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IN SECTION S1, WE DEFINE our axioms and the additive expected-utility rep-
resentation, and we state the corrected version of Theorem 4.A of Dekel, Lip-
man, and Rustichini (2001) (henceforth DLR). In Section S2, we provide a
complete and almost entirely self-contained proof of this representation theo-
rem.

S1. AXIOMS AND ADDITIVE EXPECTED-UTILITY REPRESENTATION

Let B={b, ..., bk} denote the set of pure outcomes. Let A(B) denote the
set of probability distributions on B. Finally, let > denote a preference relation
on the set of nonempty subsets of A(B), where this space is endowed with
the Hausdorff topology. Let d,(x, y) denote the Hausdorff distance between
x and y.!

DLR (2001) considered the following axioms on >:

AXIOM 1—Weak Order: The preference relation > is asymmetric and nega-
tively transitive.

AXx10M 2—Continuity: For any x, the strict upper and lower contour sets {y C
A(B) |y > x} and {y C A(B) | y < x} are open in the Hausdorff topology.

For any sets x and y, and any A € [0, 1], define
A+ =MNy={AB8+1—-1B | Bexand B €y}
AXIOM 3—Independence: If x > y, then for all z and all X € (0, 1],
AX+(1—=Mz>=Ay+ (1 —N)z.
AXIOM 4—Monotonicity: If x C y, then y > x.

See DLR for discussion of these axioms.
In the main text of the corrigendum, we considered the following additional
continuity axiom:

If we let d denote the Euclidean metric on AB, then the Hausdorff distance is defined by

dp(x,y)= max{sup inf d(B, B), sup inf d(B, ﬁ’)}.
pex P'ey Bey B'ex
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2 E.DEKEL ET AL.

AXIOM 5—L Continuity: There exist menus x* and x,, and N > 0 such that
forevery e € (0,1/N), for every x and y with d;,(x,y) < e,

(1-Ne)x+Nex*>(1—-Ne)y+ Nex,.

See the corrigendum for discussion of this axiom. The following version of
continuity is standard in the literature (see, for example, Fishburn (1970) or
Kreps (1988)):

AXIOM 6 —von Neumann-Morgenstern (vNM) Continuity: If x > y > z,
then there exist A, A € (0, 1) such that \x+ (1 —Nz>=y>=Ax+ (1 —A)z.

We say that a function u : A(B) — R is an expected-utility function if u(8) =
> pes U(b)B(b), where we abuse notation by letting b also denote the degen-
erate distribution with probability 1 on b. Obviously, such a function is com-
pletely defined by specifying the vector in RX that gives the utility of pure out-
comes. Hence we also refer to such vectors as expected-utility (EU) functions.

DEFINITION S1: An additive EU representation is a measurable space (S, Y),
a measurable state-dependent utility function U : A(B) x S — R, and a (count-
ably additive) signed measure u on (S, 3) such that (i) the function V' : 24\
{#} — R, which is defined by

(S1) V(x)=/SBup U(B, s)u(ds),
S Bex

represents > and (ii) U(-, s) is an expected-utility function for each s € S.

There are several differences between the definition of an additive EU rep-
resentation given here and the original definition given in DLR. We now dis-
cuss those differences and their implications.

(i) The definition in DLR only requires the measure to be finitely additive.
Our necessity arguments do not rely on countable additivity and our sufficiency
proof establishes that the measure is countably additive. Hence a representa-
tion with a finitely additive measure exists if and only if a representation with
a countably additive measure exists.

(i) DLR’s definition required V' to be continuous. We show in Lemma S4
that one implication of our definition is the stronger condition that I is Lip-
schitz continuous.

(iii) DLR’s definition required that every state s € S be “relevant,” which,
loosely speaking, implies that none of the states could be dropped from the
representation without altering the underlying preference.> Our definition al-
lows for the possibility that some states are not relevant. It is not hard to show

The interested reader should consult DLR for a precise definition of a relevant state.
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that if we choose the state space to be the support of u, then the relevancy
requirement is satisfied.

(iv) DLR required that § be nonempty and they used a nontriviality axiom
to ensure that this is possible. Our definition allows for a measure that is iden-
tically zero, in which case the support, the set of “relevant” states, is empty. We
find this more convenient, but it is easy to show that adding DLR’s nontriviality
axiom would ensure a nonempty support.

(v) DLR required that s,s" € §, s # s, then U(-, s) and U(-, ') do not rep-
resent the same expected-utility preference. In this sense, there are no “redun-
dant” states. It will be obvious from our proof of the representation theorem
that this nonredundancy condition could be imposed without affecting the re-
sults. We omit the requirement for simplicity.

The following is the corrected statement of Theorem 4.A in DLR.

THEOREM S1: The preference > has an additive EU representation if and only
if it satisfies weak order, vNM continuity, L continuity, and independence. Fur-
thermore, > also satisfies monotonicity if and only if the measure . is positive.

This theorem differs from the result claimed by DLR only in the continu-
ity requirements, replacing their continuity axiom with vNM continuity and
L continuity. An implication of the representation theorem is that the assump-
tions of Theorem S1 imply continuity because the representation constructed
is continuous.

The proof of Theorem S1 is contained in Section S2. We now note an inter-
esting relationship between the axioms.

LEMMA S1: If > satisfies monotonicity, then it satisfies L continuity.

PROOF: Let x* = A(B), x, ={(1/K,...,1/K)}, and N = K, where K is the
number of pure outcomes. Take any ¢ € (0,1/N) and x, y € A(B) such that
dy(x,y) < e. We will show that

(1-Née)y+Nex, C(1—-Neg)x+ Nex™,
which, given monotonicity, will yield the desired result:
(1-—Née)x+Nex*=(1—-Ne)y+ Nex,.

To shorten notation, let B* = (1/K,...,1/K). Take any B € (1 — Ne)y +
Nex,,s0 B=(1—-Ne)B,+ NgB* for some B, € y. It is clear from the defini-
tion of the Hausdorff distance that d,,(x, y) < e implies infg, || B, — B'llr < &,
where || - || denotes the Euclidean norm. Because ¢ € (0,1/N), we have
g/(1 — Neg) > g, so there exists 8, € x such that |8, — B.||g < &/(1 — Ne).
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Define 3 € R as

1—Ne¢
Ne (By _Bx)-

B=p"+

We claim that ,é € A(B). It is obvious that ), ﬁ(b,—) =1, so we need only to
verify that [§(b,~) > (0 for all i. Because N = K, we see that for all i,

o A~ 1-Ke
|B(b;) — B* (b)) < B—B"lle= Ko 1By — Bxlle

1-Ke e 1
<

Ke 1-Ke K

For all i, B*(b;) = 1/K, so we have |/§(bl~) — 1/K| < 1/K, which implies
B(b;) > 0. Thus B € A(B). Finally,

(1-Ne&)B,+Nef=(1—-Ne)B,+NeB* +(1—Ne)(B, — B)
=(1-Ne)B,+Nep* =B,

so Be(l—Ne)x+ Nex*. Because B € (1 — Ne)y + Nex, was arbitrary, this
completes the proof. Q.E.D.

In light of Lemma S1, we have the following corollary to Theorem S1.

THEOREM S2: The preference > has an additive EU representation with a posi-
tive measure p if and only if it satisfies weak order, vNM continuity, independence,
and monotonicity.

S2. PROOF OF THEOREM S1
S2.1. Preliminaries: Support Functions

Define X to be the set of all nonempty, closed, and convex subsets of A(B).
Then, for all nonempty x € A(B), we have conv(cl(x)) € X, where cl(x) de-
notes the closure of x (in the Euclidean topology on A(B)) and conv(x) de-
notes the convex hull of x. It will sometimes be useful to work with the set
X instead of the set of all menus because of a natural relationship that exists
between the set of closed and convex sets and a certain class of continuous
functions known as the support functions. In this section, we formally define
the support functions and discuss some of their properties.

First, let S¥ = {s e R*:)",s; = 0and )_,s7 = 1} be the set of normalized
(nonconstant) expected-utility functions on A(B). For any x € X, the support
function o,:S* — R of x is defined by o, (s) = maxg, B - s. For a more com-
plete introduction to support functions, see Rockafellar (1970) or Schneider



REPRESENTING PREFERENCES 5

(1993). Let C(S¥) denote the set of continuous real-valued functions on S¥.
When endowed with the supremum norm | - ||, C(S¥) is a Banach space.
Define an order > on C(SX) by f > g if f(s) > g(s) for all s € SX. Let
C={o,€C(S%) :xeX}.Forany o € C, let

X, = m:,BEA(B)’B-SZZB(bi)Sif(T(S)}-

sesK

The following properties of the support functions will be useful.

LEMMA S2: 1. Forall x € X and o € C, x(,,, = x and o, = o. Hence the
mapping x — o, is a bijection from X to C.

2.Forall x,ye X and A € (0,1), Orr11-0)y = Aoy + (1 — A)oy.

3.Forall x,ye X, dy(x,y) = o, — oy].

4. Forallx,ye X,xCy <= o, < 0y.

PROOF: The proofs are standard and can be found in Rockafellar (1970)
or Schneider (1993).® For instance, in Schneider (1993), part 1 follows from
Theorem 1.7.1, part 2 follows from Theorem 1.7.5, part 3 follows from Theo-
rem 1.8.11, and part 4 can be found on page 37. Q.E.D.

We also use the following properties of C:

LEMMA S3: The set C is convex and o x,...1/x) = 0 € C, where 0 denotes the
zero function.

PROOF: The convexity of C follows from part 2 of Lemma S2 and the con-

.....

S (1/K)s; =0. O.E.D.

S2.2. Necessity of the Axioms

It is easily verified that a preference > with an additive EU representation
must satisfy weak order, vNM continuity, and independence. In addition, if the
measure u is positive, then it is easily verified that > satisfies monotonicity.

It is also easy to see that if > has an additive EU representation, then it must
satisty indifference to closure (1C) and indifference to randomization (IR) in the

3The standard setting for support functions is the set of nonempty, closed, and convex subsets
of R". However, by imposing our normalizations on the domain of the support functions SX,
the standard results are easily adapted to our setting of nonempty, closed, and convex subsets
of A(B).
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sense that for any nonempty x € A(B), x ~ cl(x) (IC) and x ~ conv(x) (IR).*
To see this, simply note that for any expected-utility function u: A(B) — R,

supu(B) = max u(B)= sup u(p).

Bex Becl(x) Beconv(x)

Hence the function V' defined in Equation (S1) must satisty V' (x) =V (cl(x)) =
V(conv(x)).

Finally, it is easy to see that if > satisfies IC and IR, and satisfies L continuity
on X, then it satisfies L continuity on all menus. That is, suppose > satisfies
L continuity on X in the sense that there exist N, x*, and x, such that for all
£€(0,1/N), for every x,y € X with d,(x, y) < &,

(1-Ne)x+Nex*>(1—-Ne)y+ Nex,.

Fix any menus x and y not necessarily in X. Let x = conv(cl(x)) and y =
conv(cl(y)). It is not hard to show that d, (%, y) < d,(x, y). Hence IC, IR, and
independence imply the conclusion of L continuity for these menus.’

In light of this, we can show that L continuity is necessary by showing that
L continuity on X is necessary. To show the latter, we first prove that the
defined in Equation (S1) is Lipschitz continuous.

DEFINITION S2: The function V' : X — R is Lipschitz continuous if there ex-
ists N > 0 such that

V(y)=V(x) <Ndy(x,y), Vx,yeX.

LEMMA S4: For any additive EU representation, the function V defined by
Equation (S1), restricted to X, is Lipschitz continuous.

PROOF: Define S¥ and o, as in Section S2.1. Take an additive EU represen-
tation (S, U, w) and define V' as in Equation (S1). Because each U(., s) is an
expected-utility function, there exist s:§ — S, f:§ — R, , and g:§ — R such

“We show in Lemma S6 that IC and IR are implied by our axioms, so we do not need to add
them as separate axioms.

5Tt follows from the definition of the Hausdorff distance that dj,(cl(x), cl(y)) = d;(x, y). We
see that d,(conv(cl(x)), conv(cl(y))) < d,(cl(x), cl(y)) by noting the following two inequalities,
which we leave to the reader to verify:

sup inf d(B,B)> sup inf d(B,B),

Becl(x) B ecl(y) Beconv(cl(x)) B €conv(el(y))

sup inf d(B,B)> sup  inf d(B.p).

Becl(y) B'ecl(x) Beconv(cl(y)) B’ econv(cl(x))
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that U(B, s) = (B -s(s))f(s) + g(s) for all B € A(B), s € S. Note that for any
x e X and s € SX,

supfB-s=maxf3-s=0.(s).
Bex Bex

Hence, V(x) = fs[(ax os)f + gln(ds). We can write u as wt — u~, where both
of these measures are positive. Let N = [ fu*(ds) + [, fu~(ds). Note that N
is finite.® Take arbitrary x, y € X. Then

Vy)—V(x) <

/ (0,05 — 0, 05)f1u(ds)
S

= ‘ /[((ry os—o,08)flut(ds)
s

- /[((Ty os—o,o08)flu(ds)
s

=<

/ (0,05 — 0, 08)f1u* (ds)
S

+ ‘ / (0,08 — 0y 08)flu(ds)
S

E/Ho-y_o-x||f/"'*+(ds)+/”0-y_0-x||fl1’(ds)
S S
=N|o, — 0./l = Ndy(x, y),

where the last equality follows from Lemma S2. Hence V' is Lipschitz continu-
ous. O.E.D.

Because V is affine, the following lemma establishes the L continuity of >
on X and hence L continuity.

LEMMA S5: If > has a representation V' that is affine and Lipschitz continuous
on X, then > satisfies L continuity on X .

®By Lemma 4 in Sarver (2006), there exist x, y € X such that o, (s) =0 and oy(s) =c¢ >0 for
all s € SX. Then

V(y) —V(X)=C/fu(dS)=6[/fM*(dS) —/fu’(ds)].
S S S

Because V' is real-valued, V' (y) — V' (x) must be real-valued, so [« fu*(ds) and [ fu™(ds) are
finite.
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PROOF: Suppose V' is an affine representation of > that is Lipschitz con-
tinuous on X. The L continuity of > on X follows trivially if V' is constant,
so suppose there exist x*, x, such that I'(x*) > V' (x,). Because V' is Lipschitz
continuous, there exists N such that V' (y) =V (x) < Nd,(x,y) forallx,y e X.
Let N=N/[V(x*) —V(x,)]. So for all x and y in X, we have

V(y) =V(x) <NV (") =V (x)ldu(x, y).
So for all x and y with d,,(x, y) < 1/N,

V@»J«mslN@“”)

W[V(x )=V (x)l

So for every ¢ € [d;(x,y),1/N),

Viy)=Vi(x) <

Ne .
V) V()

or, equivalently,
(1-N&)V(y)+ NeV(x,) <(1—-Neg)V(x)+ NeV(x").

Because V' is affine and represents >, we see that
(1-Née)x+Nex*>(1—-Neg)y+ Nex,.

Thus > is L continuous on X. O.E.D.

As noted earlier, given IC and IR, if > is L. continuous on X, it is L. continu-
ous. Hence we have established necessity.

S2.3. Sufficiency of the Axioms

In this section, we establish the sufficiency of the axioms. We first note that
our axioms imply indifference to closure and indifference to randomization.

LEMMA S6: If > is asymmetric and satisfies independence, then for all x C
A(B), x ~cl(x) and x ~ conv(x).

DLR used continuity to derive these properties, so their proofs do not suffice
for our purposes.

PROOF OF LEMMA S6: Fix any x € A(B). First, suppose x 7 cl(x). Then
independence implies that for every y and every A € (0, 1], Ax + (1 — A)y #
Acl(x) + (1 — A)y. We contradict this by constructing a set y such that

(S2) Ax+(1—=MNy=Acx)+(1 =Ny VAe(0,1).
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By asymmetry of >, Equation (S2) establishes the needed contradiction.
To construct y, let 8* = (1/K,...,1/K) and let

K
y= {B eR| Y B(b)=1and |B— |z <1/K .

i=1
For any 8 € y and any i, |B(b;) — B* (D) < 1B — B*lle < 1/K, so B(b;) > 0 for
all i. Thus y C A(B). Take any A € (0,1). Clearly Ax + (1 — A)y C Acl(x) +
(1 — A)y. To show the opposite inclusion, take any B € Acl(x) + (1 — A)y, so
B =AB: + (1 —A)B, for some Bz ecl(x) and B, € y. Let e=1/K — ||B, —
B*||lg > 0. Because B; € cl(x), there exists 8, € x such that || Bz — B.llr < “TAs.

Let B =B, + 1% (Bs — B.)- Then

1B—Ble<1By—Blle+ %IIB;C —Bxlle <lIBy = B'lle + &= %

SO [§ € y. Therefore,

ABi4+ (1 =B =AB,+(1—N)By+A(B: — B) =B,

so BeAx+ (1 —A)y. Thus Acl(x) + (1 — A)y € Ax + (1 — A)y, which implies
Ax+ (1 —=A)y=Acl(x)+ (1= A)y.

Second, suppose x 7 conv(x). Then independence implies that for every
A€ (0,1], Ax + (1 — A) conv(x) * Aconv(x) + (1 — A) conv(x) = conv(x). We
contradict this by showing that

(S3) Ax + (1 — A)conv(x) =conv(x) VAe[0,1/K].

As in the first part of the proof, asymmetry of > and Equation (S3) yield a
contradiction.

To show that (S3) holds, note that Ax + (1 — A) conv(x) C conv(x). To show
the converse, fix any 8 € conv(x). Because x can be viewed as a subset of RX~1,
Carathéodory’s theorem (see, e.g., Theorem 1.1.4 in Schneider (1993)) implies
that 8 is a convex combination of at most K points in x.

In light of this, fix any A € [0, 1/K] and write 3 as Z,K:1 t;3; = B, where B; €
x, t; >0, and YL 1, = 1. Clearly, there must be some j such that ¢; > 1/K.
Define 7, fori=1,...,K by ;= (t; — A)/(1 — A) and for i # j, &; = t;/(1 — A).
Obviously, 7 > 0 for all i # j. Also, #; > 1/K > A implies 7; > 0. Finally, it is
easy to show that ), f; =1. Hence [§ =), 1;B; € conv(x), so:

AB;+(1— )\)B € Ax + (1 — A)conv(x).

But it is easy to see that AB; + (1 — )\)ﬁ = B. Hence conv(x) € Ax + (1 —
A) conv(x), implying (S3). Q.E.D.
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Note that for any u € R¥ (i.e., any expected-utility function on A(B)) and
any x € A(B),

supB-u= max fS-u.
Bex Beconv(cl(x))

Thus if we establish an additive EU representation for > on X (the set of all
nonempty, closed, and convex subsets of A(B)) and apply the same functional
form for all x € A(B), then by Lemma S6 the resulting function represents >
on the set of all menus. The remainder of this section is devoted to establishing
an additive EU representation for > on X.

LEMMA S7: If > satisfies weak order, vNM continuity, and independence, then
there exists an affine V : X — R that represents > on X . Furthermore, V' is unique
up to an affine transformation.

PROOF: This result follows from the mixture space theorem. For instance,
see Fishburn (1970, Theorem 8.4, p. 112) or Kreps (1988, Theorem 5.11,
p- 54). Q.E.D.

In the preceding lemma, the restriction to X is needed for the mixture space
axioms because A[A'x + (1 —A)y]+ (1 — A)y might not equal AN x4+ (1 —AN)y
if x and y are not convex. If x and y are not convex, the second set may be
strictly smaller than the first.

The following lemma combines L continuity with the assumptions of
Lemma S7 to obtain a Lipschitz continuous representation.

LEMMA S8: Assume > has an affine representation V : X — R. Then V is
Lipschitz continuous if > satisfies L continuity.

PROOF: Suppose > satisfies L continuity. Fix the x*, x,, and N of the axiom,
any D € (0,1/N), and any x and y with d,,(x,y) < D.Let 6 =d;(x,y).1f 6 =0,
then x, y € X implies x = y, in which case the conclusion is obvious. So suppose
6 > 0. Then

(1—N8)x +Nox* > (1— N8&)y+ Néx,.

Using the affine representation, this implies’

Viy)=Vx) = V(x") =V (x)ldn(x, y).

1-N6

"We have made the implicit assumption that x*, x, € X. This assumption is without loss of
generality because, by Lemma S6, we can replace these sets with their closed convex hulls.
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Because N6 = Nd,(x,y) < ND <1, we have N/(1-N&) <N/(1-ND) <
oo. Let N =[N/(1 — ND)I[V(x*) — V(x,)]. Then for any x and y with
dy(x,y) <D, we have

V(y)—V(x) < Ndy(x, y).

To complete the proof, we show the same for arbitrary x and y. Fix any
x and y, and fix any sequence 0 = Ay < Ay < --- < Ay < Ay = 1 such that
(A1 — Ap)dy(x,y) <D. Let x,, = A, x + (1 — A,,)y. Then

dh(xm+la Xp) = ”(Tmerl — Oy, ”
= (/\m+1 - /\m)”O-x - O'y”
= ()\m+l - /\m)dh(x’ J’)
Hence from the previous part, we see that

V (Xme1) =V (xm) < NAmps — An)di(x, y).

Summing both sides over m from m =0 to m = M gives V(y) — V(x) <
Nd,(x,y),soV is Lipschitz continuous. Q.E.D.

In light of Lemmas S7 and S8, there exists a Lipschitz continuous and
affine function V" that represents > on X. It is obvious that if > also satisfies
monotonicity, then I is monotone in the sense that x C y implies V' (x) <V (y).
Because V' is unique up to an affine transformation, we can normalize V" so that
V({(1/K,...,1/K)}) =0. Define the functional W :C — Rby W (o) =V (x,).
Then, by part 1 of Lemma S2, V' (x) = W (o, ) for all x € X. We say the function
W is monotone if for all o, o’ € C, o < o’ implies W (o) < W (d").

LEMMA S9: The functional W is Lipschitz continuous and linear (i.e., W is
affine and W(0) =0). If V' is monotone, then W is monotone.

PROOF: To see that W is affine, let x, y € X and A € (0, 1). Then, by parts 1
and 2 of Lemma S2 and the affinity of I,

WAoo, + (1 = N)oy) = W(owa-ny) =V (Ax + (1 = A)y)
=AMV + A=)V ()
= AW (o) + (1 = VW ().

By Lemma S3 and the chosen normalization of I/, we see that

W(0) = W(O'{(l/K,...,l/K))) = V({(l/K, ceey 1/K)}) =0.
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The Lipschitz continuity of W follows from the Lipschitz continuity of 1 and
parts 1 and 3 of Lemma S2. By part 4 of Lemma S2, W inherits monotonicity
from V. O.E.D.

We proceed by showing that W :C — R has a unique continuous linear ex-
tension to C(SX). First, define H and H* as follows:®

H=UrC={ro-e C(S5)|r>0and o e C},

r>0
H*=H —H={feC(S*)|f=f — f, forsome f,, f, € H}.

Therefore, if f € H*, then there exist o', 0> € C and r;, r, > 0 such that f =
rio! — r,ao?. We note some relevant properties of H*:

LEMMA S10: 1. The set H* is a linear subspace of C(S¥).
2. Forany f € H*, there exist o', 0> € C and r > 0 such that f =r(o' — o?).
3. The set H* is dense in C(SX).

PROOF: 1. It is obvious that f € H* implies rf € H* for any scalar r. Let
f, g € H*. Then, we can write f = ro' — rno? and g = 7,6' — 1,672, where

1,12, 1,7 >0and o', 0%, ', 6> € C. Define ¢! and a2 as follows:
n oo . ~
iy —o' + —o!, ifr+7#£0,
O =\yrn+n i+
0, otherwise;
r oL . ~
- —o? + —0%, ifr+fH#0,
O =\yn+n n+n
0, otherwise.

Because C is convex and 0 € C by Lemma S3, we see that o', 5> € C. Hence
f+g=(rn+F)a' — (rn+r)o?> e H* so H* is a linear subspace.

2. Let f € H*, so there exist o', 0®> € C and r,, 7, > 0 such that f = r o' —
ryo?. Let r = max{r;, r,}. If r =0, then f = r'(0 — 0) for any ' > 0, establishing
the desired result. Therefore, suppose r > 0. Because 0 € C and C is convex,
we have 6/ = (r;/r)o’ € C. Then f =r(6' — 62).

3. Although stated slightly differently, a classic proof of this result can be
found in Hérmander (1954). A complete proof for the current setting is con-
tained in Lemma 11 of DLR. O.E.D.

We use the foregoing properties of H* to establish the following result:

8DLR defined H = U,»07Cy, where C;. = {0 € C|o > 0}. However, it can be verified that the
resulting H* is the same under either definition of H.
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LEMMA S11: Any Lipschitz continuous linear functional W:C — R has a
unique continuous linear extension to C(SX). If W is monotone, then this ex-
tension is a positive linear functional.

PROOF: First, extend W to H* by linearity. Specifically, if f € H*, then by
part 2 of Lemma S10 there exist o', o> € C and r > 0 such that f =r(o! — o?).

Therefore, define W: H* — R by W(f) = r[W (a') — W (0o?)]. We verify that
W is uniquely defined. Suppose

f=r(c' =) =F" - 6.
Let 7 = r+7. The claim obviously holds if 7 = 0, so assume 7 > 0. Then we have

o'+ =07,

g =

SN

which is an element of C because C is convex by Lemma S3. Since W is affine,
we see that

"W +Iwed ="we" + lwo?)
r r r r

or, equivalently,
W (") —rW(a?) =iW (&' — W (62).

It is easily verified that W is linear. Also, because W (0) = 0, we have W|C =W.
Thus W is the unique linear extension of W to H*.

By part 1 of Lemma S10, H* is a linear subspace of C(SX). We now prove
that W is a bounded linear functional on H*. By the Lipschitz continuity of W
on C, there exists N such that W (o') —W (o?) < N|o'—c?| forall ¢!, 6> e C.
Let f € H*. By part 2 of Lemma S10, there exist o', o> € C and r > 0 such that
f =r(o' — d?). Therefore,

W (f)| =r|W(o') — W(o?)| < Nrlla' — o*| = N|Ifll,

so W is bounded on H*. Therefore, we can apply the Hahn—Banach theorem
(see Royden (1988, Theorem 4, p. 223)) to conclude that W has an extension to
a continuous linear functional W : C(S¥) — R. Because H* is dense in C(S¥)
by part 3 of Lemma S10, it is easily verified that W is the unique continuous
extension of W to C(SX). B

It remains only to show that if W is monotone, then W is a positive lin-
ear functional on C(SX). We first prove that monotonicity of W implies W is
a positive linear functional on H*. Suppose f € H*, f > 0. Then there exist
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o', 0% € C and r > O such that f =r(o' — ¢?). Clearly, we must have ¢! > o?;
hence

W(f)=rlW(o") =W (a*]=>0

by the monotonicity of W. Thus Wisa positive linear functional. Now, let f €
C(SX), f > 0. Because H* is dense in C(SX), there exists a sequence {f,} C H*
such that f, — f. Without loss of generality, suppose f, > 0 for all n.” Because
Wg = /4 and W is a positive linear functional, W (f,) > 0 for all n. Then, by
continuity, W (f) > 0, so W is a positive linear functional. O.E.D.

Notice that the uniqueness of the extension in Lemma S11 is not necessary
to prove the existence of an additive EU representation. We include this argu-
ment anyway because it can be useful for showing other results. For example,
one can use it to show uniqueness of the measure on SX shown to exist in the
next lemma.

_We have now established that there exists a continuous linear function
W :C(S%) — R such that V' (x) = W(o,) for all x € X. We have also estab-
lished that if > satisfies monotonicity, then W is a positive linear functional. We
can now apply the Riesz representation theorem, which states that every con-
tinuous linear functional on C(S¥) can be represented as integration against a
measure.

LEMMA S12: If SX is compact metrizable space and W is a continuous linear
functional on C(SX), then there exists a finite signed Borel measure p. on S¥ such
that

W(f)= / f(s)u(ds).
sK

Furthermore, if W is a positive linear functional, then w is positive.

PROOF: For the proof, see Royden (1988, Theorem 25, p. 357) or Aliprantis
and Border (1999, Theorem 13.15, p. 466). For the case of a positive linear
functional, see Royden (1988, Theorem 23, p. 352). Q.E.D.

Define U:A(B) x S¥ — Rby U(B, s) = B -s. Then for all x € X,

Vx) =W (o) = / oo (s (ds) = f maxU (B, 5)p(ds).
K SK €x

S

Otherwise, we could take the sequence {f,} C H* defined by f, = max{f,, 0}. The functions
in this sequence are elements of H* because 0 € H* and H* is a vector lattice, which implies it
contains the pointwise maximum of any two of its elements. A proof that H* is a vector lattice can
be found in DLR (Lemma 11). Then, because f > 0, we have ||f, — f|l < |If, — f|l, and therefore

fi—= 1t
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Furthermore, if > satisfies monotonicity, then w is positive. This completes the
proof.
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