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THE AFFILIATION EFFECT IN FIRST-PRICE AUCTIONS:
SUPPLEMENTARY MATERIAL

BY JORIS PINKSE AND GUOFU TAN1

In Pinkse and Tan (2005) we show the existence of a new effect called the affilia-
tion effect, which can cause equilibrium bids to be decreasing in the number of bidders
in first-price auctions with conditionally independent private values. Here we analyze
what happens when the number of bidders tends to infinity. We also derive sufficient
conditions for the expected winning bid to be increasing in the number of bidders. We
further generalize some of the results in Pinkse and Tan (2005) to general affiliated
private-values models.
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1. INTRODUCTION AND NOTATION

IN PINKSE AND TAN (2005) (henceforth referred to as PT) we show that,
in first-price auctions with conditionally independent private values (CIPV),
equilibrium bids can be decreasing in the number of bidders n. In this supple-
ment we show that asymptotically bids will be increasing in n. We also provide
sufficient conditions for the expected winning bid (i.e., price) to be increas-
ing in n. Moreover, we extend some of the results in PT to general affiliated
private-values (APV) models.

Following PT, (x1� � � � � xn) is an affiliated and exchangeable random vector
of private valuations with support [x� x̄]n. From Milgrom and Weber (1982) it
follows that the equilibrium bid in any APV model of first-price auctions with
a reserve price r is given by

B(x�n)= x−
∫ x

r

exp
{
−

∫ x

t

R(s�n)ds

}
dt�(1)

with

R(x�n)= fn−1(x|x)
Fn−1(x|x)�

where Fn−1(·|x) denotes the conditional distribution function of maxj �=i xj given
xi = x and fn−1(·|x) the corresponding density. We refer to R as the reverse
hazard.

1This paper is based on research that was financially supported by the Social Sciences and Hu-
manities Research Council of Canada. We thank Ken Hendricks for encouraging support and sug-
gestions and Susan Athey, Phil Haile, Vijay Krishna, Bob Marshall, Charlie Mullin, Mike Peters,
Tomas Sjöström, Charles Zheng, the coeditor, the referees, and seminar participants at Carleton
University, Ohio State University, Queen’s University, and the Universities of British Columbia,
California (Los Angeles and Santa Barbara), Montreal, and Toronto, and the North American
Summer Meetings of the Econometric Society at UCLA for useful comments.
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In the particular case of the CIPV model—i.e., a class of APV models in
which bidders’ private valuations, x1� � � � � xn, are affiliated through a random
variable z but in which they are independent conditional on z—the reverse
hazard is given by

R(x�n)= (n− 1)

∫ z̄
z
Hn−2(x|z)h2(x|z)g(z)dz∫ z̄

z
Hn−1(x|z)h(x|z)g(z)dz �(2)

where H(x|z) and h(x|z) are the conditional distribution and density func-
tion of xi given z and G�g are the distribution and density function of z with
support [z� z̄]. We assume that h satisfies the strict MLRP.

In Section 2.1 we show that if the number of bidders becomes large, then
R is again increasing in n. Section 2.2 contains the results about price. Finally
in Section 3 we establish our results for general APV models.

2. CONDITIONAL INDEPENDENT PRIVATE-VALUES MODEL

2.1. Asymptotics

In PT, Lemmas 1 and 2, we show that if and only if R can be decreasing in n
then so can B. Using this property, we also show there (Corollary 1) that B can
indeed be decreasing in n. However, as the following proposition indicates, in
the limit R is everywhere increasing in n and hence so is B.

PROPOSITION 1: In the CIPV model, let the first partial derivatives of H(x|z)
and h(x|z) with respect to z be continuous in both x�z and let H(x|z)h(x|z)
be bounded away from zero on [r� x̄] × [z� z̄]. Then, for sufficiently large n,
maxx∈[r�1](R(x�n)−R(x�n+ 1)) is negative.

For the proof see Appendix A.
Please note that Proposition 1 implies that bids are increasing in n if the

number of bidders is sufficiently large.

2.2. Price

We now offer sets of sufficient conditions for the expected maximum bid
(price),

Pn =
∫ x̄

r

B(x�n)fn(x)dx�

to be monotonically increasing in n, where fn(x) is the density function of the
maximum valuationXn = maxnj=1 xj . We have been unable to prove that price is
always increasing in n, but if a counterexample exists, it must be fairly extreme.



AFFILIATION EFFECT SUPPLEMENT 3

An increase in n generates three effects on price: the competition and affili-
ation effects, which were introduced in Section 3.2 of PT, and a sampling effect.
The sampling effect arises because the presence of an additional bidder results
in an additional draw from the valuation distribution. One additional draw
from the valuation distribution causes the highest valuation to be greater with
probability 1/(n+ 1) and the same with probability n/(n+ 1). Since equilib-
rium bids are increasing in x, the sampling effect exerts an upward influence
on dPn/dn. This is reflected in Lemma 1 below.

Let

∆n(x)≡
∂B
∂n
(x�n)

∂B
∂x
(x�n)

−
∂Fn
∂n
(x)

∂Fn
∂x
(x)

�(3)

where Fn(x) is the distribution function corresponding to fn(x). In equa-
tion (3), the term −(∂Fn/∂n)(x) quantifies the sampling effect and is positive.
Due to the affiliation effect, (∂B/∂n)(x�n) can be negative. As long as the
sampling effect is strong enough to offset the affiliation effect, price will be
increasing in n.

LEMMA 1: Let GXn(b)= P(B(Xn�n)≤ b). Then

∀x: ∆n(x)≥ 0 ⇐⇒ ∀b:
∂GXn

∂n
(b)≤ 0�

PROOF: Let B−1 be such that B−1(B(x�n)�n) = x for all x�n. Note that
GXn(b)= Fn(B−1(b�n)). Hence, using t as shorthand for B−1(b�n),

∂GXn

∂n
(b)= ∂Fn

∂n
(t)+ fn(t)∂B

−1

∂n
(b�n)

= ∂Fn

∂n
(t)− fn(t)

∂B
∂n
(t� n)

∂B
∂x
(t� n)

= −fn(t)∆n(t)� Q.E.D.

Lemma 1 shows that even if bids are decreasing in n over a range of x’s,
the sampling effect can nevertheless cause the distribution of the winning
bid for n + 1 bidders to first-order stochastically dominate the distribution
for n bidders. First-order stochastic dominance is sufficient for an increase in
expectation.

For an interesting class of distributions first-order stochastic dominance
holds, as Proposition 2 demonstrates.

PROPOSITION 2: Suppose, for some function λ, ∀x, z: H(x|z)= exp(λ(x)z).
Then ∀x: ∆n(x)≥ 0.
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PROOF: Let Kj(x�n)= ∫
zj exp(nλ(x)z), j = 0�1�2. Then

R(x�n)= (n− 1)λ′(x)
K2(x�n)

K1(x�n)
= n− 1

n

∂ logK1

∂x
(x�n)�

such that∫ x

t

∂R

∂n
(s�n)ds(4)

= n−2
∫ x

t

R(s�n)ds+ n− 1
n

(
∂ logK1

∂n
(x�n)− ∂ logK1

∂n
(t� n)

)

≥ n− 1
n

λ(x)
K2(x�n)

K1(x�n)
�

Denote the right-hand side in (4) by An(x). Note further that

R(x�n)
∂Fn
∂n
(x)

∂Fn
∂x
(x)

= (n− 1)λ′(x)
K2(x�n)

K1(x�n)

λ(x)K1(x�n)

nλ′(x)K1(x�n)
=An(x)�

Hence,

∂B

∂n
(x�n)=

∫ x

r

∫ x

t

∂R

∂n
(s�n)ds exp

(
−

∫ x

t

R(s�n)ds

)
dt

≥An(x)

∫ x

r

exp
(
−

∫ x

t

R(s�n)ds

)
dt

≥ An(x)

Rn(x)

∂B

∂x
(x�n)= ∂B

∂x
(x�n)

∂Fn
∂n
(x)

∂Fn
∂x
(x)

�

such that ∆n(x)≥ 0. Q.E.D.

Examples of distributions that are of the special form used in Proposition 2
are power distributions H(x�z) = xz (λ(x) = logx) and the Wilson distribu-
tion of Example 1 in PT.

There are alternative conditions which are sufficient for price to be increas-
ing in n but do not imply first-order stochastic dominance of the distributions
of maximum bids. Consider the CIPV model and define

Vn(x)=
∫
pn(z|W� x)

h′(x|z)
h(x|z) dz�

Note that

R(x�n)= d logfn
dx

(x)− Vn(x)�
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so that price can be rewritten as

Pn =
∫ x̄

r

fn(x)B(x�n)dx

=
∫ x̄

r

fn(x)

(
x−

∫ x

r

fn(t)

fn(x)
exp

{∫ x

t

Vn(s)ds

}
dt

)
dx

=
∫ x̄

r

fn(x)In(x)dx�

where In(x)= x− ∫ x̄
x

exp{∫ t

x
Vn(s)ds}dt.

PROPOSITION 3: In the CIPV model, if ∀x ∈ (x� x̄]: Vn(x)≥ 0 and if In(r)≥ 0,
then price is increasing in n.

PROOF: Note that

dPn

dn
=

∫ x̄

r

∂fn

∂n
(x)In(x)dx

−
∫ x̄

r

fn(x)

∫ x̄

x

∫ t

x

∂Vn

∂n
(s)ds exp

{∫ t

x

Vn(s)ds

}
dt dx�

Now if L(x|z) = − logH(x|z), ρ(x� z) = h′(x|z)/h(x� z), then, by Lemma 3
of PT,

∂Vn

∂n
(x)=

∫
pn(z�W� x)L(x� z)dz

∫
pn(z�W� x)ρ(x� z)dz

−
∫
pn(z�W� x)L(x|z)ρ(x� z)dz

≤ 0�

since both L and ρ are increasing in z by affiliation. Finally, applying integra-
tion by parts yields

∫ x̄

r

∂fn

∂n
(x)In(x)dx= −∂Fn

∂n
(r)In(r)−

∫ 1

r

∂Fn

∂n
(x)I ′

n(x)dx�

where I ′
n(x)= 2 + Vn(x)(x− In(x))≥ 0 by the assumption that Vn(x)≥ 0. The

claim follows since In(r)≥ 0 by assumption and since ∂Fn/∂n≤ 0. Q.E.D.

Note that the assumption of Vn(x) ≥ 0 is implied by the restriction that the
conditional density h(x|z) is weakly increasing in x, which is satisfied for a
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large class of distributions. However, Vn(x) < 0 whenever h is decreasing in x
for all z. Here is an example:

H(x|z)= 1 − exp(−a(z)x)
1 − exp(−a(z))

for x ∈ [0�1] and z ∈ [z� z̄], where a(z) is positive and decreases with z. Note
that h′(x|z)/h(x|z)= −a(z) < 0.

If the reserve price is chosen to maximize the seller’s expected revenue (or
price), then the condition that In(r) ≥ 0 in Proposition 3 is implied. This is
stated in the following corollary.

COROLLARY 1: In the CIPV model, if ∀x ∈ (x� x̄]� Vn(x) ≥ 0 and if the seller
sets the reserve price optimally, then price is increasing in n.

PROOF: Note that

dPn

dr
= −fn(r)In(r)�

A necessary condition for an interior optimal reserve price is that In(r) = 0.
The claim follows from Proposition 3. Q.E.D.

3. AFFILIATED PRIVATE-VALUES MODEL

We now generalize some of the results in PT to the case of general APV
models. We will continue to assume exchangeability and affiliation and more-
over impose that the joint valuation distribution of (x1� � � � � xm) does not de-
pend on n >m.

3.1. Affiliation Effect

The first generalization is related to the affiliation effect. As in PT, we define

∀x�n: RQ(x�n)= (n− 1)R(x�2)�

�R(x�n)=R(x�n)−RQ(x�n)�
RQ is naturally increasing in n and �R is decreasing in n. In the IPV case �R
necessarily equals zero and no affiliation effect then exists; an affiliation effect
exists if and only if �R(x�n) < 0 for some values of x�n. In the APV case �R
is not everywhere equal to zero; we now show that it cannot be positive since
�R(x�2)= 0.

PROPOSITION 4: �R(x�n) is decreasing in n.

For the proof see Appendix B.
Proposition 4 is a generalization of Proposition 1 of PT.
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3.2. Bids at x̄

In PT, Proposition 3, we show that equilibrium bids in the CIPV models are
necessarily increasing in n at the top of the value distribution, x̄. Proposition 5
below establishes that it holds for general APV models, also. The result in
Proposition 5 is important because it can be used as the basis of a test between
APV and CV models since B(x̄�n) can be decreasing in n in CV models.

PROPOSITION 5: B(x̄�n) is increasing in n.

For the proof see Appendix B.

4. SUMMARY

We have established some additional interesting results over and above those
contained in PT. We have shown that when the number of bidders continues to
increase, then the reverse hazards will eventually once again be uniformly in-
creasing in the number of bidders and hence so will bids. We have also derived
some sufficient conditions for price to be increasing in the number of bidders.
Finally, we have provided several generalizations of the results contained in PT.

Dept. of Economics, The Pennsylvania State University, University Park, PA
16802, U.S.A.; joris@psu.edu; http://joris.econ.psu.edu

and
Dept. of Economics, University of Southern California, Los Angeles, CA 90089,

U.S.A.; guofutan@usc.edu; http://www-rcf.usc.edu/∼guofutan/.
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APPENDIX A: PROOF OF PROPOSITION 1

We show that for sufficiently large n, maxx∈[r�x̄]((R(x�n) − R(x�n + 1))H(x|z)/h(x|z)) < 0.
Assume without loss of generality that x = z = 0 and x̄ = z̄ = 1. Let Tx(z) = H(x|z)/H(x|0),
Ax(z)= h(x|z)/h(x|0), and φnx(z)= T n−2

x (z)Ax(z)g(z). Then, omitting arguments,

max
x∈[r�1]

((
R(x�n)−R(x�n+ 1)

)
H(x|0)/h(x|0))(5)

= max
x∈[r�1]

(
(n− 1)

∫
φnxAx∫
φnxTx

− n
∫
φnxAxTx∫
φnxT 2

x

)

= max
x∈[r�1]

(
n

∫
φnxAx

∫
φnxT

2
x − ∫

φnxAxTx
∫
φnxTx∫

φnxTx
∫
φnxT 2

x

−
∫
φnxAx∫
φnxTx

)

≤ nmax
x∈[r�1]

(∫
φnxAx

∫
φnxT

2
x − ∫

φnxAxTx
∫
φnxTx∫

φnxTx
∫
φnxT 2

x

)
− min

x∈[r�1]

∫
φnxAx∫
φnxTx

�

We first show that the second right-hand side term in the inequality in (5) is bounded away from
zero, even in the limit. Indeed,

min
x∈[r�1]

∫
φnxAx∫
φnxTx

≥ min
x∈[r�1]

minz∈[0�1]Ax(z)

maxz∈[0�1] Tx(z)
> 0�
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We now show that the first term on the right-hand side of the inequality in (5) is o(1),2 which
implies that the right-hand side in (5) is negative for sufficiently large n. Our proof will make
repeated use of the mean value theorem to establish that the equivalent condition

max
x∈[r�1]

(∫
φnxAx

∫
φnxT

2
x − ∫

φnxAxTx
∫
φnxTx∫

φnxTx
∫
φnxT 2

x

)
= o(n−1)(6)

is satisfied. By the mean value theorem and Tx(0)=Ax(0)= 1,

Tx(z)= 1 + T ′
x(z

∗(z))z� Ax(z)= 1 +A′
x(z̃(z))z�(7)

with z∗(z)� z̃(z) some numbers between 0 and z. Let T̄x(z) = T ′
x(z

∗(z)), Āx(z) =A′
x(z̃(z)). In-

troduce the following shorthand notation.

S1x =
∫
φnx� S2x =

∫
φnxĀxz�(8)

S3x =
∫
φnxT̄xz� S4x =

∫
φnxT̄

2
x z

2� and

S5x =
∫
φnxT̄xĀxz

2�

Observe that each of the integrals in (6) can be expressed in terms of the S-variables defined
in (8) using the expansion in (7), e.g.,∫

φnxAx =
∫
φnx +

∫
φnxĀxz = S1x + S2x�

Using similar expansions for the other integrals in (5), the left-hand side in (6) is

max
x∈[r�1]

(S1x + S2x)(S1x + 2S3x + S4x)− (S1x + S2x + S3x + S5x)(S1x + S3x)

(S1x + S3x)(S1x + 2S3x + S4x)
(9)

= max
x∈[r�1]

S1xS4x + S2xS3x + S2xS4x − S1xS5x − S2
3x − S3xS5x

S2
1x + 3S1xS3x + S1xS4x + 2S2

3x + S3xS4x
�

= max
x∈[r�1]

S4x
S1x

+ ( S2x
S1x
)( S3x

S1x
)+ ( S2x

S1x
)( S4x

S1x
)− S5x

S1x
− ( S3x

S1x
)2 − ( S3x

S1x
)( S5x

S1x
)

1 + 3 S3x
S1x

+ S4x
S1x

+ 2( S3x
S1x
)2 + ( S3x

S1x
)( S4x

S1x
)

�

Let ψn = n−κ for some κ ∈ (1/2�1). Note that (9) is O(ψ2
n) if we can show that maxx∈[r�1](Sjx/

S1x)= O(ψn), j = 2�3, and maxx∈[r�1](Sjx/S1x)= O(ψ2
n), j = 4�5. We will establish that S4x/S1x =

O(ψ2
n), where the remaining results follow similarly. Let

Dnx = {
z ∈ [0�1] : T̄x(z)= 0 ∨ z ≤ψn/|T̄x(z)|

}
�

with ∨ = “or” and letDc
nx be the complement ofDnx. Now, by the definition of Dnx�D

c
nx, and (7),

∀z ∈Dnx: T̄ 2
x z

2 ≤ψ2
n� and ∀z ∈Dc

nx: T n−2
x = (1 − T̄xz)n−2 ≤ (1 −ψn)n−2�

Hence,

S4x =
∫
φnxT̄

2
x z

2 =
∫
Dnx

φnxT̄
2
x z

2 +
∫
Dcnx

φnxT̄
2
x z

2 ≤ψ2
nS1x +

∫
Dcnx

(1 −ψn)n−2AxT̄
2
x z

2g�(10)

2O and o mean “order of,” i.e., an = o(bn) if limn→∞ an/bn = 0 and an = O(bn) if
limN→∞ maxn>N |an/bn|<∞.
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Since (1−ψn)nκ = (1−n−κ)nκ → 1/e as n→ ∞ andAxT̄
2
x g is uniformly bounded by assumption,

the second term on the right-hand side of (10) goes to zero exponentially in n, uniformly in x.
Finally, we show that minx∈[r�1] S1x decreases to zero at a rate no faster than 1/n. Let

D∗
nx = {

z ∈ [0�1] : T̄x(z)= 0 ∨ z ≤ 1/
(
n|T̄x(z)|

)}
�

Then, again by (7),

min
x∈[r�1]

S1x ≥ min
x∈[r�1]

∫
D∗
nx

φnx ≥ min
x∈[r�1]

∫
D∗
nx

(1 − 1/n)n−2Axg�

Let λ denote the Lebesgue measure. Then λ(D∗
nx) ≥ 1/(nmaxx∈[r�1]�z∈[0�1] T̄x(z)) by assumption.

Further, for any x ∈ [r�1], minz∈D∗
nx
Tx(z) = minz∈D∗

nx
(1 + T̄xz) ≥ 1 − 1/n. Hence, minx∈[r�1] S1x

indeed decreases to 0 at rate no faster than 1/n and maxx∈[r�1](S4x/S1x)=O(ψ2
n).

APPENDIX B: PROOFS OF PROPOSITIONS 4 AND 5

Let P∗ be a pseudo-density, e.g.,

P∗(X1 = x1�X2 ≤ x2)= ∂

∂x1
P(X1 ≤ x1�X2 ≤ x2)�

and similarly for other quantities.

LEMMA 2: If X�Y are affiliated, then, for all x′ ≥ x, y ′ ≥ y ,

f (x′|Y ≤ y ′)
f (x′|Y ≤ y) − f (x|Y ≤ y ′)

f (x|Y ≤ y) ≥ 0�

PROOF: It is sufficient to show that

f (x′|Y ≤ y ′)f (x|Y ≤ y)− f (x|Y ≤ y ′)f (x′|Y ≤ y)≥ 0�

or equivalently that

P∗(X = x′�Y ≤ y ′)P∗(X = x�Y ≤ y)− P∗(X = x�Y ≤ y ′)P∗(X = x′�Y ≤ y)≥ 0�

Now,

P∗(X = x′�Y ≤ y ′)P∗(X = x�Y ≤ y)− P∗(X = x�Y ≤ y ′)P∗(X = x′�Y ≤ y)
= (
P∗(X = x′�Y ≤ y)+ P∗(X = x′� y < Y ≤ y ′)

)
P∗(X = x�Y ≤ y)

− (
P∗(X = x�Y ≤ y)+ P∗(X = x� y < Y ≤ y ′)

)
P∗(X = x′�Y ≤ y)

= P∗(X = x′� y < Y ≤ y ′)P∗(X = x�Y ≤ y)
−P∗(X = x� y < Y ≤ y ′)P∗(X = x′�Y ≤ y)

=
∫ y ′

y

∫ y

0

(
f (x′� t ′)f (x� t)− f (x� t ′)f (x′� t)

)
dt dt ′ ≥ 0�

Q.E.D.

PROOF OF PROPOSITION 4: Since

�R(x�n+ 1)−�R(x�n)= n
(
R(x�n+ 1)

n
− R(x�n)

n− 1

)
+ R(x�n)

n− 1
−R(x�2)�

it suffices to show that

∀x�n: R(x�n+ 1)/n−R(x�n)/(n− 1)≤ 0�
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Let Y ∗
n = maxi=3�����n Xi . Note that

R(x�n)

n− 1
= P∗(X1 = x�X2 = x�Y ∗

n ≤ x)
P∗(X1 = x�Yn ≤ x)(11)

= P∗(X2 = x|X1 = x�Y ∗
n ≤ x�Xn+1 ≤ 1)

P(X2 ≤ x|X1 = x�Y ∗
n ≤ x�Xn+1 ≤ 1)

�

Similarly,

R(x�n+ 1)
n

= P∗(X2 = x|X1 = x�Y ∗
n ≤ x�Xn+1 ≤ x)

P(X2 ≤ x|X1 = x�Y ∗
n ≤ x�Xn+1 ≤ x) �

The result then follows from Lemma 2. Q.E.D.

PROOF OF PROPOSITION 5: It suffices to show that

∀x:
∫ x̄

x

R(s� n)ds is increasing in n�

Let Ψ(x� y;n)= logP∗(Yn ≤ y�X1 = x), where Yn = maxi=2�����n Xi , such that

R(x�n)= ∂Ψ

∂y
(x�x;n)�

Hence, ∫ x̄

x

R(s� n)ds=Ψ(x̄� x̄;n)−Ψ(x�x;n)−
∫ x̄

x

∂Ψ

∂x
(s� s;n)ds�

Note that Ψ(x̄� x̄;n) is independent of n and Ψ(x�x;n) is decreasing in n. It hence remains to
be shown that ∂Ψ/∂x is decreasing in n. Now

Ψ(x� y;n+ 1)−Ψ(x� y;n)(12)

= log
P∗(Yn+1 ≤ y�X1 = x)
P∗(Yn ≤ y�X1 = x)

= log
P∗(Yn ≤ y�Xn+1 ≤ y�X1 = x)
P∗(Yn ≤ y�Xn+1 ≤ x̄�X1 = x)

= log
P∗(X1 = x|Xn+1 ≤ y�Yn ≤ y)
P∗(X1 = x|Xn+1 ≤ x̄�Yn ≤ y) + log

P(Xn+1 ≤ y�Yn ≤ y)
P(Xn+1 ≤ x̄�Yn ≤ y) �

The second right-hand side term in equation (12) does not depend on x. The first right-hand side
term is decreasing in x by Lemma 2. Q.E.D.
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