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This supplement contains the proofs for “Asymptotics for Statistical Treatment
Rules.”

APPENDIX 1: PROOFS FOR THE PARAMETRIC CASE

We give some assumptions and lemmas that can be used to extend the results
to other loss functions. Let D∞ denote the set of all randomized treatment
rules in the N(h� I−1

0 ) experiment.

ASSUMPTION 1: Given a loss function L, there exists L∞(δ�h) such that for
some sequence rn,

lim
n→∞

rn

[
L

(
1� θ0 + h√

n

)
−L

(
0� θ0 + h√

n

)]
= L∞(1�h)−L∞(0�h)

and

lim
n→∞

rnL

[(
0� θ0 + h√

n

)]
= L∞(0�h)

for almost every h (with respect to Lebesgue measure on R
k).

ASSUMPTION 2: Assume that loss L∞ in the limit experiment depends on h
only through ġ′h. That is, there exists Lg such that L∞(a�h) = Lg(a� ġ

′h) for
a ∈ {0�1}.

LEMMA 1: Suppose the conditions of Theorem 3.2 are satisfied by a sequence
of treatment assignment rules δn ∈ D. Let loss L satisfy Assumption 1.

(i) Then,

lim inf
n→∞

rnBn(δn�Π) ≥ π(θ0) inf
δ∈D∞

B∞(δ)�

(ii) Moreover, if δ∗
n ∈ D is matched by δ∗ ∈ D∞ in the sense of Proposition 3.1

and if δ∗ is the flat-prior Bayes rule in the limit experiment, then δ∗
n is the asymp-

totically optimal rule for Bayes risk:

lim
n→∞

rnBn(δ
∗
n�Π)= π(θ0)B∞(δ∗)= π(θ0) inf

δ∈D∞
B∞(δ)�
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PROOF: For the sequence {δn}, let δ̄ be the matching treatment assignment
rule in the limit experiment as given by Proposition 3.1. Then

lim inf
n−→∞

rnBn(δn�π)

≥
∫

lim inf
n−→∞

{∫
rnL

(
δn(z)�θ0 + h√

n

)
dPn

θ0+h/
√
n(z)

×π

(
θ0 + h√

n

)}
dh

=
∫

lim inf
n→∞

{(
Eθ0+h/

√
n[δn(Zn)]

× rn

[
L

(
1� θ0 + h√

n

)
−L

(
0� θ0 + h√

n

)]

+rnL

(
0� θ0 + h√

n

))
π

(
θ0 + h√

n

)}
dh

= π(θ0)

∫ (
Eh[δ̄(Δ)][L∞(1�h)−L∞(0�h)] +L∞(0�h)

)
dh

= π(θ0)B∞(δ̄)

≥ π(θ0) inf
δ∈D∞

B∞(δ)�

where the first inequality follows by Fatou’s lemma and the second equality
follows by Proposition 3.1, Assumption 1, and the continuity of π. An anal-
ogous argument yields lim supn→∞ rnBn(δn�Π) ≤ π(θ0)B∞(δ̄). Applying these
conclusions to δ∗

n and δ∗ proves (ii). Q.E.D.

LEMMA 2: Suppose that loss L∞ satisfies Assumption 2. Let

δ∗(Δ)= 1
{
Es[Lg(1� s)] ≤Es[Lg(0� s)]

}
�

where s ∼ N(ġ′Δ�σ2
g). Then δ∗ is the flat-prior Bayes rule in the limit experiment:

B∞(δ∗)= inf
δ∈D∞

B∞(δ)�

PROOF: By Fubini’s theorem, we can rewrite the flat-prior Bayes risk as

B∞(δ) =
∫ ∫

L∞(δ(Δ)�h)(2π)−k/2|I0|−1/2

× exp(−(Δ− h)′Iθ(Δ− h)/2)dhdΔ�
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As usual, the Bayes optimality problem is equivalent to minimizing posterior
expected loss for each observable Δ. The posterior expected loss for the rule δ
in the Gaussian limit experiment, at a fixed Δ, is∫

L∞(δ(Δ)�h)dN(Δ� I−1
θ )(h)

=
∫

Lg(0� s)dN(ġ′Δ�σ2
g)(s)

+ δ(Δ)

∫
[Lg(1� s)−Lg(0� s)]dN(ġ′Δ�σ2

g)(s)�

The optimal Bayes rule then is determined by the last term and the statement
of the lemma follows. Q.E.D.

LEMMA 3: Suppose the conditions of Theorem 3.2 are satisfied. Then, for every
h ∈ R

k,

√
n
g(x� θ̂n)

σ̂g

h�N(ġ′h�1)�

PROOF: By differentiability in quadratic mean, the sequence of experiments
is locally asymptotically normal. For all sequences hn → h in R

k,

log
dPn

θ0+hn/
√
n

dPn
θ0

= h′Sn − 1
2
h′I0h+ oPθ0

(1)�

where Sn

θ0� N(0� I0). Since θ̂n is best regular, Lemma 8.14 of Van der Vaart
(1998) implies

√
n(θ̂n − θ0) = I−1

0 Sn + oPn
θ0
(1) under θ0. By Slutsky’s theorem

and the delta method, under θ0,

(√
n
g(x� θ̂)

σ̂g

� log
dPn

θ0+h/
√
n

dPn
θ0

)

=
(

1
σg

ġ′I−1
0 Sn�h

′Sn − 1
2
h′I0h

)
+ oPn

θ0
(1)

�N

⎛
⎜⎝
(

0
−1

2
h′I0h

)
�

⎛
⎜⎝ 1

ġ′h
σg

ġ′h
σg

h′I0h

⎞
⎟⎠
⎞
⎟⎠ �

Then by Le Cam’s third lemma, the conclusion of the lemma follows. Q.E.D.
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PROOF OF THEOREM 3.2: Since losses LH and LT satisfy Assumption 1, and
LH

∞ and LT
∞ satisfy Assumption 2, Lemma 2 establishes Bayes rules in the limit

experiment and Lemma 3 can be used to show that these rules are the matching
rules for the sequences of rules in the statement of the theorem. Lemma 1
then states that these sequences of rules are asymptotically Bayes optimal as
desired.

Suppose s ∼ N(ġ′Δ�σ2
g). Then E[LH

g (1� s)] = KΦ(−ġ′Δ/σg) and E[LH
g (0�

s)] = Φ(ġ′Δ/σg). By Lemma 2, the flat-prior Bayes rule in the limit experiment
for LH

∞ is δH�B(Δ) = 1{ ġ′Δ
σg

≥ cH�B}. By Lemma 3, limn→∞ Eθ0+h/
√
n[δH�B

n (Zn)] =
Prh(ġ′Δ/σg ≥ cH�B)=Eh[δH�B(Δ)].

Similarly, for loss LT , E[LT
g (1� s)] = −K[ġ′ΔΦ(−ġ′Δ/σg) − σgφ(ġ′Δ/σg)]

and E[LT
g (0� s)] = ġ′ΔΦ(ġ′Δ/σg) + σgφ(ġ′Δ/σg). Differentiation shows that

E[LT
g (0� s)]−E[LT

g (1� s)] is monotonically increasing in (ġ′Δ), and the optimal
decision rule will be determined by the cutoff cT�B. By Lemmas 2 and 3, δT�B

n

is matched by the flat-prior Bayes rule in the limit experiment. Lemma 1 then
yields asymptotic optimality of δH�B

n and δT�B
n . Q.E.D.

PROOF OF COROLLARY 3.3: From Lemma 1(i), lim infn→∞ Bj
n(δ

j�Bayes
n �

Π) ≥ π(θ0) infδ∈D∞ B∞(δ). Also, by definition, Bj
n(δ

j�Bayes
n �Π) ≤ Bj

n(δ
j�B
n �Π)

for every n, so lim infn→∞ Bj
n(δ

j�Bayes
n �Π) ≤ lim infn→∞ Bj

n(δ
j�B
n �Π) = π(θ0) ×

infδ∈D∞ Bj
∞(δ). Q.E.D.

PROOF OF THEOREM 3.4: Part (i) would follow from a multivariate exten-
sion of Karlin and Rubin (1956, Theorem 1). A direct proof follows.

Note that if ġ′h0 �= 0, then for h̃0 = h1(−ġ′h0�h0), ġ′h̃0 = 0. Since {h1(b�h0) :
b ∈ R} = {h1(b� h̃0) :b ∈ R}, we may assume without loss of generality that, in
fact, ġ′h0 = 0.

Recall that ġ′Δ ∼ N(0� ġ′I−1
0 ġ) under h0, so Eh0[δc(Δ)] = 1 −Φ(c/

√
ġ′I−1

0 ġ).
Let δ̃ be an arbitrary treatment assignment rule. We can choose c to satisfy
Eh0[δc(Δ)] =Eh0[δ̃(Δ)].

Now, following the method in the proof of Van der Vaart (1998, Proposi-
tion 15.2), take some b > 0 and consider the test H0 :h = h0 against H1 :h =
h1(b�h0) based on Δ

h∼N(h� I−1
0 ). Note that ġ′h1 = b > 0. The likelihood ratio

(LR) is:

LR = dN(h1� I
−1
0 )

dN(h0� I
−1
0 )

= exp
(

b

ġ′I−1
0 ġ

ġ′Δ− b2

2ġ′I−1
0 ġ

)
�

By the Neyman–Pearson lemma, a most powerful test is based on rejecting for
large values of ġ′Δ. Since the test δc has been defined to have the same size
as δ̃, Eh1(b�h0)[δc(Δ)] ≥Eh1(b�h0)[δ̃(Δ)]. Moreover, this inequality similarly holds
for all b ≥ 0. Similarly, for b < 0, 1 − δc = 1(ġ′Δ ≤ c) is most powerful, leading
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to Eh1(b�h0)[δc(Δ)] ≤ Eh1(b�h0)[δ̃(Δ)] for all b ≤ 0. Since R(δ̃�h) − R(δc�h) =
[L(1�h) − L(0�h)]{Eh[δ1(Δ)] − Eh[δ2(Δ)]}, we can conclude that R(δ̃�h) ≥
R(δc�h) for all h ∈ {h1(b�h0) :b ∈ R}.

For part (ii), let R∗ = infδ∈D∞ suph R(δ�h) and let δ∗ be such that suph R(δ
∗�

h) = R∗. By part (i), there exists c∗ such that R(δ∗�h1(b�0)) ≥ R(δc∗�h1(b�
0)) for all b. Note that ġ′Δ ∼ N(b� ġ′I−1

0 ġ) under h = h1(b�h0). Hence
Eh1(b�h0)[δc∗(Δ)] = Eh1(b�0)[δc∗(Δ)] for all h0 with ġ′h0 = 0. Also, loss can be
rewritten Lg(a� ġ

′h) = L(a�h) for a ∈ {0�1}. Recalling that b = ġ′h1(b�h0) =
ġ′h1(b�0), we have

R(δc∗�h1(b�h0)) = Lg(0� b)+Eh1(b�0)[δc∗(Δ)][Lg(1� b)−Lg(0� b)]
= R(δc∗�h1(b�0))�

Then,

R∗ ≥ sup
b

R(δ∗�h1(b�0))≥ sup
b

R(δc∗�h1(b�0))

= sup
h0

sup
b

R(δc∗�h1(b�h0))= sup
h

R(δc∗�h)≥ R∗�

so δc∗ attains the bound and must be a solution to infc supb R(δc�h1(b�0)).
Q.E.D.

LEMMA 4: Suppose the conditions of Proposition 3.1 are satisfied and δn ∈
D is a sequence of treatment assignment rules with matching rule δ in the limit
experiment as given by Proposition 3.1. Let J be a finite subset of R

k. If

lim
n→∞

rnR

(
δn�θ0 + h√

n

)
=R∞(δ�h)(A.1)

[
lim inf
n→∞

rnR

(
δn�θ0 + h√

n

)
≥ R∞(δ�h)

]

for h ∈ J, then

lim inf
n→∞

sup
h∈J

rnR

(
δn�θ0 + h√

n

)
= [≥] sup

h∈J
R∞(δ�h)�

Furthermore, if (A.1) holds for all h ∈ R
k, then

sup
J

lim inf
n→∞

sup
h∈J

rnR

(
δn�θ0 + h√

n

)
= [≥] sup

h

R∞(δ�h)�(A.2)

where the outer supremum is taken over all finite subsets of R
k.
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PROOF: Fix a finite subset J. Then

lim inf
n→∞

sup
h∈J

rnR

(
δn�θ0 + h√

n

)
≥ sup

h∈J
lim inf
n→∞

rnR

(
δn�θ0 + h√

n

)

= sup
h∈J

lim
n→∞

rnR

(
δn�θ0 + h√

n

)

= sup
h∈J

R∞(δ�h)

[
lim inf
n→∞

sup
h∈J

rnR

(
δn�θ0 + h√

n

)
≥ sup

h∈J
lim inf
n→∞

rnR

(
δn�θ0 + h√

n

)

≥ sup
h∈J

R∞(δ�h)

]
�

The bracketed inequality in (A.2) follows trivially from the above bracketed
expression. Now we show that the equality in (A.2) holds. By the supposition
of the lemma, take ε > 0 and any h ∈ J. Then there exists Nh such that for
n ≥ Nh, rnR(δn�θ0 + h/

√
n) ≤ R∞(δ�h) + ε ≤ suph′∈J R∞(δ�h′) + ε. Let N =

maxh∈J Nh. Then, for n≥ N ,

sup
h∈J

rnR

(
δn�θ0 + h√

n

)
≤ sup

h′∈J
R∞(δ�h′)+ ε

and

lim inf
n→∞

sup
h∈J

rnR

(
δn�θ0 + h√

n

)
≤ sup

h∈J
R∞(δ�h)+ ε�

Since this holds for any ε > 0, we have lim infn→∞ suph∈J rnR(δn�θ0 + h/
√
n) =

suph∈J R∞(δ�h), so

sup
J

lim inf
n→∞

sup
h∈J

rnR

(
δn�θ0 + h√

n

)
= sup

J

sup
h∈J

R∞(δ�h)

= sup
h

R∞(δ�h)�
Q.E.D.

Let δ̄c(Δ)= 1{ġ′Δ/σg ≥ c}.
LEMMA 5: The solutions to

inf
c

sup
h

Rj
∞(δ̄c�h)

for j =H�T are the constants cj�M .
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PROOF: Let b = ġ′h/σg. Then RH
∞(δ̄c�h) = RH

g (δ̄c�σgb) = Φ(c − b)1(b >

0) + K(1 − Φ(c − b))1(b ≤ 0), so suph R
H
∞(δ̄c�h) = max{Φ(c)�K(1 − Φ(c))}.

The terms Φ(c) and K(1 − Φ(c)) are strictly increasing and decreasing in c,
and cross at a unique point, which must minimize maximum risk. For loss LH ,
the crossing point is the solution given in the conclusion of the lemma.

For loss LT , we can treat ġ′Δ as the scalar observable; the cutoff value given
in the lemma was derived in Tetenov (2007). We note here that the solution
is well behaved. Let r+(c�b) = bΦ(c − b) and r−(c�b) = −KbΦ(b− c). Then
supb R

T
g (δ̄c�σgb)= σg · max{supb>0 r

+(c�b)� supb≤0 r
−(c�b)}. From the first and

second derivatives of r+ in b (for any fixed finite value of c), it is straightfor-
ward to show that r+ is single-peaked with a unique, finite global maximum on
[0�∞). The same conclusion is true of r− on (−∞�0]. Also, supb>0 r

+(c�b) is
strictly increasing in c and supb≤0 r

−(c�b) is strictly decreasing, and they cross
at the unique value cT�M , which must minimize the maximum risk. Q.E.D.

PROOF OF THEOREM 3.5: From Theorem 3.4(ii), it suffices to look at cutoff
rules along a “slice” h1(b�0) to obtain the minmax rule in the limit experiment.
Note that the classes of rules {δc} and {δ̄c} are equivalent, and so it suffices to
consider rules of the form δ̄c . Lemma 5 provides the minmax rules for losses
LH and LT in the limit experiment.

Given a sequence of rules δn and a matching rule δ̄ in the limit experiment,
limn→∞ rnR

T (δn�θ0 + h/
√
n) = RT

∞(δ̄�h). Also, by Lemma 3, δT�M
n is matched

in the limit experiment by δT�M . Lemma 4 states that the risk bound in the limit
experiment is the asymptotic risk bound and that it is attained by δT�M

n .
For loss LH , for h such that ġ′h �= 0, limn→∞ rnR

H(δn�θ0 + h/
√
n) =

RH
∞(δ̄�h). For h such that ġ′h = 0, RH

∞(δ̄�h) = 0, so for all h, lim infn→∞ rn ×
RH(δn�θ0 + h/

√
n)≥RH

∞(δ̄�h). Hence, by Lemma 4,

sup
J

lim inf
n−→∞

sup
h∈J

√
nRH

(
δn�θ0 + h√

n

)

≥ sup
h

RH
∞(δ̄�h)≥ inf

δ∈D∞
sup
h

RH
∞(δ�h)= sup

h

RH
∞(δH�M�h)�

where the outer supremum is taken over all finite subsets of R
k. Also, by

Lemma 3, δH�M
n is matched in the limit experiment by δH�M .

Let J̃ be any finite subset such that ġ′h �= 0 for h ∈ J̃. By Lemma 4,

sup
J̃

lim inf
n−→∞

sup
h∈J̃

RH

(
δH�M
n �θ0 + h√

n

)
(A.3)

= sup
J̃

sup
h∈J̃

RH
∞(δH�M�h)≤ sup

h

RH
∞(δH�M�h) = inf

δ∈D∞
sup
h

RH
∞(δ�h)�
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Next, take ε > 0. We will show that

sup
J

lim inf
n−→∞

sup
h∈J

RH

(
δH�M
n �θ0 + h√

n

)
(A.4)

≤ sup
J̃

lim inf
n−→∞

sup
h∈J̃

RH

(
δH�M
n �θ0 + h√

n

)
+ ε�

Take a finite subset J ⊂ R
k such that for exactly one element h0 ∈ J, ġ′h0 = 0.

For τ > 0, define h′ = h0 + τġ and h′′ = h0 − τġ. Note that ġ′h′ > 0, and
ġ′h′′ < 0, and by continuity of Eh(δ

∗) in h we can choose τ small enough
that |Eh0(δ

∗)−Eh′(δ∗)|< ε and |Eh0(δ
∗)−Eh′′(δ∗)| < ε/K. Take J̃ = (J\h0)∪

{h′�h′′}. Then

lim inf
n−→∞

sup
h∈J

RH

(
δH�M
n �θ0 + h√

n

)

≤ lim inf
n−→∞

[
max

{
sup
h∈J\h0

RH

(
δH�M
n �θ0 + h√

n

)
�

(
1 −Eh0(δ

H�M
n )

)
�KEh0(δ

H�M
n )

}]

= max
{

sup
h∈J\h0

RH
∞(δH�M�h)�

(
1 −Eh0(δ

H�M)
)
�KEh0(δ

H�M)
}

≤ max
{

sup
h∈J\h0

RH
∞(δH�M�h)�

(
1 −Eh′(δH�M)

)
�KEh′′(δH�M)

}
+ ε

= sup
h∈J̃

RH
∞(δH�M�h)+ ε = lim inf

n−→∞
sup
h∈J̃

RH

(
δH�M
n �θ0 + h√

n

)
+ ε�

where the first equality follows by the same argument for the proof of the first
conclusion of Lemma 4. This argument clearly generalizes to finite subsets J
with more than one element h with ġ′h = 0. Hence Equation (A.4) holds. To-
gether with Equation (A.3) and the fact that ε was arbitrary, it follows that
δH�M
n attains the risk bound. Q.E.D.

APPENDIX 2: PROOFS FOR SEMIPARAMETRIC CASE

Most of the proofs follow by obvious modification of the proofs for the para-
metric results in Appendix 1. Nontrivial modifications are noted below.

PROOF OF PROPOSITION 4.1: Let Δ = (Δ1�Δ2� � � �). The limit experiment
and the asymptotic representation theorem (Theorem 3.1) given in Van der
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Vaart (1991) yield a randomized statistic δ̃(Δ�U) that matches the limit distri-
bution of δn, where U is uniform on [0�1] independent of Δ. (This is a “doubly
randomized” treatment assignment rule.) The desired rule comes from setting
δ(Δ)= ∫ 1

0 δ̃(Δ�u)du. Q.E.D.

PROOF OF THEOREM 4.2: The analog to Lemma 2 follows by the assumed
product measure form of the prior Π. An analog to Lemma 3 follows below. If
Assumption 1 is modified to require the analogous conditions hold for almost
every h with respect to λ×ρ, then the analog to Lemma 1 holds with B∞(·�Π)
replacing π(θ0)B∞(·). For loss LT , the conditions of Assumption 1 hold for
all h, so the modification entails no additional complications. For loss LH , the
conditions of Assumption 1 hold for all (h2�h3� � � �) and almost every h1 (with
respect to the Lebesgue measure λ). Hence, Lemma 1 also extends to LH in
the semiparametric case and the conclusions of the theorem follow. Q.E.D.

LEMMA 3′: Suppose the conditions of Theorem 4.2 are satisfied. Then, for
every h,

√
nĝn

σ̂g

h�N(〈ġ� h〉�1)�

PROOF: We revert to treating h and ġ as functions from Z to R. Equa-
tion (4.1) implies that

ln
n∏

i=1

dP1/
√
n�h

dP0
(Zi)= 1√

n

n∑
i=1

h(Zi)− 1
2
‖h‖2 + oP0(1)�

where 1√
n

∑n

i=1 h(Zi)
P0� N(0�‖h‖2). By Van der Vaart (1998, Lemma 25.23),√

nĝn = 1√
n

∑n

i=1 ġ(Zi)+ oP0(1). By Slutsky’s lemma and the delta method,

(√
nĝn

σ̂g

� ln
n∏

i=1

dP1/
√
n�h

dP0
(Zi)

)

=

⎛
⎜⎜⎜⎜⎝

n∑
i=1

ġ(Zi)

σg

√
n

�
1√
n

n∑
i=1

h(Zi)− 1
2
‖h‖2

⎞
⎟⎟⎟⎟⎠+ oP0(1)

P0�N

⎛
⎜⎝
( 0

−1
2
‖h‖2

)
�

⎡
⎢⎣ 1

〈ġ� h〉
σg

〈ġ� h〉
σg

‖h‖2

⎤
⎥⎦
⎞
⎟⎠ �
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The conclusion then follows by applying Le Cam’s third lemma. Q.E.D.

PROOF OF THEOREM 4.4: Note that analogs of Lemmas 4 and 5 follow
for the semiparametric case with trivial modification of their proofs. The
proof of Theorem 4.4 follows from the proof of Theorem 3.5 after letting
h0 = (0�h2�h3� � � �), h′ = (τ�h2�h3� � � �), and h′′ = (−τ�h2�h3� � � �). Q.E.D.
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