# SUPPLEMENT TO "A QUANTITATIVE THEORY OF UNSECURED CONSUMER CREDIT WITH RISK OF DEFAULT": PROOFS OF <br> LEMMAS A7, A19-A21, AND A23 <br> (Econometrica, Vol. 75, No. 6, November 2007, 1525-1589) 

## By Satyajit Chatterjee, Dean Corbae, Makoto Nakajima, and José-Víctor Ríos-Rull

This document provides reiteration and proofs of Lemmas A7, A19-A21, and A23, which were omitted from the Appendix to the main article. The notation is the same as that used in the Appendix and equation numbers not preceded by " S " refer to equations in the main article.

LEMMA A7: The goods market clearing condition (ixA) is implied by the other conditions for an equilibrium in Definition 2.

Proof: First note that the household budget sets (2)-(5) imply

$$
\begin{aligned}
c_{\ell, h, s}^{*} & \left(e ; \alpha, q^{*}, w^{*}\right) \\
& +q_{\ell \ell, h, s}^{*}\left(e ; ;, q^{*}, w^{*}\right), s \\
= & {\left[e(1-\gamma h)-\alpha\left(e-\ell_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \cdot\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right]\right.\right.} \\
& +(\ell-\zeta(s)) \cdot\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w_{\ell, h, s}^{*}\right)\right] .
\end{aligned}
$$

Then aggregating over all households yields

$$
\begin{align*}
& \int\left\{c_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right.  \tag{S1}\\
& \quad+q_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right), s \\
& \left.\ell_{\ell, h, s}^{* *}\left(e ; \alpha, q^{*}, w^{*}\right)\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right] d \mu^{*}\right\} \\
& \quad+\int\left\{\zeta(s)\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right]\right\} d \mu^{*} \\
& =\int\left\{\left[e(1-\gamma h)-\alpha\left(e-e_{\min }\right)(1-h) \cdot d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right] \cdot w^{*}\right. \\
& \left.\quad+\ell \cdot\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right]\right\} d \mu^{*} .
\end{align*}
$$

Condition (v) along with (S1) implies

$$
\begin{aligned}
& \int\left\{c_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right. \\
& \left.\quad+q_{\ell_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right), s}^{*} \ell_{\ell, h, s}^{\prime *}\left(e ; \alpha, q^{*}, w^{*}\right)\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right] d \mu^{*}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\int\left\{\zeta(s)\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right]\right\} d \mu^{*} \\
=\int\{[ & \left.e(1-\gamma h)-\alpha\left(e-e_{\min }\right)(1-h) \cdot d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right] \cdot w^{*} \\
& \left.+\ell \cdot\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right]\right\} d \mu^{*} \\
+ & \int\left\{\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right] \zeta(s)\right. \\
& \left.\quad+d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \max \{\ell, 0\}-\frac{\zeta(s)}{m^{*}}\right\} d \mu^{*}
\end{aligned}
$$

or

$$
\begin{align*}
& \int\left\{c_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right.  \tag{S2}\\
& \left.\quad+q_{\ell_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right), s}^{*} \ell_{\ell, h, s}^{\prime *}\left(e ; \alpha, q^{*}, w^{*}\right)\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right]\right\} d \mu^{*} \\
& \quad+\int \frac{\zeta(s)}{m^{*}} d \mu^{*} \\
& =\int\left\{\left[e(1-\gamma h)-\alpha\left(e-e_{\min }\right)(1-h) \cdot d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right] \cdot w^{*}\right. \\
& \left.\quad+\ell \cdot\left[1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right]\right\} d \mu^{*} \\
& \quad+\int\left\{d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \max \{\ell, 0\}\right\} d \mu^{*} .
\end{align*}
$$

Since $d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)=1$ implies $\ell_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)=0$, it follows that the product of $\ell_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)$ and $d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)$ is 0 for all $\ell, h, s, e$. Hence, the left-hand side of (S2) can be written

$$
\begin{aligned}
& \int c_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) d \mu^{*}+\int q_{\ell_{\ell, h, s}^{*}}^{*}\left(e ; \alpha, q^{*}, w^{*}\right), s \\
& \ell_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) d \mu^{*} \\
& \quad+\int \frac{\zeta(s)}{m^{*}} d \mu^{*}
\end{aligned}
$$

Next the first term on the right-hand side can be written

$$
\begin{aligned}
& w^{*}\left[\int e d \mu^{*}-\gamma \int e \mu^{*}(d \ell, 1, d s, d e)\right. \\
& \left.\quad-\alpha \int\left(e-e_{\min }\right) \cdot d_{\ell, 0, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \mu^{*}(d \ell, 0, d s, d e)\right]
\end{aligned}
$$

Finally, the remaining term on the right-hand side of (S2) can be written

$$
\begin{align*}
& \sum_{\ell, s} \ell \int\left(1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right) \mu^{*}(\ell, d h, s, d e)  \tag{S3}\\
& \quad+\sum_{\ell \geq 0, s} \int d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \ell \mu^{*}(\ell, d h, s, d e) \\
& =\sum_{\ell, s} \ell \int \mu^{*}(\ell, d h, s, d e) \\
& \quad-\sum_{\ell<0, s} \ell \int d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \mu^{*}(\ell, d h, s, d e) \\
& =\sum_{\ell>0, s} \ell \int \mu^{*}(\ell, d h, s, d e) \\
& \quad+\sum_{\ell<0, s} \ell \int\left(1-d_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right) \mu^{*}(\ell, d h, s, d e)
\end{align*}
$$

Next, observe that for $x \neq 0$, we have from (x), (6), and (vii),

$$
\begin{aligned}
& \int \mu^{*}\left(x, d h^{\prime}, \tilde{s}, d e^{\prime} ; q^{*}, w^{*}\right) \\
&=\rho \int[ \mathbf{1}_{\left\{(\ell, h, s, e): \ell_{\ell, h, s}^{*}\left(e ;, \alpha, q^{*}, w^{*}\right)=x\right\}} \\
&\left.\quad \times \sum_{h^{\prime}} H^{*}\left(\ell, h, s, e ; h^{\prime}\right) \int_{E} \Phi\left(e^{\prime} \mid \sigma\right) d e^{\prime} \Gamma(s ; \sigma)\right] d \mu^{*} \\
&=\rho \int\left[\mathbf{1}_{\left\{(, h, s, e): \ell_{\ell, h, s}^{*},\left(e ; \alpha, q^{*}, w^{*}\right)=x\right\}} \Gamma(s ; \sigma)\right] \mu^{*}(d \ell, d h, d s, d e) \\
&=\rho \sum_{s} a_{x, s}^{*} \Gamma(s ; \tilde{s}),
\end{aligned}
$$

where for ease of notation we have replaced $s_{-1}$ with $\tilde{s}$. Hence, the first term in (S3) is

$$
\begin{aligned}
\sum_{x>0, \tilde{s}} x \int \mu^{*}(x, d h, \tilde{s}, d e) & =\sum_{x>0, \tilde{s}} x \rho \sum_{s} a_{x, s}^{*} \Gamma(s ; \tilde{s}) \\
& =\rho \sum_{x>0, s} x a_{x, s}^{*} \sum_{\tilde{s}} \Gamma(s ; \tilde{s}) \\
& =\rho \sum_{x>0, s} x a_{x, s}^{*} .
\end{aligned}
$$

Now consider the second term in (S3):

$$
\begin{aligned}
\int & \left(1-d_{x, h, \tilde{s}}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right) \mu^{*}(x, d h, \tilde{s}, d e) \\
& =\int \mu^{*}(x, d h, \tilde{s}, d e)-\int d_{x, h, \tilde{s}}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \mu^{*}(x, d h, \tilde{s}, d e)
\end{aligned}
$$

We can rewrite the latter part of this expression as

$$
\begin{aligned}
\int d_{x, h, \tilde{s}}^{*} & \left(e ; \alpha, q^{*}, w^{*}\right) \mu^{*}\left(x, d h, \tilde{s}, d e ; \alpha, q^{*}, w^{*}\right) \\
=\rho \int[ & \mathbf{1}_{\left\{(\ell, \eta, s, \varepsilon): \ell_{\ell,, n, s}\left(\varepsilon ; q^{*}, w^{*}\right)=x\right\}} \sum_{h} H(\ell, \eta, s, \varepsilon ; h) \\
& \left.\times \int_{E} d_{x, h, \tilde{s}}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \Phi(e \mid \tilde{s}) d e \Gamma(s ; \tilde{s})\right] \\
& \times \mu^{*}(d \ell, d \eta, d s, d \varepsilon)
\end{aligned}
$$

Since $x<0$, it follows that $\eta=0$ and $h=0$ so that $H(\ell, 0, s, \varepsilon ; 0)=1$ and $H(\ell, 0, s, \varepsilon ; 1)=0 \forall \ell, s, \varepsilon$. Therefore,

$$
\begin{aligned}
& \int d_{x, h, \tilde{s}}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \mu^{*}\left(x, d h, \tilde{s}, d e ; \alpha, q^{*}, w^{*}\right) \\
&=\rho \int {\left[\mathbf{1}_{\left\{(\ell, 0, s, \varepsilon): \ell_{\ell, 0, s}^{\prime *}\left(\varepsilon ; q^{*}, w^{*}\right)=x\right\}} \int_{E} \sum_{h} H(\ell, 0, s, \varepsilon ; h)\right.} \\
&\left.\times d_{x, h, \tilde{s}}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \Phi(e \mid \tilde{s}) d e \Gamma(s ; \tilde{s})\right] \mu^{*}(d \ell, 0, d s, d \varepsilon) \\
&=\rho \int {\left[\mathbf{1}_{\left\{(, 0, s, \varepsilon): \ell_{\ell, 0, s}^{\ell *}\left(\varepsilon ; q^{*}, w^{*}\right)=x\right\}} \int_{E} d_{x, 0, \tilde{s}}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \Phi(e \mid \tilde{s}) d e \Gamma(s ; \tilde{s})\right] } \\
& \times \mu^{*}(d \ell, 0, d s, d \varepsilon) .
\end{aligned}
$$

Let $p_{x}^{* \tilde{s}}=\int_{E} d_{x, 0, \tilde{s}}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \Phi(e \mid \tilde{s}) d e$ be the probability of default on a loan of size $x$ by households with characteristic $\tilde{s}$. Then

$$
\begin{aligned}
& \int d_{x, h, \tilde{s}}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \mu^{*}\left(x, d h, \tilde{s}, d e ; \alpha, q^{*}, w^{*}\right) \\
&=\sum_{s} \rho \int\left[\mathbf{1}_{\left\{(\ell, 0, s, e): \ell_{\ell, 0, s}^{* *}\left(e ; \alpha, q^{*}, w^{*}\right)=x\right\}} p_{x}^{* \tilde{s}} \Gamma(s ; \tilde{s})\right] \\
& \times \mu^{*}\left(d \ell, 0, s, d e ; \alpha, q^{*}, w^{*}\right) \\
&= \rho \sum_{s} p_{x}^{* \tilde{s}} \Gamma(s ; \tilde{s}) a_{x, s}^{*} .
\end{aligned}
$$

The second equality follows from (vii), recognizing that $\mu^{*}(Z)=0$ for all $Z \in$ $L_{--} \times\{1\} \times S \times \mathcal{B}(E)$. Thus the second part of (S3) can be written

$$
\begin{aligned}
& \sum_{x>0, \tilde{s}} x \int \mu^{*}(x, d h, \tilde{s}, d e) \\
& \quad+\sum_{x<0, \tilde{s}} x \int\left(1-d_{x, h, \tilde{s}}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)\right) \mu^{*}(x, d h, \tilde{s}, d e) \\
& = \\
& =\rho \sum_{x>0, s} x a_{x, s}^{*}+\rho \sum_{x<0, s} x a_{x, s}^{*}-\sum_{x<0, s} x \rho \sum_{\tilde{s}} p_{x}^{* \tilde{s}} \Gamma(s ; \tilde{s}) a_{x, s}^{*} \\
& =\rho\left[\sum_{x>0, s} x a_{x, s}^{*}+\sum_{x<0, s} x a_{x, s}^{*}\left(1-p_{x, s}^{*}\right)\right] .
\end{aligned}
$$

Thus, rewriting (S2) we have

$$
\begin{aligned}
& \int c_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) d \mu^{*}+\int q_{\ell \ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right), s \\
& \quad \\
& \quad+\int \frac{\zeta(s)}{m_{\ell, h, s}^{*}} d \mu^{*} \\
& =w^{*} \int e d \mu^{*}-\gamma w^{*} \int e \mu^{*}(d \ell, 1, d s, d e) \\
& \quad-\alpha w^{*} \int\left(e-e_{\min }\right) \cdot d_{\ell, 0, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \mu^{*}(d \ell, 0, d s, d e) \\
& \quad+\rho \sum_{\ell, s} \ell a_{\ell, s}^{*}\left(1-p_{\ell, s}^{*}\right) .
\end{aligned}
$$

But

$$
\begin{aligned}
& \int q_{\ell_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right), s}^{*} \ell_{\ell, h, s}^{\prime *}\left(e ; \alpha, q^{*}, w^{*}\right) d \mu^{*} \\
& \quad=\sum_{\ell^{\prime}} \int \mathbf{1}_{\left\{(\ell, h, s, e): \ell_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right)=\ell^{\prime}\right\}} q_{\ell^{\prime}, s} \ell^{\prime} \mu^{*}(d \ell, d h, d s, d e) \\
& \quad=\sum_{\ell^{\prime}, s} q_{\ell^{\prime}, s}^{*} a_{\ell^{\prime}, s}^{*} \ell^{\prime} \\
& =K^{*}
\end{aligned}
$$

where the last inequality follows from (20). Another implication of (20) is

$$
\left(1+r^{*}-\delta\right) K^{*}=\rho \sum_{\left(\ell^{\prime}, s\right) \in L \times S}\left(1-p_{\ell^{\prime}, s}^{*}\right) a_{\ell^{\prime}, \ell^{\prime}}^{*} .
$$

Thus, we have

$$
\begin{aligned}
& \int c_{\ell, h, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) d \mu^{*}+K^{*}+\int \frac{\zeta(s)}{m^{*}} d \mu^{*} \\
& =w^{*} N^{*}-\gamma w^{*} \int e \mu^{*}(d \ell, 1, d s, d e)+\left(1+r^{*}-\delta\right) K^{*} \\
& = \\
& \quad F\left(N^{*}, K^{*}\right)+(1-\delta) K^{*}-\gamma w^{*} \int e \mu^{*}(d \ell, 1, d s, d e) \\
& \quad-\alpha w^{*} \int\left(e-e_{\min }\right) \cdot d_{\ell, 0, s}^{*}\left(e ; \alpha, q^{*}, w^{*}\right) \mu^{*}(d \ell, 0, d s, d e)
\end{aligned}
$$

so that the goods market clears.
Q.E.D.

LEMMA A19: (i) $\Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, d\right)}\right) \leq \bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, d\right)}$, (ii) $\Phi_{s}\left(\overline{E D}^{\left(\ell^{\prime}, d\right)}\right) \leq\left(1-\bar{x}_{\ell, h, s}^{\left(e^{\prime}, d\right)}\right)$, and (iii) $\sum_{\ell^{\prime} \in L} \Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, 0\right)}\right)+\Phi_{s}\left(\overline{E S}^{(0,1)}\right)+\Phi_{s}\left(\bar{I}^{(0,1)}\right)=1=\sum_{\ell^{\prime} \in L} \bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, 0\right)}+\bar{x}_{\ell, h, s}^{(0,1)}$.

PROOF: To prove (i), we first establish that $\overline{E S}{ }^{\left(\ell^{\prime}, d\right)} \subseteq \bigcup_{m=1}^{\infty}\left(\bigcap_{k \geq m} E S_{k}^{\left(\ell^{\prime}, d\right)}\right)$. Consider $\hat{e} \in \overline{E S}^{\left(\ell^{\prime}, d\right)}$. Then $\phi_{(\ell, h, d)}^{\left(\ell^{\prime}, d\right)}(\hat{e} ; 0, \bar{q}, \bar{w})-\max _{\left(\tilde{\ell}^{\prime}, \tilde{d}\right) \neq\left(\ell^{\prime}, d\right)} \phi_{\ell, h, d}^{\left(\tilde{e}^{\prime}, \tilde{d}\right)}(\hat{e} ; 0, \bar{q}$, $\bar{w})>0$. By Lemma A2, it follows that there exists $N(\hat{e})$ such that for all $m \geq N(\hat{e}), \phi_{(\ell, h, d)}^{\left(\ell^{\prime}, d\right)}\left(\hat{e} ; \alpha_{m}, q_{m}, w_{m}\right)-\max _{\left(\tilde{\ell}^{\prime}, \tilde{d}\right) \neq\left(\ell^{\prime}, d\right)} \phi_{\ell, h, d}^{\left(\tilde{\ell^{\prime}}, \tilde{e}\right)}\left(\hat{e} ; \alpha_{m}, q_{m}, w_{m}\right)>0$. Therefore, $\hat{e} \in \bigcap_{k \geq N(\hat{e})} E S_{k}^{\left(\ell^{\prime}, d\right)}$. Hence we must have $\hat{e} \in \bigcup_{m=1}^{\infty}\left(\bigcap_{k \geq m} E S_{k}^{\left(\ell^{\prime}, d\right)}\right)$. Next, observe that for each $m, \bigcap_{k \geq m} E S_{k}^{\left(\ell^{\prime}, d\right)}$ is Borel measurable since it is a countable intersection of Borel measurable sets. Therefore, $\Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, d\right)}\right) \leq$ $\Phi_{s}\left(\bigcup_{m}\left(\bigcap_{k \geq m} E S_{k}^{\left(\ell^{\prime}, d\right)}\right)\right)=\lim _{m \rightarrow \infty} \Phi_{s}\left(\bigcap_{k \geq m} E S_{k}^{\left(\ell^{\prime}, d\right)}\right)$. The last equality follows because the sets $\bigcap_{k \geq m} E S_{k}^{\left(\ell^{\prime}, d\right)}$ are increasing in $m$. Next, observe that $\Phi_{s}\left(\bigcap_{k \geq m} E S_{k}^{\left(\ell^{\prime}, d\right)}\right) \leq \Phi_{s}\left(E S_{m}^{\left(\ell^{\prime}, d\right)}\right)=x_{\ell, h, s}^{\left(\ell^{\prime} d\right)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)$, where the last equality follows from Lemma A8, which implies the set $E_{m}^{\left(\ell^{\prime}, d\right)} \cap\left(E S_{m}^{\left(\ell^{\prime}, d\right)}\right)^{c}$ is finite and therefore of $\Phi_{s}$ measure 0 . Thus, $\lim _{m \rightarrow \infty} \Phi_{s}\left(\bigcap_{k \geq m} E S_{k}^{\left(\ell^{\prime}, d\right)}\right) \leq$ $\lim _{m \rightarrow \infty} x_{\ell, h, s}^{\left(\ell^{\prime}, d\right)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, d\right)}$. Therefore, $\Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, d\right)}\right) \leq \bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, d\right)}$. This establishes (i).

To prove (ii) we first establish that $\overline{E D}{ }^{\left(\ell^{\prime}, d\right)} \subseteq \bigcup_{m=1}^{\infty}\left(\bigcap_{k \geq m} E D_{k}^{\left(\ell^{\prime}, d\right)}\right)$. Consider
 Lemma A2, there exists $N(\hat{e})$ such that for all $m \geq N(\hat{e}), \phi_{(\ell, h, d)}^{\left(\ell^{\prime}, d\right)}\left(\hat{e} ; \alpha_{m}, q_{m}\right.$, $\left.w_{m}\right)-\max _{\left(\tilde{\ell}^{\prime}, \tilde{d}\right) \neq\left(\ell^{\prime}, d\right)} \phi_{\ell, h, d}^{\left(\tilde{\ell}^{\prime}, \tilde{d}\right)}\left(\hat{e} ; \alpha_{m}, q_{m}, w_{m}\right)<0$. Therefore, $\hat{e} \in \bigcap_{k \geq N(\hat{e})} E D_{k}^{\left(\ell^{\prime}, d\right)}$.

Hence we must have $\hat{e} \in \bigcup_{m=1}^{\infty}\left(\bigcap_{k>m} E D_{k}^{\left(\ell^{\prime}, d\right)}\right)$. Next, observe that for each $m, \bigcap_{k \geq m} E D_{k}^{\left(\ell^{\prime}, d\right)}$ is Borel measurable since it is a countable intersection of Borel measurable sets. Therefore, $\Phi_{s}\left(\overline{E D}^{\left(\ell^{\prime}, d\right)}\right) \leq \Phi_{s}\left(\bigcup_{m}\left(\bigcap_{k \geq m} E D_{k}^{\left(\ell^{\prime}, d\right)}\right)\right)=$ $\lim _{m \rightarrow \infty} \Phi_{s}\left(\bigcap_{k \geq m} E D_{k}^{\left(\ell^{\prime}, d\right)}\right)$. The last equality follows because the sets $\bigcap_{k \geq m} E D_{k}^{\left(\ell^{\prime}, d\right)}$ are increasing in $m$. Next, observe that $\Phi_{s}\left(\bigcap_{k \geq m} E D_{k}^{\left(\ell^{\prime}, d\right)}\right) \leq$ $\Phi_{s}\left(E D_{m}^{\left(\ell^{\prime}, d\right)}\right)=1-x_{\ell, h, s}^{\left(\ell^{\prime} d\right)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)$, where the last equality follows from Lemma A8, which implies $\left(E_{m}^{\left(\ell^{\prime}, d\right)}\right)^{c} \cap\left(E D_{m}^{\left(\ell^{\prime}, d\right)}\right)^{c}$ is a finite set and, therefore, of $\Phi_{s}$ measure 0 . Thus $\lim _{m \rightarrow \infty} \Phi_{s}\left(\bigcap_{k \geq m} E S_{k}^{\left(\ell^{\prime}, d\right)}\right) \leq \lim _{m \rightarrow \infty}\left[1-x_{\ell, h, s}^{\left(\ell^{\prime}, d\right)}\left(\alpha_{m}, q_{m}^{*}\right.\right.$, $\left.\left.w_{m}^{*}\right)\right]=1-\bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, d\right)}$. Therefore, $\Phi_{s}\left(\overline{E D}^{\left(\ell^{\prime}, d\right)}\right) \leq 1-\bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, d\right)}$. This establishes (ii).
 this set is any $e$ for which there is more than one optimal action, none of which involves default. By Lemma A8, this is a finite set and, therefore, of $\Phi_{s}$ measure 0 . Hence $\Phi_{s}\left(\bigcup_{\ell^{\prime} \in L} \overline{E S}{ }^{\left(\ell^{\prime}, 0\right)} \cup \overline{E S} \bar{S}^{(0,1)} \cup \bar{I}^{(0,1)}\right)=1$. Since any pair of sets in the union is disjoint, it follows that $\sum_{\ell^{\prime} \in L} \Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, 0\right)}\right)+\Phi_{s}\left(\overline{E S}^{(0,1)}\right)+\Phi_{s}\left(\bar{I}^{(0,1)}\right)=1$. Next, consider the set $\left(\bigcup_{\ell^{\prime} \in L} E S_{m}^{\left(\ell^{\prime}, 0\right)} \cup E S_{m}^{(0,1)}\right)^{c}$. A member of this set is any $e$ for which there is more than one optimal action. By Lemma A8 again, this is a finite set. Therefore, $\Phi_{s}\left(\bigcup_{\ell^{\prime} \in L} E S_{m}^{\left(\ell^{\prime}, 0\right)} \cup E S_{m}^{(0,1)}\right)=1$. Since any pair of sets in this union is disjoint, it follows that $\sum_{\ell^{\prime} \in L} \Phi_{s}\left(E S_{m}^{\left(\ell^{\prime}, 0\right)}\right)+\Phi_{s}\left(E S_{m}^{(0,1)}\right)=1$. Since $E S_{m}^{\left(\ell^{\prime}, d\right)}$ and $E_{m}^{\left(\ell^{\prime}, d\right)}$ can differ by at most a finite set of points (by Lemma A8), it follows that $\sum_{\ell^{\prime} \in L} x_{\ell, h, s}^{\left(\ell^{\prime}, 0\right)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)+x_{\ell, h, s}^{(0,1)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=1$. Taking limits on both sides yields $\sum_{\ell^{\prime} \in L} \bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, 0\right)}+\bar{x}_{\ell, h, s}^{(0,1)}=1$. This establishes (iii). Q.E.D.

Lemma A20: For all $(\ell, h, s) \in \mathcal{L}$ there exist measurable functions $c_{\ell, h, s}(e), \ell_{\ell, h, s}^{\prime}(e)$, and $d_{\ell, h, s}(e)$ for which the implied choice probabilities $\int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}, d_{\ell, h, s}(e)=d\right\rangle} \Phi(d e \mid s)=\bar{x}_{(\ell, h, s)}^{\left(\ell^{\prime}, d\right)}$ and the triplet $\left(c_{\ell, h, s}(e), \ell_{\ell, h, s}^{\prime}(e)\right.$, $\left.d_{\ell, h, s}(e)\right) \in \chi_{\ell, h, s}(e ; 0 ; \bar{q}, \bar{w})$.

Proof: The decision rules are constructed for two mutually exclusive cases. First, consider the case where $\Phi_{s}\left(\bar{I}^{(0,1)}\right)=0$. For this case construct the decision rules as follows. Assign to action ( $\left.\ell^{\prime}, d\right)$ all $e$ such that $e \in \overline{E S}^{\left(\ell^{\prime}, d\right)}$. This step leaves unassigned the set $\bar{I}^{0,1} \cup\left(\bigcup_{\ell^{\prime} \in L} \bar{I}^{\left(\ell^{\prime}, 0\right)}\right)$. To complete the assignment, assign all elements of $\bar{I}^{0,1}$ to $(0,1)$ and assign any remaining elements to actions in any manner provided that each element is assigned to an action only once and an element is assigned to an action ( $\left.\ell^{\prime}, d\right)$ only if it belongs to $\bar{I}^{\left(\ell^{\prime}, d\right)}$. Since $\overline{E S}{ }^{\left(\ell^{\prime}, d\right)}$ are disjoint, the assignment maps each $e$ to exactly one action $\left(\ell^{\prime}, d\right)$. Let $\ell_{\ell, h, s}^{\prime}(e)$ and $d_{\ell, h, s}(e)$ be the resulting decision rules for $\ell^{\prime}$ and $d$, and let $c_{\ell, h, s}(e)$ be the decision rule for $c$ implied by the household budget constraint given $\ell_{\ell, h, s}^{\prime}(e)$ and $d_{\ell, h, s}(e)$.

We will now establish that these decision rules are measurable, optimal, and imply the limiting choice probability vector $\bar{x}$. To establish measurability, it is sufficient to establish that for each action $\left(\ell^{\prime}, d\right)$ the set $\left\{e: \ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}\right.$ and $\left.d_{\ell, h, s}(e)=d\right\}$ is Borel measurable. For $(0,1)$, the corresponding set is the union of $\overline{E S}{ }^{(0,1)}$ and $\bar{I}^{(0,1)}$, both of which are Borel measurable and, therefore, the union is Borel measurable. Furthermore, $\Phi_{s}\left(\left\{e: \ell_{\ell, h, s}^{\prime}(e)=0\right.\right.$ and $\left.\left.d_{\ell, h, s}(e)=1\right\}\right)=\Phi_{s}\left(\overline{E S}^{(0,1)}\right)$ since $\Phi_{s}\left(\bar{I}^{(0,1)}\right)=0$. For $(\ell, 0)$, the corresponding set is the union of $\overline{E S}{ }^{\left(\ell^{\prime}, 0\right)}$, which is Borel measurable, and some subset of $\bar{I}^{\left(\ell^{\prime}, 0\right)}$. By Lemma A8, $\bar{I}^{\left(\ell^{\prime}, 0\right)}$ is a finite set and, therefore, any subset of it is Borel measurable. Hence $\left\{e: \ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}\right.$ and $\left.d_{\ell, h, s}(e)=0\right\}$ is also a union of Borel measurable sets and, therefore, Borel measurable. Furthermore, $\Phi_{s}\left(\left\{e: \ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}\right.\right.$ and $\left.\left.d_{\ell, h, s}(e)=0\right\}\right)=\Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, 0\right)}\right)$ since $\Phi_{s}\left(\bar{I}^{(\ell, 0)}\right)=0$ (being a finite set). The decision rules are optimal by construction. Finally, note that by Lemma A19(iii), we have $\sum_{\ell^{\prime} \in L}\left[\Phi_{s}\left(\overline{E S}^{(\ell, 0)}\right)-\bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, 0\right)}\right]+\left[\Phi_{s}\left(\overline{E S}^{(0,1)}\right)-\right.$ $\left.\bar{x}_{\ell, h, s}^{(0,1)}\right]=0$. By Lemma A19(i), each term in this sum is nonnegative. It follows immediately that $\Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, d\right)}\right)=\bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, d\right)}$. Hence, $\Phi_{s}\left(\left\{e: \ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}\right.\right.$ and $\left.\left.d_{\ell, h, s}(e)=d\right\}\right)=\Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, d\right)}\right)=\bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, d\right)}$.

Next, consider the case where $\Phi_{s}\left(\bar{I}^{(0,1)}\right)=\delta>0$. The assignment has to distribute members $\bar{I}^{(0,1)}$ in such a way that choice probabilities induced by the assignment are the limiting choice probabilities $\bar{x}$. To begin, we first claim that there must exist exactly one action $\left(\hat{\ell}^{\prime}, 0\right)$ for which $\bar{I}^{(0,1)}=\bar{I}^{\left(\hat{\ell}^{\prime}, 0\right)}$. Suppose there were two such actions $\left(\hat{\ell}^{\prime}, 0\right)$ and $\left(\tilde{\ell}^{\prime}, 0\right)$. Then $I_{\ell, h, s}^{\left(\hat{\ell}^{\prime}, 0\right),\left(\tilde{\ell}^{\prime}, 0\right)}(0, \bar{q}, \bar{w}) \supseteq \bar{I}^{(0,1)}$, implying that $I_{\ell, h, s}^{\left(\hat{e}^{\prime}, 0\right),\left(\tilde{\ell}^{\prime}, 0\right)}(0, \bar{q}, \bar{w})$ has strictly positive measure, which, by Lemma A8, is impossible.

Next, we claim that $\Phi_{s}\left(\overline{E S}^{(0,1)}\right)+\Phi_{s}\left(\bar{I}^{(0,1)}\right)+\Phi_{s}\left(\overline{E S}^{\left(\hat{\ell}^{\prime}, 0\right)}\right)=\bar{x}_{\ell, h, s}^{(0,1)}+\bar{x}_{\ell, h, s}^{(\hat{\ell}, 0)}$. To see this, suppose that $\Phi_{s}\left(\overline{E S}^{(0,1)}\right)+\Phi_{s}\left(\bar{I}^{(0,1)}\right)+\Phi_{s}\left(\overline{E S}^{(\hat{\ell}, 0)}\right)<\bar{x}^{(0,1)}+\bar{x}^{(\hat{\ell}, 0)}$. But by Lemma $\mathrm{A} 19($ iii $)$, this implies that $\sum_{\ell^{\prime} \neq \hat{\ell}^{\prime}} \Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, 0\right)}\right)>\sum_{\ell^{\prime} \neq \hat{\ell}^{\prime}} \bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, 0\right)}$, which contradicts the bound in Lemma A19(i). Suppose then that $\Phi_{s}\left(\overline{E S}{ }^{(0,1)}\right)+$ $\Phi_{s}\left(\bar{I}^{(0,1)}\right)+\Phi_{s}\left(\overline{E S}^{\left(\hat{\ell}^{\prime}, 0\right)}\right)>\bar{x}^{(0,1)}+\bar{x}^{(\hat{\ell}, 0)}$. By Lemma A19(iii), $\sum_{\ell^{\prime} \neq \hat{\ell^{\prime}}} \Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, 0\right)}\right)<$ $\sum_{\ell^{\prime} \neq \hat{\ell}^{\prime}} \bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, 0\right)}$. But this implies $\sum_{\ell^{\prime} \neq \hat{\ell}^{\prime}}\left[1-\Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, 0\right)}\right)\right]>\sum_{\ell^{\prime} \neq \hat{\ell}^{\prime}}\left[1-\bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, 0\right)}\right]$, which contradicts the bound in Lemma A19(ii). This establishes the claim.

We can now proceed with the assignment. To ( $\left.\ell^{\prime}, d\right)$ distinct from $(0,1)$ or ( $\hat{\ell}^{\prime}, 0$ ), assign all $e$ such that $e \in \overline{E S}^{\left(\ell^{\prime}, 0\right)}$. Next, partition the set $\bar{I}^{(0,1)}$ into two disjoint (measurable) sets $I_{1}$ and $I_{2}$ such that $\Phi_{s}\left(\overline{E S}^{(\hat{\ell}, 0)} \cup I_{1}\right)=\bar{x}_{\ell, h, s}^{(\hat{\ell}, 0)}$ and $\Phi_{s}\left(\overline{E S}^{(0,1)} \cup I_{2}\right)=\bar{x}_{\ell, h, s}^{(0,1)}$ (since $\Phi_{s}$ is atomless, such a partition exists). Finally, assign in any manner all remaining elements provided that each element is as-
signed to an action only once and an element is assigned to an action ( $\ell^{\prime}, d$ ) only if it belongs to $\bar{I}^{\left(\ell^{\prime}, d\right)}$.

These assignments assign each $e$ to exactly one action $(\ell, d)$ and, therefore, imply decision rules $\ell_{\ell, h, s}^{\prime}(e), d_{\ell, h, s}(e)$ and, via the household budget constraint, $c_{\ell, h, s}(e)$. The measurability of these decision rules can be established by expressing the sets $\left\{e: \ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}\right.$ and $\left.d_{\ell, h, s}(e)=d\right\}$ as unions of measurable sets as was done for the first case. By construction, the decision rules are optimal. Finally, note that by our earlier claim, $\sum_{\ell^{\prime} \neq \hat{\ell}^{\prime}}\left[\Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, 0\right)}\right)-\bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, 0\right)}\right]=0$. By Lemma A19(i), each term in this sum is nonnegative and, therefore, $\Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, 0\right)}\right)=\bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, 0\right)}$ for $\ell^{\prime} \neq \hat{\ell}^{\prime}$. Hence, $\Phi_{s}\left(\left\{e: \ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}\right.\right.$ and $d_{\ell, h, s}(e)=$ $d\})=\Phi_{s}\left(\overline{E S}^{\left(\ell^{\prime}, d\right)}\right)=\bar{x}_{\ell, h, s}^{\left(\ell^{\prime}, d\right)}$, where the first equality uses the fact that the set $\left\{e: \ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}\right.$ and $\left.d_{\ell, h, s}(e)=d\right\}$ differs from the set $\overline{E S}^{\left(\ell^{\prime}, d\right)}$ by at most a finite set of points. Finally, by construction $\Phi_{s}\left(\left\{e: \ell_{\ell, h, s}^{\prime}(e)=\hat{\ell}^{\prime}\right.\right.$ and $\left.\left.d_{\ell, h, s}(e)=0\right\}\right)=$ $\bar{x}_{\ell, h, s}^{\left(\hat{\ell}^{\prime}, 0\right)}$ and $\Phi_{s}\left(\left\{e: \ell_{\ell, h, s}^{\prime}(e)=0\right.\right.$ and $\left.\left.d_{\ell, h, s}(e)=1\right\}\right)=\bar{x}_{\ell, h, s}^{(0,1)}$.
Q.E.D.

We now establish the analogues of Lemmas A12 and A15 for the sequence $\left\{\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right\}$ converging to $(0, \bar{q}, \bar{w})$.

LEMMA A21: Let $\bar{\pi}_{(0, \bar{q}, \bar{w})}$ be the invariant distribution of the Markov chain $\bar{P}$ defined by the decision rules $\left(\ell_{\ell, h, s}^{\prime}(e), d_{\ell, h, s}(e)\right)$. Then the sequence $\pi_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}$ converges weakly to $\bar{\pi}_{(0, \bar{q}, \bar{w})}$.

Proof: We apply Theorem 12.13 in Stokey and Lucas (1989). Part (a) of the requirements follows since $\mathcal{L}$ is compact. Part (b) requires that $P_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}^{*}\left[\left(\ell_{n}, h_{n}, s_{n}\right), \cdot\right]$ converge weakly to $\bar{P}_{(0 ; \bar{q}, \bar{w})}[(\ell, h, s), \cdot]$ as $\left(\ell_{n}, h_{n}, s_{n}\right.$, $\left.\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right) \rightarrow(\ell, h, s, 0, \bar{q}, \bar{w})$. By Theorem 12.3 d of Stokey and Lucas (1989), it is sufficient to show that for any ( $\ell^{\prime}, h^{\prime}, s^{\prime}$ ),

$$
\lim _{k \rightarrow \infty} P_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}^{*}\left[\left(\ell_{n}, h_{n}, s_{n}\right),\left(\ell^{\prime}, h^{\prime}, s^{\prime}\right)\right]=\bar{P}_{(0 ; \bar{q}, \bar{w})}\left[(\ell, h, s),\left(\ell^{\prime}, h^{\prime}, s^{\prime}\right)\right] .
$$

By definition,

$$
\begin{aligned}
& P_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}^{*}\left[(\ell, h, s),\left(\ell^{\prime}, h^{\prime}, s^{\prime}\right)\right] \\
& =\left[\rho \int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{\prime *}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}\right\}} H_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}^{*}\left(\ell, h, s, e, h^{\prime}\right) \Phi(d e \mid s) \Gamma\left(s, s^{\prime}\right)\right. \\
& \left.\quad+(1-\rho) \int_{E} \mathbf{1}_{\left.\left\{\ell^{\prime}, h^{\prime}\right)=(0,0)\right\}} \psi\left(s^{\prime}, d e^{\prime}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& H_{(q, w)}^{*}\left(\ell, h, s, e, h^{\prime}=1\right)= \begin{cases}1, & \text { if } d_{\ell, h, s}^{*}(e ; q, w)=1, \\
\lambda, & \text { if } d_{\ell, h, s}^{*}(e ; q, w)=0 \text { and } h=1, \\
0, & \text { if } d_{\ell, h, s}^{*}(e ; q, w)=0 \text { and } h=0,\end{cases} \\
& H_{(q, w)}^{*}\left(\ell, h, s, e, h^{\prime}=0\right)= \begin{cases}0, & \text { if } d_{\ell, h, s}^{*}(e ; q, w)=1, \\
1-\lambda, & \text { if } d_{\ell, h, s}^{*}(e ; q, w)=0 \text { and } h=1, \\
1, & \text { if } d_{\ell, h, s}^{*}(e ; q, w)=0 \text { and } h=0\end{cases}
\end{aligned}
$$

By construction, the Markov chain $\bar{P}$ is

$$
\begin{aligned}
& \bar{P}\left[(\ell, h, s),\left(\ell^{\prime}, h^{\prime}, s^{\prime}\right)\right] \\
& =\left[\rho \int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}\right\}} H_{(0, \bar{q}, \bar{w})}^{*}\left(\ell, h, s, e, h^{\prime}\right) \Phi(d e \mid s) \Gamma\left(s, s^{\prime}\right)\right. \\
& \left.\quad+(1-\rho) \int_{E} \mathbf{1}_{\left.\left\{\ell^{\prime}, h^{\prime}\right)=(0,0)\right\}} \psi\left(s^{\prime}, d e^{\prime}\right)\right]
\end{aligned}
$$

where $H_{(0, \bar{q}, \bar{w})}^{*}\left(\ell, h, s, e, h^{\prime}\right)$ is determined by $d_{\ell, h, s}(e)$.
Since $\mathcal{L}$ is finite, without loss of generality consider the sequence ( $\alpha_{m}, q_{m}^{*}$, $\left.w_{m}^{*}\right) \rightarrow(0, \bar{q}, \bar{w})$. Since the second term on the right-hand side is independent of ( $\alpha, q, w$ ), it is sufficient to consider the limiting behavior of the integral

$$
\int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{\prime *}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}\right\}} H_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}^{*}\left(\ell, h, s, e, h^{\prime}\right) \Phi(d e \mid s)
$$

For $h=0$ and $h^{\prime}=0$, this integral in $P^{*}$ is

$$
\int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{*}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}, d_{\ell, h, s}^{*}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=0\right\}} \Phi(d e \mid s)=x_{(\ell, 0, s)}^{\left(\ell^{\prime}, 0\right)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)
$$

and in $\bar{P}$ it is

$$
\begin{aligned}
& \int_{E} \mathbf{1}_{\left\{\ell_{\ell, 0, s}^{\prime}(e)=\ell^{\prime}\right\}} H_{(0, \bar{q}, \bar{w})}^{*}(\ell, 0, s, e, 0) \Phi(d e \mid s) \\
& \quad=\int_{E} \mathbf{1}_{\left\{\ell_{\ell, 0, s}^{\prime}(e)=\ell^{\prime}, d_{\ell, 0, s}(e)=0\right\}} \Phi(d e \mid s)
\end{aligned}
$$

By Lemma A20, we have

$$
\lim _{k \rightarrow \infty} x_{(\ell, 0, s)}^{\left(\ell^{\prime}, 0\right)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\bar{x}_{\ell \ell, 0, s)}^{\left(\ell^{\prime}, 0\right)}=\int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}, d_{\ell, h, s}(e)=0\right\}} \Phi(d e \mid s) .
$$

Hence

$$
\lim _{k \rightarrow \infty} P_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}^{*}\left[(\ell, 0, s),\left(\ell^{\prime}, 0, s^{\prime}\right)\right]=\bar{P}_{(0 ; \bar{q}, \bar{w})}\left[(\ell, 0, s),\left(\ell^{\prime}, 0, s^{\prime}\right)\right] .
$$

The remaining cases can be dealt with in exactly the same way. We simply note here which choice probabilities are involved in each case and omit the details.

For $h=0$ and $h^{\prime}=1$, the integral in $P^{*}$ is

$$
\begin{aligned}
& \int_{E} \mathbf{1}_{\left\{\ell_{\ell, 0, s}^{\prime *}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}, \alpha_{\ell, 0, s}^{*}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=1\right\}} \Phi(d e \mid s) \\
& \quad=x_{\ell \ell, 0, s)}^{\left(\ell^{\prime}, 1\right)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)
\end{aligned}
$$

For $h=1$ and $h^{\prime}=0$, the integral in $P^{*}$ is

$$
\begin{aligned}
& \left.(1-\lambda) \int_{E} \mathbf{1}_{\left\langle\ell_{\ell, 1, s}^{*}\right.}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}, d_{\ell, 1, s}^{*}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=0\right\} \\
& \quad=x_{(\ell, 0, s)}^{\left(\ell^{\prime}, 0\right)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)
\end{aligned}
$$

For $h=1$ and $h^{\prime}=1$, the integral in $P^{*}$ is

$$
\begin{aligned}
\int_{E} & {\left[\mathbf{1}_{\left\{\ell_{\ell, 1, s}^{\prime *}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}, \ell_{\ell, 1, s}^{*}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=1\right\}}\right.} \\
& \left.+\lambda \mathbf{1}_{\left\{\ell_{\ell, 1, s}^{\prime *} 1\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}, d_{\ell, 1, s}^{*}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=0\right\}}\right] \Phi(d e \mid s) \\
& =\left[x_{\ell \ell, 1, s)}^{\left(\ell^{\prime}, 1\right)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)+\lambda x_{(\ell, 1, s)}^{\left(\ell^{\prime}, 0\right)}\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)\right]
\end{aligned}
$$

Q.E.D.

LEMMA A23: Let $K_{(0, \bar{q}, \bar{w})} \equiv \sum_{\left(\ell^{\prime}, s\right) \in L \times S} \ell^{\prime} \bar{q}_{\ell^{\prime}, s} \int \mathbf{1}_{\left\{\ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}\right\}} \bar{\mu}_{(0, \bar{q}, \bar{w})}(d \ell, d h, s$, $d e), N_{(0, \bar{q}, \bar{w})} \equiv \int e d \bar{\mu}_{(0, \bar{q}, \bar{w})}$, and $p_{(0, \bar{q}, \bar{w})}\left(\ell^{\prime}, s\right) \equiv \int d_{\ell^{\prime}, 0, s^{\prime}}\left(e^{\prime}\right) \Phi\left(e^{\prime} \mid s^{\prime}\right) \Gamma\left(s ; d s^{\prime}\right) d e^{\prime}$. Then (i) $\lim _{m} K\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=K_{(0, \bar{q}, \bar{w})}$, (ii) $\lim _{m} N\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=N_{(0, \bar{q}, \bar{w})}$, and (iii) $\lim _{m} p_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}\left(\ell^{\prime}, s\right)=p_{(0, \bar{q}, \bar{w})}\left(\ell^{\prime}, s\right)$.

Proof: To prove (i), note that we know by Lemma A13 that

$$
\begin{aligned}
& \int_{L \times H \times E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{* *}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}\right\}} \mu_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}(d \ell, d h, s, d e) \\
& \quad=\sum_{\ell, h} \int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{* *}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}\right\}} \Phi(d e \mid s) \pi_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}(\ell, h, s)
\end{aligned}
$$

By Lemma A20,

$$
\begin{aligned}
& \lim _{n_{k} \rightarrow \infty} \int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{\prime *}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}, d_{\ell, h, s}^{*}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=d\right\}} \Phi(d e \mid s) \\
& \quad=\int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{\prime}(e)=\ell^{\prime}, d_{\ell, h, s}(e)=d\right\}} \Phi(d e \mid s)
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int_{E} \mathbf{1}_{\left.\ell_{\ell, h, s, s}^{*}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}\right\}} \Phi(d e \mid s) \\
& \quad=\sum_{d \in\{0,1\}} \int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{*}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}, d_{\ell, h, s}^{*}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=d\right\}} \Phi(d e \mid s),
\end{aligned}
$$

then

$$
\begin{aligned}
& \lim _{n_{k} \rightarrow \infty} \int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{\prime \prime}\left(e ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)=\ell^{\prime}\right\}} \Phi(d e \mid s) \\
& \quad=\sum_{d \in\{0,1\}} \int_{E} \mathbf{1}_{\left\{\ell_{, h, s}^{\prime}, s^{\prime}(e)=\ell^{\prime}, d_{\ell, h, s}(e)=d\right\}} \Phi(d e \mid s)=\int_{E} \mathbf{1}_{\left\{\ell_{\ell, h, s}^{\prime}(e)=e^{\prime}\right\}} \Phi(d e \mid s) .
\end{aligned}
$$

Next, by Lemma A21,

$$
\lim _{n \rightarrow \infty} \pi_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}(\ell, h, s)=\pi_{(0, \bar{q}, \bar{w})}(\ell, h, s)
$$

Therefore, $\lim _{n_{k} \rightarrow \infty} K_{\left(\alpha_{m}, q_{m}^{*}, w_{m}^{*}\right)}=K_{(0, \bar{q}, \bar{w})}$. To prove (ii), simply apply Lemma A21. To prove (iii), note that by Lemma A20,

$$
\lim _{n_{k} \rightarrow \infty} \int_{E} d_{\ell^{\prime}, 0, s^{\prime}}^{*}\left(e^{\prime} ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right) \Phi\left(d e^{\prime} \mid s^{\prime}\right)=\int_{E} d_{\ell^{\prime}, 0, s^{\prime}}\left(e^{\prime}\right) \Phi\left(d e^{\prime} \mid s^{\prime}\right) .
$$

Thus,

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \int_{E \times S} d_{\ell^{\prime}, 0, s^{\prime}}^{*}\left(e^{\prime} ; \alpha_{m}, q_{m}^{*}, w_{m}^{*}\right) \Phi\left(d e^{\prime} \mid s^{\prime}\right) \Gamma\left(s ; d s^{\prime}\right) \\
& \quad=\int_{E \times S} d_{\ell^{\prime}, 0, s^{\prime}}\left(e^{\prime}\right) \Phi\left(d e^{\prime} \mid s^{\prime}\right) \Gamma\left(s ; d s^{\prime}\right)
\end{align*}
$$

Federal Reserve Bank of Philadelphia, Research, 10 Independence Mall, Philadelphia, PA 19106, U.S.A.; satyajit.chatterjee@phil.frb.org,

Dept. of Economics, University of Texas at Austin, Mail Code C 3100, Austin, TX 78712, U.S.A.; corbae@eco.utexas.edu,

Dept. of Economics, University of Illinois at Urbana-Champaign, 1206 South Sixth St., 330 Wohlers Hall, Champaign, IL 61820, U.S.A.; makoto@uiuc.edu, and
University of Pennsylvania, CAERP, CEPR, NBER, and Dept. of Economics, University of Minnesota, 1035 Heller Hall, 271-19th Ave. South, Minneapolis, MN 55455, U.S.A.; vr0j@econ.upenn.edu.

## REFERENCE

Stokey, N. L., and R. E. Lucas, Jr. (1989): Recursive Methods in Economic Dynamics. Cambridge, MA: Harvard University Press. With collaboration of Edward C. Prescott. [9]

