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THIS DOCUMENT provides reiteration and proofs of Lemmas A7, A19–A21,
and A23, which were omitted from the Appendix to the main article. The no-
tation is the same as that used in the Appendix and equation numbers not
preceded by “S” refer to equations in the main article.

LEMMA A7: The goods market clearing condition (ixA) is implied by the other
conditions for an equilibrium in Definition 2.

PROOF: First note that the household budget sets (2)–(5) imply

c∗
��h�s(e;α�q∗�w∗)

+ q∗
�′∗
��h�s

(e;α�q∗�w∗)�s · �′∗
��h�s(e;α�q∗�w∗) · [1 − d∗

��h�s(e;α�q∗�w∗)]
= [e(1 − γh)− α(e− emin)(1 − h) · d∗

��h�s(e;α�q∗�w∗)] ·w∗

+ (�− ζ(s)) · [1 − d∗
��h�s(e;α�q∗�w∗)]�

Then aggregating over all households yields
∫ {
c∗
��h�s(e;α�q∗�w∗)(S1)

+ q∗
�′∗
��h�s

(e;α�q∗�w∗)�s�
′∗
��h�s(e;α�q∗�w∗)[1 − d∗

��h�s(e;α�q∗�w∗)]dµ∗}

+
∫ {
ζ(s)[1 − d∗

��h�s(e;α�q∗�w∗)]}dµ∗

=
∫ {[e(1 − γh)− α(e− emin)(1 − h) · d∗

��h�s(e;α�q∗�w∗)] ·w∗

+ � · [1 − d∗
��h�s(e;α�q∗�w∗)]}dµ∗�

Condition (v) along with (S1) implies
∫ {
c∗
��h�s(e;α�q∗�w∗)

+ q∗
�′∗
��h�s

(e;α�q∗�w∗)�s�
′∗
��h�s(e;α�q∗�w∗)[1 − d∗

��h�s(e;α�q∗�w∗)]dµ∗}
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+
∫ {
ζ(s)[1 − d∗

��h�s(e;α�q∗�w∗)]}dµ∗

=
∫ {[e(1 − γh)− α(e− emin)(1 − h) · d∗

��h�s(e;α�q∗�w∗)] ·w∗

+ � · [1 − d∗
��h�s(e;α�q∗�w∗)]}dµ∗

+
∫ {

[1 − d∗
��h�s(e;α�q∗�w∗)]ζ(s)

+ d∗
��h�s(e;α�q∗�w∗)max{��0} − ζ(s)

m∗

}
dµ∗

or ∫ {
c∗
��h�s(e;α�q∗�w∗)(S2)

+ q∗
�′∗
��h�s

(e;α�q∗�w∗)�s�
′∗
��h�s(e;α�q∗�w∗)[1 − d∗

��h�s(e;α�q∗�w∗)]}dµ∗

+
∫
ζ(s)

m∗ dµ
∗

=
∫ {[e(1 − γh)− α(e− emin)(1 − h) · d∗

��h�s(e;α�q∗�w∗)] ·w∗

+ � · [1 − d∗
��h�s(e;α�q∗�w∗)]}dµ∗

+
∫

{d∗
��h�s(e;α�q∗�w∗)max{��0}}dµ∗�

Since d∗
��h�s(e;α�q∗�w∗) = 1 implies �′∗

��h�s(e;α�q∗�w∗) = 0, it follows that the
product of �′∗

��h�s(e;α�q∗�w∗) and d∗
��h�s(e;α�q∗�w∗) is 0 for all ��h� s� e. Hence,

the left-hand side of (S2) can be written
∫
c∗
��h�s(e;α�q∗�w∗)dµ∗ +

∫
q∗
�′∗
��h�s

(e;α�q∗�w∗)�s�
′∗
��h�s(e;α�q∗�w∗)dµ∗

+
∫
ζ(s)

m∗ dµ
∗�

Next the first term on the right-hand side can be written

w∗
[∫

edµ∗ − γ
∫
eµ∗(d��1� ds�de)

−α
∫
(e− emin) · d∗

��0�s(e;α�q∗�w∗)µ∗(d��0� ds�de)
]
�
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Finally, the remaining term on the right-hand side of (S2) can be written∑
��s

�

∫
(1 − d∗

��h�s(e;α�q∗�w∗))µ∗(��dh� s�de)(S3)

+
∑
�≥0�s

∫
d∗
��h�s(e;α�q∗�w∗)�µ∗(��dh� s�de)

=
∑
��s

�

∫
µ∗(��dh� s�de)

−
∑
�<0�s

�

∫
d∗
��h�s(e;α�q∗�w∗)µ∗(��dh� s�de)

=
∑
�>0�s

�

∫
µ∗(��dh� s�de)

+
∑
�<0�s

�

∫
(1 − d∗

��h�s(e;α�q∗�w∗))µ∗(��dh� s�de)�

Next, observe that for x �= 0� we have from (x), (6), and (vii),∫
µ∗(x�dh′� s̃� de′;q∗�w∗)

= ρ
∫ [

1{(��h�s�e):�′∗
��h�s

(e;α�q∗�w∗)=x}

×
∑
h′
H∗(��h� s� e;h′)

∫
E

Φ(e′|σ)de′ Γ (s;σ)
]
dµ∗

= ρ
∫

[1{(��h�s�e):�′∗
��h�s

(e;α�q∗�w∗)=x}Γ (s;σ)]µ∗(d��dh�ds�de)

= ρ
∑
s

a∗
x�sΓ (s; s̃)�

where for ease of notation we have replaced s−1 with s̃. Hence, the first term
in (S3) is ∑

x>0�s̃

x

∫
µ∗(x�dh� s̃� de)=

∑
x>0�s̃

xρ
∑
s

a∗
x�sΓ (s; s̃)

= ρ
∑
x>0�s

xa∗
x�s

∑
s̃

Γ (s; s̃)

= ρ
∑
x>0�s

xa∗
x�s�
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Now consider the second term in (S3):∫
(1 − d∗

x�h�s̃(e;α�q∗�w∗))µ∗(x�dh� s̃� de)

=
∫
µ∗(x�dh� s̃� de)−

∫
d∗
x�h�s̃(e;α�q∗�w∗)µ∗(x�dh� s̃� de)�

We can rewrite the latter part of this expression as∫
d∗
x�h�s̃(e;α�q∗�w∗)µ∗(x�dh� s̃� de;α�q∗�w∗)

= ρ
∫ [

1{(��η�s�ε):�′∗��η�s(ε;q∗�w∗)=x}
∑
h

H(��η� s�ε;h)

×
∫
E

d∗
x�h�s̃(e;α�q∗�w∗)Φ(e|s̃) deΓ (s; s̃)

]

×µ∗(d��dη�ds�dε)�

Since x < 0� it follows that η = 0 and h = 0 so that H(��0� s� ε;0) = 1 and
H(��0� s� ε;1)= 0 ∀�� s� ε. Therefore,∫

d∗
x�h�s̃(e;α�q∗�w∗)µ∗(x�dh� s̃� de;α�q∗�w∗)

= ρ
∫ [

1{(��0�s�ε):�′∗��0�s(ε;q∗�w∗)=x}

∫
E

∑
h

H(��0� s� ε;h)

× d∗
x�h�s̃(e;α�q∗�w∗)Φ(e|s̃) deΓ (s; s̃)

]
µ∗(d��0� ds�dε)

= ρ
∫ [

1{(��0�s�ε):�′∗��0�s(ε;q∗�w∗)=x}

∫
E

d∗
x�0�s̃(e;α�q∗�w∗)Φ(e|s̃) deΓ (s; s̃)

]

×µ∗(d��0� ds�dε)�

Let p∗s̃
x = ∫

E
d∗
x�0�s̃(e;α�q∗�w∗)Φ(e|s̃) de be the probability of default on a loan

of size x by households with characteristic s̃. Then∫
d∗
x�h�s̃(e;α�q∗�w∗)µ∗(x�dh� s̃� de;α�q∗�w∗)

=
∑
s

ρ

∫
[1{(��0�s�e):�′∗��0�s(e;α�q∗�w∗)=x}p∗s̃

x Γ (s; s̃)]

×µ∗(d��0� s�de;α�q∗�w∗)

= ρ
∑
s

p∗s̃
x Γ (s; s̃)a∗

x�s�
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The second equality follows from (vii), recognizing that µ∗(Z)= 0 for all Z ∈
L−− × {1} × S ×B(E). Thus the second part of (S3) can be written

∑
x>0�s̃

x

∫
µ∗(x�dh� s̃� de)

+
∑
x<0�s̃

x

∫
(1 − d∗

x�h�s̃(e;α�q∗�w∗))µ∗(x�dh� s̃� de)

= ρ
∑
x>0�s

xa∗
x�s + ρ

∑
x<0�s

xa∗
x�s −

∑
x<0�s

xρ
∑
s̃

p∗s̃
x Γ (s; s̃)a∗

x�s

= ρ
[∑
x>0�s

xa∗
x�s +

∑
x<0�s

xa∗
x�s(1 −p∗

x�s)

]
�

Thus, rewriting (S2) we have∫
c∗
��h�s(e;α�q∗�w∗)dµ∗ +

∫
q∗
�′∗
��h�s

(e;α�q∗�w∗)�s�
′∗
��h�s(e;α�q∗�w∗)dµ∗

+
∫
ζ(s)

m∗ dµ
∗

=w∗
∫
edµ∗ − γw∗

∫
eµ∗(d��1� ds�de)

− αw∗
∫
(e− emin) · d∗

��0�s(e;α�q∗�w∗)µ∗(d��0� ds�de)

+ ρ
∑
��s

�a∗
��s(1 −p∗

��s)�

But ∫
q∗
�′∗
��h�s

(e;α�q∗�w∗)�s�
′∗
��h�s(e;α�q∗�w∗)dµ∗

=
∑
�′

∫
1{(��h�s�e):�′∗

��h�s
(e;α�q∗�w∗)=�′}q�′�s�′µ∗(d��dh�ds�de)

=
∑
�′�s
q∗
�′�sa

∗
�′�s�

′

=K∗�

where the last inequality follows from (20). Another implication of (20) is

(1 + r∗ − δ)K∗ = ρ
∑

(�′�s)∈L×S
(1 −p∗

�′�s)a
∗
�′�s�

′�
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Thus, we have

∫
c∗
��h�s(e;α�q∗�w∗)dµ∗ +K∗ +

∫
ζ(s)

m∗ dµ
∗

=w∗N∗ − γw∗
∫
eµ∗(d��1� ds�de)+ (1 + r∗ − δ)K∗

= F(N∗�K∗)+ (1 − δ)K∗ − γw∗
∫
eµ∗(d��1� ds�de)

− αw∗
∫
(e− emin) · d∗

��0�s(e;α�q∗�w∗)µ∗(d��0� ds�de)�

so that the goods market clears. Q.E.D.

LEMMA A19: (i) Φs(ES
(�′�d)

) ≤ x̄(�
′�d)

��h�s , (ii) Φs(ED
(�′�d)

) ≤ (1 − x̄(�
′�d)

��h�s ), and

(iii)
∑

�′∈LΦs(ES
(�′�0)

)+Φs(ES
(0�1)
)+Φs(I

(0�1)
)= 1 = ∑

�′∈L x̄
(�′�0)
��h�s + x̄(0�1)��h�s.

PROOF: To prove (i), we first establish that ES
(�′�d) ⊆ ⋃∞

m=1(
⋂

k≥m ES(�
′�d)

k ).

Consider ê ∈ ES
(�′�d)

. Then φ(�
′�d)

(��h�d)(ê;0� q̄� w̄) − max(�̃′�d̃) �=(�′�d) φ
(�̃′�d̃)
��h�d (ê;0� q̄�

w̄) > 0. By Lemma A2, it follows that there exists N(ê) such that for all
m ≥ N(ê), φ(�

′�d)
(��h�d)(ê;αm�qm�wm) − max(�̃′�d̃) �=(�′�d) φ

(�̃′�d̃)
��h�d (ê;αm�qm�wm) > 0.

Therefore, ê ∈ ⋂
k≥N(ê) ES

(�′�d)
k . Hence we must have ê ∈ ⋃∞

m=1(
⋂

k≥m ES
(�′�d)
k ).

Next, observe that for each m,
⋂

k≥m ES
(�′�d)
k is Borel measurable since it is

a countable intersection of Borel measurable sets. Therefore, Φs(ES
(�′�d)

) ≤
Φs(

⋃
m(

⋂
k≥m ES(�

′�d)
k )) = limm→∞Φs(

⋂
k≥m ES(�

′�d)
k ). The last equality follows

because the sets
⋂

k≥m ES(�
′�d)

k are increasing in m. Next, observe that
Φs(

⋂
k≥m ES(�

′�d)
k ) ≤ Φs(ES(�

′�d)
m ) = x(�

′d)
��h�s(αm�q

∗
m�w

∗
m), where the last equal-

ity follows from Lemma A8, which implies the set E(�′�d)m ∩ (ES(�
′�d)

m )c is
finite and therefore of Φs measure 0. Thus, limm→∞Φs(

⋂
k≥m ES(�

′�d)
k ) ≤

limm→∞ x
(�′�d)
��h�s (αm�q

∗
m�w

∗
m)= x̄(�′�d)��h�s . Therefore, Φs(ES

(�′�d)
)≤ x̄(�′�d)��h�s . This estab-

lishes (i).

To prove (ii) we first establish that ED
(�′�d) ⊆ ⋃∞

m=1(
⋂

k≥m ED(�′�d)
k ). Consider

ê ∈ ED
(�′�d)

. Then φ(�
′�d)

(��h�d)(ê;0� q̄� w̄) − max(�̃′�d̃) �=(�′�d) φ
(�̃′�d̃)
��h�d (ê;0� q̄� w̄) < 0. By

Lemma A2, there exists N(ê) such that for all m ≥ N(ê), φ(�
′�d)

(��h�d)(ê;αm�qm�
wm) − max(�̃′�d̃) �=(�′�d) φ

(�̃′�d̃)
��h�d (ê;αm�qm�wm) < 0. Therefore, ê ∈ ⋂

k≥N(ê) ED(�′�d)
k .
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Hence we must have ê ∈ ⋃∞
m=1(

⋂
k≥m ED(�′�d)

k ). Next, observe that for each
m,

⋂
k≥m ED(�′�d)

k is Borel measurable since it is a countable intersection of
Borel measurable sets. Therefore, Φs(ED

(�′�d)
) ≤ Φs(

⋃
m(

⋂
k≥m ED(�′�d)

k )) =
limm→∞Φs(

⋂
k≥m ED(�′�d)

k ). The last equality follows because the sets⋂
k≥m ED(�′�d)

k are increasing in m. Next, observe that Φs(
⋂

k≥m ED(�′�d)
k ) ≤

Φs(ED(�′�d)
m ) = 1 − x(�

′d)
��h�s(αm�q

∗
m�w

∗
m), where the last equality follows from

Lemma A8, which implies (E(�′�d)m )c ∩ (ED(�′�d)
m )c is a finite set and, therefore,

of Φs measure 0. Thus limm→∞Φs(
⋂

k≥m ES(�
′�d)

k ) ≤ limm→∞[1 − x(�
′�d)

��h�s (αm�q
∗
m�

w∗
m)] = 1 − x̄(�′�d)��h�s . Therefore, Φs(ED

(�′�d)
)≤ 1 − x̄(�′�d)��h�s . This establishes (ii).

To prove (iii), consider the set (
⋃

�′∈L ES
(�′�0) ∪ ES

(0�1) ∪ I(0�1))c . A member of
this set is any e for which there is more than one optimal action, none of which
involves default. By Lemma A8, this is a finite set and, therefore, of Φs mea-
sure 0. HenceΦs(

⋃
�′∈L ES

(�′�0)∪ES
(0�1)∪I(0�1))= 1. Since any pair of sets in the

union is disjoint, it follows that
∑

�′∈LΦs(ES
(�′�0)

)+Φs(ES
(0�1)
)+Φs(I

(0�1)
)= 1.

Next, consider the set (
⋃

�′∈L ES(�
′�0)

m ∪ ES(0�1)m )c . A member of this set is any e
for which there is more than one optimal action. By Lemma A8 again, this is
a finite set. Therefore, Φs(

⋃
�′∈L ES(�

′�0)
m ∪ ES(0�1)m )= 1. Since any pair of sets in

this union is disjoint, it follows that
∑

�′∈LΦs(ES(�
′�0)

m )+Φs(ES(0�1)m ) = 1. Since
ES(�

′�d)
m and E(�′�d)m can differ by at most a finite set of points (by Lemma A8), it

follows that
∑

�′∈L x
(�′�0)
��h�s (αm�q

∗
m�w

∗
m)+ x(0�1)��h�s(αm�q

∗
m�w

∗
m)= 1. Taking limits on

both sides yields
∑

�′∈L x̄
(�′�0)
��h�s + x̄(0�1)��h�s = 1. This establishes (iii). Q.E.D.

LEMMA A20: For all (��h� s) ∈ L there exist measurable functions
c��h�s(e), �′

��h�s(e), and d��h�s(e) for which the implied choice probabilities∫
E

1{�′
��h�s

(e)=�′�d��h�s(e)=d}Φ(de|s) = x(�
′�d)

(��h�s) and the triplet (c��h�s(e)� �
′
��h�s(e)�

d��h�s(e)) ∈ χ��h�s(e;0;q�w).
PROOF: The decision rules are constructed for two mutually exclusive cases.

First, consider the case where Φs(Ī
(0�1)) = 0. For this case construct the deci-

sion rules as follows. Assign to action (�′� d) all e such that e ∈ ES
(�′�d)

. This
step leaves unassigned the set I

0�1 ∪ (⋃�′∈L I
(�′�0)

). To complete the assignment,
assign all elements of I

0�1
to (0�1) and assign any remaining elements to actions

in any manner provided that each element is assigned to an action only once
and an element is assigned to an action (�′� d) only if it belongs to I

(�′�d)
. Since

ES
(�′�d)

are disjoint, the assignment maps each e to exactly one action (�′� d).
Let �′

��h�s(e) and d��h�s(e) be the resulting decision rules for �′ and d, and let
c��h�s(e) be the decision rule for c implied by the household budget constraint
given �′

��h�s(e) and d��h�s(e).
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We will now establish that these decision rules are measurable, optimal, and
imply the limiting choice probability vector x̄. To establish measurability, it
is sufficient to establish that for each action (�′� d) the set {e :�′

��h�s(e) = �′

and d��h�s(e)= d} is Borel measurable. For (0�1), the corresponding set is the
union of ES

(0�1)
and I

(0�1)
, both of which are Borel measurable and, there-

fore, the union is Borel measurable. Furthermore, Φs({e :�′
��h�s(e) = 0 and

d��h�s(e) = 1}) = Φs(ES
(0�1)
) since Φs(I

(0�1)
) = 0. For (��0), the correspond-

ing set is the union of ES
(�′�0)

, which is Borel measurable, and some sub-
set of I

(�′�0)
. By Lemma A8, I

(�′�0)
is a finite set and, therefore, any subset

of it is Borel measurable. Hence {e :�′
��h�s(e) = �′ and d��h�s(e) = 0} is also a

union of Borel measurable sets and, therefore, Borel measurable. Further-
more, Φs({e :�′

��h�s(e)= �′ and d��h�s(e)= 0})=Φs(ES
(�′�0)

) since Φs(I
(��0)
)= 0

(being a finite set). The decision rules are optimal by construction. Finally, note
that by Lemma A19(iii), we have

∑
�′∈L[Φs(ES

(��0)
) − x̄(�

′�0)
��h�s ] + [Φs(ES

(0�1)
) −

x̄(0�1)��h�s] = 0. By Lemma A19(i), each term in this sum is nonnegative. It fol-

lows immediately that Φs(ES
(�′�d)

) = x̄(�
′�d)

��h�s . Hence, Φs({e :�′
��h�s(e) = �′ and

d��h�s(e)= d})=Φs(ES
(�′�d)

)= x̄(�′�d)��h�s .

Next, consider the case where Φs(I
(0�1)
)= δ > 0. The assignment has to dis-

tribute members I
(0�1)

in such a way that choice probabilities induced by the
assignment are the limiting choice probabilities x̄. To begin, we first claim that

there must exist exactly one action (�̂′�0) for which I
(0�1) = I(�̂′�0). Suppose there

were two such actions (�̂′�0) and (�̃′�0). Then I(�̂
′�0)�(�̃′�0)

��h�s (0� q̄� w̄)⊇ I(0�1), imply-

ing that I(�̂
′�0)�(�̃′�0)

��h�s (0� q̄� w̄) has strictly positive measure, which, by Lemma A8,
is impossible.

Next, we claim that Φs(ES
(0�1)
)+Φs(I

(0�1)
)+Φs(ES

(�̂′�0)
)= x̄(0�1)��h�s + x̄(�̂�0)��h�s. To

see this, suppose that Φs(ES
(0�1)
)+Φs(I

(0�1)
)+Φs(ES

(�̂′�0)
) < x̄(0�1) + x̄(�̂�0). But

by Lemma A19(iii), this implies that
∑

�′ �=�̂′ Φs(ES
(�′�0)

) >
∑

�′ �=�̂′ x̄
(�′�0)
��h�s , which

contradicts the bound in Lemma A19(i). Suppose then that Φs(ES
(0�1)
) +

Φs(I
(0�1)
)+Φs(ES

(�̂′�0)
) > x̄(0�1)+ x̄(�̂�0). By Lemma A19(iii),

∑
�′ �=�̂′ Φs(ES

(�′�0)
) <∑

�′ �=�̂′ x̄
(�′�0)
��h�s . But this implies

∑
�′ �=�̂′ [1 −Φs(ES

(�′�0)
)]>∑

�′ �=�̂′ [1 − x̄(�′�0)��h�s ], which
contradicts the bound in Lemma A19(ii). This establishes the claim.

We can now proceed with the assignment. To (�′� d) distinct from (0�1)

or (�̂′�0), assign all e such that e ∈ ES
(�′�0)

. Next, partition the set I
(0�1)

into
two disjoint (measurable) sets I1 and I2 such that Φs(ES

(�̂�0) ∪ I1) = x̄(�̂�0)��h�s and
Φs(ES

(0�1) ∪ I2) = x̄(0�1)��h�s (since Φs is atomless, such a partition exists). Finally,
assign in any manner all remaining elements provided that each element is as-
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signed to an action only once and an element is assigned to an action (�′� d)

only if it belongs to I
(�′�d)

.
These assignments assign each e to exactly one action (��d) and, therefore,

imply decision rules �′
��h�s(e), d��h�s(e) and, via the household budget constraint,

c��h�s(e). The measurability of these decision rules can be established by ex-
pressing the sets {e :�′

��h�s(e) = �′ and d��h�s(e) = d} as unions of measurable
sets as was done for the first case. By construction, the decision rules are op-
timal. Finally, note that by our earlier claim,

∑
�′ �=�̂′ [Φs(ES

(�′�0)
) − x̄(�

′�0)
��h�s ] = 0.

By Lemma A19(i), each term in this sum is nonnegative and, therefore,

Φs(ES
(�′�0)

) = x̄(�
′�0)

��h�s for �′ �= �̂′. Hence, Φs({e : �′
��h�s(e) = �′ and d��h�s(e) =

d}) = Φs(ES
(�′�d)

) = x̄(�
′�d)

��h�s , where the first equality uses the fact that the set

{e :�′
��h�s(e)= �′ and d��h�s(e)= d} differs from the set ES

(�′�d)
by at most a finite

set of points. Finally, by construction Φs({e :�′
��h�s(e)= �̂′ and d��h�s(e)= 0})=

x̄(�̂
′�0)

��h�s and Φs({e :�′
��h�s(e)= 0 and d��h�s(e)= 1})= x̄(0�1)��h�s. Q.E.D.

We now establish the analogues of Lemmas A12 and A15 for the sequence
{αm�q∗

m�w
∗
m} converging to (0� q�w).

LEMMA A21: Let π(0�q�w) be the invariant distribution of the Markov chain P
defined by the decision rules (�′

��h�s(e)�d��h�s(e))� Then the sequence π(αm�q∗
m�w

∗
m)

converges weakly to π(0�q�w).

PROOF: We apply Theorem 12.13 in Stokey and Lucas (1989). Part (a)
of the requirements follows since L is compact. Part (b) requires that
P∗
(αm�q

∗
m�w

∗
m)

[(�n�hn� sn)� ·] converge weakly to P(0;q�w)[(��h� s)� ·] as (�n�hn� sn�
αm�q

∗
m�w

∗
m) → (��h� s�0� q�w)� By Theorem 12.3d of Stokey and Lucas

(1989), it is sufficient to show that for any (�′�h′� s′),

lim
k→∞

P∗
(αm�q

∗
m�w

∗
m)

[(�n�hn� sn)� (�′�h′� s′)] = P(0;q�w)[(��h� s)� (�′�h′� s′)]�

By definition,

P∗
(αm�q

∗
m�w

∗
m)

[(��h� s)� (�′�h′� s′)]

=
[
ρ

∫
E

1{�′∗
��h�s

(e;αm�q∗
m�w

∗
m)=�′}H

∗
(αm�q

∗
m�w

∗
m)
(��h� s� e�h′)Φ(de|s)Γ (s� s′)

+ (1 − ρ)
∫
E

1{(�′�h′)=(0�0)}ψ(s′� de′)
]
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and

H∗
(q�w)(��h� s� e�h

′ = 1)=



1� if d∗
��h�s(e;q�w)= 1,

λ� if d∗
��h�s(e;q�w)= 0 and h= 1,

0� if d∗
��h�s(e;q�w)= 0 and h= 0,

H∗
(q�w)(��h� s� e�h

′ = 0)=



0� if d∗
��h�s(e;q�w)= 1,

1 − λ� if d∗
��h�s(e;q�w)= 0 and h= 1,

1� if d∗
��h�s(e;q�w)= 0 and h= 0.

By construction, the Markov chain P is

P[(��h� s)� (�′�h′� s′)]
=

[
ρ

∫
E

1{�′
��h�s

(e)=�′}H∗
(0�q�w)(��h� s� e�h

′)Φ(de|s)Γ (s� s′)

+ (1 − ρ)
∫
E

1{(�′�h′)=(0�0)}ψ(s′� de′)
]
�

where H∗
(0�q�w)(��h� s� e�h

′) is determined by d��h�s(e).
Since L is finite, without loss of generality consider the sequence (αm�q∗

m�
w∗
m)→ (0� q�w). Since the second term on the right-hand side is independent

of (α�q�w)� it is sufficient to consider the limiting behavior of the integral∫
E

1{�′∗
��h�s

(e;αm�q∗
m�w

∗
m)=�′}H

∗
(αm�q

∗
m�w

∗
m)
(��h� s� e�h′)Φ(de|s)�

For h= 0 and h′ = 0� this integral in P∗ is∫
E

1{�′∗
��h�s

(e;αm�q∗
m�w

∗
m)=�′�d∗

��h�s
(e;αm�q∗

m�w
∗
m)=0}Φ(de|s)= x(�′�0)(��0�s)(αm�q

∗
m�w

∗
m)

and in P it is∫
E

1{�′��0�s(e)=�′}H
∗
(0�q�w)(��0� s� e�0)Φ(de|s)

=
∫
E

1{�′��0�s(e)=�′�d��0�s(e)=0}Φ(de|s)�

By Lemma A20, we have

lim
k→∞

x(�
′�0)

(��0�s)(αm�q
∗
m�w

∗
m)= x(�′�0)(��0�s) =

∫
E

1{�′
��h�s

(e)=�′�d��h�s(e)=0}Φ(de|s)�

Hence

lim
k→∞

P∗
(αm�q

∗
m�w

∗
m)

[(��0� s)� (�′�0� s′)] = P(0;q�w)[(��0� s)� (�′�0� s′)]�
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The remaining cases can be dealt with in exactly the same way. We simply
note here which choice probabilities are involved in each case and omit the
details.

For h= 0 and h′ = 1� the integral in P∗ is
∫
E

1{�′∗��0�s(e;αm�q∗
m�w

∗
m)=�′�d∗

��0�s(e;αm�q∗
m�w

∗
m)=1}Φ(de|s)

= x(�′�1)(��0�s)(αm�q
∗
m�w

∗
m)�

For h= 1 and h′ = 0� the integral in P∗ is

(1 − λ)
∫
E

1{�′∗��1�s(e;αm�q∗
m�w

∗
m)=�′�d∗

��1�s(e;αm�q∗
m�w

∗
m)=0}Φ(de|s)

= x(�′�0)(��0�s)(αm�q
∗
m�w

∗
m)�

For h= 1 and h′ = 1, the integral in P∗ is
∫
E

[
1{�′∗��1�s(e;αm�q∗

m�w
∗
m)=�′�d∗

��1�s(e;αm�q∗
m�w

∗
m)=1}

+ λ1{�′∗��1�s(e;αm�q∗
m�w

∗
m)=�′�d∗

��1�s(e;αm�q∗
m�w

∗
m)=0}

]
Φ(de|s)

= [x(�′�1)(��1�s)(αm�q
∗
m�w

∗
m)+ λx(�′�0)(��1�s)(αm�q

∗
m�w

∗
m)]� Q.E.D.

LEMMA A23: Let K(0�q�w) ≡ ∑
(�′�s)∈L×S �

′q�′�s
∫

1{�′
��h�s

(e)=�′}µ(0�q�w)(d��dh� s�
de), N(0�q�w) ≡

∫
edµ(0�q�w), and p(0�q�w)(�′� s)≡ ∫

d�′�0�s′(e
′)Φ(e′|s′)Γ (s;ds′)de′.

Then (i) limmK(αm�q
∗
m�w

∗
m)=K(0�q�w), (ii) limmN(αm�q

∗
m�w

∗
m)=N(0�q�w), and

(iii) limm p(αm�q∗
m�w

∗
m)(�

′� s)= p(0�q�w)(�′� s).

PROOF: To prove (i), note that we know by Lemma A13 that
∫
L×H×E

1{�′∗
��h�s

(e;αm�q∗
m�w

∗
m)=�′}µ(αm�q∗

m�w
∗
m)(d��dh� s�de)

=
∑
��h

∫
E

1{�′∗
��h�s

(e;αm�q∗
m�w

∗
m)=�′}Φ(de|s)π(αm�q∗

m�w
∗
m)(��h� s)�

By Lemma A20,

lim
nk→∞

∫
E

1{�′∗
��h�s

(e;αm�q∗
m�w

∗
m)=�′�d∗

��h�s
(e;αm�q∗

m�w
∗
m)=d}Φ(de|s)

=
∫
E

1{�′
��h�s

(e)=�′�d��h�s(e)=d}Φ(de|s)�
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Since
∫
E

1{�′∗
��h�s

(e;αm�q∗
m�w

∗
m)=�′}Φ(de|s)

=
∑
d∈{0�1}

∫
E

1{�′∗
��h�s

(e;αm�q∗
m�w

∗
m)=�′�d∗

��h�s
(e;αm�q∗

m�w
∗
m)=d}Φ(de|s)�

then

lim
nk→∞

∫
E

1{�′∗
��h�s

(e;αm�q∗
m�w

∗
m)=�′}Φ(de|s)

=
∑
d∈{0�1}

∫
E

1{�′
��h�s

(e)=�′�d��h�s(e)=d}Φ(de|s)=
∫
E

1{�′
��h�s

(e)=�′}Φ(de|s)�

Next, by Lemma A21,

lim
n→∞

π(αm�q∗
m�w

∗
m)(��h� s)= π(0�q�w)(��h� s)�

Therefore, limnk→∞K(αm�q
∗
m�w

∗
m) = K(0�q�w). To prove (ii), simply apply Lem-

ma A21. To prove (iii), note that by Lemma A20,

lim
nk→∞

∫
E

d∗
�′�0�s′(e

′;αm�q∗
m�w

∗
m)Φ(de

′|s′)=
∫
E

d�′�0�s′(e
′)Φ(de′|s′)�

Thus,

lim
m→∞

∫
E×S

d∗
�′�0�s′(e

′;αm�q∗
m�w

∗
m)Φ(de

′|s′)Γ (s;ds′)

=
∫
E×S

d�′�0�s′(e
′)Φ(de′|s′)Γ (s;ds′)� Q.E.D.
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