SUPPLEMENT TO "COPULAS AND TEMPORAL DEPENDENCE": APPENDIX
 By Brendan K. Beare
 (Econometrica, Vol. 78, No. 1, January 2010, 395-410)

This supplementary appendix contains proofs of the theorems given in the main paper.

Proof of Theorem 3.1: Since $\left\{Z_{t}\right\}$ is a stationary Markov chain, it is known (see Theorems 7.3(b) and 3.29(II) in Bradley (2007)) that its β-mixing coefficients satisfy

$$
\beta_{k}=\frac{1}{2}\left\|F_{0, k}(x, y)-F(x) F(y)\right\|_{\mathrm{TV}},
$$

where $F_{0, k}$ is the joint distribution function of Z_{0} and Z_{k}, and $\|\cdot\|_{\mathrm{TV}}$ is total variation (in the Vitali sense).

From Sklar's theorem, we thus have

$$
\beta_{k}=\frac{1}{2}\left\|C_{k}(F(x), F(y))-F(x) F(y)\right\|_{\mathrm{TV}} \leq \frac{1}{2}\left\|C_{k}(x, y)-x y\right\|_{\mathrm{TV}} .
$$

Equation (2.1) implies that C_{k} inherits the property of absolute continuity from C. Letting c_{k} denote the density of C_{k}, we now have that $\beta_{k} \leq \frac{1}{2}\left\|c_{k}-1\right\|_{1}$ and hence $\beta_{k} \leq \frac{1}{2}\left\|c_{k}-1\right\|_{2}$.

As a symmetric square-integrable joint density function with uniform marginals, c admits the mean square convergent expansion
(A.1) $\quad c(x, y)=1+\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(x) \phi_{i}(y)$,
where the eigenvalues $\left\{\lambda_{i}\right\}$ form a nonincreasing square-summable sequence of nonnegative real numbers and the eigenfunctions $\left\{\phi_{i}\right\}$ form a complete orthonormal sequence in $L_{2}[0,1]$. Expansions of this form were studied by Lancaster (1958), Rényi (1959), and Sarmanov (1958a, 1958b, 1961). Using (2.1), we deduce that the densities c_{k} satisfy

$$
c_{k}(x, y)=1+\sum_{i=1}^{\infty} \lambda_{i}^{k} \phi_{i}(x) \phi_{i}(y)
$$

which is simply a restatement of a result due to Sarmanov (1961) in terms of copula functions. We now have

$$
\left\|c_{k}-1\right\|_{2}=\left\|\sum_{i=1}^{\infty} \lambda_{i}^{k} \phi_{i}(x) \phi_{i}(y)\right\|_{2}
$$

and so with two applications of Parseval's equality, we obtain

$$
\left\|c_{k}-1\right\|_{2}=\left(\sum_{i=1}^{\infty} \lambda_{i}^{2 k}\right)^{1 / 2} \leq \lambda_{1}^{k-1}\left(\sum_{i=1}^{\infty} \lambda_{i}^{2}\right)^{1 / 2}=\lambda_{1}^{k-1}\|c-1\|_{2}
$$

As observed by Lancaster (1958), Rényi (1959), and Sarmanov (1958a, 1958b, 1961), λ_{1} is equal to the maximal correlation of C. Since this quantity is assumed to be less than 1 , the proof is complete.
Q.E.D.

Proof of Theorem 3.2: Suppose first that $\rho_{C}=1$. As observed by Lancaster (1958), Rényi (1959), and Sarmanov (1958a, 1958b), the supremum in (3.1) is achieved by a specific pair of functions f, g when c is square integrable. Consequently, for such f, g, we have $\iint f(x) g(y) c(x, y) d x d y=1$. Further, since $\int f^{2}=\int g^{2}=1$ and the density c has uniform marginals, we have $\iint f(x)^{2} c(x, y) d x d y=\iint g(y)^{2} c(x, y) d x d y=1$. It follows that

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} f(x) g(y) c(x, y) d x d y \\
& \quad=\left(\int_{0}^{1} \int_{0}^{1} f(x)^{2} c(x, y) d x d y\right)^{1 / 2}\left(\int_{0}^{1} \int_{0}^{1} g(y)^{2} c(x, y) d x d y\right)^{1 / 2}
\end{aligned}
$$

and so the Cauchy-Schwarz inequality holds with equality. This can be true only if the set $D=\{(x, y): f(x) \neq g(y)\}$ satisfies $\iint_{D} c=0$. Let $A=\{x: f(x) \geq$ $0\}$ and $B=\{y: g(y)<0\}$. The conditions $\int f=\int g=0$ and $\int f^{2}=\int g^{2}=1$ ensure that A and B have measure strictly between zero and one. Since $(A \times B) \cup\left(A^{\mathrm{c}} \times B^{\mathrm{c}}\right) \subseteq D$, we have $\iint_{(A \times B) \cup\left(A^{\mathrm{c}} \times B^{\mathrm{c}}\right)} c=0$, and hence $c=0$ almost everywhere on $(A \times B) \cup\left(A^{\mathfrak{c}} \times B^{\mathrm{c}}\right)$.

Suppose next that $c=0$ almost everywhere on $(A \times B) \cup\left(A^{\mathfrak{c}} \times B^{\mathrm{c}}\right)$, where A, B have measure strictly between zero and one. Let $f(x)=1(x \in A)$ and $g(y)=1(y \notin B)$. It is easily verified that $f(x)=g(y)$ on a subset of $[0,1]^{2}$ over which c integrates to 1 . Since neither f nor g is constant almost everywhere, it follows that $\rho_{C}=1$.
Q.E.D.

Proof of Theorem 3.3: We will show that C cannot exhibit lower tail dependence when c is square integrable and μ_{L} exists. The corresponding result
for upper tail dependence can be shown in essentially the same way. For any $n \in \mathbb{N}$ and any $x \in(0,1]$, we may write

$$
\frac{C(x, x)}{x}=x+\sum_{i=1}^{n} \lambda_{i} x^{-1}\left(\int_{0}^{x} \phi_{i}(z) d z\right)^{2}+\xi_{n}(x)
$$

where ξ_{n} is defined by this equation. The Cauchy-Schwarz inequality implies that

$$
\begin{aligned}
x^{-1}\left(\int_{0}^{x} \phi_{i}(z) d z\right)^{2} & \leq x^{-1}\left(\int_{0}^{x} d z\right)\left(\int_{0}^{x} \phi_{i}(z)^{2} d z\right) \\
& =\left(\int_{0}^{x} \phi_{i}(z)^{2} d z\right)
\end{aligned}
$$

Square integrability of ϕ_{i} therefore implies that $\lim _{x \rightarrow 0^{+}} x^{-1 / 2} \int_{0}^{x} \phi_{i}(z) d z=0$. We thus obtain

$$
\lim _{x \rightarrow 0^{+}} \frac{C(x, x)}{x}=\lim _{x \rightarrow 0^{+}} \xi_{n}(x) \leq\left\|\xi_{n}\right\|_{\infty}
$$

for each $n \in \mathbb{N}$. It thus suffices to show that $\left\|\xi_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. Using Cauchy-Schwarz, we have

$$
\begin{aligned}
\left\|\xi_{n}\right\|_{\infty} & =\left\|x^{-1} \int_{0}^{x} \int_{0}^{x}\left(c(u, v)-1-\sum_{i=1}^{n} \lambda_{i} \phi_{i}(u) \phi_{i}(v)\right) d u d v\right\|_{\infty} \\
& \leq\left\|\left(\int_{0}^{x} \int_{0}^{x}\left(c(u, v)-1-\sum_{i=1}^{n} \lambda_{i} \phi_{i}(u) \phi_{i}(v)\right)^{2} d u d v\right)^{1 / 2}\right\|_{\infty} \\
& =\left(\int_{0}^{1} \int_{0}^{1}\left(c(u, v)-1-\sum_{i=1}^{n} \lambda_{i} \phi_{i}(u) \phi_{i}(v)\right)^{2} d u d v\right)^{1 / 2}
\end{aligned}
$$

Convergence of this last term to zero as $n \rightarrow \infty$ is the content of our series expansion (A.1).
Q.E.D.

Proof of Theorem 4.1: Since $\left\{Z_{t}\right\}$ is a Markov chain, Theorem 7.5(I)(a) of Bradley (2007) implies that ρ_{k} decays geometrically fast if $\rho_{1}<1$. We thus need only show that $\rho_{1} \leq \rho_{C}$. Given σ-fields $\mathcal{A}, \mathcal{B} \subseteq \mathcal{F}$, let $\rho(\mathcal{A}, \mathcal{B})=$ $\sup _{f, g}|\operatorname{Corr}(f, g)|$, where the supremum is taken over all random variables f and g measurable with respect to \mathcal{A} and \mathcal{B}, respectively, with positive and finite variance. Since $\left\{Z_{t}\right\}$ is a stationary Markov chain, Theorem 7.3(c) in Bradley (2007) implies that $\rho_{1}=\rho\left(\sigma\left(Z_{0}\right), \sigma\left(Z_{1}\right)\right)$. Let U, V be random variables with joint distribution function C, and let F^{-1} denote the quasi-inverse
distribution function given by $F^{-1}(z)=\inf _{x}\{F(x) \geq z\}$. Then $Z_{0}^{*}=F^{-1}(U)$ and $Z_{1}^{*}=F^{-1}(V)$ have the same joint distribution as Z_{0} and Z_{1}, and so Proposition 3.6(I)(c) of Bradley (2007) implies that $\rho_{1}=\rho\left(\sigma\left(Z_{0}^{*}\right), \sigma\left(Z_{1}^{*}\right)\right)$. Since $\sigma\left(Z_{0}^{*}\right) \subseteq \sigma(U)$ and $\sigma\left(Z_{1}^{*}\right) \subseteq \sigma(V)$, it follows that $\rho_{1} \leq \rho(\sigma(U), \sigma(V))$. We conclude by noting that $\rho(\sigma(U), \sigma(V))=\rho_{C}$.
Q.E.D.

PROOF OF THEOREM 4.2: Let $\varepsilon>0$ be such that $c(x, y) \geq \varepsilon$ almost everywhere on $[0,1]^{2}$. Consider $f, g \in L_{2}[0,1]$ with $\int f=\int g=0$ and $\int f^{2}=\int g^{2}=$ 1. Begin by writing

$$
\begin{aligned}
\iint f(x) g(y) C(d x, d y)= & \frac{1}{2} \iint\left(f(x)^{2}+g(y)^{2}\right) C(d x, d y) \\
& -\frac{1}{2} \iint(f(x)-g(y))^{2} C(d x, d y)
\end{aligned}
$$

Since $(f(x)-g(y))^{2} \geq 0$ and $c(x, y) \geq \varepsilon$ almost everywhere, we have

$$
\begin{aligned}
\iint(f(x)-g(y))^{2} C(d x, d y) & \geq \iint(f(x)-g(y))^{2} c(x, y) d x d y \\
& \geq \varepsilon \iint(f(x)-g(y))^{2} d x d y \\
& =2 \varepsilon
\end{aligned}
$$

Since it is also the case that $\iint\left(f(x)^{2}+g(y)^{2}\right) C(d x, d y)=2$, we obtain $\iint f(x) g(y) C(d x, d y) \leq 1-\varepsilon$, implying that the maximal correlation of C cannot exceed $1-\varepsilon$.

Proof of Theorem 4.3: Let \mathcal{S}_{n} denote the class of real-valued functions f on $[0,1]$ that can be written in the form

$$
f(x)=\sum_{i=1}^{n} f_{i} 1_{((i-1) / n, i / n]}(x)
$$

where f_{1}, \ldots, f_{n} are real numbers. If $f, g \in \mathcal{S}_{n}$, then

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1} f(x) g(y) C(d x, d y)-\left(\int_{0}^{1} f(x) d x\right)\left(\int_{0}^{1} g(y) d y\right) \tag{A.2}\\
& \quad=\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i} g_{j} K_{n}(i, j)
\end{align*}
$$

Consequently, $n \varrho_{n}$ is the maximum of the left-hand side of (A.2) over $f, g \in \mathcal{S}_{n}$ such that $\int f^{2}=\int g^{2}=1$. It follows that $n \varrho_{n}$ is the maximum of
$\iint f(x) g(y) C(d x, d y)$ over $f, g \in \mathcal{S}_{n}$ such that $\int f=\int g=0$ and $\int f^{2}=\int g^{2}=$ 1. Our desired result now follows from the definition of ρ_{C} and the fact that $\bigcup_{n \in \mathbb{N}} \mathcal{S}_{n}$ is a dense subset of $L_{2}[0,1]$.
Q.E.D.

REFERENCES

BRADLEY, R. C. (2007): Introduction to Strong Mixing Conditions, Vols. 1-3. Heber City: Kendrick Press. [1,3,4]
Lancaster, H. O. (1958): "The Structure of Bivariate Distributions," Annals of Mathematical Statistics, 29, 719-736. [1,2]
Rényi, A. (1959): "On Measures of Dependence," Acta Mathematica Academiae Scientiarum Hungaricae, 10, 441-451. [1,2]
Sarmanov, O. V. (1958a): "Maximum Correlation Coefficient (Symmetric Case)," Doklady Akademii Nauk SSSR, 120, 715-718 (in Russian). English translation: Selected Translations in Mathematical Statistics and Probability, 4, 271-275 (1963). [1,2]
(1958b): "Maximum Correlation Coefficient (Nonsymmetric Case)," Doklady Akademii Nauk SSSR, 121, 52-55 (in Russian). [1,2]
(1961): "Investigation of Stationary Markov Processes by the Method of Eigenfunction Expansion," Trudy Matematicheskogo Instituta Imeni V. A. Steklova, 60, 238-261 (in Russian). English translation: Selected Translations in Mathematical Statistics and Probability, 4, 245-269 (1963). [1,2]

Dept. of Economics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0508, U.S.A.; bbeare@ucsd.edu.

Manuscript received September, 2008; final revision received June, 2009.

