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DETAILED PROOF OF LEMMA 5

LEMMA 5: Let ê ≡ [ê1(n)� � � � � êm(n)]. Then, under the assumptions of Theo-
rem 1, there exists an n×m matrix ẽ with independent NC

n (0�2πSe
n(ω0)) columns,

independent from F̂ , and such that σ2
1 (ê− ẽ)= op(n

−1/3).

PROOF: First, suppose that Assumption 2(ii) holds and n ∼ m = o(T 3/8).
Define η ≡ ((Re ê1)

′� (Im ê1)
′� � � � � (Re êm)′� (Im êm)

′)′. First, let us show that
Eηη′ = V +R with a block diagonal

V = πIm ⊗
(

ReSe
n(ω0) − ImSe

n(ω0)

ImSe
n(ω0) ReSe

n(ω0)

)

and Rij = δ[i/2n]�[j/2n]O(m/T) + O(T−1), where δst is the Kronecker delta, and
O(m/T) and O(T−1) are uniform in i and j running from 1 to 2nm.

By the definition of the discrete Fourier transform (d.f.t.), we have

Eêjsêrl ≡ 1
T
E

[(
T∑
t=1

ejte
−iωst

)(
T∑
t=1

erte
−iωlt

)]
�

Hence, we can write

Eêjsêrl = 1
T

T−1∑
u=1−T

e−iωsucjr(u)

T∑
t=1

h(t + u)e−i(ωs+ωl)t�

where h(τ)= 1 for 1 ≤ τ ≤ T and h(τ)= 0 otherwise. Denote

T∑
t=1

h(t + u)e−i(ωs+ωl)t −
T∑
t=1

e−i(ωs+ωl)t

as U1 and denote

T−1∑
u=1−T

e−iωsucjr(u)− 2π[Se
n(ωs)]jr
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as U2. Then

Eêjsêrl − 2π
T

T∑
t=1

e−i(ωs+ωl)t[Se
n(ωs)]jr

= 1
T

T−1∑
u=1−T

e−iωsucjr(u)U1 +U2

T∑
t=1

e−i(ωs+ωl)t �

But |U1| ≤ |u| and

|U2| =
∣∣∣∣∑
|u|≥T

e−iωsucjr(u)

∣∣∣∣ ≤
∑
|u|≥T

|u|
T

|cjr(u)|�

Hence,

∣∣∣∣∣Eêjsêrl − 2π
T

T∑
t=1

e−i(ωs+ωl)t[Se
n(ωs)]jr

∣∣∣∣∣
≤ 1

T

T−1∑
u=1−T

|u||cjr(u)| +
∑
|u|≥T

|u|
T

|cjr(u)|
∣∣∣∣∣

T∑
t=1

e−i(ωs+ωl)t

∣∣∣∣∣�
Note that by the definition of ωs and ωl, ωs +ωl = (2π(ss + sl))/T �= 0 for all s
and l. Therefore,

1
T

T∑
t=1

e−i(ωs+ωl)t = e−i(ωs+ωl)

T

e−i(ωs+ωl)T − 1
e−i(ωs+ωl) − 1

= 0

for all s and l, and we have |Eêjsêrl| ≤ 1
T

∑T−1
u=1−T |u||cjr(u)| =O(T−1) uniformly

in s and l, but also in j and r by Assumption 2(ii). Similarly, |Eê′
jsê

′
rl| =O(T−1)

uniformly in s� l� j and r.
Consider now Eêjsê

′
rl. Similar to above,

∣∣∣∣∣Eêjsê′
rl −

2π
T

T∑
t=1

e−i(ωs−ωl)t[Se
n(ωs)]jr

∣∣∣∣∣
≤ 1

T

T−1∑
u=1−T

|u||cjr(u)| +
∑
|u|≥T

|u|
T

|cjr(u)|
∣∣∣∣∣

T∑
t=1

e−i(ωs−ωl)t

∣∣∣∣∣�
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and if s �= l, we have |Eêjsê′
rl| = O(T−1) uniformly in s� l� j, and r. However, if

s = l, then ωs −ωl = 0 and we have

Eêjsê
′
rl − 2π[Se

n(ωs)]jr = 1
T

T−1∑
u=1−T

e−iωsucjr(u)(T − u)− 2π[Se
n(ωs)]jr

= − 1
T

T−1∑
u=1−T

ue−iωsucjr(u)−
∑
|u|≥T

e−iωsucjr(u)

so that |Eêjsê′
rl − 2π[Se

n(ωs)]jr| ≤ 1
T

∑ |u||cjr(u)| = O(T−1) uniformly in s� l� j,
and r. To summarize,

Eêjsêrl =O(T−1)� Eê′
jsê

′
rl = O(T−1)�(S1)

Eêjsê
′
rl = δsl2π[Se

n(ωs)]jr +O(T−1)�(S2)

where O(T−1) is uniform in s� l� j, and r.
This result is very similar to Theorem 4.3.2 of Brillinger (1981), which is

more general in that it gets estimates for higher order cumulants of d.f.t.’s in
addition to the second-order cumulants, but which is less general in that it only
considers situations when j and r are bounded so that uniformity of O(T−1)
in j and r is trivial.

Note that

Eêjsêrl = E(Re êjs + i Im êjs)(Re êrl + i Im êrl)

= E(Re êjs Re êrl − Im êjs Im êrl)

+ iE(Re êjs Im êrl + Im êjs Re êrl)

and

Eêjsê
′
rl = E(Re êjs + i Im êjs)(Re êrl − i Im êrl)

= E(Re êjs Re êrl + Im êjs Im êrl)

+ iE(−Re êjs Im êrl + Im êjs Re êrl)�

Therefore,

E(Re êjs Re êrl)= 1
4
(Eêjsêrl +Eê′

jsê
′
rl +Eêjsê

′
rl +Eê′

jsêrl)�

E(Im êjs Im êrl)= 1
4
(Eêjsê

′
rl +Eê′

jsêrl −Eêjsêrl −Eê′
jsê

′
rl)�

E(Re êjs Im êrl)= 1
4i
(Eêjsêrl −Eê′

jsê
′
rl −Eêjsê

′
rl +Eê′

jsêrl)�
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E(Im êjs Re êrl)= 1
2i
(Eêjsêrl −Eê′

jsê
′
rl +Eêjsê

′
rl −Eê′

jsêrl)�

Using formulas (S1) and (S2), we finally get

E(Re êjs Re êrl)= δsl

π

2
([Se

n(ωs)]jr + [Se
n(ωs)]rj

) +O(T−1)�

E(Im êjs Im êrl)= δsl

π

2
([Se

n(ωs)]jr + [Se
n(ωs)]rj

) +O(T−1)�

E(Re êjs Im êrl)= δsl

π

2i
(−[Se

n(ωs)]jr + [Se
n(ωs)]rj

) +O(T−1)�

E(Im êjs Re êrl)= δsl

π

2i
([Se

n(ωs)]jr − [Se
n(ωs)]rj

) +O(T−1)�

Since Se
n(ωs) is a Hermitian matrix, we have

E(Re êjs Re êrl)= δslπ Re[Se
n(ωs)]jr +O(T−1)�

E(Im êjs Im êrl)= δslπ Re[Se
n(ωs)]jr +O(T−1)�

E(Re êjs Im êrl)= −δslπ Im[Se
n(ωs)]jr +O(T−1)�

E(Im êjs Re êrl)= δslπ Im[Se
n(ωs)]jr +O(T−1)�

Further, by the definition of the spectrum and by Assumption 2(ii),
[Se

n(ωs)]jr − [Se
n(ω0)]jr = O(m/T) uniformly in j� r, and s. Hence, the above

covariance formulas for the real and imaginary parts of êjs and êrl imply that
the i� jth entries of R equal δ[i/2n]�[j/2n]O(m/T) + O(T−1), where O(m/T) and
O(T−1) are uniform in i and j running from 1 to 2nm.

Construct η̃ = V 1/2(V + R)−1/2η and define an n × m matrix ẽ with the sth
columns ẽs so that ((Re ẽ1)

′� (Im ẽ1)
′� � � � � (Re ẽm)′� (Im ẽm)

′)′ = η̃. Note that ẽ
has independent NC

n (0�2πSe
n(ω0)) columns by construction.

Using inequalities ‖BA‖2 ≤ ‖B‖‖A‖2 and ‖AB‖2 ≤ ‖A‖2‖B‖ (see, for ex-
ample, Horn and Johnson (1985, Problem 20, p. 313)), we obtain E‖η− η̃‖2 =
‖(V + R)1/2 − V 1/2‖2

2 ≤ ‖V 1/4‖4‖(I + V −1/2RV −1/2)1/2 − I‖2
2. Denote the ith

largest eigenvalue of V −1/2RV −1/2 as μi and note that |μi| ≤ 1 for large
enough T . Since |(1 + μi)

1/2 − 1| ≤ |μi| for any |μi| ≤ 1, the ith eigen-
value of (I + V −1/2RV −1/2)1/2 − I is no larger by absolute value than the
ith eigenvalue of V −1/2RV −1/2 for large enough T . Therefore, E‖η − η̃‖2 ≤
‖V 1/4‖4‖V −1/2RV −1/2‖2

2 ≤ ‖V 1/4‖4‖V −1/2‖4‖R‖2
2. But ‖V 1/4‖ = (πl1n)

1/4 and
‖V −1/2‖ = (πlnn)

−1/2 by construction, and

‖R‖2
2 =

2nm∑
i�j=1

(
δ[i/2n]�[j/2n]O(m/T)+O(T−1)

)2

= m(2n)2O(m2/T 2)+ (2mn)2O(T−2)= o
(
n−1/3

)
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because n ∼m = o(T 3/8). Hence,

E‖η− η̃‖2 ≤ (πl1n)(πlnn)
−2o

(
n−1/3

) = o
(
n−1/3

)
�

where the last equality holds because l1n and l−1
nn remain bounded as n�m→ ∞

by Assumption 3. Finally, Lemma 2 and Markov’s inequality imply that σ2
1 (ê−

ẽ)= op(n
−1/3).

Now, suppose that Assumption 2(ii)(a) holds and m = o(T 1/2−1/p log−1 T)6/13.
In this case, êis = ∑∞

j=1 Aijûjs, where ûjs is the d.f.t. of ujt at frequency ωs.
For fixed j and ω0 = 0, Phillips (2007) showed that there exist independent
and identically distributed (i.i.d.) complex normal variables ξjs, s = 1� � � � �m,
such that ûjs − ξjs = op(m/T 1/2−1/p) uniformly over s ≤ m. Lemmas S1, S2,
and S3 below extend Phillips’ proof to the case ω0 �= 0 and show that there
exist Gaussian processes uG

jt with the same autocovariance structure as ujt and
independent over j ∈ N such that the differences between the d.f.t.’s ûjs − ûG

js ≡
rjs satisfy supj>0 E(maxs≤m |rjs|)2 ≤Km2T 2/p−1 log2 T for large enough T , where
K > 0 depends only on p�μp� supj≥1(

∑∞
k=0 k|cjk|)p, and supj≥1 |Cj(e

−iω0)|.
Note that the process eGit = ∑∞

j=1 Aiju
G
jt satisfies Assumption 2(ii). Indeed,

let cGij (u) ≡ EeGi�t+ue
G
jt . Then, since uG

jt are independent over j ∈ N and have the
same autocovariance structure as ujt� we have cGij (u) = ∑∞

r=1 AirAjrEur�t+uurt .
Therefore,

∑
u

(1 + |u|)|cGij (u)| ≤
∞∑
r=1

|AirAjr|
∑
u

(1 + |u|)|Eur�t+uurt |�

On the other hand,

∑
u

(1 + |u|)|Eur�t+uurt | ≤
∑
u

∞∑
k=|u|

(1 + |u|)|crk|
∣∣crk−|u|

∣∣

=
∞∑
k=0

∑
u:|u|≤k

(1 + |u|)|crk|
∣∣crk−|u|

∣∣

≤
∞∑
k=0

∑
u:|u|≤k

(1 + k)|crk|
∣∣crk−|u|

∣∣

≤
( ∞∑

k=0

(1 + k)|crk|
)2

�
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Hence,

sup
i�j

∑
u

(1 + |u|)|cGij (u)| ≤ sup
i

∞∑
r=1

A2
ir sup

r>0

( ∞∑
k=0

(1 + k)|crk|
)2

< ∞

by Assumption 2(ii)(a).
Thus, the problem reduces to the Gaussian case analyzed above if we show

that σ2
1 (ê− êG)= op(n

−1/3). But we have

n∑
i=1

m∑
s=1

E|(ê− êG)is|2

=
n∑

i=1

m∑
s=1

∞∑
j=1

A2
ijE|rjs|2 ≤m

n∑
i=1

∞∑
j=1

A2
ijE

(
max
s≤m

|rjs|
)2

≤mn

(
sup
i>0

∞∑
j=1

A2
ij

)
Km2T 2/p−1 log2 T = o

(
n−1/3

)

if n ∼ m = o(T 1/2−1/p log−1 T)6/13 as has been assumed. Therefore, Lemma 2
and Markov’s inequality imply that σ2

1 (ê− êG)= op(n
−1/3). Q.E.D.

LEMMA S1—Zaitsev (2006): Suppose that x1� � � � � xT are independent zero-
mean random vectors in R

d such that Lp ≡ ∑T

t=1 E‖xt‖p < ∞ with p ≥ 2
and there exists a sequence 0 = m0 < m1 < · · · < mτ = T such that for Dk ≡
Var[xmk−1+1 + · · · + xmk

], k = 1� � � � � τ, we have Id ≤ γ−2Dk ≤ C · Id with C ≥ 1
and γ = 2eL1/p

p . Then there exists a probability space that supports both a se-
quence distributionally equivalent to x1� � � � � xT and a sequence of independent
N(0�Var(xt)) vectors yt , t = 1� � � � �T , such that

Pr

(
max
1≤t≤T

∥∥∥∥∥
t∑

s=1

(xs − ys)

∥∥∥∥∥ > 5z

)
≤ 2Lpz

−p + exp
(

− a1z

γd9/2 log∗ d

)

for any z > a2(d
8 log∗ d)γ log∗ τ, where a1� a2 > 0 depend only on C and where

log∗ a≡ max(1� loga).

This lemma is a slightly weakened version of Corollary 3 in Zaitsev (2006).

LEMMA S2: Under Assumption 2(ii)(a), there exists a probability space that
supports a process distributionally equivalent to εit and a process εG

it ∼ i�i�d�
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N(0�1) such that E(max1≤t≤T (|Rjt |/
√
T))2 ≤ bT 2/p−1 log2 T for large enough T ,

where Rjt ≡ ∑t

l=1 e
−iω0l(εjl − εG

jl ) and b > 0 depends only on p and μp.

PROOF: In Lemma S1, take xt = vtεjt , where vt ≡ (cosω0t�− sinω0t)
′,

and assume that ω0 �= 0 mod(π). Then, for any l, the two singular val-
ues of Var(x2l−1 + x2l) are σ1�2 ≡ 1 ± | cosω0|. Therefore, for k = 1� � � � � τ,
(σ2(Dk))/γ

2 ≥ σ2/γ
2[(mk −mk−1)/2] and (σ1(Dk))/γ

2 ≤ σ1/γ
2[(mk −mk−1 +

1)/2] for any positive γ and, hence, for γ = 2eL1/p
p with Lp = Tμp. In particu-

lar, if we choose mk = k([2γ2/σ2] + 1) for k ≤ τ − 1 with τ = [T/m1], we have
mink≤τ[(mk − mk−1)/2] = [m1/2] ≥ γ2/σ2 and maxk≤τ[(mk − mk−1 + 1)/2] ≤
m1 ≤ 3γ2/σ2, where the latter inequality holds because μ2/p

p ≡ (E|εjt |p)2/p ≥
Eε2

jt ≡ 1; thus, γ2/σ2 ≥ 1. Summarizing the above inequalities, we get I2 ≤
γ−2Dk ≤ 3(1 + | cosω0|)/(1 − | cosω0|)I2 for k = 1� � � � � τ. Hence, for each j,
Zaitsev’s inequality for the tail probability of max1≤t≤T ‖∑t

s=1{vsεjs − yjs}‖ is
satisfied for independent N(0� vsv′

s) vectors yjs, s = 1� � � � �T . By expanding the
probability space, we can choose yjs’s independent across different j’s and em-
bed the finite sequences yjs, s = 1� � � � �T , into the infinite ones yjs, s ∈ Z.

Now, define independent N(0�1) variables εG
js ≡ y1�js cosω0s − y2�js sinω0s,

where y1�js and y2�js are the two components of vector yjs ≡ (y1�js� y2�js)
′. Note

that

Re(e−iω0sεG
js)= y1�js cos2 ω0s − y2�js cosω0s sinω0s�(S3)

Im(e−iω0sεG
js)= −y1�js sinω0s cosω0s + y2�js sin2 ω0s�(S4)

Further, note that

y1�js sin(ω0s)+ y2�js cos(ω0s)≡ 0(S5)

because E((sin(ω0s)� cos(ω0s))yjs)
2 = (sin(ω0s)� cos(ω0s))vsv

′
s(sin(ω0s)�

cos(ω0s))
′ ≡ 0. Multiplying the left hand side of (S5) by sin(ω0s) and by

cos(ω0s), and adding the results to the right hand sides of (S3) and (S4), re-
spectively, we find that the components of yjs equal the real and the imaginary
parts of e−iω0sεG

js� Therefore, we have

Pr
(

max
1≤t≤T

|Rjt | > 5z
)

≤ 2Lpz
−p + exp

(
− a1z

γ29/2 log 2

)

for any z > a2(28 log 2)γ log∗ τ, where Rjt ≡ ∑t

l=1 e
−iω0l(εjl − εG

jl ) and a1� a2 >

0 depend only on ω0 �= 0 mod(π). For ω0 = 0 mod(π), defining xt = e−iω0tεjt

and repeating a simplified scalar version of the above argument, we obtain the
same tail probability estimate (with different a1 and a2, and τ = [T/m1] with
m1 = [γ2] + 1).
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Now, we have

E

(
max
1≤t≤T

|Rjt |√
T

)2

= 2
∫ ∞

0
xPr

(
max
1≤t≤T

|Rjt |√
T

> x

)
dx

≤ x̄2 + 2
∫ ∞

x̄

x

(
2Lp

(
x
√
T

5

)−p

+ exp
(

− a1x
√
T

5γ29/2 log 2

))
dx

for x̄ > 5T−1/2a2(28 log 2)γ log∗ τ. Recall that τ = [T/m1] = [T/([2γ2/σ2]+ 1)],
γ = 2eL1/p

p with Lp = Tμp, and σ2 = 1 − | cosω0| (or, alternatively, τ =
[T/m1] = [T/([γ2] + 1)] for ω0 = 0 mod(π)). As T → ∞, γ ∼ T 1/p and τ ∼
T 1−2/p so that there exists a constant b2 > 0 such that x̄ ≥ b2T

1/p−1/2 logT im-
plies that x̄ > 5T−1/2a2(28 log 2)γ log∗ τ for large enough T . Furthermore, since
the inequality x ≥ b2T

1/p−1/2 logT implies that xT 1/2−1/p → ∞ as T → ∞ and
since 2Lp(x

√
T/5)−p ∼ (xT 1/2−1/p)−p and a1x

√
T/(5γ29/2 log 2) ∼ xT 1/2−1/p,

we have 2Lp(x
√
T/5)−p > exp(−a1x

√
T/(5γ29/2 log 2)) for large enough T . To

summarize, for large enough T and for x̄ ≥ b2T
1/p−1/2 logT with some positive

constant b2,

E

(
max
1≤t≤T

|Rjt |√
T

)2

≤ x̄2 + 2
∫ ∞

x̄

4xLp

(
x
√
T

5

)−p

dx

= x̄2 + b1T
1−p/2x̄2−p�

where b1 > 0 depends only on μp and p. Setting x̄ = b2T
1/p−1/2 logT , we get

E(max1≤t≤T (|Rjt |/
√
T))2 ≤ bT 2/p−1 log2 T for large enough T , where b > 0 de-

pends only on μp and p. Q.E.D.

LEMMA S3: Let Assumption 2(ii)(a) hold and let εG
it , j ∈ N� t ∈ Z, be the

i�i�d� N(0�1) variables described in Lemma S2. Define uG
jt ≡ Cj(L)ε

G
jt and con-

sider the differences rjs ≡ ûjs − ûG
js between the d.f.t.’s of ujt and uG

jt at frequen-
cies ωs with s = 1� � � � �m. Then supj>0 E(maxs≤m |rjs|)2 ≤ Km2T 2/p−1 log2 T for
large enough T , where K > 0 depends only on p, μp, supj≥1(

∑∞
k=0 k|cjk|)p, and

supj≥1 |Cj(e
−iω0)|.

PROOF: Consider the representation for rjs ≡ ûjs − ûG
js ,

√
Trjs = e−i(ωs−ω0)T R̃jT −

T−1∑
t=1

R̃jte
−i(ωs−ω0)t

(
e−i(ωs−ω0) − 1

)
�(S6)
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where R̃jt ≡ ∑t

l=1 e
−iω0l(ujl −uG

jl ). Using a modified Beveridge–Nelson decom-
position, Cj(L)= Cj(e

−iω0)+C̃j(L)(L−e−iω0), where C̃j(L) = ∑∞
k=0 c̃jkL

k with
c̃jk = ∑∞

s=k+1 e
−iω0(s−k−1)cjs, we get e−iω0l(ujl −uG

jl )= Cj(e
−iω0)e−iω0l(εjl − εG

jl )+
(ε̃j�l−1 − ε̃G

j�l−1) − (ε̃jl − ε̃G
jl ) with ε̃jl = e−iω0(l+1)C̃j(L)εjl and ε̃G

jl = e−iω0(l+1) ×
C̃j(L)ε

G
jl . Therefore,

R̃jt = Cj(e
−iω0)Rjt + (ε̃j�0 − ε̃G

j�0)− (ε̃jt − ε̃G
jt )�(S7)

where Rjt ≡ ∑t

l=1 e
−iω0l(εjl − εG

jl ). Substituting (S7) in (S6) and using the fact
that |e−i(ωs−ω0) − 1| ≤ 2π(m+1)

T
, we obtain

max
1≤s≤m

|rjs| ≤ 2π(m+ 1)(S8)

×
(

|Cj(e
−iω0)| max

1≤t≤T

|Rjt |√
T

+ 2 max
0≤t≤T

|ε̃jt |√
T

+ 2 max
0≤t≤T

|ε̃G
jt |√
T

)
�

By Lemma S2, E(max1≤t≤T (|Rjt |/
√
T))2 ≤ bT 2/p−1 log2 T for some b > 0, which

depends only on p and μp for large enough T . Furthermore,

Pr
(

max
0≤t≤T

|ε̃jt |√
T

> δ

)
≤ Pr

(
T∑
t=0

|ε̃jt |p
Tp/2

> δp

)
≤ 2T 1−p/2E|ε̃jt|p/δp�

But by Minkowski’s inequality,

E|ε̃jt|p = E

(∣∣∣∣∣
∞∑
k=0

c̃jkεjt−k

∣∣∣∣∣
p)

<

( ∞∑
k=0

|c̃jk|(E|εjt−k|p)1/p

)p

(S9)

≤
( ∞∑

k=0

k|cjk|
)p

μp�

Hence,

Pr
(

max
0≤t≤T

|ε̃jt |√
T

> δ

)
≤ 2T 1−p/2

( ∞∑
k=0

k|cjk|
)p

μp/δ
p

and, therefore,

E

(
max
0≤t≤T

|ε̃jt |√
T

)2

= 2
∫ ∞

0
xPr

(
max
0≤t≤T

|ε̃jt |√
T

> x

)
dx

≤ T 2/p−1 + 4
∫ ∞

T 1/p−1/2
x1−pT 1−p/2

( ∞∑
k=0

k|cjk|
)p

μp dx

≤ aT 2/p−1
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for some a > 0 which depends only on p, μp, and supj≥1(
∑∞

k=0 k|cjk|)p. Us-
ing a similar argument, we can show that E(max0≤t≤T (|ε̃G

jt |/
√
T))2 ≤ cT 2/p−1

for some c > 0 which depends only on p and supj≥1(
∑∞

k=0 k|cjk|)p. Using
the above estimates for the second moments together with (S9), we get
supj≥1 E(max1≤s≤m |rjs|)2 ≤ Km2T 2/p−1 log2 T for large enough T and for K > 0
which depends only on p, μp� supj≥1(

∑∞
k=0 k|cjk|)p, and supj≥1 |Cj(e

−iω0)|.
Q.E.D.

A DETAIL OF THE PROOF OF THEOREM 1

In the proof of Theorem 1, we mention that we can establish the fact that
c̄m�n − cm�n = O(1/n) by finding bounds on function f̄ (c) ≡ ∫

( λc
1−λc

)2 dH̄n(λ) in
terms of function f (c) ≡ ∫

( λc
1−λc

)2 dHn(λ). Here we derive such bounds and
use them to prove that c̄m�n − cm�n = O(1/n).

Since ( λc
1−λc

)2 is an increasing function of λ for λc < 1, inequalities lk+i�n ≤
l̄in ≤ lin for n− k ≤ i ≤ 1 imply that

f (c)− k

n

(
l1nc

1 − l1nc

)2

≤ n− k

n
f̄ (c)≤ f (c)(S9)

for c ∈ [0� l−1
1n ). By definition, c̄m�n and cm�n are the solutions to equations

f̄ (c) = m−k
n−k

and f (c) = m
n

, respectively. Furthermore, f̄ (c) and f (c) are in-
creasing functions of c on c ∈ [0� l̄−1

1n ) and on c ∈ [0� l−1
1n ), respectively. Hence,

inequalities (S9) would imply c̄m�n − cm�n = O(1/n) if we show that for any
n >N ,

f

(
cm�n + M

n

)
− k

n

(
l1n(cm�n +M/n)

1 − l1n(cm�n +M/n)

)2

≥ m− k

n

and

f

(
cm�n − M

n

)
≤ m− k

n
�

where N > 0 and M > 0 are constants yet to be chosen.
Since f (cm�n) = m

n
, we have f (cm�n ± M

n
) ≷ m

n
± M

n
min|c−cm�n|≤M/n f

′(c) for any
n > N1(M), where N1(M) is so large that (cm�n + M

n
)l1n < 1 and cm�n − M

n
> 0

for any n > N1(M). That such an N1(M) exists follows from the assump-
tion that lim sup l1ncm�n < 1 and from inequality lim inf cm�n > 0. The latter
inequality holds because m

n
= ∫

(λcm�n/(1 − λcm�n))
2 dHn(λ) ≤ (l1ncm�n/(1 −

l1ncm�n))
2 so that lim inf cm�n ≥ lim inf(

√
m
n
)/(1 − lim sup l1ncm�n)/lim sup l1n,

where lim inf(
√

m
n
) > 0 by assumption that m

n
remains in a compact subset of

(0�∞), and lim sup l1ncm�n < 1 and lim sup l1n <∞ by Assumption 3.



LARGE FACTOR MODELS 11

Further, note that

f ′′(c)≡
∫

2λ2 + 4λ3c

(1 − λc)4
dHn(λ) > 0

for c ∈ [0� l−1
1n ). Therefore, f (c) is convex on [0� l−1

1n ) and we have

min
|c−cm�n|≤M/n

f ′(c) = f ′
(
cm�n − M

n

)
≡

∫
2λ2c

(1 − λc)3
dHn(λ)

∣∣∣∣
c=cm�n−M/n

≥ 2l2
nn(cm�n −M/n)

(1 − lnn(cm�n −M/n))3
> 2l2

nn

(
cm�n − M

n

)
�

But by Assumption 3, lim inf lnn > 0. Therefore, there exist N2(M) and γ >
0 such that min|c−cm�n|≤M/n f

′(c) ≥ γ for any n > N2(M), and, hence, f (cm�n ±
M
n
) ≷ m

n
± M

n
γ for any n > max(N1(M)�N2(M)).

Finally, let N3(M) and C ≥ k be such that for any n >N3(M),

(
l1n(cm�n +M/n)

1 − l1n(cm�n +M/n)

)2

≤ C

k
�

Choose M > C
γ

and N = max(N1(M)�N2(M)�N3(M)). Then, for any n >N ,

f

(
cm�n + M

n

)
− k

n

(
l1n(cm�n +M/n)

1 − l1n(cm�n +M/n)

)2

>
m

n
+ M

n
γ − C

n

≥ m− k

n

and

f

(
cm�n − M

n

)
<

m

n
− M

n
γ <

m

n
− C

n
≤ m− k

n

as desired, and thus, c̄m�n − cm�n =O(1/n). Q.E.D.

PROOF OF THEOREM 3

Let λj(A) denote the ith largest eigenvalue of a Hermitian matrix A. Let
F̃t = Ft +

√−1Ft+T/2. Below, we will assume that T is an even number. If it is
not, we will redefine T as T − 1. We have the following lemma:

LEMMA S4: Suppose Assumption 1m holds. Then there exists a constant B > 0
such that Pr(λk(

2
T

∑T/2
t=1 F̃t F̃

′
t ) < B)→ 0 as T → ∞.
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PROOF: Let us denote 1/(t2 − t1)
∑t2

t=t1+1 FtF
′
t+u as Γ̂ (t1�t2)(u) and denote

the i, jth entry of matrix Γ̂ (t1�t2)(u) as Γ̂ (t1�t2)
ij (u). Note that, by definition of F̃j ,

2
T

∑T/2
j=1 F̃jF̃

′
j = 2Γ̂ (0�T )(0)+√−1(Γ̂ (T/2�T )(−T/2)− Γ̂ (0�T/2)(T/2)). Using Weyl’s

inequalities for eigenvalues of a sum of Hermitian matrices (see Horn and
Johnson (1985, Theorem 4.3.7)), we obtain∣∣∣∣∣λk

(
2
T

T/2∑
t=1

F̃t F̃
′
t

)
− λk

(
2Γ̂ (0�T )(0)

)∣∣∣∣∣(S10)

≤
∥∥∥∥Γ̂ (T/2�T )

(
−T

2

)
− Γ̂ (0�T/2)

(
T

2

)∥∥∥∥∥�
According to Formula 3.3 of Hannan (1970, p. 209), the variance of Γ̂ (t1�t2)

ij (s)
equals

1
t2 − t1

t2−t1−1∑
u=−t2+t1+1

(
1 − |u|

t2 − t1

)

×{
Γii(u)Γjj(u)+ Γij(u+ s)Γji(u− s)+ cum(Fi0�Fj�s� Fi�u�Fj�u+s)

}
�

Since by Assumption 1m, for any i and j, Γij(v) → 0 as v → ∞ and cum(Fi0�

Fj�s� Fi�u�Fj�u+s) → 0 as max(|s|� |u|� |s + u|) → ∞, the variances of 2Γ̂ (0�T )
ij (0),

of Γ̂ (T/2�T )
ij (−T/2), and of Γ̂ (0�T/2)

ij (T/2) converge to zero as T → ∞. Therefore,
2Γ̂ (0�T )

ij (0) converges in probability to its mean 2Γij(0) and, since by Assump-
tion 1m, Γij(−T/2) − Γij(T/2) → 0, Γ̂ (T/2�T )

ij (−T/2) − Γ̂ (0�T/2)
ij (T/2) converges

in probability to zero. Since the eigenvalues are continuous functions of the
entries of the matrix, λk(2Γ̂ (0�T )(0)) converges in probability to 2λk(Γ (0)) > 0.
Further, ‖Γ̂ (T/2�T )

ij (−T/2)− Γ̂ (0�T/2)
ij (T/2)‖ converges in probability to zero. The

latter two convergence results and inequality (S10) imply that the statement of
the lemma holds with B = λk(Γ (0)). Q.E.D.

LEMMA S5: Let Assumptions 1m–4m hold, and let n and T go to infinity so
that n/T remains in a compact subset of (0�∞). Then, for any positive integer r,
the joint distribution of σ−1

T/2�n(γ̃k+1 −μT/2�n)� � � � �σ
−1
T/2�n(γ̃k+r −μT/2�n) weakly con-

verges to the r-dimensional TW2 distribution.

PROOF: The proof of this lemma is almost identical to the proof of The-
orem 1 in the Appendix. We introduce the following notation to minimize
the discrepancies. Let m = T/2, X̃ = √

2π[X̃1� � � � � X̃m], F̂ = √
2π[F̃1� � � � � F̃m],

and ẽ = √
2π[ẽ1� � � � � ẽm]. Then, by definition, γ̃i = λi(X̃X̃ ′/(2πm)) for all
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i = 1� � � � � n. The remaining proof of Lemma S5 repeats the proof of The-
orem 1, starting from the second paragraph of that proof with the follow-
ing changes: matrices Se

n(ω0) and S̄e
n(ω0) must be replaced by Σe

n and Σ̄e
n,

where Σe
n ≡ Eet(n)e

′
t(n); the word “Assumption 3” must be replaced by “As-

sumption 3m” the words “by Assumptions 1 and 4” must be replaced by “by
Lemma S4 and Assumption 4m.” Q.E.D.

The convergence of R̃ to max0<i≤k1−k0((λi −λi+1)/(λi+1 −λi+2)) when k= k0

follows from Lemma S5. When k0 < k ≤ k1, R̃ ≥ (γ̃k − γ̃k+1)/(γ̃k+1 − γ̃k+2).
Therefore, we only need to show that (γ̃k − γ̃k+1)/(γ̃k+1 − γ̃k+2)

p→ ∞. Using
the notation of Lemma S5, we have γ̃i = λi(X̃X̃ ′/2πm) for all i = 1� � � � � n.
Using Weyl’s inequalities for singular values (see Lemma 3), we obtain

∣∣∣∣λ1/2
i

(
X̃X̃ ′

2πm

)
− λ1/2

i

(
Λ̂0F̂ F̂

′Λ̂′
0

2πm

)∣∣∣∣ ≤ λ1/2
1

(
ẽẽ′

2πm

)

for i = 1� � � � � n, where λ1(
ẽẽ′

2πm) = Op(1) by Lemma 1. Take i = k. By Assump-

tion 4m and Lemma S4, λk(Λ̂0F̂ F̂
′Λ̂′

0/(2πm))
p→ ∞. Therefore, λk(X̃X̃ ′/

(2πm))
p→ ∞ and, hence, γ̃k

p→ ∞. Now, take i > k. Then λ1/2
i (Λ̂0F̂ F̂

′Λ̂′
0/

(2πm)) = 0. Therefore, λi(X̃X̃ ′/(2πm)) = Op(1) and, hence, γ̃i = Op(1).
Summing up, γ̃k − γ̃k+1

p→ ∞, while γ̃k+1 − γ̃k+2 = Op(1). Hence (γ̃k −
γ̃k+1)/(γ̃k+1 − γ̃k+2)

p→ ∞. Q.E.D.

REFERENCES

BRILLINGER, D. R. (1981): Time Series. Data Analysis and Theory. San Francisco: Holden-Day.
HANNAN, E. J. (1970): Multiple Time Series. New York: Wiley.
HORN, R. A., and C. R. JOHNSON (1985): Matrix Analysis. Cambridge: Cambridge University

Press.
PHILLIPS, P. C. B. (2007): “Unit Root Log Periodogram Regression,” Journal of Econometrics,

138, 104–124.
ZAITSEV, A. Y. (2006): “Estimates for the Strong Approximation in the Multidimensional Invari-

ance Priciple,” Zapiski Nauchnyh Seminarov POMI, 339, 37–53. Available at http://www.pdmi.
ras.ru/znsl/.

Economics Department, Columbia University, New York, NY 10027; U.S.A.;
ao2027@columbia.edu.

Manuscript received February, 2007; final revision received December, 2008.


