. We now assume that it holds at T and show it must hold at T + 1. Consider first

the case where R2,T > 0.

||R+
T+1||

2 ≤ ||R+
T + ρT+1||2 ≤ ||R+

T ||
2 + 2

⟨
R+

T , ρT+1

⟩
+ ||ρT+1||2

≤ ||R+
T ||

2 + ||ρT+1||2

where we used the fact that by construction,
⟨
R+

T , ρT+1

⟩
= 0. Furthermore, we have that

||ρT+1||2 ≤ (πT+1 − πη
T+1(λT+1))

2 +
(
R+

2,T + (1− λT+1)π
η
T+1 −R2,T

)2
≤ λ2

T+1(π
η
T+1)

2 + (1− λT+1)
2(πη

T+1)
2

≤ (πη
T+1)

2.
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Using the induction hypothesis, this implies that ||RT+1||2 ≤
∑T+1

t=1 (π
η
t )

2. A similar proof

holds when R2,T < 0, taking into account that in this case, R2,T+1 = (1−λT+1)π
η
T+1. Hence,

by induction, this implies that for all T ≥ 1, ||R+
T ||2 ≤

∑T
t=1(π

η
t )

2. Since |πη
t | ≤ πη, this

implies inequality (11) and the right-hand side of (10). The left-hand side of (10) follows

from an induction identical to that used to prove the left-hand side of (13).

We can now conclude the proof of Theorem OA 2.

Let us begin by proving (9) starting from initial history h0. Let (ĉ, â) denote an optimal

strategy for the agent under calibrated contract (λ, π), and let (c, a) denote an optimal

strategy for the agent under benchmark contract π0 = (π0
t )t≥1. By optimality of (ĉ, â) under

(λ, π), we obtain that

Eĉ,â

(
N∑
t=1

πt − ĉt

)
≥ Ec,a

(
N∑
t=1

πt − ct

)
.

By (10) this implies that

Eĉ,â

(
N∑
t=1

πη
t (λt)− ĉt

)
+ πη

√
N ≥ Ec,a

(
N∑
t=1

πη
t (λt)− ct

)
− πη.

By (11) we obtain

Eĉ,â

(
N∑
t=1

λtπ
η
t − ĉt

)
+ πη

√
N ≥ Ec,a

(
N∑
t=1

πη
t − ct

)
− πη(1 +

√
N).

Using the fact that (c, a) is optimal under contract (π0
t )t≥1, and that necessarily, Ec,a(π

0
t ) ≥ 0,

this implies that

Eĉ,â

(
N∑
t=1

λtπ
0
t + λtη(wt − w0

t − πη
t )− ĉt

)
≥ Ec,a

(
N∑
t=1

π0
t + η(wt − w0

t − πη
t )− ct

)
− πη(2

√
N + 1)

≥ Eĉ,â

(
N∑
t=1

λtπ
0
t − ĉt

)
+ Ec,a

(
N∑
t=1

η(wt − w0
t − πη

t )

)
− πη(2

√
N + 1).
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Thus, using (10) and the fact that wt − w0
t − πη

t = 1
1+η

(wt − w0
t − π0

t ), we obtain that

Eĉ,â

(
N∑
t=1

λt(wt − w0
t − πη

t )

)
− Ec,a

(
N∑
t=1

wt − w0
t − πη

t

)
≥ −πη

η
(2
√
N + 1)

⇒ Eĉ,â

(
N∑
t=1

λt(wt − w0
t )− πt

)
≥ 1

1 + η
Ec,a

(
N∑
t=1

wt − w0
t − π0

t

)
− πη

η

(
1 + (2 + η)

√
N
)
.

Inequality (9) at h0 follows from normalizing by 1
wN

.

Inequality (9) continues to hold conditional on any history because the incentive bounds

provided by Lemma OA 3 hold starting from any interim period T .

The following example applies this analysis to the calibration of log-scoring rules.

Calibrating log-scoring rules. The benchmark linear contract πt = α(wt − w0
t ) ensures

that the agent has incentives to make allocation decisions that maximize expected returns

conditional on information. A potential alternative is to elicit truthful beliefs over returns

from the agent using a log-scoring rule, and implement the allocation that maximizes surplus

under these beliefs.

Log-scoring rules take the following form. Assume for simplicity that the set R of possible

returns rt is finite. In each period t, the agent gets rewarded according to

πls
t = γ log

(
ft(rt)

f 0
t (rt)

)
with γ > 0,

where ft is a distribution over realized returns rt stated by the agent in period t, f 0
t = P (·|F0

t )

is the principal’s belief conditional on public information F0
t , and rt are the realized returns.

Given ft, the allocation at is chosen to maximize expected returns Eft(wt −w0
t ) under belief

ft. To insure that rewards πls
t are bounded, the following restriction is imposed.

Assumption OA 2 (bounded likelihood ratio). There exists l > l > 0 such that for every

history,

∀rt ∈ R,
P (rt|Ft)

P (rt|F0
t )

∈ [l, l].
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It is well known that log-scoring contracts (πls
t )t≥1 induce truthful revelation of beliefs. In

addition, the agent can expect positive expected rewards if and only if his belief is different

from that of the principal.

Fact 1. Truthtelling, i.e. sending message ft = P (·|Ft), maximizes the agent’s payoff con-

ditional on information. An agent whose belief P (·|Ft) coincides with that of the principal

conditional on public information P (·|F0
t ) gets an expected payoff of zero.

The proof of this fact is standard and omitted. Noting that 0 ≤ πt ≤ π = α log
(
l/l
)
,

Theorem OA 2 applies, and the contract (λ, π) derived from (πls
t )t≥1 according to (8) satisfies

performance bound (9), i.e. it successfully approximates the performance of the benchmark

log-scoring rule while requiring no liability from the agent and only limited liability from the

principal.

Note that this result should be viewed as an illustration of the broader applicability of

the contract calibration approach developed in the paper, rather than an endorsement of log-

scoring rules as an appropriate benchmark contract. Indeed, contrary to benchmark linear

contracts of the form πt = α(wt − w0
t ), log-scoring rules do not guarantee that the principal

must be getting positive surplus out of the relationship, i.e. it does not satisfy the “no loss”

property emphasized in Fact 1.1 The following example illustrates the problem in a stark

manner.

There are two assets: a good asset 0, with i.i.d. returns r0,t uniformly distributed over

{ 1
100

, 2
100

, · · · , 1} in every period t, and a bad asset 1 with i.i.d. returns r1,t uniformly dis-

tributed over{− 99
100

,− 98
100

, · · · , 0}. The principal has no further information about returns,

whereas the agent observes returns (r0,t, r1,t) without noise. Clearly, the agent has a lot of

information, and under the log-scoring rule, he will be rewarded for this information since

it considerably reduces uncertainty. However this information is of no value to the principal

since the good asset always dominates the bad asset.

1Fact 1 also shows that the only contracts satisfying “no loss” for all possible strategies giving the agent
positive surplus are in fact benchmark linear contracts.
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Contrary to benchmark linear contracts, log-scoring rules reward the agent for any in-

formation, regardless of whether it is valuable or not. Note also that while potential losses

could be controlled by letting coefficient γ go to zero, this is not generally helpful since this

also implies that the agent has no incentives to exert effort and acquire information.

OA 1.3 Robustness to Accidents

The analysis presented in the main text of the paper assumes that the agent is rational. It

turns out that calibrated contracts are robust to the possibility of “accidents” during which

the agent behaves in arbitrary, possibly suboptimal, ways over an extended amount of time.

An accident may correspond to a temporary mistake in the agent’s trading strategy or an

error in his data; alternatively, the agent may be temporarily irrational or have unmodeled

incentives to misbehave (e.g. he is bribed to unload bad risks on the principal). Formally, this

is modeled by assuming that during a random time interval [T1, T2]—in the accident state—

the agent is constrained to use an exogenously specified allocation strategy a△ = (a△t )t≥1.
2

The agent takes into account the possibility of such accidents when choosing his strategy

and has an ex ante belief over the interval [T1, T2] and over his prescribed behavior a△ during

the accident. Strategy a△ may be arbitrarily bad (within the bounds imposed by Assumption

1) and need only be measurable with respect to final information FN . For instance, during

the lapse of the accident, the agent could pick the worst ex post asset allocation in every

period. Robustness to accidents of this kind is related to Eliaz (2002) which studies how

well mechanisms perform if some players are faulty, i.e. if they use non-optimal strategies.

Here, robustness to accidents can be thought of as fault tolerance with respect to the agent’s

selves over [T1, T2].

It should be noted that in this environment, the benchmark linear contract is no longer

sufficient to guarantee good performance. Since expected returns Ea△(wt−w0
t ) can be nega-

tive in an accident period, accidents can undo all the profit generated by the well incentivized

2The analysis given here allows accidents to occur over a single interval of time. The analysis extends
without change to environments with a fixed number of accident intervals independent of horizon N .
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agent in his normal state. Strikingly, in spite of accidents, calibrated contracts are such that

the excess returns generated by the agent will be approximately as high as the returns he

could generate when accidents are “lucky”, i.e. when instead of a△, the exogenous allocation

during accident states is

∀T ∈ [T1, T2], a△△T =

 a0T if
∑T2

t=T1
w△

t − w0
t < 0 (accident is unlucky)

a△T if
∑T2

t=T1
w△

t − w0
t > 0 (accident is lucky)

where w△
t is the realized wealth under allocation a△t at time t. Denote by r△λ,π the net expected

per-period returns to the principal when accidental behavior is (a△t )t≥1 and the calibrated

contract (λ, π) defined in (12) is used. Denote by r△△α the net expected per-period returns to

the principal when accidental behavior is (a△△t )t≥1 and the benchmark contract of parameter

α is used. The following holds.

Theorem OA 3 (accident proofness). Pick α0 and for any η > 0, set α = α0 + η(1− α0).

There exists a constant m independent of N and P such that,

r△λ,π ≥ (1− η)r△△α0
− m√

N
.

Proof. The notation of Section 4 is extended by adding superscripts △ and △△ to denote

relevant objects under the original accidental allocation a△, and under the lucky accidental

allocation a△△. For instance, let (w△△
t )t≥1 and Σ△△

N =
∑N

t=1w
△△
t −w0

t denote potential realized

wealth and aggregate performance when accidents are lucky. For concision this extension

is done for all time periods t ∈ {1, · · · , N}, with the understanding that the allocation is

exogenous over interval [T1, T2], but endogenous in other time periods; i.e. an allocation

policy (a△t )t≥1 corresponds to endogenous allocations at for t /∈ [T1, T2] and coincides with

a△t for t ∈ [T1, T2].

Given these adjustments, the proof of Theorem OA 3 is analogous to that of Theorem 2,

the key step being to provide an adequate extension of Lemma 1. Because inequality (13)
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still applies, we have that

−αwd ≤
N∑
t=1

π△
t − αλt(w

△
t − w0

t ) ≤ αwd
√
N. (12)

This corresponds to “correct rewards” condition (9). In addition, let us show that for any

investment strategy of the agent, the following variant of “no foregone gains” condition (10)

must hold (
N∑
t=1

w△△
t − w0

t

)
− 4wd

√
N ≤

N∑
t=1

λt(w
△
t − w0

t ). (13)

We have that

N∑
t=1

w△△
t − w0

t =

[
T1−1∑
t=1

w△
t − w0

t

]
+

[
T2∑

t=T1

w△
t − w0

t

]+
+

[
N∑

t=T2+1

w△
t − w0

t

]
.

Applying inequality (14), we obtain

N∑
t=1

w△△
t − w0

t ≤


[∑N

t=1 λt(w
△
t − w0

t )
]
+ wd

√
N if

∑T2

t=T1
w△

t − w0
t > 0[∑T1−1

t=1 λt(w
△
t − w0

t )
]
+
[∑N

t=T2+1 λt(w
△
t − w0

t )
]
+ 3wd

√
N otherwise.

By (12), it follows that

−αwd
√

T2 ≤
∑T2

t=1 αλt(w
△
t − w0

t )− π△
t ≤ αwd

−αwd
√
T1 − 1 ≤

∑T1−1
t=1 αλt(w

△
t − w0

t )− π△
t ≤ αwd.

Subtracting these two inequalities yields that,

−αwd(1 +
√

T2) ≤
T2∑

t=T1

αλt(w
△
t − w0

t )− π△
t .
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Since flow rewards π△
t are weakly positive, this implies that for any realization of returns,

N∑
t=1

w△△
t − w0

t ≤

(
N∑
t=1

λt(w
△
t − w0

t )

)
+ 4wd

√
N.

This implies (13). Given (12) and (13), Theorem OA 3 follows by applying Lemma A.1.

OA 1.4 Multi-agent contracts

The analysis presented in the paper focused on contracting with a single agent. This appendix

shows how to extend the logic of Sections 3 and 4 to environments with multiple agents. The

framework is identical to that of Section 2 except that there are now J agents denoted by

j ∈ {1, · · · , J}, each of whom makes private information acquisition decisions cj,t ∈ [0,+∞),

inducing a filtration F j
t . In each period t, agent j suggests an asset allocation aj,t inducing

potential wealth wj,t = w(1 + ⟨aj,t, rt⟩).

As in Section 2 the environment is general. Public and private signals (I0t , I
j
c (cj,t))j∈{1,··· ,J}

are arbitrary random variables from an underlying measurable state space (Ω, σ) to a mea-

surable signal space (I, σI). The environment P = (Ω, σ, P ) is specified by defining a

probability measure P on (Ω, σ). This probability measure is unrestricted: the agents may

have access to different information, their respective ability to generate information may

differ, vary over time, and be correlated in arbitrary ways. Filtration (F0
t )t≥1 still denotes

the public information filtration available to the principal.

The first step of the analysis extends the high-liability benchmark contract of Section 3.

The second step of the analysis shows how to calibrate this high-liability contract.

Multi-agent benchmark contracts. The multi-agent contract described here is a direct

extension of the linear contract described in Section 3. Each agent j ≥ 1 is paid according

to a linear contract in which the allocation of agent j − 1 serves as the default allocation

previously corresponding to a0t , i.e. each agent is paid a share α of his externality on the

principal, taking into account the information provided by previous agents. Resources are
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invested according to the allocation aJ,t suggested by the last agent.

More precisely, in each period t, allocations aj,t are submitted by agents in increasing

order of rank j. This ordering is a constraint imposed by the mechanism. The mechanism

informs each agent j of the allocations (aj′,t)j′<j chosen by agents j′ < j. Agent j receives no

information about the allocations chosen by agents j′′ > j. Under the benchmark contract,

payments πj,t to agent j are defined by

∀j ∈ {1, · · · , J}, πj,t = α(wj,t − wj−1,t). (14)

The strategy profile (cj, aj) of agent j must be adapted to the information available to

the agent (by construction this includes allocations by previous agents). The set of such

adapted strategies is denoted by Cj × Aj.
3 Furthermore define (c, a) = (cj, aj)j∈{1,··· ,J} and

C × A =
∏

j∈{1,··· ,J} Cj × Aj the set of adapted strategy profiles. For any ĉ ∈ [0,+∞), the

maximum returns that can be obtained at an expected per-period cost of ĉ are denoted by

rmax(ĉ) = max
(c,a)∈C×A

1
N
E(

∑
j,t cj,t)≤ĉ

1

wN
Ec,a

(
N∑
t=1

wJ
t − w0

t

)
.

Denote by rα the average returns accruing to the principal under this benchmark contract.

The following bound extends point (i) of Theorem 1.

Lemma OA 4. For any environment P,

wrα ≥ (1− α) max
ĉ∈[0,+∞)

(
wrmax(ĉ)−

ĉ

α

)
.

As in Theorem 1, given restrictions on rmax(·), a rationale for choosing α is to maximize

this lower bound. Note that similarly to the benchmark contract of Section 3, this contract

also satisfies no-loss.

3 Because of the hierarchical structure of the mechanism, agent j′ < j is indifferent about whether or not
to send information to agent j. For simplicity it is assumed that agent j′ shares his information with agents
j > j′.

Online Appendix, 15



Proof. Optimal strategies for the agents (c∗, a∗) = (c∗j , a
∗
j)j∈{1,··· ,J} are such that for any other

profile of strategies (c, a) = (cj, aj)j∈{1,··· ,J}, and for all j ∈ {1, · · · , J},

Ec∗j ,a
∗
j

[
N∑
t=1

α(wj,t − wj−1,t)− c∗j,t

]
≥ Ecj ,aj

[
N∑
t=1

α(wj,t − wj−1,t)− cj,t

]
.

Summing over j, this implies that

Ec∗,a∗

[
N∑
t=1

α(wJ,t − w0,t)−
∑
j∈J

c∗j,t

]
≥ Ec,a

[
N∑
t=1

α(wJ,t − w0,t)−
∑
j∈J

cj,t

]
.

Hence, Ec∗,a∗

[
N∑
t=1

(1− α)(wJ,t − w0,t)

]
≥ 1− α

α
Ec,a

[
N∑
t=1

α(wJ,t − w0,t)−
∑
j∈J

cj,t

]
.

Since this holds for any strategy profile (c, a), we obtain that indeed

wrα ≥ (1− α)maxĉ∈[0,+∞)

(
wrmax(ĉ)− ĉ

α

)
.

Calibrated contracts. The high-liability multi-agent contract described in (14) can be

calibrated using the methods of Section 4. The main difference is that there is now a vector

λt = (λj,t)j∈{1,··· ,J} ∈ [0, 1]J of J scaling factors used to define adjusted allocations aλj,t in the

following recursive manner:

aλ1,t = λ1,ta1,t + (1− λ1,t)a
0
t and ∀j > 1, aλj,t = λj,taj,t + (1− λj,t)a

λ
j−1,t.

Let wλ
j,t denote the corresponding wealth realizations. For all j ≥ 1, define regrets

R1
j,T =

T∑
t=1

πj,t − α(wλ
j,t − wλ

j−1,t) (correct rewards) (15)

R2
j,T = max

T ′≤T

T∑
t=T ′

wj,t − wλ
j,t (no foregone returns). (16)
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Keeping these regrets small corresponds to implementing appropriate generalizations of in-

centive properties (13) and (14) for all agents. The usual approachability condition im-

plies that regrets (R1
j,T ,R2

j,T )j∈{1,··· ,J} can be kept small by choosing contract parameters

(λj, πj)j∈{1,··· ,J} according to,

λj,T+1 =
α
[
R2

j,T

]+
α
[
R2

j,T

]+
+
[
R1

j,T

]+ and πj,T+1 =

 α(wλ
j,T+1 − wλ

j−1,T+1)
+ if R1

j,T ≤ 0

0 otherwise
.

Under this calibrated multi-agent contract the following extension of Theorem 2 obtains.

Theorem OA 4. Pick α0 > 0 and for η ∈ (0, 1), set α = α0 + η(1 − α0). There exists

a constant m independent of environment P, time horizon N such that the multi-agent

calibrated contract (λ, π) = (πj, λj)j∈{1,··· ,J} of parameter α satisfies

∀hT , rλ,π|hT ≥ (1− η)rα0 |hT − m√
N
. (17)

Proof. The result follows from applying Theorem 2 iteratively over agents j ∈ {1, · · · , J}.

OA 1.5 Screening when returns are grainy

This appendix shows that the efficiency bound given in Theorem 3 can be improved when

expected returns are either zero or bounded away from 0: performance losses are of order√
1/N rather than

√
lnN/N .

Assumption OA 3 (grainy returns). Let (c, a∗) denote the agent’s policy under the bench-

mark contract with rate α0. There exists ξ > 0 such that whenever Ec,a∗ [wt − w0
t |Ft] > 0,

then Ec,a∗ [wt − w0
t |Ft] > ξ.

Theorem OA 5. Pick α0 and for any η > 0, set α = α0 + η(1− α0). If Assumption OA 3
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holds, there exists a constant m such that for all N and all probability spaces P,

rλ,πΘ ≥ (1− η)rα0 −m
1√
N
.

Proof. The proof strategy is identical to that of Theorem 3. The missing step is to improve

the left-hand side of bound (29). Let (c, a∗) denote the agent’s optimal strategy under the

benchmark contract of parameter α. Recall that ΠΘ
T =

∑T
t=1 π

Θ
t and ST =

∑T
t=1 λt(wt−w0

t ).

It is sufficient to prove a bound of the form

−B ≤ Ec,a∗
[
ΠΘ

N − αSN

]
, (18)

where B is a number independent of N and P . We show that this is indeed the case. By

construction, we have that

Ec,a∗
(
ΠΘ

N

)
≥ αEc,a∗

(
SN − wd

)
− αwdEc,a∗

(
N∑

T=1

1ST<ΘT

)
.

Hence, it is sufficient to show that under (c, a∗), the expected number of periods where the

hurdle is not met is bounded above by a constant independent of N .

Let ∆t ≡ wt−w0
t −E[wt−w0

t |Ft] and χT = d
2
+
∑T

t=1 d
2
t . Note that under strategy (c, a∗),

Assumption OA 3 implies that if dt > 0, then Ec,a∗(wt −w0
t |Ft) > ξ. Hence

∑T
t=1 Ec,a∗(wt −

w0
t |Ft) ≥ ξ(χT/d

2 − 1). By (30), for any T ,

Probc,a∗(ST < ΘT ) ≤ Probc,a∗

(
T∑
t=1

wt − w0
t < ΘT + w

√
χT

)

≤ Probc,a∗

(
T∑
t=1

E[wt − w0
t |Ft] +

T∑
t=1

∆t < ΘT + w
√
χT

)

≤ Probc,a∗

(
ξ

[
χT

d
2 − 1

]
+

T∑
t=1

∆t < ΘT + w
√
χT

)

≤ Probc,a∗

(
T∑
t=1

∆t < −ξ

[
χT

d
2 − 1

]
+ΘT + w

√
χT

)
.
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An argument similar to that used in the proof of Lemma 2 yields that∑+∞
T=1 Prob

(∑T
t=1∆t < − ξ

d
2χT + ξ +ΘT + w

√
χT

)
is bounded above by a constant.

OA 2 Simulations

This appendix provides simulations illustrating key properties of calibrated contracts, and

contrasts them with properties of high-water mark contracts that do not adjust the share

of resources (λt)t≥1 invested by the agent as a function of past history. Throughout, time

periods are referred to as days, and the returns processes’ ratio of standard-deviation to drift

(which matters for the speed at which incentives are approximated) is kept large (comparable

to that of stock market returns). This makes the calibration exercise realistically difficult.

Incentive alignment. This first simulation illustrates Lemma 1: calibrated contracts

approximately align performance and rewards to the agent. In this simulation 1000 paths

for returns process (wt − w0
t )t≥1 are sampled from a random walk with per-period standard

deviation σ = 3, and a stochastic drift (νt)t≥1 following Markov chain:

νt+1 =

 νt with prob. 98%

∼ N (µν = 0.05, σν = .2) with prob. 2%.

Example of sample paths are illustrated in Figure 1. Note that the process generating these

paths need not be the process for returns at equilibrium. Rather, it is meant to generate

enough variety in sample paths to illustrate the incentive alignment properties of calibrated

contracts on a sample path by sample path basis.

Figure 2 illustrates the incentive alignment properties of calibrated and high-water mark

contracts. It plots realized payments to the agent against total surplus generated for 1000

sample path realizations. In each case the dashed line corresponds to the benchmark linear

contract with reward parameter parameter α = 15%. Both calibrated and high-water mark
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Figure 1: Example of sample paths for returns process.

contracts achieve significant alignment between rewards and performance when performance

is high. This is because realizations for which final performance is high are also realizations

for which aggregate performance is on average increasing. In contrast, this continues to hold

for calibrated contracts even if the path of returns has significant downward deviations, but

not for high-water mark contracts.
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Figure 2: Incentive alignment for (a) calibrated and (b) high-water mark contracts.
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Correct performance and correct ex-ante investment. As Theorem 2 shows, the

fact that calibrated contracts approximately align performance and rewards implies that

asymptotically, they also induce performance close to that of benchmark linear contracts.

In particular, the agent should be making similar returns-generating investments. A caveat

to this result is that for finite time horizons incentive alignment is only approximate, and

approximation errors can distort investment behavior. As a result, to guarantee performance

close to that of a benchmark contract with reward rate α0, calibrated contracts must use a

reward rate α > α0, that can approach α0 as the time horizon becomes large.
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Figure 3: Incentives to invest under calibrated and high-water mark contracts, for investment
horizons of (a) 1000 and (b) 2000 days.

In this simulation, the agent can make a lumpy initial investment in information at a

fixed cost. If he makes the investment, the surplus maximizing investment strategy under

that information generates a process for returns (wt − w0
t )t≥1 that is a random walk with

drift .05 and standard deviation 1. If the agent doesn’t make the investment, limited-liability

implies that his optimal strategy is to pick allocations that are different from the optimal

allocation under public information: choosing the default allocation would ensure rewards

equal to 0. This results in a process for returns that is a random walk with drift −.01 and
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standard deviation 2.4 The difference in expected rewards under the two returns processes

corresponds to the agent’s incentives to invest. Figure 3 contrasts the need for more highly

powered incentives as the time horizon goes from 1000 periods (and a fixed cost of 7.5) to

2000 periods (and a proportional fixed cost of 15): in both cases a linear benchmark contract

with reward rate α0 = 15% is sufficient to induce investment; for 1000 periods, a calibrated

contract with reward rate α = 30% is needed to induce investment; for 2000 periods a

calibrated contract with reward rate α = 25% will induce investment. Note that in this

example, the agent never loses access to valuable private information and high-watermark

contracts also provide adequate ex ante incentives to invest.

Damage control upon large downward deviations. One key difference between cali-

brated and high-water mark contracts is that under high-water mark contracts, the agent’s

reward and the agent’s performance cease to be tightly linked if there is a large downward

deviation in performance. The reason for this is that performance can decrease arbitrarily

while aggregate rewards must be weakly increasing. This can have a large effect on equi-

librium performance since agents that become uninformed after some period will choose

suboptimal strategies in order to get rewarded through luck.

In contrast calibrated contracts limit large downward deviations by controlling the share

of resources (λt)t≥1 that the agent manages in each period. This is a form of damage control

that allows the agent’s aggregate reward to remain linked to his aggregate performance.

Figure 4(a) illustrates an instance of such damage control: although potential performance∑T
t=1wt − w0

t falls by approximately 100 between periods 400 and 1000, the dynamically

4Under limited-liability, it is always in the interest of an uninformed agent to choose suboptimal asset
allocations in order to get some rewards. The precise equilibrium returns processes used here can be micro-
founded by the following environment: there are three assets numbered 1, 2 and 3. Asset 1 offers a risk free
return equal to 0. Assets 2 and 3 have the following correlation structure: each period one of the two assets
is “good” with probability .5 while the other asset is “bad”, and vice versa. Returns for the good asset have
mean .05 and standard deviation 1. Returns for the bad asset have mean −.07 and standard deviation

√
7.

Investing in information allows the agent to perfectly predict which asset is good and which asset is bad.
Under public information the optimal allocation is to pick asset 1, but an uninformed agent will pick either
asset 2 or asset 3, since picking asset 1 ensures 0 rewards. An informed agent would pick the good asset in
every period.
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scaled performance
∑T

t=1 λt(wt − w0
t ) decreases by only 30.
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Figure 4: Damage control upon large downward deviation (a) and resource allocation (λt)t≥1

(b).

This damage control is achieved by sharply reducing the fraction of resources (λt)t≥1

managed by the agent (Figure 4(b)).

Continuation behavior and performance after a large downward deviation. An

important property of calibrated contracts emphasized in Theorem 2 is that, unlike high-

water mark contracts, their continuation performance does not depend significantly on his-

tory: from the perspective of any history, they induce performance approximately as good

as the performance of history-independent, weakly renegotiation proof, benchmark linear

contracts. In contrast, under a high-water mark contract, agents that have just experienced

a large downward deviation may not find it worthwhile to continue investing in information

acquisition since they have to compensate for previous large downward deviations before

they get rewarded again.

The simulation takes as given the history of raw returns (wt − w0
t )t≥1 from period 1 to

period 1000—it is the one corresponding to Figure 4(a)—and considers incentives to invest in

further information that is valuable over the next 1000 periods. The contingent investment
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problem in period 1000 is similar to that presented in Figure 3: the agent must expend a

fixed cost of 3 to acquire further information; if the agent acquires information, the surplus

maximizing allocation yields a returns process following a random walk with i.i.d. increments

of mean .05 and standard deviation 1; if the agent does not acquire information, the agent no

longer has valuable information, and his optimal strategy is to choose suboptimal allocations

that yield a returns process following a random walk with i.i.d. increments of mean −.01

and standard deviation 2.
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Figure 5: Incentives to invest conditional on large downward deviation.

As Figure 5 highlights, from the perspective of period 1000, calibrated contracts still

provide incentives for contingent investment whereas high-water mark contracts do not.

Indeed, as Figure 6(c) illustrates, under a high-water mark contract, it is very unlikely—

even with additional investment in information—that the agent can compensate for past

losses and get significant continuation rewards. In contrast, as Figures 6(a) and 6(d) show,

calibrated contract manage to control resource allocation (λt)t≥1 in a way that limits large

downsides, but still capture large upsides. This requires process (λt)t≥1 to reduce exposure

to the agent’s performance upon large downward deviations, and restore exposure to the

agent’s performance when the agent starts generating positive returns again (Figure 6(b)).

As a result, the agent can get significant continuation rewards even conditional on poor past
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Figure 6: Performance and conditional payments under calibrated and high-watermark con-
tracts.

performance.
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