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APPENDIX B: GENERALIZED PREFERENCE SHOCKS

IN THIS APPENDIX we generalize the stochastic process for preference shocks
as follows. As before, each investor receives a preference shock with Poisson
arrival rate δ, and this process is independent across investors. But now we let
Π = [πij] denote an I × I matrix and assume that conditional on receiving a
preference shock, an investor with preference type i draws preference type j

with probability πij > 0, with
∑I

j=1 πij = 1 for all i ∈ X. The formulation studied
in the body of the paper corresponds to the i.i.d. case, πij = πj for all i.

Equilibrium

The investor’s value function Vi(a� t) still satisfies (1) and the dealer’s value
function is unchanged. The bargaining outcome is also unchanged, so Vi(a� t)
also satisfies (5). The following lemma generalizes Lemma 1.

LEMMA 5: An investor with preference type i and asset holdings a who readjusts
his asset position at time t solves

max
a′≥0

[ūi(a
′)− q(t)a′]�(39)

where

ūi(a) =
∞∑
k=0

I∑
j=1

μkπ
(k)
ij uj(a) for i = 1� � � � � I�(40)

q(t)= (r + κ)

[
p(t)− κ

∫ ∞

0
e−(r+κ)sp(t + s)ds

]
�(41)

Πk = [π(k)
ij ] for k ≥ 1, π(0)

ij = I{j=i}, and μk = ( r+κ
r+κ+δ

)( δ
r+κ+δ

)k.

PROOF: As before, Vi(a� t) satisfies (25), so the problem of an investor with
preference shock i who gains access to the market at time t is given by (27) with
Ūi(a) as in (26). Notice that (29) is unchanged, so we only have to calculate
Ūi(a). Equation (26) can be written as

(r + κ+ δ)Ūi(a) = ui(a)+ δ

I∑
j=1

πijŪj(a) for i = 1� � � � � I
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or, equivalently,

(
I − δ

r + κ+ δ
Π

)
ū = r + κ

r + κ+ δ
u�(42)

where I is the I × I identity matrix, and ū and u are I × 1 vectors with ith en-
try ūi(a) ≡ (r + κ)Ūi(a) and ui(a), respectively. Since limk→∞( δ

r+κ+δ
Π)k = 0,

(I− δ
r+κ+δ

Π)−1 exists,
∑∞

k=0(
δ

r+κ+δ
Π)k converges, and (I− δ

r+κ+δ
Π)−1 =∑∞

k=0(
δ

r+κ+δ
Π)k. Thus

ū =
∞∑
k=0

(
δ

r + κ+ δ
Π

)k
r + κ

r + κ+ δ
u�

which can be written as in (40). Substitute Ūi(a) = ūi(a)/(r + κ) and (29)
into (27), and multiply through by (r + κ) to obtain the formulation of the
investor’s problem stated in the lemma. Q.E.D.

Intuitively, ūi(a)/(r + κ) is the expected discounted utility to an investor
with preference type i from holding a until the next (effective) time when he
readjusts his holdings. We can write

ūi(a) =
∞∑
k=0

μkū
(k)
i (a)�

where μk is the probability the investor receives k preference shocks before
his next effective contact with a dealer, and

ū(k)
i (a) ≡

I∑
j=1

π(k)
ij uj(a)(43)

is his expected utility conditional on preference type i and conditional on his
receiving k preference shocks over that time period. With this generalized
expression for ūi(a), a choice of asset holdings, ai(t), still satisfies (9), and
Lemma 2 and (11) remain unchanged.

The law of motion for the measure of investors with preference type i is

ṅi(t)= δ

I∑
j=1

πjinj(t)− δni(t)�
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which implies n(t) = n(0)eδ(Π−I)t , where I is the I × I identity matrix and n(t)
denotes the 1 × I vector with ith element ni(t). Thus

ni(t)=
I∑

j=1

ρji(t)nj(0)�(44)

where ρji(t) denotes the jith element of the matrix eδ(Π−I)t and represents
the transition probability for an investor from preference type j to preference
type i in a period of length t. The clearing condition in the interdealer market
is still (13), but with ni(t) given by (44). With this, it is straightforward to show
that Lemma 3 generalizes as follows.

LEMMA 6: The measure of investors across individual states at time t satis-
fies (15) for all (A� I) ∈ Σ, where

n0
ji(A� t)= e−αtρji(t)H0(A� {j})�(45)

nji(τ� t)= αe−ατρji(τ)nj(t − τ)�(46)

An equilibrium is a time path 〈{ai(t)}� q(t)�p(t)� {φi(a� t)}�Ht〉 that satis-
fies (9) (with ūi(a) given by (40)), (14), (11), (13) (with ni(t) given by (44)),
and (15) (with n0

ji(A� t) and nji(τ� t) given by (45) and (46), respectively). The
proof of Proposition 1 can be immediately extended to show that there ex-
ists a unique equilibrium. In the limiting case α → ∞, we have ūi(a) → ui(a)
(from (42)) and u′

i[ai(t)] ≤ q(t) = rp(t) − ṗ(t) for all i (from (8) and (9)).
Also, q(t) → q∗(t), where q∗(t) solves

∑
i∈I+

t
ni(t)u

′−1
i [q∗(t)] = A and I +

t =
{i ∈ X :ai(t) > 0} (from (13)), and φi(a� t) → 0 for all a, i, and t (from (11)).
Finally, α → ∞ implies that every investor holds his desired asset position at
all times. Thus, as before, the equilibrium fees, asset price, and distribution of
asset holdings converge to their Walrasian counterparts as frictions vanish.

Efficiency

The planner’s problem is

max
{ai(t)}

∫ ∞

0

α

r + α

I∑
i=1

ûi[ai(t)]ni(t)e
−rt dt

subject to
∑I

i=1 ni(t)ai(t) ≤ A, where ni(t) is given by (44) and ûi(a) =∑∞
k=0 μ̂kū

(k)
i , with μ̂k = ( r+α

r+α+δ
)( δ

r+α+δ
)k. The first-order necessary and suffi-

cient conditions are (a) û′
i[ai(t)] ≤ λ(t) for i = 1� � � � � I (with “=” if ai(t) > 0),

where λ(t) is the multiplier on the resource constraint, and (b)
∑I

i=1 ni(t) ×
a∗
i [λ(t)] = A, where a∗

i [λ(t)] is the ai(t) that satisfies (a). Notice that μ̂k = μk,
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and hence ûi = ūi if and only if η = 0. Hence, if we set q(t) = λ(t) we find that
the competitive allocation {ai(t)} coincides with the efficient allocation {a∗

i (t)}
if and only if η= 0.

Steady State

Our assumptions ensure that there exists a unique row vector π∗ = [π∗
i ]

such that π∗(Π − I) = 0 with
∑I

i=1 π
∗
i = 1 and that limt→∞ ρji(t) = π∗

i . Hence,
(44) implies limt→∞ ni(t) = π∗

i for all i. The generalization of the second
part of Proposition 1 is straightforward. The equilibrium allocations and
prices 〈{ai(t)}� q(t)�p(t)� {φi(a� t)}�Ht〉 converge to the unique steady-state
allocations and prices 〈{ai}� q�p� {φi(a)}�H〉 that satisfy p = q/r, ū′

i(ai) ≤ q

(“=” if ai > 0, with ūi as in (40)),
∑I

i=1 π
∗
i ai = A, φi(a) as in (20), and

limt→∞ Ht(A� I) = H(A� I), where H({aj}� {i}) = π∗
j

∫ ∞
0 αe−ατρji(τ)dτ and

H(A� I)= 0 for all (A� I) ∈ Σ such that
⋃I

j=1{aj} ∩ A = ∅.

Asset Positions, Prices, and Trade Volume

Focus on the steady state and assume u′
i(0) = ∞ and u′

i(∞) = 0 for each i.
An investor’s asset choice satisfies

∞∑
k=0

μkū
(k)′
i (ai)= rp�(47)

As before, when an investor with preference type i chooses his asset holdings,
he evaluates his expected marginal utility from holding the asset until the next
trading time. If he is hit by k preference shocks over the holding period, his
expected marginal utility from ai is ū(k)′

i (ai). Since the number of preference
shocks he experiences is random, the investor also takes expectations over
ū(k)′
i (ai) using the (discounting-adjusted) probability distribution of preference

shocks, {μk}∞
k=0.

Let ai = gi(κ;p) denote the choice of asset holdings characterized by (47).
Then

∂gi(κ;p)
∂κ

=

∞∑
k=0

(
δ

r + κ
− k

)
μkū

(k)′
i (ai)

−ū′′
i (ai)(r + κ+ δ)

�(48)

which generalizes (23), has the sign of the numerator. From (47), notice that κ
only affects the probability distribution {μk}; intuitively, a marginal increase in
κ increases the probability of k preference shocks for k< δ

r+κ
and decreases it

for k > δ
r+κ

. This means that an increase in κ induces the investor to put more
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weight on ū(k)
i ’s with smaller k. If shocks are i.i.d. as in the body of the paper

(i.e., πij = πj for all i), then ū(0)′
i (ai) = u′

i(ai) and ū(k)′
i (ai) = ∑I

j=1 πju
′
j(ai) for

all k ≥ 1, so in terms of preference shocks over the holding period, there are
just two relevant events: either none hits or at least one hits. An increase in κ
raises the probability of the former and reduces the probability of the latter,
so it makes an investor with preference type i choose a larger asset position if
and only if u′

i(ai) >
∑I

j=1 πju
′
j(ai). Analogously, according to (48), in this more

general formulation an investor with preference type i increases his asset de-
mand in response to an increase in κ if and only if u′

i(ai) >
∑∞

k=1(
δ

r+κ
− k) ×

μk−1ū
(k)′
i (ai). Since this condition may seem intricate, we provide simpler con-

ditions for some special cases.

PROPOSITION 6: (i) Suppose the sequence {ū(k)′
i (ai)}∞

k=0 is monotone in k.
Then ∂gi(κ;p)/∂κ > 0 if and only if

u′
i(ai) >

I∑
j=1

π∗
j u

′
j(ai)�(49)

(ii) Consider the frictionless limit, κ → ∞. Then

∂gi(κ;p)
∂

(
1

r + κ

) > 0

if and only if

u′
i(ai) <

I∑
j=1

πiju
′
j(ai)�(50)

(iii) Consider the case I = 2. Then for i� j ∈ {1�2} (with j �= i),

ūi(a) = r + κ+ δπji

r + κ+ δ(π12 +π21)
ui(a)+ δπij

r + κ+ δ(π12 +π21)
uj(a)(51)

and ∂gi(κ;p)/∂κ > 0 if and only if u′
i(ai) > u′

j(ai).

PROOF: (i) From (48), ∂gi(κ;p)/∂κ has the sign of
∑∞

k=0(
δ

r+κ
−k)μkū

(k)′
i (ai),

so we sign the latter. Let Z̄ = Z ∩ (−∞� δ
r+κ

), where Z denotes the set of in-
tegers, and define k̄ = maxk∈Z̄ k. Suppose that (49) holds. Then {ū(k)′

i }∞
k=0 is a

decreasing sequence with ū(0)′
i (ai) = u′

i(ai) >
∑I

j=1 π
∗
j u

′
j(ai) = limk→∞ ū(k)′

i (ai).
Since ( δ

r+κ
−k)μk > 0 for k < k̄+ 1 and ( δ

r+κ
−k)μk ≤ 0 for k ≥ k̄+ 1, the fact
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that ū(k+1)′
i ≤ ū(k)′

i for all k implies

k̄∑
k=0

(
δ

r + κ
− k

)
μkū

(k̄)′
i (ai)+

∞∑
k=k̄+1

(
δ

r + κ
− k

)
μkū

(k̄+1)′
i (ai)

≤
∞∑
k=0

(
δ

r + κ
− k

)
μkū

(k)′
i (ai)�

Since
∑∞

k=0(
δ

r+κ
− k)μk = 0, the above inequality can be written as

0 ≤ [
ū(k̄)′
i (ai)− ū(k̄+1)′

i (ai)
] k̄∑

k=0

(
δ

r + κ
− k

)
μk(52)

≤
∞∑
k=0

(
δ

r + κ
− k

)
μkū

(k)′
i (ai)�

If ū(k̄+1)′
i (ai) < ū(k̄)′

i (ai), then the first inequality in (52) is strict. Alternatively,
if ū(k̄+1)′

i (ai) = ū(k̄)′
i (ai), then the second inequality is strict, since ū(0)′

i (ai) >

limk→∞ ū(k)′
i (ai), which implies that

k̄∑
k=0

(
δ

r + κ
− k

)
μkū

(k̄)′
i (ai) <

k̄∑
k=0

(
δ

r + κ
− k

)
μkū

(k)′
i (ai)

or
∞∑

k=k̄+1

(
δ

r + κ
− k

)
μkū

(k̄+1)′
i (ai) <

∞∑
k=k̄+1

(
δ

r + κ
− k

)
μkū

(k)′
i (ai)

must hold. In any case, ∂gi(κ;p)/∂κ > 0 follows. Conversely, suppose that

∞∑
k=0

(
δ

r + κ
− k

)
μkū

(k)′
i (ai) > 0�

but (49) does not hold, that is, u′
i(ai) ≤ ∑I

j=1 π
∗
j u

′
j(ai). Then {ū(k)′

i }∞
k=0 is an

increasing sequence and

∞∑
k=0

(
δ

r + κ
− k

)
μkū

(k)′
i (ai)

≤
k̄∑

k=0

(
δ

r + κ
− k

)
μkū

(k̄)′
i (ai)+

∞∑
k=k̄+1

(
δ

r + κ
− k

)
μkū

(k̄+1)′
i (ai)�
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This leads to
∞∑
k=0

(
δ

r + κ
− k

)
μkū

(k)′
i (ai)

≤ [
ū(k̄)′
i (ai)− ū(k̄+1)′

i (ai)
] k̄∑

k=0

(
δ

r + κ
− k

)
μk ≤ 0�

a contradiction.
(ii) Let κ = (r+κ)−1 and differentiate (47) with respect to κ (with p given)

to find

∂gi

(
1
κ

− r;p
)

∂κ

=

1
(1 + δκ)κ

∞∑
k=0

(k− δκ)

(
1

1 + δκ

)(
δκ

1 + δκ

)k

ū(k)′
i (ai)

−ū′′
i (ai)

�

The numerator can be written as

δ

(
1

1 + δκ

)2[1 − δκ

1 + δκ
ū(1)′
i (ai)− ū(0)′

i (ai)+O(κ)

]
�

where O(κ) = ∑∞
k=2(k − δκ)( 1

1+δκ
)k(δκ)k−1ū(k)′

i (ai). Since limκ→0 O(κ) = 0,
we have

lim
κ→0

∂gi

(
1
κ

− r;p
)

∂κ
= δ[ū(1)′

i (ai)− ū(0)′
i (ai)]

−ū′′
i (ai)

�

Finally, ū(0)′
i (ai)= u′

i(ai) and ū(1)′
i (ai)= ∑I

j=1 πiju
′
j(ai) imply that

lim
κ→∞

∂gi(κ;p)
∂

(
1

r + κ

) > 0

if and only if (50) holds.
(iii) Let I = 2. For i = 1, (40) reduces to

ū1(a) =
(

r + κ

r + κ+ δ

) ∞∑
k=0

(
δ

r + κ+ δ

)k

× [
π(k)

11 u1(a)+ (
1 −π(k)

11

)
u2(a)

]
�
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where

π(k)
11 = π21

π12 +π21
+ π12

π12 +π21
(1 −π12 −π21)

k�

since π12 +π21 > 0. Collect terms to arrive at (51) for i = 1. The expression for
i = 2 is obtained similarly. The first-order condition (47) specializes to

r + κ+ δπji

r + κ+ δ(π12 +π21)
u′
i(ai)+ δπij

r + κ+ δ(π12 +π21)
u′
j(ai)= rp�

This can be differentiated with respect to κ (for fixed p) to obtain

∂gi(κ;p)
∂κ

= δπij[u′
i(ai)− u′

j(ai)]
−ū′′

i (ai)[r + κ+ δ(π12 +π21)]2
�

This concludes the proof. Q.E.D.

For the i.i.d. case analyzed in the body of the paper, we found that if trad-
ing frictions decrease, an investor increases his asset holdings if his current
marginal valuation exceeds his expected marginal valuation over the expected
holding period (condition (23)). Proposition 6 extends this result and shows
that the key insight does not rely on the preference shocks being i.i.d. For the
case of multiplicative preference shocks we analyzed in Section 4, for example,
we have ūi(a) = ε̄iu(a), with

ε̄i =
∞∑
k=0

μkε̄
(k)
i(53)

and ε̄(k)
i = ∑I

j=1 π
(k)
ij εj . Note that limk→∞ ε̄(k)

i = ∑I

j=1 π
∗
j εj ≡ ε̄. Part (i) of

Proposition 6 establishes that if this convergence is monotonic for i, then
an investor with preference type i increases his asset holdings if and only if
εi > ε̄. This is essentially the same condition we derived in the i.i.d. case where
π(k)

ij = π∗
j for all i and all k ≥ 1. For this multiplicative case, the condition in

part (ii) of the proposition reduces to εi > ε̄(1)
i , and if we let δij ≡ δπij for i �= j

and δii ≡ δ(1 −πii), it can be written as

εi >

∑
j �=i

δijεj

∑
j �=i

δij

�(54)

Proposition 6 parallels Proposition 2 in Gârleanu (2009). Notation aside,
(54) is identical to the condition in part (i) of his Proposition 2. The monotonic-
ity condition in part (ii) of his proposition plays the role of the monotonicity
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condition in part (i) of ours. The two-valuation case in part (iii) of his proposi-
tion parallels part (iii) in ours.

An implication of the i.i.d. case that does not generalize is that if εi < εj

and the agent with preference type i increases his asset holdings in response to
an increase in κ, then so does the agent with preference type j.23 The robust
insight instead is that an investor whose current marginal valuation is large—
in the sense that it exceeds his expected marginal valuation over the expected
holding period—increases his asset holdings if κ increases.

The following proposition characterizes the equilibrium price for a particu-
lar class of utility functions and generalizes the discussion that followed Propo-
sition 5. Just as in the i.i.d. case, this price is independent of frictions as summa-
rized by κ if the individual asset demand is linear in the idiosyncratic valuation
(as is the case with logarithmic preferences).

PROPOSITION 7: Let ui(a) = εia
1−σ/(1 − σ) with σ > 0. Then

p=

(
I∑

i=1

π∗
i ε̄

1/σ
i

)σ

rAσ
�

where ε̄i = ∑∞
k=0

∑I

j=1 μkπ
(k)
ij εj . If ui(a) = εi lna, then

p=

I∑
j=1

π∗
j εj

rA
�

PROOF: Since ui(a) = εiu(a), we have ūi(a) = ε̄iu(a) with ε̄i given by (53),
so (47) becomes ε̄iu

′(ai) = rp. The parametric assumption implies ai =
(ε̄i/(rp))

1/σ so the steady-state market-clearing condition,
∑I

i=1 π
∗
i ai = A,

yields the first expression for p. For σ = 1, p = (rA)−1
∑I

i=1 π
∗
i ε̄i, where

I∑
i=1

π∗
i ε̄i =

I∑
j=1

∞∑
k=0

I∑
i=1

π∗
i π

(k)
ij μkεj =

I∑
j=1

π∗
j εj�

Q.E.D.

As in the i.i.d. case, it is difficult to sign the general equilibrium effects of α
and η on trade volume in general. We provide analytical results for three cases.

23For example, with a more general process for preference shocks it is possible to have a para-
metrization {εi�πij}Ii�j=1 with

∑I
k=1 πikεk < εi < εj <

∑I
k=1 πjkεk, which according to part (ii) of

Proposition 6 implies that, near the frictionless limit, the high valuation investor (the one with
preference type εj) will reduce his asset holdings and the low valuation investor will increase his
asset holdings if κ increases.
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The first has I = 2 and a general preference specification, the second considers
a market close to the frictionless limit, and the third considers a market with
severe trading frictions.

PROPOSITION 8: (i) Let ui(a) = εia
1−σ/(1 − σ) with σ > 0 and assume that

I = 2. Trade volume increases with κ.
(ii) Let ui(a) = εi lna and suppose that ε̄j > ε̄i implies εj − ∑I

k=1 πjkεk >

εi − ∑I

k=1 πikεk for all i, j ∈ X
2. Trade volume decreases with η in the frictionless

limit (as κ → ∞).
(iii) Trade volume approaches zero as r + κ → 0.

PROOF: (i) With I = 2,

n12 = n21 = δπ12π21

[α+ δ(π12 +π21)](π12 +π21)
�

so trade volume is

V = αδπ12π21

[α+ δ(π12 +π21)](π12 +π21)
(a2 − a1)�

The preference specification together with (51) implies ai = (ε̄i/(rp))
1/σ for

i = 1�2, where

ε̄1 = r + κ+ δπ21

r + κ+ δ(π12 +π21)
ε1 + δπ12

r + κ+ δ(π12 +π21)
ε2

and

ε̄2 = r + κ+ δπ12

r + κ+ δ(π12 +π21)
ε2 + δπ21

r + κ+ δ(π12 +π21)
ε1�

Since rp = (π∗
1 ε̄

1/σ
1 +π∗

2 ε̄
1/σ
2 )σ/Aσ ,

ai = ε̄1/σ
i

π∗
1 ε̄

1/σ
1 +π∗

2 ε̄
1/σ
2

A�

Differentiate this expression with respect to κ to find that ∂a2/∂κ has the sign
of (ε2 − ε1) and ∂a1/∂κ has the opposite sign. Since ε1 < ε2, da1/dκ < 0 <
da2/dκ. To find dV

dκ
, we consider two cases. (a) An increase in κ caused by a

decrease in η (keeping α constant). For this case,

dV
dκ

= da2

dκ
− da1

dκ
> 0�
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(b) An increase in κ caused by an increase in α, which implies

dV
dκ

=
[

δ

α+ δ(π12 +π21)

]2

π12π21(a2 − a1)

+ αδπ12π21

[α+ δ(π12 +π21)](π12 +π21)

(
da2

dκ
− da1

dκ

)
> 0�

(ii) Let κ = (r + κ)−1. Under ui(a) = εi lna, (47) implies ai = ε̄i/(rp),
where ε̄i = ∑∞

k=0 μkε̄
(k)
i with ε̄(k)

i = ∑I

j=1 π
(k)
ij εj and μk = ( 1

1+δκ
)( δκ

1+δκ
)k. Dif-

ferentiate with respect to κ to find

dai

dκ
= 1

(1 + δκ)κ

∞∑
k=0

(k− δκ)μkε̄
(k)
i �(55)

We know from Proposition 7 that under this preference specification the equi-
librium price is independent of κ, so (55) captures the general equilibrium
effect of κ on ai. Let κ → 0 as in part (ii) of the proof of Proposition 6 to find

lim
κ→0

dai

dκ
= δ[ε̄(1)

i − ε̄(0)
i ]

rp
�

Therefore,

d(aj − ai)

dκ
= δ

rp

{
ε̄(1)
j − εj − [

ε̄(1)
i − εi

]}
�

The assumption that εj − ε̄(1)
j > εi − ε̄(1)

i if ε̄j > ε̄i implies d(aj − ai)/dκ < 0
for aj > ai and d(aj − ai)/dκ > 0 for aj < ai, so an increase in κ decreases the
size of every trade. If the increase in κ is due to an increase in η (i.e., keeping
α constant), then the weights nij in (24) remain constant and V decreases.

(iii) From (40), ūi(a) = ∑I

j=1 ωij(r̄)uj(a), where ωij(r̄)= ∑∞
k=0(

r̄
r̄+δ

)( δ
r̄+δ

)k ×
π(k)

ij and r̄ = r + κ. We first show that for any ε > 0, |ωij(r̄) − π∗
j | < ε obtains

for all r̄ close enough to 0. For any r̄ > 0 and any N ∈ Z+,

|ωij(r̄)−π∗
j | ≤

∣∣∣∣∣
N∑

k=0

(
r̄

r̄ + δ

)(
δ

r̄ + δ

)k[
π(k)

ij −π∗
j

]∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=N+1

(
r̄

r̄ + δ

)(
δ

r̄ + δ

)k[
π(k)

ij −π∗
j

]∣∣∣∣∣�
Since limk→∞ π(k)

ij = π∗
j , choose N large enough so that the second term is

strictly smaller than ε/2 for any r̄ > 0. The first term is bounded above by



12 R. LAGOS AND G. ROCHETEAU

|1 − ( δ
r̄+δ

)N+1|, so it is strictly less than ε/2 for all r̄ close enough to 0. There-
fore, limr̄→0 ωij(r̄) = π∗

j and limr̄→0 ūi(a) = ∑I

j=1 π
∗
j uj(a) for every i. In turn,

(39) approaches maxa′≥0[∑I

j=1 π
∗
j uj(a

′)−q(t)a′], so ai → A for all i. With this,
V → 0 as r + κ→ 0 is immediate from (24). Q.E.D.

Part (i) of Proposition 8 is a generalization of part (i) of Proposition 3.
Part (ii) of Proposition 8 is analogous to part (ii) of Proposition 3. The fo-
cus of the former on the frictionless limit simplifies the analysis of the effects
of trading frictions on individual asset demands (see, e.g., part (ii) of Propo-
sition 6). The additional assumption is a condition on the speed with which
preference shocks revert to their unconditional mean. For example, suppose
ε̄j > ε̄i, which means that the expected marginal valuation over the holding
period for an investor who currently has preference type j is larger than for
an investor with preference type i. Then the assumption requires that the ex-
pected change in the marginal valuation after a single preference shock (e.g.,
εj − ∑I

k=1 πjkεk for the agent with preference type j) must be larger for the
investor with the higher current expected valuation over the holding period.
Part (iii) of Proposition 8 generalizes part (iii) of Proposition 3 as well as the
notion—which for the i.i.d. case was proved in part (ii) of Proposition 2 and
used in the proof of Proposition 4—that if the investor is patient, the influence
of his current valuation at the time of the trade on his choice of asset holdings
vanishes as the market becomes very illiquid. In other words, as r +κ → 0, the
distribution of asset holdings converges to a mass point at A and trade volume
approaches zero. This has important implications for intermediation fees and
dealer revenue: both approach zero as trade sizes vanish, just as in the i.i.d.
case. Note that intermediation fees and revenue also go to zero as κ becomes
large, so they are nonmonotonic functions of κ. Therefore, the nonmonotonic-
ity results we established for i.i.d. preference shocks (Proposition 4) generalize.
Finally, these nonmonotonicities can generate multiple steady-state equilibria,
so the multiplicity that we find for the i.i.d. case (Proposition 8 in Lagos and
Rocheteau (2008)) can also be generalized.

APPENDIX C: STRATEGIC BARGAINING

In the body of the paper we assumed that when an investor and a dealer
trade, the new asset position of the investor, a′, and the fee, φ, are the so-
lution to a Nash bargaining problem where the dealer has bargaining power
η ∈ [0�1] and disagreement point W (t), and the investor has disagreement
point Vi(a� t). In this appendix we describe a strategic bargaining game with a
unique subgame perfect equilibrium outcome that coincides with the solution
of the axiomatic Nash bargaining problem we have adopted.

Our theory is meant to model a fast-moving market where investors and
dealers do not form long-lasting relationships, but rather contact each other
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at relatively high frequencies and must trade on the spot, instantaneously, be-
fore they part ways. With this in mind, consider the following natural and sim-
ple strategic bargaining game. Upon contact, with probability η, Nature se-
lects the dealer to make an instantaneous take-it-or-leave-it offer, which the
investor must either accept or reject on the spot. With complementary proba-
bility, Nature selects the investor to make an instantaneous take-it-or-leave-it
offer, which the dealer must either accept or reject on the spot. The whole
process is instantaneous, and the dealer and the investor part ways regardless
of the outcome.24

Let 〈a1
i (t)�φ

1
i (a� t)〉 denote the proposal that the dealer makes to an investor

of type i who is holding a at time t and let 〈a2
i (t)�φ

2
i (a� t)〉 denote the offer that

the latter makes to the former. The set of offers that an investor of type i who
is holding asset position a finds acceptable at time t is

A2
i (a� t)= {(a′�φ) :Vi(a

′� t)−p(t)(a′ − a)−φ ≥ Vi(a� t)}�
Similarly, the set of offers that a dealer finds acceptable at time t is A1 =
{(a′�φ) :φ≥ 0}. If the dealer is selected as the proposer, he will offer

〈a1
i (t)�φ

1
i (a� t)〉 = arg max

(a′�φ)
φIA2

i (a�t)
(a′�φ)�

where the maximization is subject to a′ ≥ 0 and IA2
i (a�t)

(a′�φ) is an indicator
function that is equal to 1 if (a′�φ) ∈ A2

i (a� t). It is easy to see that a1
i (t) =

ai(t), where ai(t) is as in (3), and ηφ1
i (a� t) = φi(a� t), where φi(a� t) is as

in (4). If the investor makes the offer, he chooses

〈a2
i (t)�φ

2
i (a� t)〉 = arg max

(a′�φ)

{[Vi(a
′� t)−p(t)(a′ − a)−φ]IA1(a′�φ)

+ [1 − IA1(a′�φ)]Vi(a� t)
}
�

where the maximization is subject to a′ ≥ 0 and IA1(a′�φ) is an indicator func-
tion that is equal to 1 if (a′�φ) ∈ A1. Hence, a2

i (t) = ai(t) and φ2
i (a� t) = 0.

Note that regardless of who gets selected to make the offer, the outcome of the
negotiation is that the investor exits the meeting with asset position ai(t). The
transaction fee equals φi(a� t)/η if the dealer makes the offer and equals 0
if the investor makes the offer, so the expected fee (before Nature decides
who will make the offer) equals φi(a� t). It is easy to check that with these
equilibrium outcomes, the investors’ and dealers’ value functions are just as in
the body of the paper and all our results go through (subject to the obvious
reinterpretation of φi(a� t) as an expected intermediation fee, which is incon-
sequential).

24This type of bargaining procedure has been used extensively in search models of money, for
example, Burdett, Trejos, and Wright (2001), as well as in search models of the labor market, for
example, Kiyotaki and Lagos (2007).



14 R. LAGOS AND G. ROCHETEAU

APPENDIX D: PRINCIPLE OF OPTIMALITY

Consider an investor who effectively contacts the market with Poisson in-
tensity κ and who is subject to preference shocks with Poisson intensity δ. Let
{Tn}∞

n=1 denote the sequence of contact times and let Nt denote the number
of contacts over the time interval [0� t). Similarly, let {T ′

n}∞
n=1 denote the se-

quence of times at which he receives preference shocks. We adopt the con-
vention that T0 = T ′

0 = 0. Define the function k : R+ → X, and interpret k(t)
as the investor’s preference type at time t. The process for preference shocks
implies k(t) = k(T ′

n) for t ∈ [T ′
n�T

′
n+1) for any integer n ≥ 0. The realization

ω = (Nt�k(t))t∈[0�∞) summarizes an investor’s individual history of shocks. Let
Ω be the set of all such histories. Similarly, let ωt = (Ns�k(s))s∈[0�t] denote a
history of shocks up to time t and let Ωt be the collection of all such histo-
ries. We work with the probability space (Ω� H�P), where H is an appropriate
σ-field of subsets of Ω (e.g., the σ-field generated by Ωt for all finite t), and P

is the probability measure on H induced by the independent Poisson processes
for preference shocks and effective contacts with the market. Let Ht ⊆ H be a
partition of Ω such that Ht

� ∈ Ht is a set of histories that coincide over [0� t],
that is, Ht

� = {ω ∈ Ω :ωt = � for some � ∈ Ωt}. The σ-field generated by Ht ,
denoted F t , captures the information available to the investor at time t, and
the filtration {F t � t ∈ R+} represents how information is revealed over time.

An asset plan, a = (at)t∈[0�∞), for the investor is a set of functions at :Ω →
[0� ā] for all t ≥ 0, such that at is F t-measurable.25 An asset plan (at)t∈[0�∞)

is feasible if for every ω, a0(ω) equals the given initial asset holding of the
investor and at(ω) = aTn(ω) for all t ∈ [Tn�Tn+1). Let A denote the set of all
feasible asset plans. Let U M

k(t)(·� t) be the utility functional over the time interval
[t�TM] of an investor with preference type k(t) at time t. His utility over the
period [t�TM] from following asset plan a = (as)s∈[0�∞) is

U M
k(t)(a� t)(56)

= Et

[∫ TNt+1

t

e−r(s−t)uk(s)(at(ω))ds

+
M−1∑
n=1

∫ TNt+n+1

TNt+n

e−r(s−t)uk(s)

(
aTNt+n

(ω)
)
ds

− e−r(TNt+1−t)p(TNt+1)
[
aTNt+1(ω)− at(ω)

]
−

M−1∑
n=1

e−r(TNt+n+1−t)p
(
TNt+n+1

)[
aTNt+n+1(ω)− aTNt+n

(ω)
]]

�

25The upper bound ā is imposed for technical reasons (to ensure that the investor’s utility is
bounded above) and is chosen to be sufficiently large so that it does not affect the investor’s
decision.
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where Et is shorthand for the conditional expectation E[·|F t].26 The first M
terms on the right side of (56) represent the expected discounted sum of util-
ity flows from holding the asset position prescribed by the asset plan a over
the time interval [t�TNt+M). The first term, for instance, is the expected utility
from holding the asset position at(ω) from the initial time t until the next time
the investor gains effective access to the market, TNt+1. Similarly, each term
in the summation represents the utility from holding the asset over the period
[TNt+n�TNt+n+1), that is, between the effective contact number Nt + n and the
next one. The second M terms represent the expected net utility cost to the in-
vestor from readjusting his asset holdings at the times he contacts the market.
The term on the second line of (56), for instance, is the (expected, discounted
to time t) disutility the investor incurs to buy aTNt+1(ω) on his (Nt + 1)th ef-
fective contact with the market, net of the utility he gets from selling the assets
he is holding at this time, at(ω). In what follows, we will leave the dependence
of the function at on ω implicit to simplify the notation. By the law of iterated
expectations, the utility functional in (56) can be rewritten as

U M
k(t)(a� t)(57)

= ūk(t)(at)

r + κ
+

[
p(t)− q(t)

r + κ

]
at − Et

[
e−r(TNt+M−t)p

(
TNt+M

)
aTNt+M

]

+ 1
r + κ

Et

{
M−1∑
n=1

e−r(TNt+n−t)
[
ūk(TNt+n)

(
aTNt+n

) − q
(
TNt+n

)
aTNt+n

]}
�

where

ūk(TNt+n)

(
aTNt+n

) ≡ (r + κ)ETNt+n

∫ TNt+n+1

TNt+n

e−r(s−TNt+n)uk(s)

(
aTNt+n

)
ds�(58)

q
(
TNt+n

) ≡ (r + κ)
[
p

(
TNt+n

) − ETNt+n
e−r(TNt+n+1−TNt+n)p

(
TNt+n+1

)]
�

Notice that the function ūi(a) is as in (7), and since

ETNt+n
e−r(TNt+n+1−TNt+n)p

(
TNt+n+1

) = κ

∫ ∞

0
e−(r+κ)sp

(
TNt+n + s

)
ds�

the function q(t) is the one defined in (8). For any finite M and any t, the utility
functional U M

k(t)(a� t) is well defined for any feasible asset plan a.27

26Notice that the stochastic process {Tn}∞
n=1 can be thought of as being a function of the

process ω (since (Nt)t∈[0�∞) is a right-continuous step function with jumps at {Tn}∞
n=1), so for any

F t -measurable function f :Ω → R ∪ {±∞}, the expectation E[f (ω)|F t] is also integrating over
{Tn}∞

n=1.
27From (7), it is clear that the first term on the right side of (57) is a well behaved function

of at , which is itself a bounded and F t -measurable function. Since throughout the paper we have
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Next, for any given nonnegative measurable price function p(t), we define
the infinite-horizon utility for the investor from following a feasible asset plan a
by

Uk(t)(a� t)= lim sup
M→∞

U M
k(t)(a� t)�

For any feasible asset plan, the sequence{
M−1∑
n=1

e−r(TNt+n−t)ūk(TNt+n)

(
aTNt+n

)}∞

M=1

has a limit. This limit may be a finite number or −∞.28 The sequence{
M−1∑
n=1

e−r(TNt+n−t)q
(
TNt+n

)
aTNt+n

}∞

M=1

is nondecreasing, so it has a limit, which may be +∞. Let

fM(ω)≡
M−1∑
n=1

e−r(TNt+n−t)
[
ūk(TNt+n)

(
aTNt+n

) − q
(
TNt+n

)
aTNt+n

]
�(59)

Then we have shown that limM→∞ fM exists (it may be finite or −∞). If we
rescale ui for each i so that ui(ā) ≤ 0 for all i, we see that the sequence
{−fM}∞

M=1 is a monotone increasing sequence of measurable functions that
converge pointwise to − limM→∞ fM , so by the monotone convergence theo-
rem (e.g., Theorem 7.8 in Stokey and Lucas (1989)), we have limM→∞ Et[fM] =
Et[limM→∞ fM]. All this implies that, given a price path p(t), an investor’s
expected lifetime utility from following a feasible asset plan a = (as)s∈[0�∞)

specialized the analysis to price paths with the property that p(t) is measurable, q(t) is well
defined for any t and the second term on the right side of (57) is well defined. Since e−rtp(t)at

is a nonnegative measurable function, the integral in the third term is well defined (although it
need not be finite). As for the last term, notice that

ūk(TNt+n)(a)=
I∑

i=1

ūi(a)I{k(TNt+M)=i}�

where ūi(a) is a continuous function for each i, so the integral of e−rt ūk(t)(at ) is well defined.
Finally, the integral of q(t)at is well defined since p(t) and at are nonnegative and measurable.

28This limit is finite if ui is bounded below for all i, since in that case we can rescale each
utility function so that ui(0) ≥ 0 for all i, and the sequence of partial sums is nondecreasing and
bounded above (because at ≤ ā for all t and ui is continuous for each i). Conversely, if some ui

is unbounded below, we can rescale ui and every other uj so that uk(ā) ≤ 0 for all k. Then since
the sequence of partial sums is nonincreasing, it has a limit, which could be −∞.
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is

Uk(t)(a� t)

= ūk(t)(at)

r + κ
+

[
p(t)− q(t)

r + κ

]
at

− lim sup
M→∞

Et

[
e−r(TNt+M−t)p

(
TNt+M

)
aTNt+M

]

+ 1
r + κ

Et

{ ∞∑
n=1

e−r(TNt+n−t)
[
ūk(TNt+n)

(
aTNt+n

) − q
(
TNt+n

)
aTNt+n

]}
�

which is well defined for any feasible path.29 The investor’s problem at t
is

max
a∈A

Uk(t)(a� t)� s.t. at = a≥ 0 and k(t) ∈ X given�(60)

The investor’s maximum attainable utility is then

V ∗
k(t)(a� t)= max

a∈A

Uk(t)(a� t)�

PROPOSITION 9: A feasible plan a∗ = (a∗
s (ω))s∈[t�∞)�ω∈Ω is optimal from a given

initial date t ≥ 0 if and only if it satisfies

a∗
Tn
(ω)= arg max

a∈[0�ā]
[
ūk(Tn)(a)− q(Tn)a

] ∀ω ∈ Ω�∀{Tn}∞
n=TNt+1

(61)

and

lim
n→∞

Ei

{
e−r(TNt+n−t)p

(
TNt+n

)
a∗
TNt+n

} = 0�(62)

Moreover, if there exists a number B > maxj ū′
j(∞) such that q(s) ≥ B for all s,

then an optimal plan exists and is unique.

PROOF: The proof proceeds in three steps.
(i) We first show that (61) and (62) are sufficient for an optimum. Let a∗ be

the asset plan that satisfies (61) and (62), and let a be any other feasible plan.

29We have chosen to define the lifetime utility as lim supM→∞ U M(a� t) rather than
limM→∞ U M(a� t), because limM→∞ Et[exp(−r(TNt+M − t))p(TNt+M)aTNt+M

] need not exist for
every feasible asset plan. The definition we have adopted guarantees that the payoff from every
feasible asset plan can be evaluated using the investor’s utility function. As we show below, the
optimal asset plan, a∗, has the property that limM→∞ Et[exp(−r(TNt+M − t))p(TNt+M)a∗

TNt+M
] = 0,

which means that, equivalently, we could define the utility function as limM→∞ U M(a� t) and sim-
ply restrict the investor’s choices to the set of feasible paths for which limM→∞ Et[exp(−r ×
(TNt+M − t))p(TNt+M)aTNt+M

] exists.
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For any t, let � ≡ Uk(t)(a∗� t)− Uk(t)(a� t). Then

� ≥ 1
r + κ

Et

{ ∞∑
n=1

e−r(TNt+n−t)
[
ūk(TNt+n)

(
a∗
TNt+n

) − q
(
TNt+n

)
a∗
TNt+n

]}

− 1
r + κ

Et

{ ∞∑
n=1

e−r(TNt+n−t)
[
ūk(TNt+n)

(
aTNt+n

) − q
(
TNt+n

)
aTNt+n

]}

− lim sup
M→∞

Et

[
e−r(TNt+M−t)p

(
TNt+M

)
a∗
TNt+M

]
�

From (61) and (62), it follows that � ≥ 0.
(ii) Next we show that an optimal plan must satisfy (61) and (62). The

first step is to notice that the objective function on the right side of (61) is
strictly concave and differentiable, so u′

i[a∗
s (ω)] − q(s) ≤ 0 (“=” if a∗

i (s) > 0)
is necessary and sufficient for an optimum. Since q(s) > ū′

i(∞) for all i,
we can choose ā large enough so that q(s) > ū′

i(ā) for all i and, therefore,
(61) is the unique solution to the investor’s problem at time s, for history ω,
when his preference type is k(s). Suppose that the asset plan ã is optimal,
with ãs(ω) �= a∗

s (ω) for some history ω at some date s > t. Since both ã
and a∗ are feasible, ãTNs

(ω) �= a∗
TNs

(ω). Then the investor could maintain his
asset plan ã unchanged except at date TNs for history ω, where he could
choose a∗

TNs
(ω). By (61), this deviation is feasible. Since the maximization

in (61) has a unique solution, the proposed deviation strictly increases the in-
vestor’s expected utility, so ã could not have been optimal—a contradiction.
Next, we show that any optimal policy must satisfy (62). Let a∗ be an opti-
mal plan and consider the feasible plan (1 − ε)a∗ for some small ε > 0. Let
�ε ≡ Uk(t)(a∗� t)− Uk(t)[(1 − ε)a∗� t]. Then

�ε = Et

{ ∞∑
n=1

e−r(TNt+n−t)

r + κ

[
ūk(TNt+n)

(
a∗
TNt+n

) − ūk(TNt+n)

[
(1 − ε)a∗

TNt+n

]

− εq
(
TNt+n

)
a∗
TNt+n

]}

− ε lim sup
M→∞

Et

[
e−r(TNt+M−t)p

(
TNt+M

)
a∗
TNt+M

]
�

Divide the previous expression by ε and take the limit as ε → 0 (applying
l’Hôpital’s rule) to arrive at

lim
ε→0

�ε

ε
= 1

r + κ
Et

{ ∞∑
n=1

e−r(TNt+n−t)
[
ū′
k(TNt+n)

(
a∗
TNt+n

) − q
(
TNt+n

)]
a∗
TNt+n

}

− lim sup
M→∞

Et

[
e−r(TNt+M−t)p

(
TNt+M

)
a∗
TNt+M

]
�
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Since the asset plan a∗ is optimal, the first-order condition for the investor’s
problem (61), that is, [ū′

k(Tn)
(a∗

Tn
)− q(Tn)]a∗

Tn
= 0 for all {Tn}∞

n=TNt+1
, implies

lim
ε→0

�ε

ε
= − lim sup

M→∞
Et

[
e−r(TNt+M−t)p

(
TNt+M

)
a∗
TNt+M

]
and the optimality of a∗ requires

0 ≤ − lim sup
M→∞

Et

[
e−r(TNt+M−t)p

(
TNt+M

)
a∗
TNt+M

]
�

Then, since e−rTp(T)a∗
T ≥ 0 for all T , we have

0 ≤ lim inf
M→∞

Et

[
e−r(TNt+M−t)p

(
TNt+M

)
a∗
TNt+M

]
≤ lim sup

M→∞
Et

[
e−r(TNt+M−t)p

(
TNt+M

)
a∗
TNt+M

] ≤ 0�

so the optimality of a∗ requires

lim
M→∞

Et

[
e−r(TNt+M−t)p

(
TNt+M

)
a∗
TNt+M

] = 0�

(iii) Finally, since the necessary conditions (61) and (62) determine a unique
a∗ = (a∗

t (ω))t∈[0�∞)�ω∈Ω, the optimal plan exists and is unique. Q.E.D.

The formulation we have laid out in this appendix is quite general in that it
allows the investor to choose among feasible asset plans a = (at(ω))t∈[0�∞)�ω∈Ω,
where at can be any F t-measurable function of the whole history of shocks, ω,
as well as time, t. From (61), however, notice that the optimal asset plan
a∗ = (a∗

t (ω))t∈[0�∞)�ω∈Ω is not history dependent: when the investor gains ef-
fective access to the market at time Tn, his optimal decision depends only on
Tn and his preference type at that time, k(Tn). For this reason, we can simplify
the notation as we did in the body of the paper, by letting ak(Tn)(Tn) ≡ a∗

Tn
(ω).

With this notation, we can denote the optimal plan a∗ simply by a sequence of
functions {(ai(t)� t ∈ [0�∞))}Ii=1, with ai(t) = ai(Tn) for all t ∈ [Tn�Tn+1) and
every i. Also as in the body of the paper, we can use Ek(t) to denote Et , which
stresses the fact that k(t) summarizes all the relevant information available
to the investor at time t that enables him to form the conditional expectation
over ω. With this notation, consider an investor at time t, with asset holdings
at = a ≥ 0 and preference type k(t) = i ∈ X both given. His maximum attain-
able utility is V ∗

i (a� t) = Ui(a∗� t), that is,

V ∗
i (a� t)= ūi(a)

r + κ
+

[
p(t)− q(t)

r + κ

]
a+Ki(t)�(63)
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where

Ki(t) = Ei

{ ∞∑
n=1

e−r(TNt+n−t)

[
ūk(TNt+n)[ak(TNt+n)(TNt+n)]

r + κ

− q(TNt+n)

r + κ
ak(TNt+n)

(
TNt+n

)]}
�

From Proposition 9 we know that if there exists a number B > maxj ū′
j(∞) such

that q(s) ≥ B for all s, then an optimal plan {(ai(t)� t ∈ [0�∞))}Ii=1 exists and
is unique, so Ki(t) is well defined. If, in addition, there exists a real number B
such that q(t)≤ B for all t, then Ki(t) ∈ R for all t and every i.

Instead of considering (60), in the body of the paper we described the in-
vestor’s problem using a recursive functional equation (i.e., (1)) with asset
holdings and fees given by (2), which we showed to be equivalent to (25).
Lemma 8 formalizes the relationship between both formulations of the in-
vestor’s problem, (25) and (60). Before we prove this result, it is convenient
to establish a preliminary result.

LEMMA 7: For any t ≥ 0,

Kk(t)(t) = 1
r + κ

Ek(t)

{
e−r(TNt+1−t)

[
ūk(TNt+1)

[
ak(TNt+1)

(
TNt+1

)]
− q

(
TNt+1

)
ak(TNt+1)

(
TNt+1

)]}
+ Ek(t)

[
e−r(TNt+1−t)Kk(TNt+1)(TNt+1)

]
�

PROOF: First, notice that for all integers n ≥ 0, we have Ns = Nt + n if s =
TNt+n, so the definition of Kk(t)(t) implies

Kk(TNt+1)

(
TNt+1

)
(64)

= 1
r + κ

Ek(TNt+1)

{ ∞∑
n=2

e−r(TNt+n−TNt+1)ūk(TNt+n)

[
ak(TNt+n)

(
TNt+n

)]}

− 1
r + κ

Ek(TNt+1)

{ ∞∑
n=2

e−r(TNt+n−TNt+1)q
(
TNt+n

)
ak(TNt+n)

(
TNt+n

)}
�

Also from the definition of Kk(t)(t),

Kk(t)(t) = 1
r + κ

Ek(t)

{
e−r(TNt+1−t)

[
ūk(TNt+1)

[
ak(TNt+1)

(
TNt+1

)]
− q

(
TNt+1

)
ak(TNt+1)

(
TNt+1

)]}
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+ 1
r + κ

Ek(t)

{ ∞∑
n=2

e−r(TNt+n−t)
[
ūk(TNt+n)

[
ak(TNt+n)

(
TNt+n

)]

− q
(
TNt+n

)
ak(TNt+n)

(
TNt+n

)]}

= 1
r + κ

Ek(t)

{
e−r(TNt+1−t)

[
ūk(TNt+1)

[
ak(TNt+1)

(
TNt+1

)]
− q

(
TNt+1

)
ak(TNt+1)

(
TNt+1

)]}
+ Ek(t)e

−r(TNt+1−t)

[
1

r + κ

× Ek(TNt+1)

{ ∞∑
n=2

e−r(TNt+n−TNt+1)ūk(TNt+n)

[
ak(TNt+n)

(
TNt+n

)]}]

− Ek(t)e
−r(TNt+1−t)

[
1

r + κ

× Ek(TNt+1)

{ ∞∑
n=2

e−r(TNt+n−TNt+1)q
(
TNt+n

)
ak(TNt+n)

(
TNt+n

)}]

= 1
r + κ

Ek(t)

{
e−r(TNt+1−t)

[
ūk(TNt+1)

[
ak(TNt+1)

(
TNt+1

)]
− q

(
TNt+1

)
ak(TNt+1)

(
TNt+1

)]}
+ Ek(t)

[
e−r(TNt+1−t)Kk(TNt+1)

(
TNt+1

)]
�

The last equality follows from (64). Q.E.D.

LEMMA 8: Consider an investor who, at some initial time t ≥ 0, starts with asset
position a and preference type k(t) ∈ X, and suppose that there exists a number
B > maxj ū′

j(∞) such that q(s) ≥ B for all s ≥ t.
(i) The maximum value of (60), that is, V ∗

k(t)(a� t), satisfies the functional
equation (25).

(ii) The asset plan that solves (60), that is, (ak(TNs )
(s)� s ∈ [t�∞)), satisfies

V ∗
k(t)

[
ak(TNt )

(
TNt

)
� t

]
= ūk(t)[ak(TNt )

(TNt )]
r + κ

+ Ek(t)

[
e−r(TNt+1−t)p

(
TNt+1

)
ak(TNt )

(
TNt

)]
+ Ek(t)

[
e−r(TNt+1−t)

{
V ∗
k(TNt+1)

[
ak(TNt+1)

(
TNt+1

)
�TNt+1

]
−p

(
TNt+1

)
ak(TNt+1)

(
TNt+1

)}]
�



22 R. LAGOS AND G. ROCHETEAU

(iii) Let (ak(TNs )
(s)� s ∈ [t�∞)) be the asset plan induced by (25), that is, the

asset plan in (6), with

lim
n→∞

Ei

[
e−r(TNt+n−t)p

(
TNt+n

)
ak(TNt+n)

(
TNt+n

)] = 0(65)

for each i ∈ X. Then this asset plan achieves the maximum in (60).
(iv) Let (ak(TNs )

(s)� s ∈ [t�∞)) be the asset plan induced by (25) and assume
it satisfies (65). If Vi(a� t) solves (25) and satisfies

lim
n→∞

Ei

[
e−r(TNt+n−t)Vk(TNt+n)

[
ak(TNt+n)

(
TNt+n

)
�TNt+n

]] = 0(66)

for each i ∈ X, then Vi(a� t)= V ∗
i (a� t).

PROOF: (i) If we let V ∗(a� t)≡ {V ∗
i (a� t)}Ii=1 and regard the right side of (25)

as a map F , we need to show FV ∗ = V ∗. Substitute V ∗(a� t) as given by (63),
into (25):

(FV ∗)(a� t� i)

= ūi(a)

r + κ
+ Ei

[
e−r(TNt+1−t)

{
p

(
TNt+1

)
a

+ max
a′≥0

[
V ∗
k(TNt+1)

(
a′�TNt+1

) −p
(
TNt+1

)
a′]}]

= ūi(a)

r + κ
+

[
p(t)− q(t)

r + κ

]
a+ Ei

[
e−r(TNt+1−t)Kk(TNt+1)

(
TNt+1

)]

+ 1
r + κ

Ei

{
e−r(TNt+1−t)

[
ūk(TNt+1)

[
ak(TNt+1)

(
TNt+1

)]
− q

(
TNt+1

)
ak(TNt+1)

(
TNt+1

)]}
= ūi(a)

r + κ
+

[
p(t)− q(t)

r + κ

]
a+Ki(t)

= V ∗
i (a� t)�

where the third equality follows from Lemma 7.
(ii) From (63),

V ∗
k(t)

[
ak(TNt )

(
TNt

)
� t

]
= ūk(t)[ak(TNt )

(TNt )]
r + κ

+
[
p(t)− q(t)

r + κ

]
ak(TNt )

(
TNt

) +Kk(t)(t)

= ūk(t)[ak(TNt )
(TNt )]

r + κ
+ Ek(t)

[
e−r(TNt+1−t)p

(
TNt+1

)
ak(TNt )

(
TNt

)]
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+Kk(t)(t)

= ūk(t)[ak(TNt )
(TNt )]

r + κ
+ Ek(t)

[
e−r(TNt+1−t)p

(
TNt+1

)
ak(TNt )

(
TNt

)]
+ 1

r + κ
Ek(t)

{
e−r(TNt+1−t)

[
ūk(TNt+1)

[
ak(TNt+1)

(
TNt+1

)]
− q

(
TNt+1

)
ak(TNt+1)

(
TNt+1

)]}
+ Ek(t)

[
e−r(TNt+1−t)Kk(TNt+1)

(
TNt+1

)]
= ūk(t)[ak(TNt )

(TNt )]
r + κ

+ Ek(t)

[
e−r(TNt+1−t)p

(
TNt+1

)
ak(TNt )

(
TNt

)]
+ Ek(t)

[
e−r(TNt+1−t)

{
V ∗
k(TNt+1)

[
ak(TNt+1)

(
TNt+1

)
�TNt+1

]
−p

(
TNt+1

)
ak(TNt+1)

(
TNt+1

)}]
�

The second equality follows from the definition of q(t), the third equality fol-
lows from Lemma 7, and the fourth equality follows from the fact that

V ∗
k(TNt+1)

[
ak(TNt+1)

(
TNt+1

)
�TNt+1

]
= ūk(TNt+1)[ak(TNt+1)(TNt+1)]

r + κ

+
[
p(TNt+1)− q(TNt+1)

r + κ

]
ak(TNt+1)

(
TNt+1

) +Kk(TNt+1)

(
TNt+1

)
�

(iii) Part (iii) is immediate from Proposition 9.
(iv) By (3) and (6), we can write (25) as

Vk(t)(a� t) = ūk(t)(a)

r + κ
+ Ek(t)

{
e−r(TNt+1−t)p

(
TNt+1

)[
a− ak(TNt+1)

(
TNt+1

)]}
+ Ek(t)

{
e−r(TNt+1−t)Vk(TNt+1)

[
ak(TNt+1)

(
TNt+1

)
�TNt+1

]}
�

Iterate this expression forward M − 1 times (using the law of iterated expecta-
tions and (58)) to arrive at

V M
k(t)(a� t)(67)

= ūk(t)(a)

r + κ
+

[
p(t)− q(t)

r + κ

]
a

− Ek(t)

[
e−r(TNt+M−t)p

(
TNt+M

)
ak(TNt+M)

(
TNt+M

)]
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+ 1
r + κ

Ek(t)

{
M−1∑
n=1

e−r(TNt+n−t)
[
ūk(TNt+n)

[
ak(TNt+n)

(
TNt+n

)]

− q
(
TNt+n

)
ak(TNt+n)

(
TNt+n

)]}

+ Ek(t)

[
e−r(TNt+M−t)Vk(TNt+M)

[
ak(TNt+M)

(
TNt+M

)
�TNt+M

]]
�

A function Vk(t)(a� t) that solves (25) must satisfy (67) for all M , so the solution
is Vk(t)(a� t)= limM→∞ V M

k(t)(a� t), provided this limit exists. From (67),

lim
M→∞

V M
k(t)(a� t)

= ūk(t)(a)

r + κ
+

[
p(t)− q(t)

r + κ

]
a

− lim
M→∞

Ek(t)

[
e−r(TNt+M−t)p

(
TNt+M

)
ak(TNt+M)

(
TNt+M

)]

+ lim
M→∞

Ek(t)

{
M−1∑
n=1

e−r(TNt+n−t)

[
ūk(TNt+n)[ak(TNt+n)(TNt+n)]

r + κ

− q(TNt+n)

r + κ
ak(TNt+n)

(
TNt+n

)]}

+ lim
M→∞

Ek(t)

[
e−r(TNt+M−t)Vk(TNt+M)

[
ak(TNt+M)

(
TNt+M

)
�TNt+M

]]
= ūk(t)(a)

r + κ
+

[
p(t)− q(t)

r + κ

]
a

+ lim
M→∞

Ek(t)

{
M−1∑
n=1

e−r(TNt+n−t)

[
ūk(TNt+n)[ak(TNt+n)(TNt+n)]

r + κ

− q(TNt+n)

r + κ
ak(TNt+n)

(
TNt+n

)]}
�

The second equality follows from (65) and (66). Since {ak(TNt+n)(TNt+n)}∞
n=1

is bounded and ūi is continuous for every i, {ūk(TNt+n)[ak(TNt+n)(TNt+n)]}∞
n=1 is

bounded above. Hence, without loss of generality, we can rescale ui for each i
so that {−ūk(TNt+n)[ak(TNt+n)(TNt+n)]}∞

n=1 is a nonnegative sequence. Then the se-
quence {f̄M}∞

M=1, where

f̄M(ω) ≡
M−1∑
n=1

e−r(TNt+n−t)
[
ūk(TNt+n)

[
ak(TNt+n)

(
TNt+n

)]
− q

(
TNt+n

)
ak(TNt+n)

(
TNt+n

)]
�
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is a nonincreasing sequence and hence it has a limit, limM→∞ f̄M , which could
be −∞. Since {−f̄M}∞

M=1 is a monotone increasing sequence of measurable
functions that converge pointwise to − limM→∞ f̄M , by the monotone con-
vergence theorem (e.g., Theorem 7.8 in Stokey and Lucas (1989)), we have
limM→∞ Ek(t)[f̄M] = Ek(t)[limM→∞ f̄M] = (r+κ)Kk(t)(t) and, therefore, for every
k(t) ∈ X,

lim
M→∞

V M
k(t)(a� t)= ūk(t)(a)

r + κ
+

[
p(t)− q(t)

r + κ

]
a+Kk(t)(t)= V ∗

k(t)(a� t)�

This concludes the proof. Q.E.D.

Lemma 8 establishes a version of Bellman’s principle of optimality for the
economy we analyze: Part (i) shows that V ∗

k(t)(a� t), the maximum value of the
investor’s problem given in (60), satisfies the functional equation (1) with as-
set holdings and fees given by (2) (which is equivalent to the functional equa-
tion (25)). Part (ii) establishes that the asset plan that solves (60) is an optimal
plan implied by the functional equation (1) when this functional equation is
evaluated at V ∗

k(t)(a� t). Part (iii) is a partial converse of part (ii): it proves that
the asset plan that is optimal according to the functional equation (25) and that
satisfies the boundedness condition (65) is the same asset plan that achieves
the maximum of (60). Part (iv) is a partial converse of part (i): it shows that
V ∗
k(t)(a� t) is the only solution of the functional equation (25) that satisfies the

boundedness condition (66).

APPENDIX E: RELATED LITERATURE

In this appendix we draw connections to some related literature.

E.1. Search Models of Over-the-Counter Markets

Traders who operate in markets with OTC-style frictions will seek to miti-
gate these trading frictions by adjusting their asset positions so as to reduce
their trading needs. Our analysis has shown that this is a critical aspect of in-
vestor behavior in illiquid markets. To illustrate this point, in this section we
derive the main predictions of a version of DGP’s model and contrast them
with those of a special case of our formulation. This comparison will under-
score the fact that the type of “liquidity hedging” that we have identified—and
that only becomes possible with unrestricted asset holdings—generates new
insights on how trading frictions shape the various dimensions of market liq-
uidity, alters the empirical predictions of the theory, and leads to a different
assessment of their normative implications.

We will contrast the empirical predictions of DGP’s model with those of a
special case of our model with X = {1�2} and ui(a) = εia

1−σ/(1 − σ) for i ∈ X



26 R. LAGOS AND G. ROCHETEAU

and σ > 0. We focus on the version of DGP’s model with no interinvestor
meetings (e.g., the version that DGP use in their Theorem 4 and part (i) of
Theorem 6). DGP restricted a ∈ {0�1}, and let uij denote the flow utility of an
investor with asset position i ∈ {0�1} and preference type j ∈ {0�1}.30 DGP as-
sumed u00 = u01 = 0, so for comparison purposes, we do the same hereafter. To
simplify the notation, in both models we let π denote the steady-state fraction
of investors with high valuation.31

Price

Since asset holdings are indivisible in DGP, equilibrium in the interdealer
market requires investors who are on the long side of the market to be indif-
ferent between trading and not trading. It is easy to show that in steady state,
investors who want to sell are on the short side if and only if A<π. The equi-
librium price in the interdealer market is

p=

⎧⎪⎪⎨
⎪⎪⎩

1
r

(r + κ)u11 + δū

r + κ+ δ
if A<π,

1
r

(r + κ)u10 + δū

r + κ+ δ
if π <A,

(68)

where ū≡ π1u11 +π0u10.32

The asset holding restrictions in DGP are also the reason why the asset price
in their theory is independent of the stock of assets, A, for any A < π and
for any A > π, with a discontinuity at A = π. In contrast, the asset price in
our model is smooth and decreasing in A. For example, in the special case
of our model that we are considering in this section, p = (

∑
i πiε̄

1/σ
i )σ/rAσ .33

The behavior of the asset price in response to changes in the trading frictions
in DGP depends critically on the level of A. From (68), p is increasing in α
(decreasing in η) if A < π, but decreasing in α (increasing in η) if A > π.
In contrast, with unrestricted asset holdings these extensive-margin considera-
tions are irrelevant to assess the impact of trading frictions on the asset price
(recall Proposition 5).

30DGP stated their restriction on asset holdings as a ∈ [0�1] but only studied equilibria in
which agents hold either 0 or 1 unit of the asset, which is effectively equivalent to imposing the
restriction a ∈ {0�1}.

31“High valuation” corresponds to the index 2 in our formulation and 1 in DGP.
32If A = π, p ∈ [ (r+κ)u10+δū

r(r+κ+δ)
� (r+κ)u11+δū

r(r+κ+δ)
] and the equilibrium price in the interdealer market is

indeterminate.
33Notice that we obtain DGP’s formulation with A<π as a special case of ours when σ → 0.
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Trade Volume

Trade volume is

V = α
δπ(1 −π)

α+ δ

(ε̄2)
1/σ − (ε̄1)

1/σ

π(ε̄2)1/σ + (1 −π)(ε̄1)1/σ
A

in our model and

VDGP = α
δπ(1 −π)

α+ δ
min

{
A

π
�

1 −A

1 −π

}

in DGP. The latter is independent of the dealers’ bargaining power, η, and of
all preference parameters and holding payoffs. In contrast, these parameters
are critical determinants of trade volume in our theory, as they influence the
investors’ choices of asset holdings (the second factor in V ). Our model pre-
dicts that markets in which dealers have less market power will tend to exhibit
larger trade volume.34

Transaction Costs

DGP’s transaction costs can be expressed in terms of the intermediation fees
φ01 and φ10 that dealers charge investors who want to buy and sell, respectively.
The equilibrium spread is s = η(u11 − u10)/(r + κ+ δ).35 Conditional on hav-
ing contacted an investor, the expected intermediation fee that accrues to a
dealer in DGP is ΦDGP = δπ(1−π)

α+δ
min{A

π
� 1−A

1−π
}s. This key determinant of deal-

ers’ incentives to make markets is decreasing in the investors’ contact rate with
dealers, α, and increasing in the dealers’ bargaining power, η. In contrast, as
we have shown analytically in Proposition 4, in our model with no restrictions
on asset holdings it is natural for the average fee to be nonmonotonic in α
and η. Our theory suggests that this nonmonotonicity can be important. From
an applied standpoint, it can help explain how OTC markets have reacted to
recent changes in their market structure (see Lagos and Rocheteau (2006)).

34Apart from these qualitative differences, the theory with unrestricted portfolios also has dif-
ferent quantitative implications for the relationship between trade volume and trading frictions.
For example, DGP’s model has a sharp empirical implication: the elasticity of trade volume with
respect to trading frictions equals δ

α+δ
∈ (0�1). In contrast, in the model with unrestricted asset

holdings, the corresponding elasticity is larger by an amount that equals the elasticity of (a2 −a1)
with respect to α—which is positive, capturing the notion that each investor wishes to conduct a
larger trade when frictions are reduced.

35Since asset holdings in DGP are restricted to lie in {0�1}, every trade is of size 1 and hence
φ01 +φ10 = s. In addition, the indivisibility assumption implies that dealers either charge a fee on
asset sales or on asset purchases, but not both. Specifically, if A<π, then φ01 = 0 and investors
only pay a fee φ10 = s when they sell. Conversely, if π <A, φ10 = 0 and investors only pay a fee
φ01 = s when they buy.
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From a theoretical standpoint, it can be shown to generate self-fulfilling liquid-
ity shortages in markets with free entry of dealers (see Proposition 8 in Lagos
and Rocheteau (2008)).36

Another key difference with DGP is the fact that since the equilibrium in
the model with unrestricted portfolios implies a nondegenerate distribution of
trade sizes, our theory has predictions for the relationship between transaction
costs and transaction sizes. As we showed in Lemma 4, transaction costs are
increasing in the size of the transaction. Thus, if ai − aj > ai − ak > 0, then
the effective price at which the investor buys is p̂ji > p̂ki, that is, he effectively
pays higher prices when he conducts larger purchases. Conversely, p̂ji < p̂ki if
ai − aj < ai − ak < 0, that is, he effectively receives lower prices when he con-
ducts larger sales. In other words, the theory with unrestricted asset holdings
naturally generates instances of price concession, which are commonplace in
OTC markets.37

Trading Delays

DGP endogenized trading delays by allowing a single monopolist dealer to
choose search intensity once and for all at the beginning of time. Free entry
of competing dealers or market-makers is a feature of most OTC markets;
however, the implications of this microstructure have not yet been explored in
the literature. We find that allowing for free entry of dealers is a natural way
to endogenize trading delays and the amount of liquidity supplied by dealers,
and that it provides an important channel through which changes in market
conditions affect transaction costs and trade volume. In addition, the interac-
tion between free entry and unrestricted asset holdings leads to a natural kind
of strategic complementarity that can help rationalize self-fulfilling liquidity
shortages in markets with OTC-style frictions (see Proposition 8 in Lagos and
Rocheteau (2008)).

Welfare

The equilibrium allocation is always constrained to be efficient in the base-
line model of DGP—regardless of the value of η—which stands in contrast to
the finding we report in Proposition 2 in Lagos and Rocheteau (2008). The
reason is that in our model investors choose asset holdings, while this intensive

36The spread, s, is decreasing in α and increasing in η in this version of DGP with no inter-
investor meetings. One can also verify that the average effective spread weighted by the sizes of
each trade and expressed as a proportion of the price is also decreasing in α and increasing in η.
The behavior of this measure of the marketwide spread (i.e., (38) in Lagos and Rocheteau (2006))
is much more complicated in our model, where the investors’ expected holding payoffs, their in-
dividual asset demands, the asset price, and the whole distribution of asset holdings change in
response to a change in α. Our numerical work, some of which we have reported in Lagos and
Rocheteau (2006), is in accordance with the predictions of DGP.

37See Section 4.3 in Harris (2003).
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margin is absent in DGP. For the same reason, the inefficiency result we find
in the context of the model with free entry also has no counterpart in DGP.

A paper that is closely related to ours is an independent contribution by Gâr-
leanu (2008), which studied the asset pricing and volume implications of infre-
quent (Poisson) trading opportunities. Some of our findings are similar: he also
finds that under certain conditions (e.g., a mean-reversion property of prefer-
ence shocks), investors take more extreme positions when trading delays are
short. Also, Gârleanu stressed that the asset price is not affected by the trading
frictions—which is true in our model for a particular specification of the util-
ity function (Proposition 5). In terms of differences, trades in Gârleanu (2008)
are not intermediated by dealers, so he could not consider the implications of
trading delays for transaction costs and dealers’ incentives to provide liquid-
ity, which are at the center of our analysis. Also, Gârleanu (2008) formalized
the investors’ motive for holding the asset by developing the “hedging needs”
motive we mentioned in footnote 4. Despite the differences in the formula-
tions, some of our results on the effects of α on trade volume are remarkably
similar.38

E.2. Search Models of Money

Here we discuss the relationship between our theory and the search-
theoretic literature on monetary exchange. In contrast to the monetary lit-
erature, our model does not have fiat money as an asset and it does not aim to
explain the use or emergence of a medium of exchange. However, it shares a
common objective with modern monetary theory, which is to endogenize some
relevant dimensions of “liquidity.” We organize the comparison around four
types of results.

Endogenous Distribution of Asset Holdings

Because of idiosyncratic (trading) shocks, under incomplete markets, our
model generates a nondegenerate distribution of wealth as in Green and Zhou
(2002) and Molico (2006), but also Aiyagari (1994). The trading mechanism in
our model is closer to the one in Molico: the asset is traded in bilateral matches
and the transaction price is determined through bargaining. In terms of the
methodology, both Aiyagari (1994) and Molico (2006) solved their models nu-
merically. The model of Green and Zhou (2002) is closer to our analysis in that
they can characterize the equilibrium and its distribution of money holdings
analytically. Moreover, like us, they do not restrict their analysis to stationary
equilibria. The pricing mechanism is different (Green and Zhou considered a
double auction).

38See the discussion around Proposition 6 in online Appendix B for details.
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Bargaining and the Distribution of Prices

A key insight of our model is that the intermediation fee depends on the (en-
dogenous) asset position of the investor. Similarly, in monetary search models
with bargaining, the transaction price depends on the traders’ money balances.
This dependence occurs through (at least) two channels. First, the buyer can
be constrained by his money balances. This mechanism is present even in mod-
els with a degenerate distribution of money balances, such as Shi (1997) and
Lagos and Wright (2005). Second, the money holdings of an agent affect his
marginal utility of wealth and, hence, the terms of trade. These two effects
are absent from our model, since our investors never face binding borrowing
constraints and the marginal utility of wealth is normalized to one due to the
quasi-linear preferences. An investor’s asset holdings influence the outcome of
the bargaining in our model because this asset position determines the size of
the gains from trade that will be generated for readjusting the investor’s asset
holdings.

Uniqueness of the Equilibrium

The equilibrium (not just the steady state) is unique in our model. In con-
trast, the model of fiat money of Green and Zhou can display multiple equi-
libria. This indeterminacy is a general feature of models of fiat money. Even
in models with a degenerate distribution of money balances (e.g., Lagos and
Wright (2005)), the equilibrium is typically not unique, unless one restricts
attention to steady-state monetary equilibria. Models of monetary exchange
consider environments where the asset being traded is fiat money, whose value
emerges endogenously when it is valued as a medium of exchange that miti-
gates a double coincidence of wants problem. In contrast, in our model and
the rest of the literature that deals with the trading process in OTC markets,
the asset being traded is not used to facilitate trades; it is valued for its intrinsic
characteristics (e.g., dividend flow).

Endogenous Trading Delays and Multiple Equilibria

In our model, the multiplicity of steady-state equilibria with dealer entry
arises from complementarities between investors’ asset demands and deal-
ers’ entry decisions. If more dealers participate in the market, it is easier for
investors to readjust their asset holdings, which induces them to take more
extreme positions, and this in turn makes it profitable for dealers to enter.
Rocheteau and Wright (2005) considered a monetary search model with free
entry of sellers and found that the strategic complementarities between the
sellers’ entry decision and the buyers’ demand for real balances generate multi-
ple steady-state equilibria. If buyers accumulate more real balances, the buyer
and the seller are able to exploit larger gains from trade, which gives more
incentives for sellers to participate in the market. In both models, the multi-
plicity does not require increasing returns to scale in the matching function
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as in Diamond (1982) or as in most recent search models of financial markets
(e.g., Vayanos and Weill (2008)). A key difference between our model and Ro-
cheteau and Wright (2005) is the opportunity cost from holding real balances
in the latter, which has no counterpart in our formulation. If the opportunity
cost from holding cash balances to make a purchase is zero (e.g., if the nomi-
nal interest rate is zero), then the multiplicity of (active) steady-state equilib-
ria in that model disappears. In contrast, the multiplicity in our model obtains
even though investors do not bear any opportunity cost (e.g., forgone interest)
while searching for an asset to purchase (since they have access to a technol-
ogy to produce the numéraire good). Also notice that the gains from trade in
Rocheteau and Wright (2005) depend on the mean of the distribution of real
balances (since the distribution of real balances is degenerate as in Lagos and
Wright (2005)), which is independent of trading frictions when the nominal in-
terest rate is zero. In our model it is the second moment, which is endogenous
and depends on the trading frictions, that gives rise to multiple steady-state
equilibria.
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