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This supplementary material contains some of the more technical details omitted
from the main paper. First, a brief review of the theory of generalized functions is pre-
sented. Second, proofs of some basic properties of Fourier transforms as well as the as-
ymptotics of the proposed generalized method of moments estimator are given. Third,
the proposed estimator is compared with that suggested by Hausman, Newey, Ichimura,
Powell (1991). Fourth, an alternative derivation of the moment conditions that neces-
sitates weaker regularity conditions is provided. Fifth, the details of the Monte Carlo
simulations are described. Sixth, an application of the proposed methodology to the
estimation of the black–white income gap is presented. Finally, some computational
aspects of the implementation of the estimator are described.
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S.1. REVIEW OF THE THEORY OF GENERALIZED FUNCTIONS

The concept of generalized functions, also called tempered distributions
(Lighthill (1962), Gel’fand and Shilov (1964), Schwartz (1966)), is central to
the present paper, because most results rely on Fourier transforms, which of-
ten do not exist within the set of ordinary functions. Because generalized func-
tions are not widely used in the econometrics literature (Phillips (1991) and
Zinde-Walsh and Phillips (2003) are notable exceptions), this section recalls
the definitions and known results that are relevant to our problem. Our sum-
mary of the theory of generalized functions most closely follows the treatment
described by Lighthill (1962), which is, of course, equivalent to the other treat-
ments found in the literature. We focus on the case of scalar-valued generalized
functions of a scalar variable.

To define generalized functions,2 we first need the following definition:

DEFINITION S.1: Let T be the set of all functions s : R �→ R that (i) are every-
where differentiable any number of times and (ii) are such that3 |(dks(t))/dtk| =
O(|t|−�) as |t| → ∞ for all k�� ∈ N

+. Functions in T are called test functions.

1This work was made possible in part through financial support from the National Science
Foundation via Grant SES-0452089. The author thanks Jeremy Fox, Ricardo Mayer, Derek Neal,
and Xiaohong Chen, as well as participants at seminars given at the Universities of Rochester,
Chicago, Maryland, Michigan, UCSD, and UC-Riverside, the 2004 summer meetings of the
Econometric Society, and the CIRANO/CIREQ “Operator Methods in Microeconometrics,
Time Series and Finance” conference for their helpful comments.

2We adopt the term “generalized function” instead of “distribution” to avoid any potential
confusion with the concept of probability distribution function.

3By convention, dks(t)/dtk = s(t) for k= 0.
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Intuitively, functions in T are both extremely smooth and extremely thin-
tailed.

DEFINITION S.2: A generalized function b is a sequence of functions bk in T
such that limk→∞

∫
bk(t)s(t)dt exists for all s ∈ T . (Generalized functions can

also be defined as bounded linear functionals on T , but this definition is less con-
venient for our purposes.)

Note that the limit of the sequence bk(t) may not be part of T , which en-
ables the concept of generalized functions to be more general than a func-
tion. The value of the integral

∫
b(t)s(t)dt for a given s ∈ T is then defined as

limk→∞
∫
bk(t)s(t)dt. Perhaps the best known example of a generalized func-

tion is the Dirac delta function δ(t), defined, for instance, by the sequence

bk(t)=
√
k

2π
exp

(
−kt

2

2

)
�(S.1)

Another important example of a generalized function is the jth derivative of
the delta function, denoted by δ(j)(t) and defined by the sequence djbk(t)/dtj ,
where bk(t) is as in Equation (S.1). The generalized function δ(j)(t) has the
property that δ(0)(t)≡ δ(t) and∫

δ(j)(t)s(t)dt = (−1)j
djs(t)

dtj

∣∣∣∣
t=0

for j ∈ N�

DEFINITION S.3: Two generalized functions a(t) and b(t) are said to be
equal if their associated sequences ak(t) and bk(t), respectively, are such that
limk→∞

∫
ak(t)s(t)dt = limk→∞

∫
bk(t)s(t)dt for all s ∈ T .

Note that Definition S.3 does not require that ak(t) = bk(t) for all k and,
hence, a given generalized function can be defined in terms of more than one
sequence. The set of generalized functions is closed under addition, subtrac-
tion, and differentiation. The product of a generalized function with an ordi-
nary function is guaranteed to be a generalized function if all of the ordinary
function’s derivatives exist and diverge no faster than a power of t as |t| → ∞.
However, the product of two generalized functions may not be a generalized
function.

Ordinary functions can be viewed as particular cases of generalized func-
tions. For instance, if we let I be the set of all ordinary functions c(t) such that∫
(1 + t2)−�|c(t)|dt is finite for some � ∈ N, then all ordinary functions in I are

also generalized functions. A generalized function b(t) is said to be equal to
an ordinary function c(t) in an interval I if, for all s ∈ T that are supported
on I, we have

∫
b(t)s(t)dt = ∫

c(t)s(t)dt. In the case of the Dirac delta func-
tion, δ(t) is equal to the 0 function over any interval that does not contain 0.
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However, δ(t) is not equal to any ordinary function over any interval that in-
cludes 0. This concept is important because it will allow us to treat generalized
functions as ordinary functions, as long as we stay away from their “singular”
points. More generally, two generalized functions b(t) and c(t) are also said
to be equal over an interval I if, for all s ∈ T that are supported on I, we have∫
b(t)s(t)dt = ∫

c(t)s(t)dt.
Perhaps the most important result for our purpose is that the Fourier trans-

form of a generalized function is a generalized function. As a particular case
of this result, the Fourier transform of any function in I is a generalized func-
tion. Hence, in general, the Fourier transform of an ordinary function will not
necessarily be an ordinary function, but rather will be a generalized function.

A generalized function b(t) can always be decomposed as

b(t)= bo(t)+ bs(t)�(S.2)

where bo(t) is an ordinary function while bs(t) is purely singular, consisting
solely of a linear combination of delta function derivatives of a finite order.4
This result directly follows from the fact that every generalized function can
be written as the derivative of order k ∈ N of some continuous function c(t)
(Theorem III in Temple (1963) establishes this for a class of generalized func-
tions including those considered here as a particular case). At every point t
where c(t) is k times differentiable in the usual sense, the generalized function
can be written as an ordinary function, while at every point where c(t) is not k
times differentiable, a delta function derivative is created in the differentiation
process. The fact that the two pieces are additively separable follows from the
linear nature of the space of generalized functions. The decomposition (S.2)
is unique because there exists no ordinary function bo(t) such that, for k ∈ N,∫
bo(t)s(t)dt =

∫
δ(k)(t)s(t)dt for all test function s(t).

Moreover, the product of a generalized function b(t) with an ordinary func-
tion ao(t) can be decomposed as

b(t)ao(t)= bo(t)ao(t)+ bs(t)ao(t)�(S.3)

where bo(t)ao(t) is an ordinary function and where bs(t)ao(t) is purely singu-
lar, as implied by Lemma 2 (see the Appendix in the main paper). Of course,
b(t)ao(t) will only be well defined if ao(t) admits a sufficient number of con-
tinuous derivatives at the points where the delta function derivatives contained
in b(t) are located.

Although this review focuses on so-called tempered distributions, there ex-
ist more general classes of generalized functions. For instance, as described in
Gel’fand and Shilov (1964), the set T can be limited to compactly supported

4The linear combination can consist of an infinite number of terms (with delta function deriv-
atives at different locations).
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infinitely differentiable functions, which expands the set of generalized func-
tions for which the limit limk→∞

∫
ak(t)s(t)dt exists for any s ∈ T . However, in

this work, we focus on functions a(t) whose Fourier transforms α(τ) are tem-
pered distributions, therefore limiting ourselves to functions a(t) that diverge
no faster than some power of t as |t| → ∞.

S.2. SIMPLE RESULTS ABOUT FOURIER TRANSFORMS AND
GENERALIZED FUNCTIONS

DEFINITION S.4: For some function ψ(ζ), let d−1ψ(ζ)/dζ−1 ≡ ∫ ζ

a
ψ(ξ)dξ for

some arbitrary constant a. For k≥ 1, define, by recursion,

d−k−1

dζ−k−1
ψ(ζ)≡ d−1

dζ−1

d−k

dζ−kψ(ζ)�

COMPLETE PROOF OF LEMMA 2: Let ψ be some test function in T as given
in Definition S.1. By k repeated integration by parts, we have∫

(δ(k)(ζ)φ(ζ))ψ(ζ)dζ

= (−1)k
∫ (

d−k

dζ−k δ
(k)(ζ)

)
dk

dζk
(φ(ζ)ψ(ζ))dζ�

after noting that the boundary terms vanish due to the thin tails of ψ(ζ) and
all of its derivatives. Next,∫

(δ(k)(ζ)φ(ζ))ψ(ζ)dζ

= (−1)k
∫
δ(ζ)

(
dk

dζk
(φ(ζ)ψ(ζ))

)
dζ

= (−1)k
∫
δ(ζ)

k∑
j=0

(
k
j

)
dk−jφ(ζ)
dζk−j

djψ(ζ)

dζj
dζ

= (−1)k
k∑
j=0

(
k
j

)
dk−jφ(0)
dζk−j

djψ(0)
dζj

= (−1)k
k∑
j=0

(
k
j

)
dk−jφ(0)
dζk−j

∫
δ(j)(ζ)ψ(ζ)dζ

=
∫ (

(−1)k
k∑
j=0

(
k
j

)
dk−jφ(0)
dζk−j δ(j)(ζ)

)
ψ(ζ)dζ� Q.E.D.
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COMPLETE PROOF OF LEMMA 4: Substituting Equations (55)–(58) into
Equations (8) and (9), we obtain

εy�o(ζ)+ 2π
k̄∑
k=0

εy�k(−i)kδ(k)(ζ)

=
(
γo(ζ�θ)+ 2π

k̄∑
k=0

γk(θ)(−i)kδ(k)(ζ)

)
φ(ζ)�

iεxy�o(ζ)+ 2πi
k̄∑

k=−1

εxy�k(−i)k+1δ(k+1)(ζ)

=
(
γ̇o(ζ�θ)+ 2π

k̄∑
k=0

γk(θ)(−i)kδ(k+1)(ζ)

)
φ(ζ)�

Equating the ordinary functions part of each expression yields

εy�o(ζ)= γo(ζ�θ)φ(ζ)�
iεxy�o(ζ)= γ̇o(ζ�θ)φ(ζ)�

while equating the singular parts yields

k̄∑
k=0

εy�k(−i)kδ(k)(ζ)=
k̄∑
k=0

γk(θ)(−i)kδ(k)(ζ)φ(ζ)�

k̄∑
k=−1

iεxy�k(−i)k+1δ(k+1)(ζ)=
k̄∑
k=0

γk(θ)(−i)kδ(k+1)(ζ)φ(ζ)�

By Lemma 2, we have

k̄∑
k=0

εy�k(−i)kδ(k)(ζ)=
k̄∑
k=0

γk(θ)(−i)k
k∑
j=0

(
k
j

)
φ(k−j)(0)δ(j)(ζ)�

k̄∑
k=−1

iεxy�k(−i)k+1δ(k+1)(ζ)

=
k̄∑
k=0

γk(θ)(−i)k
k+1∑
j=0

(
k+ 1
j

)
φ(k+1−j)(0)δ(j)(ζ)�
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Simple manipulations then give

k̄∑
k=0

εy�k(−i)kδ(k)(ζ)

=
k̄∑
k=0

γk(θ)(−i)k
k̄∑
j=0

(
k
j

)
1(j ≤ k)φ(k−j)(0)δ(j)(ζ)�

k̄∑
k=−1

iεxy�k(−i)k+1δ(k+1)(ζ)

=
k̄∑
k=0

γk(θ)(−i)k
k̄+1∑
j=0

(
k+ 1
j

)
1(j ≤ k+ 1)φ(k+1−j)(0)δ(j)(ζ)�

k̄∑
j=0

εy�j(−i)jδ(j)(ζ)

=
k̄∑
j=0

k̄∑
k=0

(
k
j

)
γk(θ)(−i)k1(j ≤ k)φ(k−j)(0)δ(j)(ζ)�

k̄∑
j=−1

iεxy�j(−i)j+1δ(j+1)(ζ)

=
k̄+1∑
j=0

k̄∑
k=0

(
k+ 1
j

)
γk(θ)(−i)k1(j ≤ k+ 1)φ(k+1−j)(0)δ(j)(ζ)

=
k̄∑

j=−1

k̄∑
k=0

(
k+ 1
j + 1

)
γk(θ)(−i)k1(j ≤ k)φ(k−j)(0)δ(j+1)(ζ)�

Equating the coefficients of the delta function derivatives of the same order
gives

εy�j(−i)j =
k̄∑
k=0

(
k
j

)
γk(θ)(−i)k1(j ≤ k)φ(k−j)(0)�

iεxy�j(−i)j+1 =
k̄∑
k=0

(
k+ 1
j + 1

)
γk(θ)(−i)k1(j ≤ k)φ(k−j)(0)�
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εy�j(−i)j =
k̄−j∑
l=−j

(
j + l
j

)
γj+l(θ)(−i)j+l1(j ≤ j + l)φ(j+l−j)(0)

=
k̄−j∑
l=−j

(
j + l
j

)
γj+l(θ)(−i)j+l1(0 ≤ l)φ(l)(0)

=
k̄−j∑
l=0

(
j + l
j

)
γj+l(θ)(−i)j+lφ(l)(0)

=
k̄∑
l=0

(
j + l
j

)
γj+l(θ)(−i)j+l1(l ≤ k̄− j)φ(l)(0)

=
k̄∑
k=0

(
k+ j
j

)
γk+j(θ)(−i)k+j1(k≤ k̄− j)φ(k)(0)�

iεxy�j(−i)j+1

=
k̄−j∑
l=−j

(
j + l+ 1
j + 1

)
γj+l(θ)(−i)j+l1(j ≤ j + l)φ(j+l−j)(0)

=
k̄−j∑
l=0

(
j + l+ 1
j + 1

)
γj+l(θ)(−i)j+lφ(l)(0)

=
k̄+1∑
l=0

(
j + l+ 1
j + 1

)
γj+l(θ)(−i)j+l1(l ≤ k̄− j)φ(l)(0)

=
k̄∑
k=0

(
k+ j + 1
j + 1

)
γk+j(θ)(−i)k+j1(k≤ k̄− j)φ(k)(0)

for j ≥ 0�

εy�j =
k̄∑
k=0

(
k+ j
j

)
γk+j(θ)1(k≤ k̄− j)(−i)kφ(k)(0)�

εxy�j =
k̄∑
k=0

(
k+ j + 1
j + 1

)
γk+j(θ)1(k≤ k̄− j)(−i)kφ(k)(0)�

Q.E.D.
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S.3. ASYMPTOTICS OF THE GENERALIZED METHOD OF MOMENTS ESTIMATOR

S.3.1. Definitions

Let (Xj�Yj�Wj) for j = 1� � � � � n be a given sample. First, the variable Zj
needs to be constructed from the instrumentsWj (see Equation (4) in the main
text). To this effect, the parameter vector α in model (2) is estimated using
standard (nonlinear) least squares on the specification

Xj =m(Wj�α)+ (�X∗
j +�Xj)�(S.4)

where E[(�X∗
j +�Xj)|Wj] = 0 by the assumptions of model (2). The resulting

α̂ is used to define the variable Ẑj as

Ẑj =m(Wj� α̂)�(S.5)

The variable Ẑj estimates the true Zj =m(Wj�α
∗), where α∗ denotes the true

value of α. Let p(·|α) denote the density of the quantity m(Wj�α) for a given
α and let p(z) = p(z|α∗). Next, a nonparametric kernel density estimate of
p(·|α̂) at point Ẑj can be obtained from

p̂(Ẑj|α̂)= (nh)−1
n∑

i=1�i 	=j
K((Ẑi − Ẑj)/h)

for some kernel K(·) and some bandwidth sequence h→ 0 as n→ ∞.
Finally, θ̂ is defined as the solution to Q̂(θ� α̂)= 0, where

Q̂(θ�α)≡ n−1
n∑
j=1

(
Υ(Xj�Yj�Wj�θ�α)

p̂(m(Wj�α)|α) − e
)

1(p̂(m(Wj�α)|α)≥ τ)�(S.6)

Υ(x� y�w�θ�α)=
[
yry(m(w�α)�θ)+ xyrxy(m(w�α)�θ)

yr1y(m(w�α)�θ)

]
�(S.7)

e = (0� � � � �0︸ ︷︷ ︸
Nθ−Ns

�1� � � � �1︸ ︷︷ ︸
Ns

)′�(S.8)

where 1(·) is the indicator function, which is equal to 1 when the event · occurs,
and τ is some trimming threshold such that τ→ 0 as n→ ∞, which is designed
to keep divisions by zero under control.5 The scalar Ns is the dimension of the

5The trimming is not introduced to ensure that expectations such as E[Yry(Z�θ)/p(Z)] or
E[(Yry(Z�θ)/p(Z))2] exist, but rather to show that remainder terms are asymptotically negligi-
ble. If E[(Yry(Z�θ)/p(Z))2], for instance, did not exist, no trimming scheme would restore the
root n consistent estimation of the moment E[Yry(Z�θ)/p(Z)].
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range of r1y(z�θ) and can therefore be 0, 1, or 2. The true value of θ, denoted
θ∗, is the solution to Q(θ�α∗)= 0, where

Q(θ�α)=E[
Q(X�Y�W �θ�p(·|α))](S.9)

and where Q(x�y�w�θ�p) is defined in Equation (16).

S.3.2. Proofs

Although the following lemma may seem familiar, we were not able to find
this result at the required level of generality in the existing literature (Theo-
rems 1 and 3 in Andrews (1995) and Theorem 2.8 in Pagan and Ullah (1999)
come very close, however).

LEMMA S.1: Under Assumptions 8, 14, and 15,

sup
α∈A

sup
z∈R

|p̃(z|α)−p(z|α)| =Op(n−1/2h−1)+O(hNK)�

where p̃(z|α) = (nh)−1
∑n

j=1K((Zj − z)/h) and p(z|α) is the density of Z =
m(W �α) for a given functionm(W �α) of some random vectorW . The same result
holds with p̃(z|α) replaced by p̂(z|α)= (nh)−1

∑n

j=1K((Zj − z)/h)1(Zj 	= z).
PROOF: This proof is based in part on the proof of Theorem 2.8 in Pagan

and Ullah (1999). Note that supα∈A supz∈R
|p̃(z|α)−p(z|α)| ≤R+B, where

R= sup
α∈A

sup
z∈R

∣∣p̃(z|α)−E[p̃(z|α)]∣∣�
B= sup

α∈A
sup
z∈R

∣∣E[p̃(z|α)] −p(z|α)∣∣�
By the convolution theorem,

R= sup
α∈A

sup
z∈R

∣∣∣∣∣
∫
κ(hζ)n−1

n∑
j=1

(eiζZj −E[eiζZj ])e−iζz dζ

∣∣∣∣∣
≤ sup

α∈A
sup
z∈R

∫
|κ(hζ)|

∣∣∣∣∣n−1
n∑
j=1

(eiζZj −E[eiζZj ])
∣∣∣∣∣dζ

= sup
α∈A

∫
|κ(hζ)|

∣∣∣∣∣n−1
n∑
j=1

(eiζZj −E[eiζZj ])
∣∣∣∣∣dζ�

where κ(ζ) denotes the Fourier transform of K(z). We then have

E[R] ≤ sup
α∈A

∫
|κ(hζ)|E

[∣∣∣∣∣n−1
n∑
j=1

(eiζZj −E[eiζZj ])
∣∣∣∣∣
]
dζ
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≤ sup
α∈A

∫
|κ(hζ)|

(
E

[∣∣∣∣∣n−1
n∑
j=1

(eiζZj −E[eiζZj ])
∣∣∣∣∣

2])1/2

dζ

= sup
α∈A

∫
|κ(hζ)|(n−1E

[
(eiζZj −E[eiζZj ])

× (e−iζZj −E[e−iζZj ])])1/2
dζ

= sup
α∈A

n−1/2

∫
|κ(hζ)|(E[

(eiζZj −E[eiζZj ])

× (e−iζZj −E[e−iζZj ])])1/2
dζ

≤ n−1/221/2

∫
|κ(hζ)|dζ

= n−1/2h−121/2

∫
|κ(ζ)|dζ

= O(n−1/2h−1)

and R=Op(n−1/2h−1) by Markov’s inequality. Next,

B= sup
α∈A

sup
z∈R

∣∣∣∣
∫
h−1K(h−1v)(p(z+ v|α)−p(z|α))dv

∣∣∣∣�
By a Taylor expansion,

B = sup
α∈A

sup
z∈R

∣∣∣∣∣
∫
h−1K(h−1v)

(
Nk−1∑
j=1

p(j)(z|α)v
j

j! +p(Nk)(z̃|α) v
Nk

Nk!

)
dv

∣∣∣∣∣
(for z̃ ∈ [z� z+ v])

= sup
α∈A

sup
z∈R

∣∣∣∣
∫
h−1K(h−1v)p(Nk)(z̃|α) v

Nk

Nk! dv
∣∣∣∣

by Assumption 14(iii). Then, by a change of variable,

B = sup
α∈A

sup
z∈R

∣∣∣∣
∫
K(u)p(Nk)(z̃|α)u

NkhNk

Nk! du

∣∣∣∣
≤ hNk

(
sup
α∈A

sup
z∈R

|p(Nk)(z̃|α)|
) 1
Nk!

∣∣∣∣
∫

|K(u)||u|Nk du
∣∣∣∣

= O(hNk)

by Assumptions 14(iv) and 15.
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The second assertion is shown by noting that the difference between p̃(z)
and p̂(z) is at most K(0)n−1h−1, which is of an order less than n−1/2h−1 and
can therefore be absorbed in the Op(n−1/2h−1) remainder. Q.E.D.

PROOF OF THEOREM 3: Let Υ(x� y�w�θ�α), Q̂(θ�α), andQ(θ�α) be as de-
fined in Section S.3.1. We first show consistency of θ̂. This involves establishing
the uniform convergence of Q̂(θ� α̂) to Q(θ�α∗) for θ ∈ Θ. We first note that
α̂

p→ α∗ by Lemma 2.4 and Theorem 2.1 in Newey and McFadden (1994), un-
der Assumptions 8 and 9. Hence α̂ ∈A with probability approaching 1. We can
then write, with probability approaching 1,

sup
θ∈Θ

‖Q̂(θ� α̂)−Q(θ�α∗)‖

≤ sup
θ∈Θ

‖Q̂(θ� α̂)−Q(θ� α̂)‖ + sup
θ∈Θ

‖Q(θ� α̂)−Q(θ�α∗)‖

≤ sup
α∈A

sup
θ∈Θ

‖Q̂(θ�α)−Q(θ�α)‖ + sup
θ∈Θ

‖Q(θ� α̂)−Q(θ�α∗)‖�

where supθ∈Θ ‖Q(θ� α̂)−Q(θ�α∗)‖ p→ 0 by α̂
p→ α∗ and Assumption 18. Next,

sup
α∈A

sup
θ∈Θ

‖Q̂(θ�α)−Q(θ�α)‖ ≤RA +RI +RD�

where

RA = sup
α∈A

sup
θ∈Θ

∥∥∥∥∥n−1
n∑
j=1

Υ(Xj�Yj�Wj�θ�α)

p(m(Wj�α)|α) −E
[
Υ(X�Y�W �θ�α)

p(m(W �α)|α)
]∥∥∥∥∥�

RI = sup
α∈A

sup
θ∈Θ

∥∥∥∥∥n−1
n∑
j=1

Υ(Xj�Yj�Wj�θ�α)

p(m(Wj�α)|α)

× (
1
(
p̂(m(Wj�α)|α)≥ τ) − 1

)∥∥∥∥∥�
RD = sup

α∈A
sup
θ∈Θ

∥∥∥∥∥n−1
n∑
j=1

Υ(Xj�Yj�Wj�θ�α)

× p(m(Wj�α)|α)− p̂(m(Wj�α)|α)
p̂(m(Wj�α)|α)p(m(Wj�α)|α)

× 1
(
p̂(m(Wj�α)|α)≥ τ)

∥∥∥∥∥�
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We then have supθ∈Θ ‖RA‖ p→ 0 by Assumptions 8, 10, and 11 and Lemma 2.4
in Newey and McFadden (1994). Next, by Lemma S.1, we have

RI ≤ sup
α∈A

sup
θ∈Θ

n−1
n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖
p(m(Wj�α)|α)

∣∣1(
p̂(m(Wj�α)|α) < τ

)∣∣
≤ sup

α∈A
sup
θ∈Θ

n−1
n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖
p(m(Wj�α)|α)

× ∣∣1(
p(m(Wj�α)|α)−Cnε−1/2h−1 < τ

)∣∣
(with probability approaching 1, for ε ∈]0�1/4[)

= sup
α∈A

sup
θ∈Θ

n−1
n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖
p(m(Wj�α)|α)

× ∣∣1(
p(m(Wj�α)|α) < τ(1 +Cnε−1/2h−1/τ)

)∣∣
≤ sup

α∈A
sup
θ∈Θ

n−1
n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖
p(m(Wj�α)|α)

∣∣1(
p(m(Wj�α)|α) < 2τ

)∣∣
(by Assumption 16)

and E[RI] ≤ E[supα∈A supθ∈Θ ‖Υ(Xj�Yj�Wj�θ�α)‖|1(p(Zj) < 2τ)|/p(m(Wj�
α)|α)] = o(n−1/2) by Assumption 17, thus implying that RI = op(n

−1/2), by
Markov’s inequality. Next,

RD ≤ sup
α∈A

sup
θ∈Θ

n−1
n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖

×
( |p(m(Wj�α)|α)− p̂(m(Wj�α)|α)|

p̂(Zj)p(m(Wj�α)|α)
)
Îj

≤ sup
α∈A

sup
θ∈Θ

τ−1n−1
n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖

×
( |p(m(Wj�α)|α)− p̂(m(Wj�α)|α)|

p(m(Wj�α)|α)
)
Îj

≤ sup
z∈R

|p(z)− p̂(z)|τ−1n−1
n∑
j=1

(‖Υ(Xj�Yj�Wj�θ�α)‖
p(m(Wj�α)|α)

)

= (Op(n
−1/2h−1)+O(hNK))τ−1Op(1)
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by Lemma S.1, and Lemma 2.4 in Newey and McFadden (1994), under As-
sumptions 8, 10, and 11. By Assumption 16, n−1/2h−1τ−1 → 0 and hNk → 0, and
it follows that RD

p→ 0.
Having shown that supθ∈Θ ‖Q̂(θ� α̂)−Q(θ�α∗)‖ p→ 0, we now establish that

this implies6 that θ̂ converges to θ∗. Because Q̂(θ̂� α̂)= 0 and supθ∈Θ ‖Q̂(θ� α̂)−
Q(θ�α∗)‖ p→ 0, it follows that plimn→∞Q(θ̂�α

∗) = 0. Because Q̂(θ� α̂) is con-
tinuous in θ (because Υ(xj� yj�wj� θ�α) is) and its convergence to Q(θ�α∗) is
uniform in θ, Q(θ�α∗) must be continuous in θ. Combining these two results
yields plimn→∞Q(θ̂�α

∗)=Q(plimn→∞ θ̂�α
∗)= 0. Given that θ= θ∗ is the only

solution to Q(θ�α∗)= 0 by Assumption 6, we conclude that plimn→∞ θ̂= θ∗.
Having shown consistency, we turn to asymptotic normality and root n con-

sistency. By a standard mean value expansion of the first-order conditions
Q̂(θ̂� α̂)= 0 around θ∗ and the usual manipulations,

n1/2(θ̂− θ∗)= −
(
∂Q̂(θ̄� α̂)

∂θ′

)−1

n1/2Q̂(θ∗� α̂)(S.10)

for some mean value θ̄. Following the same steps used previously to show uni-
form convergence in probability of Q̂(θ� α̂), we can show that supθ∈N ‖∂Q̂(θ�
α̂)/∂θ′ − ∂Q(θ�α∗)/∂θ′‖ p→ 0 and ∂Q(θ�α∗)/∂θ′ is continuous in θ by simply
replacing Assumption 11 with Assumption 12. Given that θ̂

p→ θ∗, it follows
that θ̄

p→ θ∗ and that ∂Q(θ̄�α∗)/∂θ′ p→ ∂Q(θ∗�α∗)/∂θ′, thus implying that

∂Q̂(θ̄� α̂)

∂θ′
p→ ∂Q(θ∗�α∗)

∂θ′ �(S.11)

Next, we let Υj = Υ(Xj�Yj�Wj�θ
∗�α∗), Zj =m(Wj�α

∗), p̂(Zj)= p̂(m(Wj�α
∗)|

α∗), p(Zj)= p(m(Wj�α
∗)|α∗), Îj = 1(p̂(Zj) ≥ τ), and Ij = 1(p(Zj)≥ τ), and

decompose the term n1/2Q̂(θ∗� α̂) in Equation S.10 as

n1/2Q̂(θ∗� α̂)=N +Nα +RT1 +RT2 +RT3 +RL +RU +RB +Rsec�

where the asymptotically normal terms are given by

N = n−1/2
n∑
j=1

Υj −E[Υj|Zj]
p(Zj)

�

Nα = n1/2(Q(θ∗� α̂)−Q(θ∗�α∗))�

6This would be obvious if θ̂ were defined as the maximizer of a random function. Here θ̂ is the
solution to a set of equations and the usual consistency result (e.g., Theorem 2.1 in Newey and
McFadden (1994)) does not directly apply.
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while the remainder terms associated with trimming are

RT1 = n−1/2
n∑
j=1

Υj

p̂(Zj)
(Îj − Ij)�

RT2 = n1/2E

[
Υj

p(Zj)
(1 − Ij)

]
�

RT3 = n−1/2
n∑
j=1

(Υj −E[Υj|Zj])
p(Zj)

(Ij − 1)�

the remainder from the linearization is given by

RL = n−1/2
n∑
j=1

Υj

p̂(Zj)p2(Zj)
(p̂(Zj)−p(Zj))2Ij�

the “U-statistic” term is

RU = −n−1/2
n∑
j=1

(
Υj

p2(Zj)

(
p̂(Zj)−E[p̂(Zj)|Zj]

)
Ij

−
(
E[Υj|Zj]
p(Zj)

Ij −E
[
Υj

p(Zj)
Ij

]))
�

the “bias” term is

RB = n−1/2
n∑
j=1

Υj

p2(Zj)

(
p(Zj)−E[p̂(Zj)|Zj]

)
Ij�

and the “stochastic equicontinuity” remainder term is

Rsec = n1/2
(
(Q̂(θ∗� α̂)−Q(θ∗� α̂))− (Q̂(θ∗�α∗)−Q(θ∗�α∗))

)
�

We consider each remainder in turn:

|RT1| ≤ n−1/2
n∑
j=1

|Υj|
p̂(Zj)

∣∣1(p̂(Zj)≥ τ)− 1(p(Zj)≥ τ)∣∣
≤ n−1/2

n∑
j=1

|Υj|
p(Zj)−Cnε−1/2h−1

∣∣1(p̂(Zj)≥ τ)− 1(p(Zj)≥ τ)∣∣
(with probability approaching 1, for ε ∈]0�1/4[)
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≤ n−1/2
n∑
j=1

|Υj|
p(Zj)− p(Zj)

τ−Cnε−1/2h−1Cnε−1/2h−1

× ∣∣1(p̂(Zj)≥ τ)− 1(p(Zj)≥ τ)∣∣
(with probability approaching 1)

= 1
1 − 1

Cτn1/2−εh−1

n−1/2
n∑
j=1

|Υj|
p(Zj)

∣∣1(p̂(Zj)≥ τ)− 1(p(Zj)≥ τ)∣∣
= O(1)n−1/2

n∑
j=1

|Υj|
p(Zj)

∣∣1(p̂(Zj)≥ τ and p(Zj) < τ)

− 1(p(Zj)≥ τ and p̂(Zj) < τ)
∣∣

= O(1)n−1/2
n∑
j=1

|Υj|
p(Zj)

1(p̂(Zj)≥ τ and p(Zj) < τ)

+O(1)n−1/2
n∑
j=1

|Υj|
p(Zj)

1(p(Zj)≥ τ and p̂(Zj) < τ)

≤ O(1)n−1/2
n∑
j=1

|Υj|
p(Zj)

1(p(Zj) < τ)

+O(1)n−1/2
n∑
j=1

|Υj|
p(Zj)

1(p̂(Zj) < τ)

≤ O(1)n−1/2
n∑
j=1

|Υj|
p(Zj)

1(p(Zj) < τ)

+O(1)n−1/2
n∑
j=1

|Υj|
p(Zj)

1(p(Zj) < τ−Cnε−1/2h−1)

(with probability approaching 1)

where

E

[
n−1/2

n∑
j=1

|Υj|
p(Zj)

1(p(Zj) < τ)

]
= n1/2E

[ |Υj|
p(Zj)

1(p(Zj) < τ)

]

= o(1)�
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E

[
n−1/2

n∑
j=1

|Υj|
p(Zj)

1(p(Zj) < τ−Cnε−1/2h−1)

]

= n1/2E

[ |Υj|
p(Zj)

1(p(Zj) < τ−Cnε−1/2h−1)

]

= n1/2E

[ |Υj|
p(Zj)

1

(
p(Zj) < τ

(
1 −Cnε−1/2h−1

τ

))]

= n1/2E

[ |Υj|
p(Zj)

1
(
p(Zj) < τ(1 − o(1)))]

→ n1/2E

[ |Υj|
p(Zj)

1(p(Zj) < τ)

]
= o(1)�

and, by Markov’s inequality, RT1 = op(1). Next,

|RT2| ≤ n1/2E

[ |Υj|
p(Zj)

|Ij − 1|
]

= n1/2E

[ |Υj|
p(Zj)

1(p(Zj)≤ τ)
]

= n1/2o(n−1/2)= o(1)

and

E[|RT3|] = E

[∣∣∣∣∣n−1/2
n∑
j=1

Υj −E[Υj|Zj]
p(Zj)

(Ij − 1)

∣∣∣∣∣
]

≤ n1/22E
[ |Υj|
p(Zj)

|Ij − 1|
]

= n1/2o(n−1/2)= o(1)�

implying that |RT3| = op(1) as well by the Markov inequality. The linearization
remainder is then

|RL| =
∣∣∣∣∣n−1/2

n∑
j=1

Υj

p̂(Zj)p2(Zj)
(p̂(Zj)−p(Zj))2Ij

∣∣∣∣∣
≤ n−1/2

n∑
j=1

|Υj|
p̂(Zj)p2(Zj)

|p̂(Zj)−p(Zj)|2Ij
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≤ n−1/2
n∑
j=1

|Υj|
(p(Zj)−Cn−1/2h−1)p2(Zj)

|p̂(Zj)−p(Zj)|2Ij

≤ n−1/2
n∑
j=1

|Υj|
(τ−Cn−1/2h−1)τp(Zj)

|p̂(Zj)−p(Zj)|2Ij

= 1
τ2

(
1 − Cn−1/2h−1

τ

)−1

n−1/2
n∑
j=1

|Υj|
p(Zj)

|p̂(Zj)−p(Zj)|2Ij

≤ 2
τ2
n−1/2

n∑
j=1

|Υj|
p(Zj)

|p̂(Zj)−p(Zj)|2

≤ 2Cn−1h−2

τ2
n1/2n−1

n∑
j=1

|Υj|
p(Zj)

≤ 2Cn−1h−2

τ2
n1/2

(
n−1

n∑
j=1

|Υj|2

p2(Zj)

)1/2

= 2Cn−1h−2

τ2
n1/2Op(1)

= o(n−1/2)n1/2Op(1)= op(1)�

The “U-statistic” term can be written as

−RU = n−1/2
n∑
j=1

(n− 1)−1

×
∑
i 	=j

(
ΥjIj

p2(Zj)

(
Kh(Zi −Zj)−E[Kh(Zi −Zj)|Zj]

)

−
(
E[Υj|Zj]
p(Zj)

Ij −E
[
Υj

p(Zj)
Ij

]))

= n−1/2
n∑
j=1

(n− 1)−1

×
∑
i 	=j

(
ΥjIj

2p2(Zj)
+ ΥiIi

2p2(Zi)

)

× (
Kh(Zi −Zj)−E[Kh(Zi −Zj)|Zj]

)
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−
(
E[Υi|Zi]
p(Zi)

Ii −E
[
Υi

p(Zi)
Ii

])

= n1/2

(
n
2

)−1 n∑
j=1

n∑
i=j+1

U((Υj�Zj)� (Υi�Zi))�

where Kh(z)= h−1K(z/h) and

U((Υj�Zj)� (Υi�Zi))=
(

ΥjIj

2p2(Zj)
+ ΥiIi

2p2(Zi)

)
× (
Kh(Zi −Zj)−E[Kh(Zi −Zj)|Zj]

)
−

(
E[Υi|Zi]
p(Zi)

Ii −E
[
Υi

p(Zi)
Ii

])
�

Using the U-statistic projection theorem (e.g., Lemma 3.1 in Powell, Stock,
and Stoker (1989)), standard but tedious manipulations show that RU = op(1)
under Assumptions 14 and 16. Finally, the bias term is

|RB| ≤ n−1/2
n∑
j=1

|Υj|
p2(Zj)

∣∣p(Zj)−E[p̂(Zj)|Zj]
∣∣Ij

≤ τ−1n−1/2
n∑
j=1

|Υj|
p(Zj)

∣∣p(Zj)−E[p̂(Zj)|Zj]
∣∣Ij

≤ τ−1n−1/2
n∑
j=1

|Υj|
p(Zj)

∣∣p(Zj)−E[p̂(Zj)|Zj]
∣∣

≤ τ−1n1/2n−1
n∑
j=1

|Υj|
p(Zj)

ChNK by Lemma S.1

and |RB| = Op(n
1/2hNKτ−1) = op(1) because n1/2hNKτ−1 → 0 by Assump-

tion 16.
To bound the Rsec term, let Sτ(t) be continuously differentiable in t for all

τ 	= 0 and such that (i) 1(t ≥ τ)= 0 ⇔ Sτ(t)= 0, (ii) 1(t ≥ τ)= 1 ⇔ S2τ(t)= 1,
(iii) 0 ≤ Sτ(t) ≤ 1, and (iv) supt∈R

|dSτ(t)/dt| = O(τ). We then decompose
Q̂(θ∗�α) as

Q̂(θ∗�α)= Q̂S(θ
∗�α)+RS(α)�
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where Q̂S(θ
∗�α) is continuous in α, while RS(α)may not be, and they are given

by

Q̂S(θ
∗�α)= n−1

n∑
j=1

Υ(Xj�Yj�Wj�θ
∗�α)

p̂(m(Wj�α)|α) Sτ
(
p̂(m(Wj�α)|α)

)
�

RS(α)= n−1
n∑
j=1

Υ(Xj�Yj�Wj�θ
∗�α)

p̂(m(Wj�α)|α)
× (

1
(
p̂(m(Wj�α)|α)≥ τ) − Sτ

(
p̂(m(Wj�α)|α)

))
�

The remainder RS(α) satisfies supα∈A ‖RS(α)‖ = op(n−1/2) because

sup
α∈A

‖RS(α)‖

≤ sup
α∈A

n−1
n∑
j=1

‖Υ(Xj�Yj�Wj�θ
∗�α)‖

p(m(Wj�α)|α)− n−1/2h−1
1
(
p̂(m(Wj�α)|α) < 2τ

)
= op(n−1/2)

by Assumption 17 and the same arguments as used for RT1. We can then write
Rsec as

Rsec = n1/2
(
(Q̂(θ∗� α̂)−Q(θ∗� α̂))− (Q̂(θ∗�α∗)−Q(θ∗�α∗))

)
(S.12)

= n1/2
(
(Q̂S(θ

∗� α̂)−Q(θ∗� α̂))− (Q̂S(θ
∗�α∗)−Q(θ∗�α∗))

)
+ op(1)

=
(
∂Q̂(θ∗� ᾱ)
∂α′ − ∂Q(θ∗� ᾱ)

∂α′

)
n1/2(α̂− α∗)+ op(1)

for some mean value ᾱ. We then decompose (∂/∂α′)Q̂S(θ
∗�α) as

∂

∂α′ Q̂S(θ
∗�α)=D1 +D2 +RDS�

where

D1 = n−1/2
n∑
j=1

( ∂
∂α′Υ(Xj�Yj�Wj�θ�α)

p̂(m(Wj�α)|α)
)
Sτ

(
p̂(m(Wj�α)|α)

)
�

D2 = −n−1/2
n∑
j=1

(
Υ(Xj�Yj�Wj�θ�α)

p̂2(m(Wj�α)|α)
∂

∂α′ p̂(m(Wj�α)|α)
)
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× Sτ
(
p̂(m(Wj�α)|α)

)
�

RDS = n−1/2
n∑
j=1

Υ(Xj�Yj�Wj�θ�α)

p̂(m(Wj�α)|α)
∂Sτ(p̂(m(Wj�α)|α))

∂α′ �

The RDS term is negligible, because∥∥∥∥∥n−1/2
n∑
j=1

Υ(Xj�Yj�Wj�θ�α)

p̂(m(Wj�α)|α)
∂Sτ(p̂(m(Wj�α)|α))

∂α′

∥∥∥∥∥
≤ n−1/2

n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖
τ

∣∣∣∣∂Sτ(p̂(m(Wj�α)|α))
∂α′

∣∣∣∣
≤ n−1/2

n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖
τ

Cτ1
(
p(m(Wj�α)|α) > τ

)

= Cn−1/2
n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖1
(
p(m(Wj�α)|α) > τ

)

= Cn−1/2
n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖
p(m(Wj�α)|α) p(m(Wj�α)|α)

× 1
(
p(m(Wj�α)|α) > τ

)
≤ Cn1/2n−1

n∑
j=1

‖Υ(Xj�Yj�Wj�θ�α)‖
p(m(Wj�α)|α) 1

(
p(m(Wj�α)|α) > τ

)
(since p(z|α) is bounded by Assumption 15)

= n1/2op(n
−1/2)= op(1)

(by Markov’s inequality and Assumption 17.)

Now, the terms D1 and D2 can be handled through the same techniques
as those used to show uniform convergence of Q̂(θ� α̂) after noting that
trimming by Sτ(p̂(m(Wj�α)|α)) is asymptotically equivalent to trimming by
1(p̂(m(Wj�α)|α) ≥ τ). Under Assumption 19 and by using an expansion of
the form

D1 = n−1/2
n∑
j=1

∂
∂α′Υ(Xj�Yj�Wj�θ�α)

p(m(Wj�α)|α) Sτ
(
p̂(m(Wj�α)|α)

)

− n−1/2
n∑
j=1

∂
∂α′Υ(Xj�Yj�Wj�θ�α)

p(m(Wj�α)|α)
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× (p̂(m(Wj�α)|α)−p(m(Wj�α)|α))
p̂(m(Wj�α)|α)

× Sτ
(
p̂(m(Wj�α)|α)

)
�

D2 = n−1/2
n∑
j=1

Υ(Xj�Yj�Wj�θ�α)

p(m(Wj�α)|α)

×
(

1 − (p̂(m(Wj�α)|α)−p(m(Wj�α)|α))
p̂(m(Wj�α)|α)

)

×
(
∂

∂α′p(m(Wj�α)|α)

+
(
∂

∂α′ p̂(m(Wj�α)|α)− ∂

∂α′p(m(Wj�α)|α)
))

/
p̂(m(Wj�α)|α)�

it can be shown that D1
p→ E[(∂Υ(Xj�Yj�Wj�θ�α)/∂α

′)/p(m(Wj�α)|α)] and
D2

p→ E[(Υ(Xj� Yj� Wj� θ� α) / p
2(m(Wj� α)|α))(∂p(m(Wj� α)|α)/∂α′)] uni-

formly in α for α ∈ A. (The convergence rate of ∂p̂(m(Wj�α)|α)/∂α′ −
∂p(m(Wj�α)|α)/∂α′ is obtained as in the proof of Lemma S.1, with NK re-
placed by NK − 1.) This implies by Assumption 18 that

sup
α∈A

(
∂Q̂(θ∗�α)
∂α′ − ∂Q(θ∗�α)

∂α′

)
p→ 0�

and by Equation (S.12) and the fact that α̂ − α∗ = Op(n
−1/2), we have that

Rsec = op(1).
Having bounded all remainder terms, we note that the N term clearly satis-

fies

N = n−1/2
n∑
j=1

ψθ(Xj�Yj�W )�

where E[ψθ(Xj�Yj�W )ψ
′
θ(Xj�Yj�W )] is finite under Assumption 13.

By a mean-value expansion, the Nα term is equal to

Nα = ∂Q(θ∗� ᾱ)
∂α′ n1/2(α̂− α∗)

for some mean value ᾱ. Given that α̂
p→ α∗ and therefore ᾱ

p→ α∗, Assumption
18 implies that ∂Q(θ∗� ᾱ)/∂α′ p→ ∂Q(θ∗�α)/∂α′.
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By standard results (such as Theorem 3.1 in Newey and McFadden (1994)),
Assumptions 8 and 9 imply that the first-step estimate α̂ is a root n consistent
estimator of α∗ with influence function equal to

ψα(x�w)= −
(
E

[
∂m(W �α∗)

∂α

∂m(W �α∗)
∂α′

])−1

× ∂m(w�α∗)
∂α

(x−m(w�α∗))

and such that E[ψα(X�W )ψ′
α(X�W )] exists. Hence, we can write

Nα = n−1/2
n∑
j=1

∂Q(θ∗�α)
∂α′ ψα(Xj�Wj)�

We have just established that

n1/2Q̂(θ∗� α̂)

= n−1/2
n∑
j=1

(
ψθ(Xj�Yj�Wj)+ ∂Q(θ∗�α)

∂α′ ψα(Xj�Wj)

)
+ op(1)�

and by the finiteness of E[ψθ(Xj�Yj�Wj)ψ
′
θ(Xj�Yj�Wj)] and E[ψα(Xj�Wj)×

ψ′
α(Xj�Wj)], the Cauchy–Schwarz inequality, Assumption 8, and the Linde-

berg–Levy central limit theorem, this sum is asymptotically normal. By Equa-
tions (S.10), (S.11) and the Slutzky theorem, the conclusion of the theorem
follows. Q.E.D.

S.4. COMPARISON WITH HAUSMAN, NEWEY, ICHIMURA, AND POWELL

In the polynomial case, the proposed estimator can be shown to have the
same influence function as the IV estimator described in Hausman, Newey,
Ichimura, and Powell (1991) simply by choosing suitable weighting functions,
because both estimators rely on the same functional equations as a starting
point (Equations (6) and (7) in the text). More specifically, in Section 3.2.2,
the weighting functions must be selected such that

Vy(z�θ)= p(z)E[ZZ′]−1z�

Vxy(z�θ)= p(z)E[Z+Z′
+]−1z+�

where Z = [1�Z� � � � �Zk̄]′, z = [1� z� � � � � zk̄]′, Z+ = [1�Z� � � � �Zk̄+1]′, and z+ =
[1� z� � � � � zk̄+1]′. (In that special case, p(z) would not need to be estimated,
because it would cancel with the division by p(z) in the moment conditions.)
The fact that there exists one choice of weighting functions that reach the same
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asymptotic variance as in Hausman, Newey, Ichimura, and Powell (1991) shows
that the proposed estimator can be at least as efficient.

S.5. ROOT n CONSISTENT ESTIMATION UNDER MORE GENERAL CONDITIONS

The construction of the moment conditions in Section 3.2 uses, as a starting
point, a set of smooth and rapidly decaying functions G, described in Defini-
tion 1. This supplement shows how it is possible to define a larger set G ′ that
enables root n consistent estimation in even more general settings, for instance,
allowing for distributions of the disturbanceU whose moment generating func-
tion exists only over a finite interval.

In that case, the enlarged set G ′ should also contain functions that can be
written as linear combinations of products of polynomials, sines, cosines, and
functions of the form σ(aζ + b) for a�b ∈ R and

σ(ζ)= exp(− cos−2(ζπ/2))1(|ζ| ≤ 1)�(S.13)

The function σ(ζ) is compactly supported and infinitely many times differ-
entiable (including at |ζ| = 1). It is a refinement over the well known func-
tion exp(−(1 − ζ2)−1)1(|ζ| ≤ 1) that improves the rate of decay of the inverse
Fourier transform of σ(ζ) to exp(−c|z|) for some c > 0 instead of merely
faster than |z|−k for any k ∈ N, as shown in Lemma S.2 and Theorem S.1 at
the end of this section.

The treatment in Section 3.2 carries over with this alternative set G ′ with one
exception. The fact that σ(ζ) is compactly supported (and therefore that there
exists compactly supported λ(ζ) in the set G ′) enables the use of Lemma 5 in
the case where the moment generating function of U exists only on a finite
interval. In that case, the Taylor series of the characteristic function φ(ζ) of U
converges only in a finite interval and it is crucial that a compactly supported
λ(ζ) be used to “eliminate” the region where the Taylor series does not con-
verge. Furthermore, the fact that the inverse Fourier transform of σ(ζ) decays
rapidly is helpful to ensure that the functions ry(z�θ), rxy(z�θ), and r1y(z�θ)
are rapidly decaying in z so that expectations of the form E[Yry(Z�θ)/p(Z)],
for instance, exist. We can then state the following corollary to Theorem 2.

ASSUMPTION S.1: The function E[etU ] exists for t in some neighborhood of the
origin.

COROLLARY S.1: Under Assumptions 1, 2(i), 4–6, and S.1, if Q(x�y� z�θ�p)
is as defined in Equation (16) and Section 3�2 (with G replaced by G ′), then there
exists a compact set Θ⊂ R

Nθ that contains θ∗ in its interior such that θ= θ∗ is the
only solution to E[Q(X�Y�Z�θ�p)] = 0 in Θ. Assumption S.1 is unnecessary
when ry�o(z�θ), rxy�o(z�θ), and r1y�o(z�θ) are empty or when ry�s(z�θ), rxy�s(z�θ),
r1y�s(z�θ), and r1y�o(z�θ) are empty.
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The set G can also be enlarged by including functions that have an (iζ)−1

prefactor. The treatment in Section 3.2 again carries over to this case, except
that the proof of Lemma 5 needs to be adapted (because the absolute inte-
grability assumption made in Lemma 5 does not automatically hold) by em-
ploying the following technique. The left-hand side of Equation (67) can be
decomposed as∫ η

−η
λ(ζ)φ(0)dζ =

∫ η

−η

(
λ(ζ)− C

iζ

)
φ(0)dζ +

∫ η

−η

C

iζ
φ(0)dζ�

where C is a constant such that (λ(ζ) − C/iζ) is absolutely integrable and
where

∫ η

−η(Cφ(0)/(iζ))dζ = 0 in the Cauchy principal value sense. Next, λ(ζ)
can be replaced by (λ(ζ)−C/iζ) in the right-hand side of Equation (67). The
remainder of the proof is unchanged.

LEMMA S.2: Let σ(ζ) be the Fourier transform of s(z). For α ∈ R
+ and γ ∈ N,

if

∞∑
t=0

αt

t!
∫ ∣∣∣∣dγtσ(ζ)dζγt

∣∣∣∣dζ <∞�

then, for some C > 0,

|s(z)| ≤ C exp(−α|z|γ)�

PROOF: Let T(z) = exp(αzγ). Because the radius of convergence of the
Taylor series of the exponential function is infinite, we can also write T(z) =∑∞

t=0 α
tzγt/t! for all z ∈ R. Let Θ denote the linear operator defined by

Θσ(ζ)=
∞∑
t=0

αt

t!
(−i)γtdγtσ(ζ)

dζγt
�

Because the Fourier transform of zts(z) is (−i)t dtσ(ζ)/dζt , the Fourier trans-
form of T(z)s(z) is Θσ(ζ). We can then write, for z ≥ 0,

|s(z)| = 1
|T(z)| |T(z)s(z)| =

1
|T(z)|

∣∣∣∣
∫
Θσ(ζ)e−iζz dζ

∣∣∣∣
≤ 1

|T(z)|
∫

|Θσ(ζ)|dζ

= 1
|T(z)|

∫ ∣∣∣∣∣
∞∑
t=0

αt

t!
(−i)γtdγtσ(ζ)

dζγt

∣∣∣∣∣dζ
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≤ 1
|T(z)|

∞∑
t=0

αt

t!
∫ ∣∣∣∣dγtσ(ζ)dζγt

∣∣∣∣dζ
= C

|T(z)| = C exp(−α|z|γ)

with

C =
∞∑
t=0

αt

t!
∫ ∣∣∣∣dγtσ(ζ)dζγt

∣∣∣∣dζ <∞�

For z < 0, we can similarly write

|s(z)| = 1
|T(−z)| |T(−z)s(z)| =

1
|T(−z)|

∣∣∣∣
∫
Θσ(ζ)eiζz dζ

∣∣∣∣
≤ 1

|T(−z)|
∫

|Θσ(ζ)|dζ ≤ C

|T(|z|)| = C exp(−α|z|γ)� Q.E.D.

THEOREM S.1: The inverse Fourier transform s(ζ) of the function

σ(ζ)= exp(− cos−2(ζ))1(|ζ| ≤ π/2)
is such that |s(z)| ≤ C exp(−α|z|) for α ∈ [0�1/3[ and some positive C <∞.

PROOF: The proof consists of verifying that σ(ζ) satisfies the hypothesis of
Lemma S.2. The tth derivative of exp(− cos−2(ζ)) consists of a sum of at most
3t terms of the form

C exp(− cos−2(ζ)) cos−p(ζ) sinq(ζ)�(S.14)

where q ≥ 0, 0 ≤ p ≤ 2t, and |C| ≤ 1 + t. Because p ≤ 2t, | sin(ζ)| ≤ 1, and
Xt exp(−X)≤ tt exp(−t) for all X ∈ R

+ and all t ∈ N, we have∣∣exp(− cos−2(ζ)) cos−p(ζ) sinq(ζ)
∣∣

≤ exp(− cos−2(ζ)) cos−2t(ζ)

≤ tt exp(−t)�
Consequently, for some C > 0,

∞∑
t=0

αt

t!
∫ ∣∣∣∣dtσ(ζ)dζt

∣∣∣∣dζ ≤ C
∞∑
t=0

αt

t! 3t(1 + 2t)tt exp(−t)

≤ C
∞∑
t=0

αt(3 + ε1)
t t
t exp(−t)
t! (for any ε1 > 0)



26 SUSANNE M. SCHENNACH

≤ C
∞∑
t=0

((3 + ε2)α)
t (for any ε2 > 0)�

which converges if α< 1/3, choosing ε2 < 1/α− 3. Q.E.D.

S.6. DETAILS OF THE MONTE CARLO SIMULATIONS

We consider three different specifications, namely, a polynomial, a rational
fraction and a probit model. In all cases, the mismeasured regressor X is gen-
erated from

X =X∗ +�X�
X∗ =Z −U

with Z, U , and �X drawn from the distributions

Z ∼N(0�1)� U ∼N(0�1/4)� �X ∼N(0�1/4)�

Note that the ratio of the standard deviation of the measurement error �X to
the standard deviation of the true regressor X∗ is (1/2)/

√
(1 + 1/4)≈ 0�45, so

that the measurement error is fairly large. In addition, the R2 of the equation
X =Z −U + �X is 2/3, indicating that the “strength” of the instrument is of
a magnitude that is fairly typical for applications.

The dependent variable Y is generated from

Y = g(X∗� θ)+�Y�
where the functional form of g(x∗� θ) and the distribution of �Y differ for each
model.

For the kernel density estimation of the density of Z, an infinite order kernel
is used, which has the desirable property that the estimation bias decays faster
than any power of the bandwidth h as h→ 0. The specific kernel K(z) used is
the inverse Fourier transform of

κ(ζ)=
(∫ ∞

−∞
σ

(
ξ+ 2
1�9

)
dξ

)−1 ∫ ζ

−∞

(
σ

(
ξ+ 2
1�9

)
− σ

(
ξ− 2
1�9

))
dξ�(S.15)

where σ(ζ) is given by σ(ζ) = exp(− cos−2(ζπ/2))1(|ζ| ≤ 1). The prefactor
ensures that κ(0)= 1 and therefore that

∫
K(z)dz = 1, as should be the case

for a valid kernel. It is the fact that κ(ζ) is constant over [−0�1�0�1] that makes
K(z) an infinite order kernel. The function κ(ζ) inherits the smoothness of the
function σ(ζ), thus ensuring that K(z) is rapidly decaying.

The “optimal” bandwidth parameter h and trimming parameter τ are cho-
sen so as to minimize the generalized method of moments (GMM) objective
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function associated with the proposed estimator evaluated at θ∗. In our simu-
lation study, this is achieved by scanning values of h from 0.5 to 1.5 in multi-
plicative increments of 1.1 and values of τ from 0.005 to 0.05 in multiplicative
increments of 1.5. The GMM objective function for the given level of smooth-
ing and trimming is then evaluated for 50 replicated samples of 1,000 obser-
vations and averaged. The optimal bandwidth and trimming parameters are
found to be h= 0�585 and τ = 0�026. The optimal values obtained for all three
models considered are the same, within the accuracy implied by the spacings
between the consecutive values of h or τ scanned. This is perhaps not surpris-
ing because the distribution ofZ to be nonparametrically estimated is common
across all the models. Although the bandwidth and trimming parameters were
optimized using knowledge of the experimental setup (i.e., the true value θ∗),
the simulation results should not be overly optimistic. Semiparametric estima-
tors tend to be less sensitive to the exact choice of the bandwidth than fully non-
parametric estimators are. Also, keeping the trimming parameter fixed over all
replications demands more aggressive trimming to ensure that all replications
give reasonable estimates. Empirical researchers would typically fine-tune the
trimming parameter for each given sample and could probably do better, on
average, than the current simulations show.

The finite-sample properties of the proposed estimator (for the given values
of h and τ) are studied by drawing 5,000 samples of 1,000 independent obser-
vations. As a point of comparison, we also calculate the standard instrumental
variable estimator using ∂g(Z�θ)/∂θ as a vector of instruments and X as the
regressor in addition to a standard (nonlinear) least squares estimator using
X as the regressor, although both of these estimators are clearly biased in the
presence of measurement error.

Let θ̂k denote any element of θ̂, the parameter vector estimated by any one
of the three estimators, and let θ∗

k denote any element of θ∗, the true value of
the parameter vector. The three estimators are compared on the basis of their
bias, standard deviation, root mean squared error (RMSE), and overall root
mean squared error, given, respectively, by

bias =E[θ̂k] − θ∗
k�

std. dev. = (
E

[
(θ̂k −E[θ̂k])2

])1/2
�

RMSE = (
E[(θ̂k − θ∗

k)
2])1/2

�

RMSEall =
(
trE[(θ̂− θ∗)(θ̂− θ∗)′])1/2

�

Note that the last quantity is a convenient summary measure of the overall
performance of an estimator.

Although our estimator is based on moment conditions that have zero ex-
pectation at the true value of the parameter vector, it is perfectly normal that
it could be biased in a finite sample. First, the moment conditions used for
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estimation are nonlinear in θ and it is well known that, in this context, just
identified GMM exhibits a bias of order n−1, where n is sample size (see, for
instance, Newey and Smith (2004)). Second, the implementation of the esti-
mator relies on kernel smoothing and trimming, two techniques that introduce
their own bias. Simulations prove to be a helpful tool to verify that the poten-
tial presence of such biases does not overcome the benefits of the elimination
of the measurement error-induced bias. We now describe the specifics of each
simulation.

S.6.1. Polynomial Model

This model is defined by

g(x∗� θ)= θ1 + θ2x
∗ + θ3(x

∗)2 + θ4(x
∗)3�

�Y ∼N(0�1/4)�

where θ1 = 1, θ2 = 1, θ3 = 0, and θ4 = −0�5. The Fourier transform of this
polynomial contains no ordinary function component, but only a linear com-
bination of delta function derivatives, and therefore the weighting functions
ω(ζ) and �(ζ) do not need to be introduced. Following the discussion in
Section 3.2.2, the weighting functions νy�j(ζ�θ) and νxy�j(ζ�θ) for j = 0� � � � � k̄
(where k̄= 3) are chosen to be of the form7

νy�j(ζ�θ)= (iζ)j exp
(

−1
2

(
ζ

(1�1)π/2

)2)
�(S.16)

νxy�j(ζ�θ)= (iζ)j exp
(

−1
2

(
ζ

(1�1)π/2

)2)
�(S.17)

Table I compares the performance of the proposed estimator relative to in-
strumental variables (IV) and ordinary least squares (OLS). Although the bias
of the proposed estimator is slightly larger that of IV for three of the coeffi-
cients (θ1� θ3, and θ4), the bias of IV for the remaining coefficient (θ2) is over-
whelmingly large, making the overall performance of IV poor. This is best il-
lustrated by substituting the expected values8 of the coefficients obtained from
each estimator into the polynomial specification and by overlapping the graph
of each resulting polynomial over the “true” model specification. As seen in
Figure S.1(a), the proposed estimator is much closer to the true specification

7Because the ordinary part of the Fourier transform of g(x∗� θ) is zero (γo(ζ�θ)= 0), there is
no need to ensure that the νy�j(ζ�θ) and νxy�j(ζ�θ) are orthogonal to the ordinary part. Hence
we can specify νy�j(ζ�θ) and νxy�j(ζ�θ) directly without first introducing the functions µy�j�µxy�j ∈
S0 ∩ C, as done in Section 3.2.2.

8That is, their average over the replications.
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FIGURE S.1.—Graphical representation of the bias of each estimator studied. Note that for
the probit model in (c), the curve for the standard nonlinear instrumental variable (NIV) esti-
mator excludes the 50% of the replications that do not yield a finite estimate of θ2. The actual
performance of NIV is therefore far worse than indicated by the graph.

than any of the other estimators. Although the reduction in bias achieved with
our estimator comes at the expense of increased standard errors for some co-
efficients, the overall RMSE (the column labeled “All” in Table I) is still lower
for the proposed estimator than for the other two estimators.

S.6.2. Rational Fraction

The second example is a specification of the form

g(x∗� θ)= θ1 + θ2x
∗ + θ3

(1 + (x∗)2)2
�

�Y ∼N(0�1/4)�

where θ1 = 1, θ2 = 1, and θ3 = 2. The Fourier transform of g(x∗� θ) in this case
contains both an ordinary and a singular component:

γ(ζ�θ)= θ12πδ(ζ)− θ22πiδ(1)(ζ)+ θ3
π

2
(1 + |ζ|)e−|ζ|�(S.18)
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As discussed in Section 3.2.2, to determine the singular component, we need
to construct some functions µy�j�µxy�j ∈ S0 ∩ C. In the case of µy�j , this is ac-
complished using Definition 2 with

λ(ζ)= (iζ)j exp
(

−1
2

(
ζ

(2�1)π/2

)2)
(S.19)

− 2(i2ζ)j exp
(

−1
2

(
2ζ

(2�1)π/2

)2)

for j = 1� � � � �2. The function µxy�j is obtained similarly, with j = 1� � � � �3.
The ordinary part in Equation (S.18) depends on a single parameter and,

consequently, only the scale of the ordinary part needs to be determined. As ex-
plained in Section 3.2.1, the vector of weighting function ω associated with the
“shape” of the regression function is therefore not needed; only the weighting
function �, associated with the “scale” is. Definition 2 is then used to obtain
� ∈ S1 ∩ C with

λ(ζ)= (iζ)2 exp
(

−1
2

(
ζ

(1�6)π/2

)2)

×
(∫

(iξ)2 exp
(

−1
2

(
ξ

(1�6)π/2

)2)
dξ

)−1

�

The prefactor (iζ)2 ensures that the singular parts do not affect the estimation
of the ordinary part.

Table II summarizes the results of the simulations for the rational fraction
model and clearly illustrates the bias-correcting power of the proposed esti-
mator. Although the IV estimator exhibits a fortuitously low bias on the θ2

parameter, it clearly fails to produce unbiased estimates of the coefficient on
the nonlinear term (θ3). As is seen in Figure S.1(b), the proposed estimator
provides a nearly unbiased estimate of the height of the nonlinear component
of the specification, unlike IV, which overestimates it, and OLS, which under-
estimates it. The proposed estimator has, overall, a bias of only about 10%
for this model. Because our estimator typically exhibits larger standard error
than both IV and OLS, it is instructive to verify whether it still comes out ahead
when both bias and variance are taken into account. Indeed, the overall RMSE
clearly points toward the proposed estimator as the best alternative.

S.6.3. Probit

The probit model can be written as a regression model with the specification

g(x∗� θ)= 1
2
(1 + erf(θ1 + θ2x

∗))�(S.20)
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where we set θ1 = −1 and θ2 = 2 and where the distribution of �Y conditional
on X∗ = x∗ is given by

�Y =
{

1 − g(x∗� θ) with probability g(x∗� θ),
−g(x∗� θ) with probability 1 − g(x∗� θ).

The Fourier transform of g(x∗� θ) given in Equation (S.20) is

γ(ζ�θ)= πδ(ζ)− 1
iζ

exp
(

−iζ
θ1

θ2
− ζ2

4θ2
2

)
�(S.21)

Because the singular component of Equation (S.21) does not depend on θ,
it provides no information to estimate the model and we therefore need to
consider only the ordinary part. In addition, the scale of the regression function
is entirely determined by the constraint that it must tend to 1 as x∗ → ∞ and
tend to 0 as x∗ → −∞ (for θ2 > 0), so there is no need to estimate the scale. As
a result, probit falls into the class of models where the only weighting function
needed is ω(ζ). As prescribed in Section 3.2.1, the two elements of ω(ζ) are
chosen to be

ωj(ζ)= (iζ)j+2 exp
(

−1
2

(
ζ

(1�5)π/2

)2)
eiζ/2(S.22)

for j = 1�2. Note that the prefactor (iζ)j+2 in Equation (S.22) is chosen to
ensure that γo(ζ�θ)ω(ζ) and γ̇o(ζ�θ)ω(ζ) are well behaved. Indeed, the or-
dinary part γo(ζ�θ) behaves like ζ−1 as ζ → 0 (and thus γ̇o(ζ�θ) behaves
like ζ−2) and the foregoing choice of ω(ζ) guarantees that its product with
γo(ζ�θ) or γ̇o(ζ�θ) is bounded. Finally, the factor eiζ/2 simply introduces a shift
in ry(z�θ) and rxy(z�θ) so that their respective modes fall within the regions
where E[Y |Z = z] and E[XY |Z = z] vary the most rapidly.

The results shown in Table III and the graph of Figure S.1(c) clearly indicate
that the proposed estimator is nearly unbiased, unlike nonlinear instrumen-
tal variables (NIV) and nonlinear least squares (NLS). Once again, despite
its relatively large standard errors, our estimator still outperforms both NIV
and NLS in terms of overall RMSE (see last column). It should also be noted
that, for the probit model, the NIV estimator using ∂g(z�θ)/∂θ as instruments
exhibits the undesirable tendency to give a θ̂2 that diverges to infinity about
50% of the time. The results for the NIV estimator given in Table III and Fig-
ure S.1(c) are averages over only the replications that did converge to a finite
value. The actual performance of NIV is therefore far worse than reported in
the table and in the figure.
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S.7. APPLICATION

S.7.1. Introduction

The estimation of the wage differential between workers of a different race
offers an opportunity to assess the presence of discrimination in the labor
market and has received considerable attention in the economics literature
(Neal and Johnson (1996), Bollinger (2003), Carneiro, Heckman, and Mas-
terov (2003), Card and Lemieux (1994), and many others). A crucial aspect of
this estimation problem is the necessity to control for other factors that affect
income so as to separate actual labor market discrimination from premarket
factors, such as family socioeconomic background or schooling quality. Follow-
ing Neal and Johnson (1996), we use the score on a standardized test taken by
virtually all respondents prior to job market entry as an explanatory variable
that controls for all premarket factors. Neal and Johnson argue that such an
approach offers the advantage that the control variable does not suffer from
endogeneity, because it is not affected by the respondent’s own decisions, un-
like other frequently used controls such as years of schooling, occupation, mar-
ital status, or geographical location. Neal and Johnson’s findings indicate that
the apparent black–white male wage gap of 24% is reduced to only 7% when
premarket skills are taken into account.

Although Neal and Johnson’s argument supports the assumption of the exo-
geneity of skills, it does not rule out that skills may be measured with error, thus
making OLS estimates potentially inconsistent. This issue was investigated by
Bollinger (2003), who provided bounds on the wage gap that account for mea-
surement error. Although his widely applicable bounding technique does not
depend on the availability of instruments, it is only able to estimate consistently
an interval that contains the true wage gap, instead of providing a consistent
point estimate. As a result, the method gives rather wide bounds on the black–
white wage gap (with values ranging from 7% to −126%). Surprisingly, this
interval mostly contains negative values of the black–white wage gap, appar-
ently suggesting that discrimination is more likely to be against whites. Also,
while Neal and Johnson’s study allows for a nonlinear relationship between
skill and wages, Bollinger’s analysis focuses on a linear specification, because
bounding techniques are not available for nonlinear specifications.9

Our proposed estimation strategy offers the opportunity to combine the
strengths of both studies, allowing for the presence of both nonlinearity and
measurement error. Moreover, our instrumental variable approach makes it
possible to obtain consistent point estimates and consequently improves the
accuracy of the estimated black–white wage gap relative to a bounding ap-
proach. Note that this investigation is mainly intended to briefly describe a

9Unless bounds on the magnitude of the measurement error are available (see, e.g., Stoker,
Berndt, Ellerman, and Schennach (2005)).
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relevant example of an application of our proposed estimator and is necessar-
ily less detailed than a thorough study that focuses exclusively on the wage gap
issue.

S.7.2. Data and Methodology

The data we use originate from the “young men” survey group obtained from
the National Longitudinal Survey (NatLS). Our analysis focuses on a subsam-
ple that contains all individuals for whom appropriate measures of income,
skills, and parental characteristics are available. This subsample consists of
2,133 white and 333 black respondents.10 This data set is different from that
used in the studies of Neal and Johnson (1996) and Bollinger (2003), because
we found that the measure of ability used in these studies, the Armed Forces
Qualification Test (AFQT), has one main limitation. The AFQT score suffers
from a significant censoring bias (see Figure S.2), which causes two problems.
First, this score is less able to distinguish relative abilities among highly skilled
people and, second, censoring introduces a measurement error that is nega-
tively correlated with true ability, thus violating our conditional mean assump-
tion regarding the measurement error.11 We rely instead on Intellectual Quo-
tient (IQ), as reported in the NatLS study.12 Although IQ is, technically, also
a bounded quantity, the probability density of IQ quickly decays away from its
mean, so that the upper and lower bounds on IQ are never reached at the sam-
ple sizes available in this study (see Figure S.3). As a result, the distribution
of IQ is virtually indistinguishable from a continuous distribution supported
on R, so that the assumption of classical measurement error is plausible.

Our analysis also requires a measure of permanent income, which we calcu-
late from the NatLS’s record of the respondents’ yearly wage income over the
whole the period of the study. We average log wage income over all years for
which the respondent was at least 25 years old.13 Admittedly, this is far from a

10The 53 respondents who did not belong to either racial groups were omitted.
11The same caveat applies to the work of Bollinger (2003). Note that, so far, it is not known if it

is possible to correct for this type of nonclassical measurement error in the absence of validation
data.

12The IQ reported in the NatLS study actually comes from a variety of different types of IQ
tests taken while the respondent was attending high school. Even if each type of IQ test had a
different systematic bias, this would not invalidate our analysis, because the heterogeneity in the
IQ tests can simply be considered as a form of measurement error, provided it satisfies the ap-
propriate conditional mean restriction. To investigate this potential problem, we have compared
summary statistics for IQ score and income within each subgroup that shares the same IQ test
type. We repeated our analysis after excluding each of the groups that exhibit the largest de-
viations from the overall sample average and obtained similar results, which also supports our
conclusions. The omitted groups were those for which the IQ scores were calculated from the
Scholastic Aptitude Test (SAT) or the grade point average (GPA).

13All amounts were previously deflated using the consumer price index. All incomes reported
to be below $3,000 (in 1984 dollars) were also excluded from the average, because those values
are probably the result of temporary loss of work or return to school.
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FIGURE S.2.—Distribution of scores for each portion of the AFQT test. The thickness of the
upper tail of the distributions is indicative that many respondents may have “true” abilities that
exceed the maximum possible test score. The absence of a spike at the highest score value can be
explained by the fact that even very able respondents can make random mistakes.

perfect measure of log permanent income. However, our setup trivially allows
for log permanent income to be error-contaminated, because it is the depen-
dent variable. This error is heteroscedastic, given that income is available for
a different number of years, depending on the respondent, but our setup al-
lows for that possibility as well. Our measure of permanent income may also
be biased without invalidating our analysis, as long as the bias does not depend
on race or IQ. Although it is common to control for age in wage gap analyses,
we favor an approach that avoids an explicit modeling of life cycle effects. We
simply consider the effect of age as a random disturbance, because it is reason-
able to assume that the age of the respondent at the beginning of the study is
independent of race and IQ measured at a fixed age.

Our model is defined by

Yi = θ1 + θ2

2
erf

(
X∗
i − θ4

θ3

)
+�Yi�(S.23)

where Yi is individual’s i log annualized permanent income,X∗
i is his true intel-

lectual quotient, and the disturbance �Yi is assumed to satisfy the assumptions

FIGURE S.3.—Distribution of IQ.
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of model (2). A separate model is used for each racial group to allow for a
completely general coupling between race and skill response. The parameters
of this S-shaped specification have the following meaning. The parameter θ1 is
the overall level of log income, θ2 is the income change from the low end to the
high end of the IQ range, θ3 determines the width of the “S”, and θ4 indicates
the IQ level where the income varies most rapidly. The choice of specification
is guided by a preliminary analysis based on a nonparametric regression of Yi
on Xi, which revealed that the response of income as a function of measured
IQ saturates at low and high IQ. Note that the chosen specification reduces
to a simple linear specification as θ3 → ∞ and θ2/θ3 → c ∈ R. Hence, nonlin-
earity is not imposed in our model—if the response were actually linear, this
would be reflected by a very large estimated value of θ3.

Because IQ is an error-contaminated measure of true ability, we model ob-
served IQ as Xi =X∗

i +�Xi, where the measurement error �Xi is assumed to
fulfill the requirements of model (2). Our vector of instruments, Wi, is con-
structed from (i) the respondent’s mother’s highest completed grade14 and
(ii) its square, (iii) the number of siblings the respondent has, (iv) a measure of
availability of reading material during the respondent’s childhood, and (v) the
respondent’s race.15 This selection of instruments16 is guided by the predictors
of skills identified by Neal and Johnson (1996).

A Gaussian kernel17 was used with a bandwidth (as measured by standard
deviation) of 1�8 IQ points for whites and 2�5 IQ points for blacks. Trimming
was activated whenever the density of predicted IQ fell below 0�002 (IQ)−1 for
whites and 0�006 (IQ)−1 for blacks. These settings were determined by gradu-
ally varying the bandwidth and trimming parameters in search for the values
where the point estimates were the least sensitive to changes in bandwidth and
trimming parameters. Our preferred bandwidth and trimming parameters for
the two racial groups differ because of their different sample sizes. However, it
was verified that our results are robust to setting parameters for the white sub-
sample equal to those of the black subsample. The weighting functions used
are given in Section S.7.5. The same weighting functions were used for the two
racial groups.

14For 73 respondents out of 2,466, the mother’s highest completed grade was not available and
the father’s highest completed grade was used instead.

15The instrumental equationXi =W ′
i α+�X∗

i +�Xi is estimated jointly for both racial groups.
16Although each of these instruments is, strictly speaking, discretely distributed, a linear com-

bination of them exhibits a distribution whose support consists of such a large number of points
that it is virtually indistinguishable from a continuously distributed variable.

17Bias-reducing kernels were also tried, but were found to require substantial trimming to
avoid the “vanishing denominator” problem. A positive second-order kernel was found to provide
results that were less sensitive to bandwidth and trimming parameter selection.
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S.7.3. Diagnostic Tests

Before considering the issue of the wage gap, we perform a few diagnostic
tests to verify our assumptions, assess the presence of measurement error, and
verify that the estimator performs as intended.

Although most of our assumptions take the form of relatively weak condi-
tional mean restrictions, our assumption of independence between the pre-
dicted valueZ ≡ E[X|W ] and the prediction error U in the instrument equa-
tion of model (5) warrants verification. Unfortunately, U is not directly ob-
servable (because X∗ is not observed), so our test of instrument validity will
instead rely on the more stringent constraint that (�X − U) is independent
from Z. This test can be considered more stringent because, even if it failed,
it could be the result of a dependence between �X and Z, which would not
violate the assumptions of our estimation procedure.18 This test is also feasible
because (�X −U) can be obtained from the residuals of the regression of X
on the instrument vector W . We rely on a Spearman rank correlation test for
independence (see, for instance, van deer Vaar (1998, Example 13.22)). The
test statistic is simply the sample correlation (scaled by

√
n) between the re-

spective ranks19 of the two variables of interest (here (�X −U)2 and Z). We
use (�X −U)2 instead of simply (�X −U) to improve the power of the test,
because the conditional mean restriction on (�X − U) would tend to make
the rank correlation between (�X −U) and Z small by construction. (Other
powers of (�X −U) and of the instruments yield similar conclusions.) To ac-
count for the presence of preliminary estimated parameters in the calculations
of both (�X −U) and Z, we rely on 1,000 bootstrap replications to calibrate
the asymptotic variance of this asymptotically normal test statistic. Our con-
clusion is that, in our application, the null hypothesis of independence is not
rejected, because the rank correlation test statistic is 0�63, corresponding to a
p-value of 0�53.

We next turn to the issue of testing for the actual presence of measure-
ment error in our data. Table S.I reports the point estimates obtained with
our method (labeled “Fourier”) and with conventional nonlinear least squares
(NLS) estimates. A consistent test for the presence of measurement error
can be constructed by verifying the statistical significance of the difference
(θ̂F − θ̂LS), where θ̂F and θ̂LS denote the 8 × 1 vectors of all coefficients for
the Fourier-based estimator and for nonlinear least squares, respectively. We
employ the test statistic

χ2
rank(S) = n(θ̂F − θ̂LS)′S′(S′Ê[(ψF −ψLS)(ψF −ψLS)′]S

)−1
(S.24)

× S(θ̂F − θ̂LS)�
18Of course, a dependence between U and �X could fortuitously yield a (�X − U) that is

independent of Z although U is dependent on Z, but this appears highly unlikely.
19The rank of a variable is its position in the sample when the sample is sorted according to the

value of that variable.
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TABLE S.I

POINT ESTIMATES AND HETEROSCEDASTICITY-ROBUST STANDARD ERRORS (IN PARENTHESES)

Fourier (θF ) NLS (θLS)

θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

White 9�97 0�38 2�60 105�1 9�88 0�41 21�18 86�4
(0�04) (0�14) (3�58) (2�9) (0�08) (0�18) (10�45) (8�2)

Black 9�74 0�59 4�27 102�8 9�78 0�38 7�12 98�3
(0�05) (0�09) (2�26) (2�4) (0�04) (0�09) (5�61) (2�6)

where ψF and ψLS denote the influence functions of the corresponding estima-
tor, the Ê operator denotes a sample average operation, and S is a rectangular
selection matrix that extracts the degrees of freedom we wish to test. This type
of test statistic reduces to a Hausman test if nonlinear least squares happens
to be efficient and has a covariance matrix estimate that is positive definite by
construction. As reported in Table S.II, our tests clearly reject the null hypoth-
esis of the absence of measurement error for both racial groups.

We now verify that the estimator is effective at capturing the essential fea-
tures of the data. Figure S.4 graphs the returns to IQ implied by specification
(S.23) and our point estimates, both for the Fourier-based and the NLS esti-
mators. Also shown in Figure S.4 are the isodensity contours of a nonparamet-
ric estimate of the joint density of Yi and Xi. Our analysis centers on white
respondents only, because it is the only subsample that is large enough to ob-
tain a reliable nonparametric bivariate density estimate. The fact that our es-
timator closely follows the noticeable ridge in the joint density of Yi and Xi

is strongly indicative that the estimator properly identifies the presence of er-
rors in both variables. Its ability to resolve the very sharp marginal returns to
IQ in the region of highest density is especially striking. In contrast, the least
squares estimator simply tracks the conditional mean of Yi given Xi and does
not detect the sharp increase in income that is clearly noticeable in the non-
parametric density plot. The presence of a region with very sharp marginal
returns to IQ has a very plausible explanation. The marginal density of IQ is
largest in this region and it follows that a small change in IQ there leads to the

TABLE S.II

TESTING FOR THE PRESENCE OF MEASUREMENT ERROR

Null Hypothesis Test Statistic Degrees of Freedom p-Value

No measurement error (white subsample) 15�4 4 0.0039
No measurement error (black subsample) 15�0 4 0.0047
No measurement error (whole sample) 29�9 8 0.0002
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FIGURE S.4.—Comparison between IQ response curve obtained with the Fourier-based IV
estimator (Fourier) and nonlinear least squares (NLS). Also shown are the isodensity contours
of a nonparametric estimate of the joint density of Yi and Xi .

largest changes in ranking in the overall population. Assuming that job market
outcomes mostly depend on an individual’s ranking, a large change in average
income would then be expected.

It is interesting to note that, based solely on a conventional least squares
analysis, a linear specification would have appeared to be adequate because
the width of the “S” curve obtained with NLS is so large. This application thus
provides a clear example where measurement error actually masks the extent
of the nonlinearity of the specification and only a nonlinear approach that is
robust to measurement error can reliably detect this situation.

The “S” shape of the response also has an unintended advantage in terms of
the robustness of our analysis. It has been argued (Neal and Johnson (1996))
that measures of skills, such as IQ, may be a racially biased. However, the only
effect of such a bias would be to shift the response horizontally (i.e., bias the θ4

parameter). Hence, as will become evident in the next section, our estimates
of the wage gap would be essentially robust to such biases over the relatively
wide range of IQ where the income response is flat.

S.7.4. Results

We now return to the determination of the black–white male wage gap. Be-
cause we have allowed the response to IQ to differ between the two racial
groups, we are able to determine the wage gap as a function of measurement
error-free IQ (see Figure S.5), which provides new insight into the issue. The
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FIGURE S.5.—Estimated black–white wage gap as a function of IQ, estimated with the pro-
posed Fourier-based estimator and with NLS. The plotted 95% confidence bands were deter-
mined with the delta method from the estimated covariance matrix of the coefficients.

confidence bands in Figure S.5 were obtained via the delta method using the
estimated covariance matrix of each estimator. The relatively wide confidence
bands are mainly attributable to the relatively small size of the black subsam-
ple.20

Although we have already established that the Fourier-based and NLS re-
sults are statistically significantly different, Figure S.5 illustrates that the results
of the two procedures are also qualitatively very different. Our main findings,
based on the measurement error-robust Fourier-based estimates, are twofold:

1. Below an IQ of about 100, the wage gap is on the order of 33% and is
statistically significant at the 95% level.

2. Above 110 of IQ, the gap shrinks to about 12%, a value which is not
statistically significantly different from 0. However, the fact that the wage
gap decreases is statistically significant: The χ2

1 statistic that tests that the
wage gap is the same below an IQ of 100 and above an IQ of 110 is equal
to 5�27, which rejects the null at the 95% level.

It is instructive to compare our findings with those of Neal and Johnson
(1996) and Bollinger (2003). First, it should be noted that differences between
our results and these earlier studies can at least in part be traced back to dif-
ferences in the data used. Repeating Neal and Johnson’s main least squares
analysis (using a quadratic dependence on skills and a dummy for race) with
our sample yields a wage gap of 33% without controlling for skills, which is re-
duced to 21% after controlling for skills via IQ (Neal and Johnson found 24%
and 7%, respectively). Hence, it should not be surprising that our results more

20The spikes in the confidence bands around the elbow of the curve are due to the large IQ
dependence of income in this region, which magnifies the noise in the estimated θ4 coefficient.
A similar feature is not clearly visible in the NLS estimates because the estimated IQ dependence
happens to be far weaker for NLS. Fortunately, the very large standard errors in the Fourier-
based approach only affect a small portion of the curve and will thus not affect our main findings.
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strongly indicate the presence of discrimination. One possible source of the
difference is that Neal and Johnson used hourly wages, while we use yearly in-
come.21 If there is discrimination in the hiring process, black respondents may
remain unemployed for longer periods, an effect that would be visible in the
reported yearly income but not in the reported hourly wage. Of course, sample
selection bias issues may still play a role in our study (Chandra (2003)).

Our results confirm Neal and Johnson’s observation that when the skill de-
pendence of income is allowed to differ across racial groups, the gap appears to
narrow at the higher end of the skill distribution. This trend was not statistically
significant in their study, but is clear in Figure S.5. The well-known measure-
ment error-induced attenuation phenomenon is a possible source of the lack
of significance Neal and Johnson observed, although differences in the data
used could also be a factor. Figure S.5 also shows that it would be inappropri-
ate to use Bollinger’s bounds on the wage gap to conclude that the wage gap
is inexistent or negative. The relatively narrow width of our confidence bands
enabled by the use of instruments permits us to pin down the magnitude of the
wage gap more precisely and to show that it is still statistically significant at
least over a portion of the skill distribution when measurement error is taken
into account. Perhaps our most striking finding is the sharpness of the drop
in the wage gap as a function of IQ, a feature that simply cannot be detected
in our data set without properly accounting for both measurement error and
nonlinearity.

The results of our analysis are consistent with a number of interpretations.
For instance, applicants for jobs that requiring low skill levels are typically re-
cruited locally, while more skill-intensive positions are often advertised over
a larger geographical area, through newspapers, specialized magazines, or re-
cruiting services. Hence, the low-skill wage gap mainly reflects a gap in the
prevailing wages in different, segregated, neighborhoods. The gap is smaller
among highly skilled individuals, who do not necessarily work in their na-
tive neighborhood. An alternative, but related, explanation is that, beyond a
certain level of ability, undertaking a college education becomes more likely,
which often brings young black men out of their native neighborhoods and
into other communities where the prevailing wages may be higher. Finally, it
is possible that, beyond discrimination in wages, there exists discrimination in
the hiring/firing process, which would cause black workers to be employed for
a smaller fraction of the year on average than equally qualified white work-
ers, thus resulting in a black–white gap in yearly income. If the turnover rate
is higher in occupations that demand lower skills, this would result in a larger
income gap between racial groups for lower skilled workers.

21Our use of yearly income was guided by the fact that hourly wages (calculated or reported)
were missing for a large fraction of the respondents in our sample.
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S.7.5. Weighting Functions Used in the Application

We first observe that the Fourier transform of the S-shaped specification
given in Equation (S.23) is

γ(ζ�θ)= θ12πδ(ζ)+ θ2(−iζ)−1 exp
(

iζθ4 − ζ2

4θ2
3

)
�(S.25)

Consequently, a weighting function of the form νy�0(ζ�θ) is needed to extract
the magnitude of the singularity θ1, a weighting function of the form �(ζ) is
required to determine θ2 and a two-dimensional vector of weighting functions
of the form ω(ζ) is needed to obtain θ3 and θ4. (Refer to Section 3.2 for a de-
scription of these different types of weighting functions.) The functional forms
of these weighting functions, given in Table S.III, were derived as follows.

The starting point of the construction of ωj(ζ) (in Section 3.2.1) is a
Gaussian function (of z) with a center of mass and a width such that the
Gaussian takes a negligible value outside of the range of values of Z actu-
ally observed in the sample. After a Fourier transform operation, this yields
another Gaussian function (of ζ) multiplied by a phase factor eiζc , where c
depends on the center of mass of the original Gaussian. Each element of the
vector ω(ζ) is obtained from a Gaussian with a slightly different center of
mass. Next, this expression is multiplied by a positive power of (iζ) that is
(i) sufficiently large to cancel the (−iζ)−1 divergence in Equation (S.25) or the
(−iζ)−2 divergence in its derivative γ̇(ζ�θ) and (ii) such that the inner products
of ωj(ζ)γ̇(ζ�θ

∗) with δ(ζ) and ωj(ζ)γ(ζ�θ
∗) with δ(1)(ζ) vanish, thus achiev-

ing orthogonality to the singular part.
As described in Section 3.2, the weighting function� ∈ S1 ∩C is derived from

some function λ ∈ G ′ (which is the extensions of G provided in Section S.5).
The functional form of λ(ζ) (given in Table S.III) is obtained by first noting
that the weighting function used to identify the height of the S-shaped func-
tion (the θ2 parameter) should essentially sample the difference between the
value of E[Y |Z = z] for values of z before and after the “jump.” Hence, a
natural starting point is the difference between two Gaussian functions (of z)

TABLE S.III

WEIGHTING FUNCTIONS USED FOR THE FOURIER-BASED ESTIMATOR

Functiona Expression

ωj(ζ) ωj(ζ)= (iζ)3 exp(−(1�402)ζ2)e−101iζe−iζ(2�75)(j−1) for j = 1�2

�(ζ) λ(ζ)= C i sin(27�5ζ)
iζ exp(−(20�264)ζ2)e100iζ where C:

∫
λ(ζ)dζ = 1

νy�0(ζ�θ) λ(ζ)= exp(−(0�72)ζ2)

iζ e100iζ

aThe functions ωj(ζ), �(ζ), and νy�0(ζ�θ) refer to the functions used in Section 3.2 to construct the moment
conditions, using the function λ ∈G as a starting point.
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centered somewhere before and after the jump. After a Fourier transform op-
eration, we again obtain a Gaussian, but the phase factor now includes a mul-
tiplicative factor of the form (eiζc − e−iζc)/2 = i sin(ζc) due to the presence
of two shifted Gaussians with opposite signs. Because our procedure (in Sec-
tion 3.2.1) requires the resulting function (of ζ) to be divided by γo(ζ�θ), we
insert a multiplicative factor of the form (iζ)−1 that is designed to cancel a sim-
ilar divergence in the expression of γo(ζ�θ). No additional step is required to
achieve orthogonality of the singular part, because the behavior of the result-
ing function at the origin already guarantees a vanishing inner product with
a delta function. However, we need to introduce a C numerically determined
multiplicative constant to ensure that our function is properly normalized to
integrate to 1, as required by the constraint � ∈ S1 ∩ C.

As described in Section 3.2, the weighting function νy�0(ζ�θ) is derived from
some function µy�0 ∈ S0 ∩C, which, in turn, is derived from some λ ∈ G ′. The ex-
pression for λ(ζ) is again based on the Fourier transform of a shifted Gaussian.
For the same reason as in the case of the �(ζ) function, we introduce an
(iζ)−1 factor to cancel a similar divergence in the expression of γo(ζ�θ) when
constructing µy�0(ζ). The resulting expression already integrates to 0 (in the
Cauchy principal value sense) and directly satisfies the constraint µy�0 ∈ S0 ∩C,
which ensures orthogonality of the ordinary part.

These steps provide us with a family of weighting functions with up to two
adjustable parameters, typically one for the width of the Gaussian and one for
its location (on the z axis). These numerical coefficients were selected by using
the estimated asymptotic variance as an informal guide. The point estimates
are not very sensitive to the exact values of these coefficients, as long as they
are such that the general region where the functions ry(z�θ), rxy(z�θ), and
r1y(z�θ) are the largest in magnitude corresponds to the range of values of Z
found in the actual sample.

S.8. COMPUTATIONAL ASPECTS

The implementation of the estimator is considerably simplified by the fact
that all the relatively abstract operations that require Fourier transforms in-
volve nonrandom quantities. The end result of these operations is a vector of
nonlinear functions whose expectations are to be evaluated from the observed
data.

The first step in the implementation of the estimator is calculation of the
Fourier transform γ(ζ�θ) of g(x∗� θ). Symbolic mathematical packages such
as Maple and Mathematica are often able to carry out such transforms auto-
matically, even when the answers involve delta function derivatives. When an
analytic expression for γ(ζ�θ) is not available, the following hybrid analytical
and numerical approach can be used. The idea is to write

g(x∗� θ)= (g(x∗� θ)− T(x∗� θ))+ T(x∗� θ)�
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where T(x∗� θ) represents the asymptotic behavior of g(x∗� θ) for large |x∗|
and where (g(x∗� θ)−T(x∗� θ)) is absolutely integrable (with respect to x∗). If
the tail T(x∗� θ) follows a simple behavior such as a linear combination of func-
tions of the form (x∗)k1(ln(x∗))k2 , then its Fourier transforms Θ(ζ�θ) can be
found in standard Fourier transform tables (such as Table I in Lighthill (1962)).
Typically, Θ(ζ�θ) will contain both a sum of delta function derivatives, which
will provide the values of γj(θ) in Equations (32) and (33), and an ordinary
function part Θo(ζ�θ). The Fourier transform of the remaining absolutely in-
tegrable contribution (g(x∗� θ)− T(x∗� θ)) can then be obtained numerically
via

γ(ζ�θ)−Θ(ζ�θ)= lim
t∗→∞
b→0

t∗∑
t=−t∗

(g(tb�θ)− T(tb�θ))eiζtb�

All the ordinary function contributions, γo(ζ�θ) = Θo(ζ�θ) + γ(ζ�θ) −
Θ(ζ�θ), are then added and their value over a grid G = {ζ ∈ R :ζ = tb� t =
−t∗� � � � �0� � � � � t∗} is stored, while making sure that the grid is sufficiently fine
(b→ 0) and extended (t∗ → ∞) to provide an accurate numerical approxima-
tion to γo(ζ�θ).
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