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In this document, we give complete proofs for the results exposed in the main pa-
per. A precise description of the stochastic environment is provided in Appendix A. In
Appendix B, we use martingale techniques to formulate the agent’s incentive compat-
ibility constraint. Appendix C is devoted to the free boundary problem that character-
izes the principal’s value function. The verification theorem is established in Appendix
D. In Appendix E, we analyze the asymptotic properties of firm size dynamics. Finally,
a heuristic approach to small perturbations of the constant returns to scale model is
offered in Appendix F.
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APPENDIX A: THE STOCHASTIC ENVIRONMENT

IN THIS APPENDIX, we provide a precise description of the stochastic environ-
ment. Let a complete probability space (Ω� F�P) over which is defined a Pois-
son process N = {Nt}t≥0 of intensity λ be given. Denote by F N = {F N

t }t≥0 the
filtration generated by N and augmented by the P-null sets. This filtration sat-
isfies the usual conditions (Dellacherie and Meyer (1978, Chapter IV, Defini-
tion 48)). The process M = {Mt}t≥0 defined by

Mt = Nt − λt

for all t ≥ 0 is an F N -martingale under P. For any F N -predictable process
Λ = {Λt}t≥0 with values in {λ�λ + �λ}, denote by ZΛ = {ZΛ

t }t≥0 the unique
solution to the stochastic differential equation

ZΛ
t = 1 +

∫ t

0
ZΛ

s−

(
Λs

λ
− 1

)
dMs

for all t ≥ 0. By the exponential formula for Lebesgue–Stieltjes calculus (Bré-
maud (1981, Appendix A4, Theorem T4)),

ZΛ
t =

∏
s∈(0�t]

[
1 +

(
Λs

λ
− 1

)
�Ns

]
exp

(∫ t

0
(λ−Λs)ds

)

for all t ≥ 0, where �Ns = Ns − Ns− for all s ∈ [0� t], with N0− = 0 and
∏

∅ = 1
by convention. From Brémaud (1981, Chapter VI, Theorem T2), ZΛ is a
strictly positive F N -local martingale under P. Moreover E[ZΛ

t ] = 1 for all t ≥ 0.
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A standard extension argument implies that there exists a unique probability
measure PΛ over (Ω� F) defined by the family of Radon–Nikodym derivatives

dPΛ

dP

∣∣∣∣
FN
t

=ZΛ
t

for all t ≥ 0. It then follows from Brémaud (1981, Chapter VI, Theorem T3)
that the process MΛ defined by (11) is an F N -martingale under PΛ.

APPENDIX B: THE INCENTIVE COMPATIBILITY CONSTRAINT

PROOF OF LEMMA 1: Since Uτ(Γ�Λ) is integrable by (8), a nonnegative
F N -martingale U(Γ�Λ) under PΛ can be defined by choosing for each t ≥ 0 a
random variable Ut(Γ�Λ) in the equivalence class of the conditional expecta-
tion in (10). Moreover, since the filtration F N satisfies the usual conditions, for
each t ≥ 0 we can choose Ut(Γ�Λ) in such a way that the martingale U(Γ�Λ)
is right-continuous with left-hand limits (Dellacherie and Meyer (1982, Chap-
ter VI, Theorem 4)). The predictable representation (12) then follows directly
from Brémaud (1981, Chapter III, Theorems T9 and T17). Q.E.D.

PROOF OF PROPOSITION 1: Let U ′
t denote the agent’s lifetime expected

payoff, given the information available at date t, when she acts according to
Λ′ = {Λ′

t}t≥0 until date t and then reverts to Λ = {Λt}t≥0:

U ′
t =

∫ t∧τ−

0
e−ρs

(
dLs + 1{Λ′

s=λ+�λ}XsBds
)+ e−ρtWt(Γ�Λ)
(B.1)

Following Sannikov (2008, Proposition 2), the proof now proceeds as follows.
First, we show that if U ′ = {U ′

t }t≥0 is an F N -submartingale under PΛ′ that is
not a martingale, then Λ is suboptimal for the agent. Indeed, in that case there
exists some t > 0 such that

U0−(Γ�Λ)= U ′
0− < EΛ′ [U ′

t ]�
where U0−(Γ�Λ) and U ′

0− correspond to unconditional expected payoffs at
date 0. By (B.1), the agent is then strictly better off acting according to Λ′

until date t and then reverting to Λ. The claim follows. Next, we show that if
U ′ is a F N -supermartingale under PΛ′ , then Λ is at least as good as Λ′ for the
agent. From (10) and (B.1),

U ′
t = Ut(Γ�Λ)+

∫ t∧τ

0
e−ρs

(
1{Λ′

s=λ+�λ} − 1{Λs=λ+�λ}
)
XsBds(B.2)

for all t ≥ 0. Hence, since U(Γ�Λ) as given by (12) is right-continuous with
left-hand limits, so is U ′. Moreover, since U ′ is nonnegative, it has a last ele-
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ment. Hence, by the optional sampling theorem (Dellacherie and Meyer (1982,
Chapter VI, Theorem 10)),

U ′
0− ≥ EΛ′ [U ′

τ] =U0−(Γ�Λ′)�

where again U0−(Γ�Λ′) is an unconditional expected payoff at date 0. Since
U ′

0− =U0−(Γ�Λ) by (B.1), the claim follows. Now, for each t ≥ 0,

U ′
t = Ut(Γ�Λ)+

∫ t∧τ

0
e−ρs

(
1{Λ′

s=λ+�λ} − 1{Λs=λ+�λ}
)
XsBds

= U0(Γ�Λ)−
∫ t∧τ

0
e−ρsHs(Γ�Λ)dMΛ

s

+
∫ t∧τ

0
e−ρs

(
1{Λ′

s=λ+�λ} − 1{Λs=λ+�λ}
)
XsBds

= U0(Γ�Λ)−
∫ t∧τ

0
e−ρsHs(Γ�Λ)dMΛ′

s

−
∫ t∧τ

0
e−ρsHs(Γ�Λ)(Λ′

s −Λs)ds

+
∫ t∧τ

0
e−ρs

(
1{Λ′

s=λ+�λ} − 1{Λs=λ+�λ}
)
XsBds

= U0(Γ�Λ)−
∫ t∧τ

0
e−ρsHs(Γ�Λ)dMΛ′

s

+
∫ t∧τ

0
e−ρs�λ

(
1{Λ′

s=λ+�λ} − 1{Λs=λ+�λ}
)[Xsb−Hs(Γ�Λ)]ds�

where the first equality follows from (B.2), the second equality follows
from (12), the third equality follows from (11), and the fourth equality fol-
lows from a straightforward computation. Since H(Γ�Λ) is F N -predictable
and MΛ′ is an F N -martingale under PΛ′ , the drift of U ′ has the same sign as(

1{Λ′
t=λ+�λ} − 1{Λt=λ+�λ}

)[Xtb−Ht(Γ�Λ)]
for all t ∈ [0� τ). If (14) holds for the effort process Λ, then this drift remains
nonpositive for all t ∈ [0� τ) and all choices of Λ′

t ∈ {λ�λ + �λ}. This implies
that for any effort process Λ′, U ′ is an F N -supermartingale under PΛ′ and, thus,
that Λ is at least as good as Λ′ for the agent. If (14) does not hold for the effort
process Λ, then choose Λ′ such that for each t ∈ [0� τ), Λ′

t = λ if and only if
Ht(Γ�Λ) ≥ Xtb. The drift of U ′ is then everywhere nonnegative and strictly
positive over a set of PΛ′ -strictly positive measure. As a result of this, U ′ is an
F N -submartingale under PΛ′ that is not a martingale and, thus, Λ is suboptimal
for the agent. This concludes the proof. Q.E.D.
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APPENDIX C: THE VALUE FUNCTION

To simplify the exposition, we work in this appendix with the size-adjusted
social value function, v, rather than with the size-adjusted value function of the
principal, f . These two functions are related by v(w)= f (w)+w for all w ≥ 0,
so that (41) can be rewritten as

v(w)= v(b)

b
w� if w ∈ [0� b]�(C.1)

rv(w)= μ− λC − (ρ− r)w + Lv(w)� if w ∈ (b�wi]�
(r − γ)v(w)= μ− λC − γc − (ρ− r)w

+ Lγv(w)� if w ∈ (wi�wp]�
v(w)= v(wp)� if w ∈ (wp�∞)�

where L and Lγ are linear first-order delay differential operators defined by

Lu(w)= (ρw+ λb)u′(w)− λ[u(w)− u(w − b)](C.2)

and

Lγu(w) = Lu(w)− γwu′(w)(C.3)

for all w > b and any continuous function u of class C1(R+ \ {b}). We assume
that

μ− λC > (ρ− r)b

(
2 + r

λ

)
(C.4)

throughout this appendix.

C.1. The No Investment Case

As a preliminary, we deal with the case in which investment is not feasible,
that is, γ = 0. For each β ≥ 0, consider the delay differential equation

vβ(w)= βw� if w ∈ [0� b]�(C.5)

rvβ(w)= μ− λC − (ρ− r)w + Lvβ(w)� if w ∈ (b�∞)


Given the initial condition over the interval [0� b], which is fixed by the slope
parameter β, (C.5) reduces to a sequence of initial value problems over the
intervals (kb� (k+1)b], k ∈ N \ {0}, that satisfy the assumptions of the Cauchy–
Lipschitz theorem. This ensures that there exists a unique continuous solution
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vβ to (C.5), which can be recursively constructed. We can check from (C.4) and
(C.5) that vβ is not differentiable at b:

v′
β+(b) = (ρ− r)b−μ+ λC

(ρ+ λ)b
+β

r + λ

ρ+ λ
< β= v′

β−(b)
(C.6)

Since vβ is continuous, however, it follows from (C.5) that it is of class
C1(R+ \ {b}). As a result, we can differentiate (C.5) over R+ \ {b�2b}, which
in turn implies that vβ is of class C2(R+ \ {b�2b}). By iterating this procedure,
we can easily verify that vβ is of class Ck(R+ \ {b� 
 
 
 �kb}) for all k ∈ N \ {0}.

For each β≥ 0, it is convenient to decompose vβ as

vβ = u1 +βu2�(C.7)

where the auxiliary functions u1 and u2 are the continuous solutions to the
delay differential equations

u1(w)= 0� if w ∈ [0� b]�(C.8)

ru1(w)= μ− λC − (ρ− r)w + Lu1(w)� if w ∈ (b�∞)

and

u2(w)=w� if w ∈ [0� b]�(C.9)

ru2(w)= Lu2(w)� if w ∈ (b�∞)�

respectively. Just as vβ, u1 and u2 are of class Ck(R+ \ {b� 
 
 
 �kb}) for all
k ∈ N \ {0}. The decomposition (C.7) allows us to strictly order the derivatives
of the functions (vβ)β≥0.

PROPOSITION C.1.1: If β>β′ ≥ 0, then v′
β > v′

β′ over R+ \ {b}.

Given the decomposition (C.7), Proposition C.1.1 is an immediate conse-
quence of the following result.

LEMMA C.1.1: u′
2 > 0 over R+ \ {b}.

PROOF: From (C.9), u′
2 = 1 over the interval [0� b). Consider now the inter-

val (b�∞). From (C.9) again, it is easy to check that

u′
2+(b)= r + λ

ρ+ λ
> 0
(C.10)

Thus, since u2 is of class C1(R+ \ {b}), we only need to check that u′
2 has no

zero in (b�∞). Arguing by contradiction, let w̃ > b be the first point at which
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u′
2 vanishes. Note that u′

2 > 0 over [0� w̃) \ {b}. Then, using (C.9) yet again, we
obtain that

−λ[u2(w̃)− u2(w̃ − b)] − ru2(w̃)= 0�

which is impossible since u2 is strictly increasing and strictly positive over
(0� w̃]. This contradiction establishes the result. Q.E.D.

Proposition C.1.1 shows that the derivatives of the functions (vβ)β≥0 are
strictly ordered by their slopes β over [0� b). We now show that the subfam-
ily of (vβ)β≥0 composed of those functions whose derivatives have at least a
zero in (b�∞) has a maximal element.

PROPOSITION C.1.2: There exists a maximum value β0 of β such that the equa-
tion v′

β = 0 has a solution over (b�∞). The function vβ0 is increasing over R+.

PROOF: The proof of Proposition C.1.2 proceeds as follows. For each
w ∈ [b�∞), the ratio −u′

1+(w)/u′
2+(w) is well defined since u′

2+ > 0 over [b�∞)
by Lemma C.1.1. In the first step of the proof, we show that this ratio attains a
maximum β0 > 0 over [b�∞). Using Proposition C.1.1 along with the decom-
position (C.7), we then obtain that

v′
β > v′

β0
= u′

1 +β0u
′
2 ≥ 0

over (b�∞) for all β>β0. Hence, for any such β, v′
β has no zero in (b�∞). By

contrast, let wp
β0

be the smallest point at which the function −u′
1+/u

′
2+ attains

its maximum β0 over [b�∞). In the second step of the proof, we show that
w

p
β0
> b, so that v′

β0
is differentiable at wp

β0
. By construction,

v′
β0

(
w

p
β0

)= u′
1

(
w

p
β0

)+β0u
′
2

(
w

p
β0

)= 0�

and vβ0 is increasing over R+ and strictly so over [0�wp
β0

]. We now provide a
detailed exposition of each step of the proof.

Step 1: Because u1 and u2 are of class C1(R+ \ {b}), the function −u′
1+/u

′
2+ is

continuous over [b�∞). Moreover, since u′
2+(b) > 0 by (C.10) and

u′
1+(b)= (ρ− r)b−μ+ λC

(ρ+ λ)b
< 0(C.11)

by (C.4) and (C.8), −u′
1+(b)/u

′
2+(b) > 0. Hence, to show that the function

−u′
1+/u

′
2+ attains its maximum over [b�∞), we only need to check that it takes

strictly negative values beyond some point. Given Lemma C.1.1, this is an im-
mediate consequence of the following result.

LEMMA C.1.2: lim infw→∞ u′
1(w)≥ 1.
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PROOF: Suppose first by way of contradiction that lim infw→∞ u′
1(w) = −∞.

Then there exists an increasing divergent sequence (wn)n≥1 in (2b�∞) such
that limn→∞ u′

1(wn) = −∞ and wn = arg minw∈[0�wn]{u′
1+(w)}. For each n ≥ 1,

we can find some w̃n ∈ (wn − b�wn) such that

(ρwn + λb)u′
1(wn) = λ[u1(wn)− u1(wn − b)] + ru1(wn)+ (ρ− r)wn

−μ+ λC

= λbu′
1(w̃n)+ ru1(wn)+ (ρ− r)wn −μ+ λC�

where the first equality follows from (C.8) and the second equality follows from
the mean value theorem. This can conveniently be rewritten as

u′
1(w̃n) = wn

λb

[
ρu′

1(wn)− r

wn

u1(wn)

]
+ u′

1(wn)

+ μ− λC − (ρ− r)wn

λb



Since u1(0) = 0, we have u1(wn) ≥ wnu
′
1(wn) by construction of the sequence

(wn)n≥1. Moreover, u′
1(wn) < 0 for n large enough. It then follows that for any

such n,

u′
1(w̃n)≤ (ρ− r)wnu

′
1(wn)+μ− λC

λb



Therefore, since u′
1(wn) < 0,

u′
1(w̃n)

u′
1(wn)

≥ (ρ− r)wn

λb
+ μ− λC

λbu′
1(wn)

�

so that the ratio u′
1(w̃n)/u

′
1(wn) goes to ∞ as n goes to ∞. As u′

1(wn) < 0
for n large enough, we obtain that eventually u′

1(w̃n) < u′
1(wn), which,

since w̃n < wn, contradicts the fact that wn = arg minw∈[0�wn]{u′
1+(w)}. Thus

lim infw→∞ u′
1(w) > −∞. Assume without loss of generality that

lim infw→∞ u′
1(w) is a finite number l. It remains to prove that l ≥ 1. Consider

an increasing divergent sequence (wn)n≥1 in (2b�∞) such that
limn→∞ u′

1(wn) = l. Then there exists a constant U such that u1(wn) ≥ lwn +U
for all n ≥ 1. Constructing w̃n ∈ (wn − b�wn) as above and rearranging, it fol-
lows that

ρ[u′
1(wn)− 1] − r(l − 1)≥ λb[u′

1(w̃n)− u′
1(wn)] + rU −μ+ λC

wn

for all n≥ 1. Letting n go to ∞, we obtain

(ρ− r)(l − 1)≥ λb lim sup
n→∞

u′
1(w̃n)

wn
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If l < 1, this implies that lim supn→∞ u′
1(w̃n) = −∞, which in turn contra-

dicts the finiteness of l = lim infw→∞ u′
1(w). Hence l ≥ 1, and the result fol-

lows. Q.E.D.

Step 2: A sufficient condition for wp
β0

> b is that the right derivative at b of
the function −u′

1+/u
′
2+ be strictly positive. Differentiating (C.8) and (C.9) at

the right of b leads to

u′′
1+(b)= (λ− ρ+ r)u′

1+(b)+ ρ− r

(ρ+ λ)b

and

u′′
2+(b)= (λ− ρ+ r)u′

2+(b)− λ

(ρ+ λ)b



Combining these expressions with (C.10) and (C.11), we obtain

−u′′
1+(b)u

′
2+(b)+ u′′

2+(b)u
′
1+(b)

= −(ρ− r)u′
2+(b)+ λu′

1+(b)

(ρ+ λ)b

= λ

b2(ρ+ λ)2

[
μ− λC − (ρ− r)b

(
2 + r

λ

)]
�

which is strictly positive by (C.4). The result follows. By construction, we have1

w
p
β0

= inf
{(
v′
β0

)−1
(0)
}
> b
(C.12)

This concludes the proof of Proposition C.1.2. Q.E.D.

In the remainder of this section, we study the concavity of the function vβ0 .
The following proposition summarizes our findings.

PROPOSITION C.1.3: vβ0 is concave over [0�wp
β0

]� and strictly so over [b�wp
β0

].

PROOF: The proof of Proposition C.1.3 proceeds through a sequence of
lemmas.

LEMMA C.1.3: v′′
β0+(b) < 0.

1We can show along the lines of the proof of Lemma C.1.6 that v′
β0

vanishes at wp
β0

only, so
that vβ0 is actually strictly increasing over R+. This refined statement is, however, not required
for our purposes.
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PROOF: By (C.6) and (C.12), we have

v′
β0+(b)= (ρ− r)b−μ+ λC

(ρ+ λ)b
+β0

r + λ

ρ+ λ
> 0
(C.13)

As a result,

β0 >
μ− λC − (ρ− r)b

(r + λ)b

(C.14)

Now, differentiating (C.5) at the right of any w ≥ b leads to

(ρw+ λb)v′′
β0+(w) = λ

[
v′
β0+(w)− v′

β0+(w− b)
]

− (ρ− r)
[
v′
β0+(w)− 1

]



Applying this formula at b, and using (C.13) and (C.14), we then obtain

(ρ+ λ)bv′′
β0+(b) = λ

[
v′
β0+(b)−β0

]− (ρ− r)
[
v′
β0+(b)− 1

]
= (λ− ρ+ r)[(ρ− r)b−μ+ λC]

(ρ+ λ)b

+β0
(r − ρ)(r + 2λ)

ρ+ λ
+ ρ− r

<
λ[(ρ− r)b−μ+ λC]

(r + λ)b
+ ρ− r�

which is strictly negative under (C.4). Hence the result. Q.E.D.

LEMMA C.1.4: v′′
β0+ is upper semicontinuous over [b�∞).

PROOF: As vβ0 is of class C2(R+ \ {b�2b}), we only need to check that
v′′
β0+(2b) > v′′

β0−(2b). Differentiating (C.5) both at the left and at the right of
any w> b, and using the fact that vβ0 is of class C1(R+ \ {b}) leads to

(ρw+ λb)
[
v′′
β0+(w)− v′′

β0−(w)
]= λ

[
v′
β0−(w − b)− v′

β0+(w − b)
]



Applying this formula at 2b and using (C.6) yields the result. Q.E.D.

It follows from Lemma C.1.4 that the set {w ≥ b | v′′
β0+(w) ≥ 0} is closed.

Denote by wc
β0

its smallest element. By Lemma C.1.3, wc
β0

> b and v′′
β0+ < 0

over [b�wc
β0
). Thus vβ0 is strictly concave over [b�wc

β0
]. Moreover, vβ0 is linear

over [0� b] and v′
β0+(b) < v′

β0−(b) by (C.6). Thus vβ0 is concave over [0�wc
β0

].
To complete the proof of Proposition C.1.3, we now show that wp

β0
coincides

with wc
β0

. We need the following result.
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LEMMA C.1.5: wc
β0

≥ 2b.

PROOF: Suppose by way of contradiction that wc
β0

< 2b. Then, as wc
β0

> b

and vβ0 is of class C2(R+ \ {b�2b}), v′′
β0
(wc

β0
) = 0 and v′′

β0
< 0 over (b�wc

β0
).

There are three cases to consider.
Case 1. Suppose first that λ ≤ ρ − r. Since wc

β0
− b < b and v′′

β0
(wc

β0
) = 0,

differentiating (C.5) at wc
β0

yields

λ
[
v′
β0

(
wc

β0

)−β0

]− (ρ− r)
[
v′
β0

(
wc

β0

)− 1
]= 0


Using the fact that λ ≤ ρ− r and that v′
β0

≥ 0 over (b�∞), we obtain

β0 = (λ− ρ+ r)v′
β0
(wc

β0
)+ ρ− r

λ
≤ ρ− r

λ



By (C.14), it follows that

μ− λC − (ρ− r)b

(r + λ)b
≤ ρ− r

λ
�

which contradicts (C.4).
Case 2. Suppose next that λ ≥ 2ρ− r. Differentiating (C.5) twice over (b�2b)

and using the fact that vβ0 is linear over (0� b) yields

(ρw+ λb)v′′′
β0
(w) = λ

[
v′′
β0
(w)− v′′

β0
(w − b)

]− (2ρ− r)v′′
β0
(w)

= (λ− 2ρ+ r)v′′
β0
(w)

for all w ∈ (b�2b). Since λ ≥ 2ρ − r and v′′
β0

< 0 over (b�wc
β0
), this implies

that v′′′
β0

≤ 0 over this interval and, hence, v′′
β0
(wc

β0
) ≤ v′′

β0+(b). This leads to a
contradiction since v′′

β0
(wc

β0
)= 0 and v′′

β0+(b) < 0 by Lemma C.1.3.
Case 3. Suppose finally that ρ − r < λ < 2ρ − r. Differentiating (C.5) twice

as in Case 2 shows that v′′
β0

and v′′′
β0

have opposite signs over (b�2b). It follows
that v′′′

β0
> 0 and hence v′′

β0
> v′′

β0+(b) over (b�wc
β0

]. Since λ − 2ρ + r < 0, we
obtain

v′′′
β0
(w)= (λ− 2ρ+ r)v′′

β0
(w)

ρw+ λb
<

(λ− 2ρ+ r)v′′
β0+(b)

ρw + λb

for all w ∈ (b�wc
β0
). We then have

v′′
β0

(
wc

β0

)= v′′
β0+(b)+

∫ wc
β0

b

(λ− 2ρ+ r)v′′
β0
(w)

ρw+ λb
dw

<

(
1 +

∫ wc
β0

b

λ− 2ρ+ r

ρw+ λb
dw

)
v′′
β0+(b)
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Since v′′
β0
(wc

β0
)= 0 and v′′

β0+(b) < 0 by Lemma C.1.3, we obtain a contradiction
if

1 +
∫ wc

β0

b

λ− 2ρ+ r

ρw+ λb
dw > 0


To see that this actually holds whenever wc
β0

∈ (b�2b), observe that

∫ wc
β0

b

1
ρw+ λb

dw <

∫ 2b

b

1
ρw + λb

dw <
1

ρ+ λ



Since ρ− r < λ < 2ρ− r, this implies that

1 +
∫ wc

β0

b

λ− 2ρ+ r

ρw+ λb
dw >

2λ− ρ+ r

ρ+ λ
> 0

and the result follows. Q.E.D.

Proposition C.1.3 is then an immediate consequence of the following result.

LEMMA C.1.6: w
p
β0

=wc
β0

.

PROOF: Since vβ0 is increasing and v′
β0
(w

p
β0
) = 0 by Proposition C.1.2, we

must have v′′
β0+(w

p
β0
) ≥ 0 and thus w

p
β0

≥ wc
β0

. It remains, therefore, to prove
that wp

β0
≤wc

β0
. First show that v′′

β0
> 0 over an interval (wc

β0
�wc

β0
+ε) for some

ε > 0. Whenever wc
β0

= 2b and v′′
β0+(2b) > 0, this is immediate since vβ0 is of

class C2(R+ \ {b�2b}). In all the other cases, v′′
β0+(w

c
β0
) = 0. Differentiating

(C.5) twice at the right of wc
β0

then yields

(
ρwc

β0
+ λb

)
v′′′
β0+
(
wc

β0

)= λ
[
v′′
β0+
(
wc

β0

)− v′′
β0+
(
wc

β0
− b

)]
− (2ρ− r)v′′

β0+
(
wc

β0

)
= −λv′′

β0+
(
wc

β0
− b

)
> 0�

where the strict inequality follows from the fact that wc
β0

− b ∈ [b�wc
β0
)

by Lemma C.1.5 and that v′′
β0+ < 0 over [b�wc

β0
). Since v′′

β0+(w
c
β0
) = 0 and

v′′′
β0+(w

c
β0
) > 0, we have v′′

β0
> 0 over an interval (wc

β0
�wc

β0
+ ε) for some

ε > 0, as claimed. Suppose by way of contradiction that w
p
β0

> wc
β0

. Then
v′
β0
(wc

β0
) > 0 by (C.12), so that v′′

β0
cannot be nonnegative everywhere over

(wc
β0
�w

p
β0
). Let w̃ = inf{w > wc

β0
| v′′

β0
(w) < 0} ∈ (wc

β0
�w

p
β0
). We have v′′

β0
>

0 over (wc
β0
� w̃) and v′′

β0
(w̃) = 0 since vβ0 is of class C2(R+ \ {b�2b}) and

w̃ > wc
β0

≥ 2b by Lemma C.1.5. Now show that w̃−b ≥wc
β0

. Note that we must
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have v′′′
β0+(w̃)≤ 0, because v′′

β0
would otherwise be strictly positive over an in-

terval (w̃� w̃ +η) for some η> 0. Differentiating (C.5) twice at the right of w̃
then yields

0 ≥ (ρw̃ + λb)v′′′
β0+(w̃)

= λ
[
v′′
β0
(w̃)− v′′

β0+(w̃ − b)
]− (2ρ− r)v′′

β0
(w̃)

= −λv′′
β0+(w̃ − b)

and thus v′′
β0+(w̃ − b) ≥ 0. Now, v′′

β0+ < 0 over (b�wc
β0
). Since w̃ > 2b and

thus w̃ − b > b, it follows that w̃ − b ≥ wc
β0

, as claimed. Because v′′
β0

> 0 over
(wc

β0
� w̃), this implies that vβ0 is convex over [w̃ − b� w̃]. Then, since

0 = (ρw̃ + λb)v′′
β0
(w̃)

= λ
[
v′
β0
(w̃)− v′

β0
(w̃ − b)

]− (ρ− r)
[
v′
β0
(w̃)− 1

]
by differentiating (C.5) at w̃, we obtain v′

β0
(w̃)≥ 1. We then have

ρw̃+ λbv′
β0
(w̃) ≤ (ρw̃+ λb)v′

β0
(w̃)(C.15)

= λ
[
vβ0(w̃)− vβ0(w̃− b)

]+ rvβ0(w̃)

+ (ρ− r)w̃ −μ+ λC

≤ λbv′
β0
(w̃)+ rvβ0(w̃)+ (ρ− r)w̃ −μ+ λC�

where the first inequality reflects the fact that v′
β0
(w̃)≥ 1, while the second fol-

lows from (C.5) and the third follows from the convexity of vβ0 over [w̃−b� w̃].
As a result of (C.15), we have vβ0(w̃) > (μ − λC)/r. Since w

p
β0

> w̃ and vβ0

is increasing, we must have vβ0(w
p
β0
) > (μ − λC)/r as well. However, writing

(C.5) at wp
β0

yields

0 = (
ρw

p
β0

+ λb
)
v′
β0
(w

p
β0
)

= λ
[
vβ0

(
w

p
β0

)− vβ0

(
w

p
β0

− b
)]+ rvβ0

(
w

p
β0

)+ (ρ− r)w
p
β0

−μ+ λC�

which, since vβ0 is increasing, implies that vβ0(w
p
β0
) < (μ−λC)/r, a contradic-

tion. The result follows. Q.E.D.

C.2. The Investment Case

PROOF OF PROPOSITION 2: Suppose now that investment is feasible; that is,
γ > 0. Our goal is to construct a solution to (C.1) that satisfies the following
three requirements:
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(i) The first-order condition for investment holds at the investment thresh-
old wi:

wi = inf{w ≥ b | v(w)−wv′
+(w) > c}
(C.16)

(ii) The first-order condition for transfers holds at the payment thresh-
old wp:

v′(wp)= 0
(C.17)

(iii) The solution is maximal among the solutions to (C.1) for which there
exist thresholds wi and wp that satisfy (C.16) and (C.17).

We proceed as in Section C.1. For each β ≥ β0, consider the delay differen-
tial equation

vβ�γ(w)= βw� if w ∈ [0� b]�(C.18)

rvβ�γ(w)= μ− λC − (ρ− r)w + Lvβ�γ(w)� if w ∈ (b�wi
β]�

(r − γ)vβ�γ(w)= μ− λC − γc − (ρ− r)w

+ Lγvβ�γ(w)� if w ∈ (wi
β�∞)�

where the operators L and Lγ are defined by (C.2) and (C.3), and the threshold
wi

β satisfies

wi
β = inf{w ≥ b | vβ�γ(w)−wv′

β�γ+(w) > c}
(C.19)

It should be noted that we may have wi
β = b, in which case the intermediary

region (b�wi
β] is empty. We assume that

c = vβ0

(
w

p
β0

)
> c(C.20)

throughout this section. As we will see in Appendix D, (C.20) is a necessary and
sufficient condition for investment to ever be strictly profitable. The existence
of a solution to (C.18)–(C.19) is guaranteed by the following result.

LEMMA C.2.1: For each β≥ β0� there exists a unique continuous solution vβ�γ
to (C.18) with wi

β given by (C.19). Moreover� vβ�γ is of class C1(R+ \ {b})� wi
β ∈

[b�wp
β0
)� and wi

β is decreasing and continuous with respect to β.

PROOF: The proof consists of three steps.
Step 1. First show that if β>β′ ≥ β0� then

vβ(w)−wv′
β+(w) > vβ′(w)−wv′

β′+(w)
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for all w ≥ b. Since

vβ(w)−wv′
β(w)= u1(w)−wu′

1+(w)+β[u2(w)−wu′
2+(w)]

by (C.7), we must prove that u2(w)−wu′
2+(w) > 0 for all w ≥ b. This holds at b

since, by (C.9) and (C.10), u2(b)− bu′
2+(b) = (ρ− r)b/(ρ+ λ) > 0. The claim

then follows if u′′
2+ < 0 over [b�∞). Proceeding as for v′′

β0+ in the proof of
Lemma C.1.4, it is easy to check that u′′

2+ is upper semicontinuous. There-
fore, the set {w ≥ b | u′′

2+(w) ≥ 0} is closed. Suppose by way of contradiction
that this set is nonempty, and denote by w̃ its smallest element. Observe that
w̃ > b, since u′′

2+(b) = [(λ − ρ + r)u′
2+(b) − λ]/[(ρ + λ)b] as shown in Step 2

of the proof of Proposition C.1.2 and u′
2+(b) < 1 = u′

2−(b) by (C.10), which
implies that u′′

2+(b) < 0. As a result, u′′
2+ < 0 over [b� w̃) and, in particular,

u′
2(w̃) < u′

2+(w̃ − b). Differentiating (C.9) at the right of w̃, we therefore ob-
tain

(r − ρ)u′
2(w̃)= (ρw̃ + λb)u′′

2+(w̃)− λ[u′
2(w̃)− u′

2+(w̃ − b)] > 0�

which, since r < ρ, contradicts the fact that u′
2(w̃) > 0 by Lemma C.1.1.

The claim follows. Note that u2 is concave over R+ and strictly so over [b�∞).
Step 2. Next show that, for each β ≥ β0, vβ(w) − wv′

β+(w) is a strictly in-
creasing function of w over [b�wp

β0
]. To this end, we only need to check that

v′′
β+ < 0 over [b�wp

β0
). For each β≥ β0, it follows from (C.7) and Step 1 that

v′′
β+ = u′′

1+ +βu′′
2+ < u′′

1+ +β0u
′′
2+ = v′′

β0+�

which is strictly negative over [b�wp
β0
) as shown in the proof of Proposi-

tion C.1.3. This implies the claim.
Step 3. There are now two cases to consider.
Case 1. First, fix some β ≥ β0, and suppose that vβ(b) − bv′

β+(b) < c. From
Step 1, this is the case whenever

β< β̂ = c − u1(b)+ bu′
1+(b)

u2(b)− bu′
2+(b)


(C.21)

From Step 1 again, vβ(w)−wv′
β+(w)≥ vβ0(w)−wv′

β0+(w) for all w ∈ [b�wp
β0

].
Hence, by (C.12) and (C.20),

vβ
(
w

p
β0

)−w
p
β0
v′
β

(
w

p
β0

)≥ vβ0

(
w

p
β0

)−w
p
β0
v′
β0

(
w

p
β0

)= vβ0

(
w

p
β0

)
> c


Since vβ(w)−wv′
β+(w) is continuous and strictly increasing with respect to w

over [b�wp
β0

] by Step 2, there exists a unique wi
β ∈ (b�w

p
β0
) such that vβ(wi

β)−
wi

βv
′
β(w

i
β)= c. It follows from Step 1 that, as long as vβ(b)−bv′

β+(b) < c, wi
β is

strictly decreasing and continuous with respect to β. We can then construct vβ�γ
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by setting it equal to vβ over [0�wi
β] and extending it to (wi

β�∞) as stipulated
in (C.18). Using the fact that vβ�γ(wi

β) − wi
βv

′
β�γ−(w

i
β) = c, it is easy to check

from (C.18) that v′
β�γ−(w

i
β) = v′

β�γ+(w
i
β) = v′

β(w
i
β). This, along with (C.18), im-

plies that vβ�γ is of class C1(R+ \ {b}). We can further show that vβ�γ is of class
Ck(R+ \ {b� 
 
 
 �kb�wi

β� 
 
 
 �w
i
β + (k− 2)b}) for all k ∈ N \ {0�1}. To conclude,

we must verify that wi
β satisfies (C.19). A sufficient condition for this is that

v′′
β�γ+(w

i
β) < 0. Differentiating (C.5) and (C.18) at the right of wi

β and using the
fact that vβ�γ = vβ over [b�wi

β] yields

[(ρ− γ)wi
β + λb]v′′

β�γ+(w
i
β)

= λ[v′
β(w

i
β)− v′

β+(w
i
β − b)] − (ρ− r)[v′

β(w
i
β)− 1]

= (ρwi
β + λb)v′′

β+(w
i
β)

which implies that v′′
β�γ+(w

i
β) < 0 since wi

β ∈ (b�w
p
β0
) and, as shown in Step 2,

v′′
β+ < 0 over [b�wp

β0
) whenever β ≥ β0.

Case 2. Next, fix some β≥ β0, and suppose that β≥ β̂ with β̂ given by (C.21),
so that vβ(b)−bv′

β+(b)≥ c. Define vβ�γ as the continuous solution to the delay
differential equation

vβ�γ(w)= βw� if w ∈ [0� b]�(C.22)

(r − γ)vβ�γ(w)= μ− λC − γc − (ρ− r)w

+ Lγvβ�γ(w)� if w ∈ (b�∞)�

reflecting that the intermediary region (b�wi
β] is empty. To show that this is

consistent with (C.19), we must verify that wi
β = b for all β ≥ max{β0� β̂}. In

analogy with (C.7), for each β≥ β̂, it is convenient to decompose vβ�γ as

vβ�γ = u1�γ +βu2�γ�(C.23)

where u1�γ and u2�γ are the continuous solutions to the delay differential equa-
tions

u1�γ(w)= 0� if w ∈ [0� b]�(C.24)

(r − γ)u1�γ(w)= μ− λC − γc − (ρ− r)w

+ Lγu1�γ(w)� if w ∈ (b�∞)

and

u2�γ(w)= w� if w ∈ [0� b]�(C.25)

(r − γ)u2�γ(w)= Lγu2�γ(w)� if w ∈ (b�∞)�
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respectively. Proceeding as in Step 1, we can show that u′′
2�γ+ < 0 over [b�∞),

which implies that if β>β′ ≥ β̂, then

vβ�γ(w)−wv′
β�γ+(w) > vβ′�γ(w)−wv′

β′�γ+(w)

for all w ≥ b. As vβ̂�γ(b) = vβ̂(b) = βb and v′
β̂�γ+(b) = v′

β̂+(b), which fol-
lows from (C.5) and (C.22) along with the fact that vβ̂(b) − bv′

β̂+(b) = c, we
have vβ̂�γ(b) − bv′

β̂�γ+(b) = c. If β0 > β̂, we immediately obtain that vβ�γ(b) −
bv′

β�γ+(b) > c for all β > β0, which implies that wi
β = b, as claimed. If β̂ ≥ β0,

we must in addition check that v′′
β̂�γ+(b) < 0. Arguing as in Case 1 yields

(ρ− γ + λ)v′′
β̂�γ+(b)= (ρ+ λ)v′′

β̂+(b)�

which implies that v′′
β̂�γ+(b) < 0 since, as shown in Step 2, v′′

β̂+ < 0 over [b�wp
β0
)

whenever β̂≥ β0. The result follows. Q.E.D.

As for the functions (vβ)β≥0, a key result is that we can strictly order the
derivatives of the functions (vβ�γ)β≥β0 .

PROPOSITION C.2.1: If β>β′ ≥ β0� then v′
β�γ > v′

β′�γ over R+ \ {b}.

PROOF: If β > β′ ≥ β̂, with β̂ given by (C.21), the proof proceeds along
the lines of that of Proposition C.1.1, replacing the decomposition (C.7) into
the auxiliary functions (C.8) and (C.9) by the decomposition (C.23) into the
auxiliary functions (C.24) and (C.25), and showing similarly to Lemma C.1.1
that u′

2�γ+ > 0 over R+ \ {b}. From now on, suppose instead that β̂≥ β>β′. By
Case 1 of Step 3 of the proof of Lemma C.2.1, wi

β′ > wi
β > b. It immediately

follows from (C.18) and Proposition C.1.1 that v′
β�γ > v′

β′�γ over [0�wi
β] \ {b}.

The remainder of the proof consists of two steps.
Step 1. Consider first the interval [wi

β�w
i
β′ ]. Since vβ�γ is of class C1(R+ \ {b}),

we have

v′
β�γ(w

i
β)= v′

β(w
i
β) > v′

β′(wi
β)= v′

β′�γ(w
i
β)�

where the inequality follows from Proposition C.1.1. Therefore, since vβ�γ −
vβ′�γ is of class C1(R+ \ {b}), we only need to check that v′

β�γ − v′
β′�γ has no zero

in (wi
β�w

i
β′ ]. Arguing by contradiction, let w̃ > wi

β be the first point at which
v′
β�γ −v′

β′�γ vanishes. Note that v′
β�γ > v′

β′�γ over [0� w̃)\{b}. Then, writing (C.18)
for vβ�γ and vβ′�γ at w̃, and rearranging yields

(r − γ)[vβ�γ(w̃)− vβ′�γ(w̃)](C.26)

= γ[vβ′�γ(w̃)− w̃v′
β′�γ(w̃)− c]

− λ[vβ�γ(w̃)− vβ�γ(w̃ − b)− vβ′�γ(w̃)+ vβ′�γ(w̃ − b)]
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Now, since w̃ ≤wi
β′ ,

vβ′�γ(w̃)− w̃v′
β′�γ(w̃)≤ c


Moreover, since v′
β�γ > v′

β′�γ over [0� w̃) \ {b},
vβ�γ(w̃)− vβ�γ(w̃ − b) > vβ′�γ(w̃)− vβ′�γ(w̃ − b)


Substituting these two inequalities into (C.26), we obtain that vβ�γ(w̃) <
vβ′�γ(w̃), which is impossible since vβ�γ(0) = vβ�γ(0) = 0 and v′

β�γ > v′
β′�γ over

[0� w̃) \ {b}. This contradiction establishes that v′
β�γ > v′

β′�γ over [wi
β�w

i
β′ ].

Step 2. Consider next the interval [wi
β′�∞). By Step 1, v′

β�γ(w
i
β′) > v′

β′�γ(w
i
β′)

and, thus, we only need to check that v′
β�γ −v′

β′�γ has no zero in [wi
β′�∞). Argu-

ing by contradiction, let w̃ > wi
β′ be the first point at which v′

β�γ −v′
β′�γ vanishes.

Observe that v′
β�γ > v′

β′�γ over [0� w̃)\{b}. Then, writing (C.18) for vβ�γ and vβ′�γ
at w̃, and rearranging yields

(r − γ)[vβ�γ(w̃)− vβ′�γ(w̃)]
= −λ[vβ�γ(w̃)− vβ�γ(w̃− b)− vβ′�γ(w̃)+ vβ′�γ(w̃− b)]


As in Step 1, we obtain that vβ�γ(w̃) < vβ′�γ(w̃), which is impossible. This
contradiction establishes that v′

β�γ > v′
β′�γ over [wi

β′�∞). The result fol-
lows. Q.E.D.

Proposition C.2.1 shows that the derivatives of the functions (vβ�γ)β≥β0 are
strictly ordered by their slopes β over [0� b). As in the no investment case of
Section C.1, we now show that the subfamily of (vβ�γ)β≥β0 , which is composed of
those functions whose derivatives have at least a zero in (b�∞), has a maximal
element.

PROPOSITION C.2.2: There exists a maximum value βγ of β such that the equa-
tion v′

β�γ = 0 has a solution over (b�∞). The function vβγ�γ is increasing over R+
and βγ > β0.

PROOF: The proof of Proposition C.2.2 proceeds as follows. We first show
that the set of β ≥ β0 such that v′

β�γ+(b) > 0 and v′
β�γ has at least a zero in

(b�∞) is a nonempty interval. Next, we show that this interval is bounded.
Then we show that it is closed, so that it contains its upper bound βγ . Finally,
we show that the function vβγ�γ is increasing over R+ and that I is not reduced
to a point, so that in particular βγ > β0. We now provide a detailed exposition
of each step of the proof.

Step 1. Let I = {β ≥ β0 | v′
β�γ+(b) > 0 and (v′

β�γ)
−1(0) 
= ∅}. We have the fol-

lowing result.
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LEMMA C.2.2: I is a nonempty interval.

PROOF: That I is an interval is an immediate consequence of Proposi-
tion C.2.1. It remains to show that I is nonempty. There are three cases to
consider.

Case 1. Suppose first that β0 < β̂, with β̂ given by (C.21), which corre-
sponds to Case 1 of Step 3 of the proof of Lemma C.2.1. We show that
in this case β0 ∈ I. We have wi

β0
∈ (b�w

p
β0
) and vβ0�γ = vβ0 over [0�wi

β0
], so

clearly v′
β0�γ+(b) > 0. Moreover, since vβ0�γ is of class C1(R+ \{b}), v′

β0�γ
(wi

β0
)=

v′
β0
(wi

β0
). Finally,

v′′
β0�γ+(w

i
β0
)

v′′
β0+(w

i
β)

= ρwi
β0

+ λb

(ρ− γ)wi
β0

+ λb
> 1�

which implies that v′′
β0�γ+(w

i
β0
) < v′′

β0+(w
i
β0
) since wi

β0
∈ (b�w

p
β0
) and v′′

β0+ < 0
over [b�wp

β0
) as shown in the proof of Proposition C.1.3. It follows that

v′
β0�γ

< v′
β0

over an interval (wi
β0
�wi

β0
+ ε) for some ε > 0. We now show that

actually v′
β0�γ

< v′
β0

over (wi
β0
�w

p
β0

]. Since v′
β0�γ

(wi
β0
) = v′

β0
(wi

β0
), we only need

to check that v′
β0�γ

− v′
β0

does not have a zero in (wi
β0
�w

p
β0

]. Arguing by con-
tradiction, let w̃ > wi

β0
be the first point at which v′

β0�γ
− v′

β0
vanishes. Observe

that v′
β0�γ

≤ v′
β0

over [0� w̃)\{b}, this inequality being strict over (wi
β0
� w̃). Then,

writing (C.5) and (C.18) for vβ0 and vβ0�γ at w̃ and rearranging yields

(r − γ)
[
vβ0�γ(w̃)− vβ0(w̃)

]
(C.27)

= γ
[
vβ0(w̃)− w̃v′

β0
(w̃)− c

]
− λ

[
vβ0�γ(w̃)− vβ0�γ(w̃ − b)− vβ0(w̃)+ vβ0(w̃ − b)

]



Now, since w̃ ∈ (wi
β0
�w

p
β0

] and v′′
β0+ < 0 over [wi

β0
�w

p
β0
),

vβ0(w̃)− w̃v′
β0
(w̃) > c


Moreover, since v′
β0�γ

≤ v′
β0

over [0� w̃) \ {b},
vβ0�γ(w̃)− vβ0�γ(w̃ − b)≤ vβ0(w̃)− vβ0(w̃ − b)


Substituting these two inequalities into (C.27), we obtain vβ0�γ(w̃) > vβ0(w̃),
which is impossible since vβ0�γ(w

i
β0
) = vβ0(w

i
β0
) and v′

β0�γ
< v′

β0
over (wi

β0
� w̃).

This contradiction establishes that v′
β0�γ

< v′
β0

over (wi
β0
�w

p
β0

]. As v′
β0
(w

p
β0
) = 0

and vβ0�γ is of class C1(R+ \ {b}) and has a strictly positive derivative at wi
β�γ ,

this implies that v′
β0�γ

has at least a zero in (wi
β0
�w

p
β0
). Thus β0 ∈ I, as claimed.
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Case 2. Suppose next that β0 ≥ β̂, so that wi
β0

= b, which corresponds to
Case 2 of Step 3 of the proof of Lemma C.2.1, and that v′

β0�γ+(b) > 0. We show
that in this case also β0 ∈ I. Writing (C.5) and (C.18) for vβ0 and vβ0�γ at the
right of b and rearranging yields

(ρ− γ + λ)b
[
v′
β0+(b)− v′

β0�γ+(b)
]= γ

[
vβ0(b)− bv′

β0+(b)− c
]
�

which is nonnegative if β0 ≥ β̂, and strictly positive if β0 > β̂. Whenever
β0 = β̂, we have v′

β0+(b) = v′
β0�γ+(b) but v′′

β0+(b) > v′′
β0�γ+(b) since v′′

β0+(b) < 0
by Lemma C.1.3 and

v′′
β0�γ+(b)

v′′
β0+(b)

= ρ+ λ

ρ− γ + λ
> 1


Hence, in any case, v′
β0�γ

< v′
β0

over an interval (b�b + ε) for some ε > 0.
We can then show as in Case 1 that actually v′

β0�γ
< v′

β0
over (b�w

p
β0

]. As
v′
β0
(w

p
β0
)= 0 and vβ0�γ is of class C1(R+ \ {b}) and has a strictly positive right

derivative at b, this implies that v′
β0�γ

has at least a zero in (b�w
p
β0
). Thus β0 ∈ I,

as claimed.
Case 3. Suppose finally that β0 ≥ β̂, so that wi

β0
= b, and that v′

β0�γ+(b) ≤ 0;
that is, by (C.22) and in analogy with (C.6);

v′
β0�γ+(b) = (ρ− r)b−μ+ λC + γc

(ρ− γ + λ)b
+β0

r − γ + λ

ρ− γ + λ
≤ 0


Define then β′
0 >β0 as the unique solution to the equation v′

β′
0�γ+(b) = 0,

β′
0 = μ− λC − γc − (ρ− r)b

(r − γ + λ)b



Arguing by contradiction, suppose that v′
β�γ > 0 over (b�∞) for all β > β′

0.
Given the decomposition (C.23), which is valid for all β ≥ β̂, it follows by tak-
ing limits as β decreases to β′

0 that v′
β′

0�γ
≥ 0 over (b�∞). Yet, differentiating

(C.22) at the right of b and using the fact that v′
β′

0�γ+(b) = 0 along with (C.14)
leads to

(ρ− γ + λ)bv′′
β′

0�γ+(b) = −λβ′
0 + ρ− r <−λβ0 + ρ− r

<
λ[(ρ− r)b−μ+ λC]

(r + λ)b
+ ρ− r�

which is strictly negative under (C.4). Since v′
β′

0�γ+(b) = 0, this implies that
v′
β′

0�γ+ < 0 in an interval (b�b + ε) for some ε > 0, a contradiction. It follows
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that there exists some β′′
0 > β′

0 such that v′
β′′

0 �γ
has at least a zero in (b�∞).

Since v′
β′′

0 �γ+(b) > v′
β′

0�γ+(b) = 0 as β′′
0 >β′

0, it follows that β′′
0 ∈ I. Note that, un-

like in Cases 1 and 2, this argument establishes that I has a nonempty interior
since any β ∈ (β′

0�β
′′
0) also belongs to I. The result follows. Q.E.D.

Step 2. The following result shows that the interval I is bounded.

LEMMA C.2.3: For β large enough� the equation v′
β�γ = 0 has no solution over

(b�∞).

PROOF: Consider the functions u1�γ and u2�γ defined by (C.24) and (C.25).
As observed in the proof of Proposition C.2.1, it is easy to check along the lines
of the proof of Lemma C.1.1 that u′

2�γ > 0 over R+ \ {b}. Similarly, it is easy to
check along the lines of the proof of Lemma C.1.2 that lim supw→∞ u′

1�γ(w)≥ 1.
Combining these observations with the fact that the function −u′

1�γ+/u
′
2�γ+ is

continuous over [b�∞) as u1�γ and u2�γ are of class C1(R+ \ {b}), we obtain
that

sup
w∈[b�∞)

{
−u′

1�γ+(w)

u′
2�γ+(w)

}
<∞
(C.28)

Defining β̂ as in (C.21), the decomposition (C.23) then implies that whenever

β> max
{
β̂� sup

w∈[b�∞)

{
−u′

1�γ+(w)

u′
2�γ+(w)

}}
�

v′
β�γ has no zero in (b�∞). The result follows. Q.E.D.

REMARK: The supremum in (C.28) is actually a maximum. As shown in
Lemma C.2.7, the conditions (C.4) and (C.20) imply that μ − λC − γc >
(ρ− r)b, so that by (C.24),

u′
1�γ+(b)= (ρ− r)b−μ+ λC + γc

(ρ− γ + λ)b
< 0
(C.29)

Since by (C.25),

u′
2�γ+(b)= r − γ + λ

ρ− γ + λ
> 0�(C.30)

it follows that −u′
1�γ+(b)/u

′
2�γ+(b) > 0. As the function −u′

1�γ+/u
′
2�γ+ is contin-

uous and takes strictly negative values beyond some point, it must therefore
attain its maximum over [b�∞).
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Step 3. Denote by βγ the upper bound of the interval I, which is finite
by Lemma C.2.3. We now show that βγ ∈ I. For each β ∈ I, let w

p
β�γ =

inf{(v′
β�γ)

−1(0)} > b. Observe that since v′
β�γ+(b) > 0 whenever β ∈ I, for any

such β, the function v′
β�γ remains strictly positive over the interval (b�wp

β�γ). As
the derivatives of the functions (vβ�γ)β∈I are strictly ordered by their slopes β
over [0� b), it follows that wp

β�γ is strictly increasing with respect to β over I.
The following result implies that the family (w

p
β�γ)β∈I is uniformly bounded

above, so that wp
β�γ converges to a finite limit when β converges to βγ from

below.

LEMMA C.2.4: For each ε > 0� there exists wε > b such that v′
β�γ(w) > 1 − ε

for all β≥ β0 and w ≥wε.

PROOF: We show that lim infw→∞ v′
β0�γ

(w) ≥ 1, which implies the result by
Proposition C.2.1. It is convenient to decompose vβ0�γ as

vβ0�γ = u1�γ�0 +βu2�γ�0�(C.31)

where u1�γ�0 and u2�γ�0 are the continuous solutions to the delay differential
equations

u1�γ�0(w)= u1(w)� if w ∈ [0�wi
β0

]
�(C.32)

(r − γ)u1�γ�0(w)= μ− λC − γc − (ρ− r)w

+ Lγu1�γ�0(w)� if w ∈ (wi
β0
�∞)

and

u2�γ�0(w)= u2(w)� if w ∈ [0�wi
β0

]
�(C.33)

(r − γ)u2�γ�0(w)= Lγu2�γ�0(w)� if w ∈ (wi
β0
�∞)

�

respectively. Note that whenever β0 ≥ β̂, with β̂ given by (C.21), we have
wi

β0
= b, in which case u1�γ�0 = u1�γ and u2�γ�0 = u2�γ , where u1�γ and u2�γ are de-

fined by (C.24) and (C.25). We can easily show that u1�γ�0 and u2�γ�0 are of class
C1(R+ \ {b�wi

β0
}). The proof then proceeds along the lines of Lemmas C.1.1

and C.1.2.
First, show that u′

2�γ�0 > 0 over R+ \ {b�wi
β0

}. From (C.33) and Lemma C.1.1,
u′

2�γ�0 = u′
2 > 0 over the set [0�wi

β0
) \ {b}. Consider now the interval (wi

β0
�∞).

From (C.33), it is easy to check that

u′
2�γ�0+

(
wi

β0

)= (r − γ)u2(w
i
β0
)+ λ[u2(w

i
β0
)− u2(w

i
β0

− b)]
(ρ− γ)wi

β0
+ λb

> 0
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Thus, since u2�γ�0 is of class C1(R+ \ {b�wi
β0

}), we only need to check that u′
2�γ�0

has no zero in (wi
β0
�∞). The proof mimics that of the similar claim about u′

2
in Lemma C.1.1 and is therefore omitted.

Second, show that lim infw→∞ u′
1�γ�0(w)≥ 1, which completes the proof given

(C.31). Suppose first by way of contradiction that lim infw→∞ u′
1�γ�0(w) = −∞.

Then there exists an increasing divergent sequence (wn)n≥1 in (wi
β0

+ b�∞)
such that limn→∞ u′

1�γ�0(wn) = −∞ and wn = arg minw∈[0�wn]{u′
1�γ�0+(w)}. For

each n ≥ 1, we can find some w̃n ∈ (wn − b�wn) such that

[(ρ− γ)wn + λb]u′
1�γ�0(wn)

= λ[u1�γ�0(wn)− u1�γ�0(wn − b)] + (r − γ)u1�γ�0(wn)

+ (ρ− r)wn −μ+ λC + γc

= λbu′
1�γ�0(w̃n)+ (r − γ)u1�γ�0(wn)

+ (ρ− r)wn −μ+ λC + γc�

where the first equality follows from (C.32) and the second follows from the
mean value theorem. Since u1�γ�0(wn) ≥ u1(w

i
β0
) + u′

1�γ�0(wn)(wn − wi
β0
) by

construction of the sequence (wn)n≥1, it is easy to verify as in the proof of
Lemma C.1.2 that, for n large enough,

u′
1�γ�0(w̃n)

u′
1�γ�0(wn)

≥ (ρ− r)wn

λb
+ μ− λC − γc − (r − γ)u1(w

i
β0
)

λbu′
1�γ�0(wn)

�

so that the ratio u′
1�γ�0(w̃n)/u

′
1�γ�0(wn) goes to ∞ as n goes to ∞, which contra-

dicts the fact that wn = arg minw∈[0�wn]{u′
1�γ�0+(w)}. Thus lim infw→∞ u′

1�γ�0(w) >
−∞. Assume without loss of generality that lim infw→∞ u′

1�γ�0(w) is a finite num-
ber lγ . Proceeding as in the proof of Lemma C.1.2, we obtain that there exists
a divergent sequence (w̃n)n≥1 such that

(ρ− r)(lγ − 1)≥ λb lim sup
n→∞

u′
1�γ�0(w̃n)

wn




If lγ < 1, this implies that lim supn→∞ u′
1�γ�0(w̃n) = −∞, which in turn contra-

dicts the finiteness of lγ = lim infw→∞ u′
1�γ�0(w). Hence lγ ≥ 1 and the result

follows. Q.E.D.

Let wp
βγ�γ

> b be the limit of wp
β�γ when β converges to βγ from below. For

each β ∈ I, v′
β�γ(w

p
β�γ) = 0. To establish that I contains its upper bound βγ , we

need to show that this equality also holds at βγ . This immediately follows from
the following result, which states that the derivatives of the functions (vβ�γ)β≥β0

vary continuously with β.
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LEMMA C.2.5: Let (βn)n≥1 be a sequence in [β0�∞) that converges to β∞.
Then the sequence (v′

βn�γ
)n≥1 converges locally uniformly to v′

β∞�γ over R+ \ {b}.
PROOF: We repeatedly use the following simple technical fact.

FACT 1: Let (gn)n≥1 be a sequence of real-valued continuous functions that
converges uniformly to a function g∞ over a compact subset K of R� and let
(an)n≥1 and (bn)n≥1 be two sequences in R converging to a∞ and b∞. Then� if
J is a compact subset of R for which there exists n0 ≥ 1 such that bnJ ⊂ K for all
n ≥ n0� the sequence (angn ◦ (bnId))n≥1 converges uniformly to a∞g∞ ◦ (b∞Id)
over J.

PROOF: Note first that g is continuous over K, being the uniform limit of
the sequence of continuous functions (gn)n≥1. By assumption, bnx ∈ K for all
n ≥ n0 and x ∈ J, and thus b∞x ∈ K for all x ∈ J since the sequence (bn)n≥1

converges to b∞ and K is compact. For each n ≥ n0 and x ∈ J,

|angn(bnx)− a∞g∞(b∞x)| ≤ |an||gn(bnx)− g∞(bnx)|(C.34)

+ |an − a∞||g∞(bnx)|
+ |a∞||g∞(bnx)− g∞(b∞x)|


Consider now each term on the right-hand side of (C.34). For each n ≥ n0 and
x ∈ J,

|an||gn(bnx)− g∞(bnx)| ≤ sup
n≥n0

{|an|}‖gn − g∞‖K�

which converges to 0 when n goes to ∞ because the sequence (gn)n≥1 converges
uniformly to g∞ over K. Next, for each n ≥ n0 and x ∈ J,

|an − a∞||g∞(bnx)| ≤ |an − a∞|‖g∞‖K�

which converges to 0 when n goes to ∞ because the sequence (an)n≥1 converges
to a∞. Finally, for each n ≥ n0 and x ∈ J,

|g∞(bnx)− g∞(b∞x)| ≤ sup
{(y�y′)∈K2||y−y′ |≤|bn−b∞| supJ}

{|g∞(y)− g∞(y ′)|}�
which converges to 0 when n goes to ∞ because the sequence (bn)n≥1 converges
to b∞ and because, by the Heine–Cantor theorem, the function g∞ is uniformly
continuous over K because it is continuous over K and K is compact. Substi-
tuting these three uniform bounds into (C.34) yields the result. Q.E.D.

We can now proceed with the proof of Lemma C.2.5. It is sufficient to prove
the result for monotone sequences (βn)n≥1 that converge to β∞ from below
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or from above. Focus without loss of generality on the first case. According to
Proposition C.2.1, the derivatives of the functions (vβn�γ)n≥1 over R+ \ {b} are
ordered by their slopes (βn)n≥1 over [0� b). As a result, the sequence (vβn�γ)n≥1

is increasing and bounded above by vβ∞�γ over R+, and thus it has a point-
wise limit over R+, hereafter denoted by ṽβ∞�γ . Now, fix some compact interval
[w�w] of R+. By Proposition C.2.1 again, for each n≥ 1 and w ∈ [w�w],

min
y∈[w�w]

{
v′
β1�γ+(y)

}≤ v′
βn�γ+(w)≤ max

y∈[w�w]
{
v′
β∞�γ+(y)

}
�

holds; hence the sequence (vβn�γ)n≥1 is equicontinuous over [w�w]. Since
[w�w] is an arbitrary compact interval of R+, the sequence (vβn�γ)n≥1 converges
locally uniformly to its pointwise limit ṽβ∞�γ by the Arzelà–Ascoli theorem. To
translate this into a uniform convergence result for the sequence (v′

βn�γ
)n≥1, it

is convenient to change variables as follows. For each (β�z) ∈ [β0�∞) × R+,
define viβ�γ(z) = vβ�γ(w

i
βz); similarly let ṽiβ∞�γ(z) = ṽβ∞�γ(w

i
β∞z). Observe also

for future reference that for each β ≥ β0, viβ�γ satisfies the delay differential
equation

viβ�γ(z)= vβ(w
i
βz)� if z ∈ [0�1]�(C.35)

(r − γ)viβ�γ(z)= μ− λC − γc − (ρ− r)wi
β�γz

+ Lβ�γv
i
β�γ(z)� if z ∈ (1�∞)�

where Lβ�γ is a linear first-order delay differential operator defined by

Lβ�γu(z) =
[
(ρ− γ)z + λb

wi
β

]
u′(z)− λ

[
u(z)− u

(
z − b

wi
β

)]
(C.36)

for all z > 1 and any continuous function u of class C1(R+ \ {b/wi
β}). From

Lemma C.2.1, the sequence (wi
βn
)n≥1 is decreasing and converges to wi

β∞ .
Now, fix some interval J = [z� z] of R+, and apply Fact 1 to the sequence
(gn)n≥1 = (vβn�γ)n≥1 that converges uniformly to g∞ = ṽβ∞�γ over the interval
K = [wi

β∞z�w
i
β1
z] and to the sequences (an)n≥1 = (1)n≥1 and (bn)n≥1 = (wi

βn
)n≥1

with limits a∞ = 1 and b∞ = wi
β∞ . Since the interval J is arbitrary, it follows

that the sequence (angn ◦ (bnId))n≥1 = (viβn�γ
)n≥1 converges locally uniformly

to a∞g∞ ◦ (b∞Id)= ṽiβ∞�γ over R+. We now show that ṽiβ∞�γ = viβ∞�γ or, equiva-
lently, letting δβn = viβ∞�γ −viβn�γ

for all n ≥ 1, that δ, the locally uniform limit of
the sequence (δβn)n≥1, is identically equal to 0. Consider first the interval [0�1].
For each n ≥ 1 and z ∈ [0�1], we have, by (C.35),

δβn(z)= vβ∞
(
wi

β∞z
)− vβn

(
wi

βn
z
)

(C.37)

The decomposition (C.7) implies that the sequence (vβn)n≥1 converges locally
uniformly to vβ∞ . Therefore, since the sequence (wi

βn
)n≥1 converges to wi

β∞ ,
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it follows from (C.37) that the sequence (δβn(z))n≥1 converges to 0 for all z ∈
[0�1] and thus that δ = 0 over [0�1]. Consider next the interval (1� z] for some
given z > 1. For each n≥ 1 and z ∈ (1� z], we have, by (C.35) and (C.36),

(r − γ)δβn(z) =
[
(ρ− γ)z + λb

wi
β∞

]
δ′
βn
(z)(C.38)

+ λb

(
1

wi
β∞

− 1
wi

βn

)
vi′βn�γ

(z)

− (ρ− r)
(
wi

β∞ −wi
βn

)
z

− λ

[
δβn(z)− δβn

(
z − b

wi
β∞

)]

+ λ

[
viβn�γ

(
z − b

wi
β∞

)
− viβn�γ

(
z − b

wi
βn

)]



Now the sequence (wi
βn
)n≥1 converges to wi

β∞ . Moreover, the sequence (δβn)n≥1

converges uniformly over (1� z]. Finally, the sequence (vi′βn�γ+)n≥0 is uniformly
bounded over [0� z] since, by Proposition C.2.1 and the definition of the func-
tions (viβ�γ)β≥0,

∣∣vi′βn�γ+(z)
∣∣≤wi

β1
max

{∣∣∣ inf
w∈[0�wi

β1
z]

{
v′
β1�γ+(w)

}∣∣∣� ∣∣∣ sup
w∈[0�wi

β1
z]

{
v′
β∞�γ+(w)

}∣∣∣}

for all n ≥ 1 and z ∈ [0� z]. Using these three observations along with (C.38),
we then obtain that the sequence (δ′

βn
)n≥1 converges uniformly over (1� z]. As

δβn is of class C1(R+ \ {b/wi
βn
� b/wi

β∞}) and b/wi
βn

≤ b/wi
β∞ ≤ 1 for all n ≥ 1, it

follows from the fundamental theorem of calculus that the uniform limit over
(1� z] of the sequence (δ′

βn
)n≥1 must be equal to the derivative δ′ of δ. Taking

limits in (C.38) as n goes to ∞ then reveals that δ is the unique continuous
solution over [0� z] to the delay differential equation

δ(z)= 0� if z ∈ [0�1]�(C.39)

(r − γ)δ(z)= Lβ∞�γδ(z)� if z ∈ (1� z]

However, the constant function everywhere equal to 0 is clearly a continuous

solution to (C.39) over [0� z]. Since z is arbitrary, we obtain that δ = 0 over R+,
as claimed. Thus the sequence (viβn�γ

)n≥1 converges locally uniformly to viβ∞�γ .
Now consider the derivatives of the functions (viβn�γ

)n≥1. It has already been
established that the sequence (vi′βn�γ

)n≥1 converges locally uniformly to vi′β∞�γ

over (1�∞). If wi
β∞ = b, this is all that is needed in what follows. If wi

β∞ > b, we
must in addition prove that the sequence (vi′βn�γ

)n≥1 converges locally uniformly
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to vi′β∞�γ over (b/wi
β∞�1]. For each n ≥ 1 and z ∈ (b/wi

β∞�1], we have, by (C.7)
and (C.35),

vi′βn�γ
(z)= wi

βn
v′
βn

(
wi

βn
z
)=wi

βn

[
u′

1

(
wi

βn
z
)+βnu

′
2

(
wi

βn
z
)]



Given this decomposition, fix some interval J = [z� z] of (b/wi
β∞�1], and ap-

ply Fact 1 to the sequence (gn)n≥1 = (u′
1 + βnu

′
2)n≥1 that converges uniformly

to g∞ = u′
1 + β∞u′

2 over the interval K = [wi
β∞z�w

i
β1
z] and to the sequences

(an)n≥1 = (bn)n≥1 = (wi
βn
)n≥1 with limits a∞ = b∞ = wi

β∞ . Since the interval J
is arbitrary, it follows that the sequence (angn ◦ (bnId))n≥1 = (vi′βn�γ

)n≥1 con-
verges locally uniformly to a∞g∞ ◦ (b∞Id) = vi′β∞�γ over (b/wi

β∞�1]. Combin-
ing this with the previous result, we thus obtain that the sequence (vi′βn�γ

)n≥1

converges locally uniformly to vi′β∞�γ over (b/wi
β∞�∞). It remains to show

that this implies that the sequence (v′
βn�γ

)n≥1 converges locally uniformly to
v′
β∞�γ over (b�∞). Note that since the sequence (wi

βn
)n≥1 converges to wi

β∞ ,
for any interval J = [w�w] of (b�∞) and for each ε > 0, there exists some
n0(J�ε) ≥ 1 such that w/wi

βn
≥ (w − ε)/wi

β∞ for all n ≥ n0(J�ε) and w ∈ J,
so that, letting K = [(w− ε)/wi

β∞�w/wi
β∞], (1/wi

βn
)J ⊂ K for all n ≥ n0(J�ε).

Now choose ε > 0 such that w − ε > b, and apply Fact 1 to the sequence
(gn)n≥1 = (vi′βn�γ

)n≥1 that converges uniformly to g∞ = vi′β∞�γ over K and to the
sequences (an)n≥1 = (bn)n≥1 = (1/wi

βn
)n≥1 with limits a∞ = b∞ = 1/wi

β∞ . Since
the interval J is arbitrary, it follows that the sequence (angn ◦ (bnId))n≥1 =
(v′

βn�γ
)n≥1 converges locally uniformly to a∞g∞ ◦ (b∞Id) = v′

β∞�γ over (b�∞).
Finally, since the sequence (βn)n≥1 converges to β∞, the uniform convergence
of (v′

βn�γ
)n≥1 to (v′

β∞�γ)n≥1 over [0� b) follows immediately from (C.18). Hence
the result. Q.E.D.

To complete the proof of Proposition C.2.2, we only need to check that vβγ�γ

is increasing over R+ and that βγ > β0. The first of these claims follows from
considering a strictly decreasing sequence (βn)n≥1 converging to βγ . By con-
struction of βγ , the derivatives of the functions (vβn�γ)n≥1 are strictly positive
over R+ \ {b}, and according to Lemma C.2.5 the sequence (v′

βn�γ
)n≥1 converges

locally uniformly to v′
βγ�γ

over R+ \ {b}. Hence v′
βγ�γ

≥ 0 over R+ \ {b}, which
implies the first claim as vβγ�γ is continuous over R+. To prove the second claim,
we have to go back to the proof of Lemma C.2.2, where three cases were dis-
tinguished. In Case 3, we already observed that βγ > β0. In Cases 1 and 2, we
established that v′

β0�γ
(w

p
β0
) < 0. Hence, since v′

βγ�γ
(w

p
β0
) ≥ 0 by the above argu-

ment, it follows from Proposition C.2.1 that βγ > β0. This concludes the proof
of Proposition C.2.2. Q.E.D.

In the remainder of this section, we study the concavity of the function vβγ�γ .
The following proposition summarizes our findings.
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PROPOSITION C.2.3: vβγ�γ is concave over [0�wp
βγ�γ

]� and strictly so over
[b�wp

βγ�γ
].

PROOF: The proof of Proposition C.2.3 is very similar to that of Proposi-
tion C.1.3. It proceeds through a sequence of lemmas.

LEMMA C.2.6: v′′
βγ�γ+(w

i
βγ
) < 0.

PROOF: There are two cases to consider.
Case 1. Suppose first that βγ < β̂, with β̂ given by (C.21). This corresponds

to Case 1 of Step 3 of the proof of Lemma C.2.1. Since βγ > β0, the result
follows along the same lines.

Case 2. Suppose next that βγ ≥ β̂. Then wi
βγ

= b. This corresponds to Case 2
of Step 3 of the proof of Lemma C.2.1. The function vβγ�γ can then be de-
composed as in (C.23). Since u′′

2�γ+ < 0 over [b�∞) and v′′
β̂�γ+(b) < 0, the result

follows. Q.E.D.

LEMMA C.2.7: v′′
βγ�γ+ is upper semicontinuous over [wi

βγ
�∞).

PROOF: By construction, wi
βγ

≥ b. If wi
βγ

≥ 2b, the result is immediate since
vβγ�γ is of class C2(R+ \ {b�2b�wi

βγ
}). If wi

βγ
< 2b, we only need to check that

v′′
βγ�γ+(2b) > v′′

βγ�γ−(2b). Differentiating (C.18) both at the left and at the right
of any w> b, and using the fact that vβγ�γ is of class C1(R+ \ {b}) leads to

[(ρ− γ)w+ λb][v′′
βγ�γ+(w)− v′′

βγ�γ−(w)
]

(C.40)

= λ
[
v′
βγ�γ−(w − b)− v′

βγ�γ+(w − b)
]



There are now two cases to consider.
Case 1. Suppose first that βγ < β̂, with β̂ given by (C.21). This corresponds to

Case 1 of Step 3 of the proof of Lemma C.2.1. Then v′
β�γ+(b)= v′

βγ+(b), and ap-
plying formula (C.40) at 2b and using (C.6) yields that v′′

βγ�γ+(2b) > v′′
βγ�γ−(2b),

as claimed.
Case 2. Suppose next that βγ ≥ β̂. Then wi

βγ
= b. This corresponds to Case 2

of Step 3 of the proof of Lemma C.2.1. Applying formula (C.40) at 2b, and
using (C.29) and (C.30) yields that v′′

βγ�γ+(2b) > v′′
βγ�γ−(2b) if and only if

v′
βγ�γ+(b) = (ρ− r)b−μ+ λC + γc

(ρ− γ + λ)b
+βγ

r − γ + λ

ρ− γ + λ
< βγ

= v′
βγ�γ−(b)
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A sufficient condition for this to be true is that μ− λC − γc > (ρ− r)b. Now,
since w

p
βγ�γ

> b and v′
βγ�γ

(w
p
βγ�γ

)= 0, we have, by (C.18),

μ− λC − γc − (ρ− r)b

> μ− λC − γc − (ρ− r)w
p
βγ�γ

= (r − γ)vβγ�γ

(
w

p
βγ�γ

)+ λ
[
vβγ�γ

(
w

p
βγ�γ

)− vβγ�γ

(
w

p
βγ�γ

− b
)]
�

which is strictly positive since vβγ�γ is strictly increasing and strictly positive
over (0�wp

βγ�γ
]. Hence the result. Q.E.D.

REMARK: It should be noted that the inequality μ − λC − γc > (ρ − r)b
derived in the proof of Lemma C.2.7 is a consequence of our standing assump-
tions (C.4) and (C.20), from which the whole analysis conducted so far follows.
It may at first seem a bit odd that a parameter restriction that involves γ can in
this way be obtained from two conditions from which γ is absent. This apparent
paradox results from the assumption of constant returns to scale, which implies
that the desirability of investment depends in a bang-bang way on the level of
the agent’s size-adjusted payoff. It follows that size growth when it takes place
does so at a constant rate, which essentially amounts to an equal reduction in
the principal’s and in the agent’s discount rates. The only restriction to which γ
is subjected to is thus that it be strictly lower than the least of these discount
rates, that is, γ < r.

It follows from Lemma C.2.7 that the set {w ≥ wi
βγ

| v′′
βγ�γ+(w)≥ 0} is closed.

Denote by wc
βγ�γ

its smallest element. By Lemma C.2.6, wc
βγ�γ

> wi
βγ

and
v′′
βγ�γ+ < 0 over [wi

βγ
�wc

βγ�γ
). Thus vβγ�γ is strictly concave over [wi

βγ
�wc

βγ�γ
].

Moreover, vβγ�γ coincides with vβγ over [0�wi
βγ

]. Since βγ > β0 and u2 is
concave over R+ as shown in Step 1 of the proof of Lemma C.2.1, the de-
composition (C.7) implies that v′′

βγ�γ+ ≤ v′′
β0+ over [0�wi

βγ
). As wi

βγ
< w

p
β0

by
Lemma C.2.1, and vβ0 is concave over [0�wp

β0
] and strictly so over [b�wp

β0
] by

Proposition C.1.3, it follows that vβγ�γ is concave over [0�wi
βγ

] and strictly so
over [b�wi

βγ
]. Finally, observe that either v′

βγ�γ+(w
i
βγ
)= v′

βγ�γ−(w
i
βγ
) if wi

βγ
> b,

as shown in Case 1 of Step 3 of the proof of Lemma C.2.1, or v′
βγ�γ+(w

i
βγ
) <

v′
βγ�γ−(w

i
βγ
) if wi

βγ
= b, as shown in Case 2 of the proof of Lemma C.2.7. Thus

vβγ�γ is concave over [0�wc
βγ�γ

]. To complete the proof of Proposition C.2.3, we
now show that wp

βγ�γ
coincides with wc

βγ�γ
. We need the following result.

LEMMA C.2.8: wc
βγ�γ

≥ 2b.
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PROOF: Suppose by way of contradiction that wc
βγ�γ

< 2b. Then, as wc
βγ�γ

> b

and vβγ�γ is of class C2(R+ \ {b�2b�wi
βγ

}), v′′
βγ�γ

(wc
βγ�γ

) = 0 and v′′
βγ�γ

< 0 over
(wi

βγ
�wc

βγ�γ
). There are three cases to consider.

Case 1. Suppose first that λ ≤ ρ − r. Proceeding as in Case 1 of the proof
of Lemma C.1.5, we obtain that βγ ≤ (ρ − r)/λ. Using (C.14) in combination
with βγ > β0 then shows that this is in contradiction to (C.4).

Case 2. Suppose next that λ ≥ 2ρ − r − γ. We closely follow Case 2 of the
proof of Lemma C.1.5. Differentiating (C.18) twice over (wi

βγ
�2b), which is

feasible as wi
βγ

+ b ≥ 2b, we obtain that v′′′
βγ�γ

≤ 0 over this interval and, hence,
v′′
βγ�γ

(wc
βγ�γ

) ≤ v′′
βγ�γ+(w

i
βγ
). This leads to a contradiction since v′′

βγ�γ
(wc

βγ�γ
) = 0

and v′′
βγ�γ+(w

i
βγ
) < 0 by Lemma C.2.6.

Case 3. Suppose finally that ρ−r < λ < 2ρ−r−γ. Arguing as in Case 3 of the
proof of Lemma C.1.5, we obtain that v′′′

βγ�γ
> 0 and hence v′′

βγ�γ
> v′′

βγ�γ+(w
i
βγ
)

over (wi
βγ
�wc

βγ�γ
], which in turn implies that

v′′
βγ�γ

(
wc

βγ�γ

)
<

[
1 +

∫ wc
βγ�γ

wi
βγ

λ− 2ρ+ r + γ

(ρ− γ)w+ λb
dw

]
v′′
βγ�γ+

(
wi

βγ

)



Since v′′
βγ�γ

(wc
βγ�γ

) = 0 and v′′
βγ�γ+(w

i
βγ
) < 0 by Lemma C.2.6, this yields a con-

tradiction as

1 +
∫ wc

βγ�γ

wi
βγ

λ− 2ρ+ r + γ

(ρ− γ)w+ λb
dw > 1 +

∫ 2b

b

λ− 2ρ+ r + γ

(ρ− γ)w+ λb
dw

>
2λ− ρ+ r

ρ− γ + λ
> 0


The result follows. Q.E.D.

Proposition C.2.3 is then an immediate consequence of the following result.

LEMMA C.2.9: w
p
βγ�γ

= wc
βγ�γ

.

PROOF: Since vβγ�γ is increasing and v′
βγ�γ

(w
p
βγ�γ

) = 0 by Proposition C.2.2,
we must have v′′

βγ�γ+(w
p
βγ�γ

) ≥ 0 and thus wp
βγ�γ

≥ wc
βγ�γ

. It remains therefore to
prove that wp

βγ�γ
≤ wc

βγ�γ
. The proof closely follows that of Lemma C.1.6. We

first show that v′′
βγ�γ

> 0 over an interval (wc
βγ�γ

�wc
βγ�γ

+ ε) for some ε > 0. We
then show that if wp

βγ�γ
> wc

βγ�γ
, then v′′

βγ�γ
must have a zero in (wc

βγ�γ
�w

p
βγ�γ

).
Letting w̃ be the least of the points at which v′′

βγ�γ
vanishes, we next show

by differentiating (C.18) twice at the right of w̃ that w̃ − b ≥ wc
βγ�γ

, which in
turn implies that vβγ�γ is convex over [w̃ − b� w̃]. Using this information along
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with the fact that v′′
βγ�γ

(w̃) = 0, we can establish by differentiating (C.18) at
w̃ that v′

βγ�γ
(w̃) ≥ 1. Finally, using inequalities similar to (C.15) reveals that

this implies that vβγ�γ(w̃) > (μ − λC − γc)/(r − γ). This leads to a contra-
diction since w̃ < w

p
βγ�γ

and, as is easily checked from (C.18), vβγ�γ(w
p
βγ�γ

) <

(μ− λC − γc)/(r − γ). The result follows. Q.E.D.

To simplify notation, we hereafter write wi and wp instead of wi
βγ

and w
p
βγ�γ

.
The function v defined by

v(w)= vβγ�γ(w)∧ vβγ�γ(w
p)

for all w ≥ 0 is the unique solution to (C.1) that satisfies the requirements
(i)–(iii) laid down at the beginning of this section. Our candidate for the op-
timal value function of the principal is the function f defined by f (w) =
v(w) − w for all w ≥ 0. This function is linear over [0� b] and affine with
slope −1 over [wp�∞). Moreover, it is concave over R+ and strictly so over
[b�wp]. Finally, f (w) − wf ′(w) > c if and only if w > wi. This completes the
proof of Proposition 2. Q.E.D.

APPENDIX D: THE VERIFICATION THEOREM

This appendix establishes that, under conditions (C.4) and (C.20), the func-
tion F defined by F(X�W ) = Xf(W /X) for all (X�W ) ∈ R++ × R+ is the
principal’s optimal value function.

D.1. An Upper Bound for the Principal’s Expected Payoff

In this section, we show that the function F provides an upper bound for
the expected payoff that the principal obtains from any incentive compatible
contract that incites the agent to always exert effort. The following lemma is
crucial in establishing this result. Observe that f is of class C1(R+ \ {b}), just as
is v, so that f ′

+ = f ′ over (b�∞).

LEMMA D.1.1: Whenever 0 ≤ g ≤ γ and w ≥ b�

[(ρ− g)w + λb]f ′
+(w)− λ[f (w)− f (w − b)] − (r − g)f (w)(D.1)

≤ −μ+ λC + gc


PROOF: There are three cases to consider.
Case 1. Suppose first that w ∈ [b�wi). Then

(ρw+ λb)f ′
+(w)− λ[f (w)− f (w − b)] − rf (w)= −μ+ λC
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and

f (w)−wf ′
+(w) < c�

from which (D.1) follows as g ≥ 0.
Case 2. Suppose next that w ∈ [wi�wp). Then

[(ρ− γ)w+ λb]f ′
+(w)− λ[f (w)− f (w − b)] − (r − γ)f (w)

= −μ+ λC + γc

and

f (w)−wf ′
+(w)≥ c�

from which (D.1) follows as g ≤ γ.
Case 3. Suppose finally that w ∈ [wp�∞). Then

Lγv(w)− (r − γ)v(w)− (ρ− r)w +μ− λC − γc

= −λ[v(wp)− v(w − b)] − (r − γ)v(wp)− (ρ− r)w

+μ− λC − γc

= λ[v(w − b)− v(wp − b)] − (ρ− r)(w −wp)

≤ [λv′
+(w

p − b)− ρ+ r](w −wp)

= −[(ρ− γ)wp + λb]v′′
βγ�γ+(w

p)(w−wp)

≤ 0�

where the first equality follows from the fact that v is constant above wp,
the second equality follows from substituting Lγv(w

p)− (r − γ)v(wp) = (ρ −
r)wp − μ + λC + γc into the second line and from observing that v′(wp) = 0,
the first inequality follows from the concavity of v, the third equality follows
from the fact that v′

+(w
p − b) = v′

βγ�γ+(w
p − b), from differentiating (C.18) at

the right of wp and from observing that v′
βγ�γ

(wp) = 0, and the last inequality
follows from the fact that vβγ�γ is increasing and that v′

βγ�γ
(wp) = 0. We thus

have

[(ρ− γ)w+ λb]f ′(w)− λ[f (w)− f (w − b)] − (r − γ)f (w)

≤ −μ+ λC + γc

and the result follows as in Case 2. Q.E.D.

Then the following proposition holds.
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PROPOSITION D.1.1: Suppose that conditions (C.4) and (C.20) hold. Then�
for any contract Γ = (X�L�τ) that induces maximal risk prevention Λt = λ for
all t ∈ [0� τ) and that yields the agent an initial expected payoff W0− given an initial
project size X0� we have

F(X0�W0−) ≥ E
[∫ τ

0
e−rt

{
Xt[(μ− gtc)dt −C dNt] − dLt

}]
�(D.2)

so that the principal’s initial expected payoff is at most F(X0�W0−).

PROOF: Fix an arbitrary contract Γ = (X�L�τ) that has the required prop-
erties. Since Λt = λ for all t ∈ [0� τ)� we have PΛ = P; see Appendix A. For
simplicity, we omit mentioning the contract Γ and the effort process Λ in the
remainder of the proof. The agent’s continuation payoff follows a process W
whose dynamics is described by (13) with Λt = λ. In line with the assump-
tion that X is F N -predictable while W is F N -adapted, there is no loss of
generality in assuming that X has left-continuous paths, while W has right-
continuous paths. The limited liability and incentive compatibility constraints
imply that Wt− ≥ Xtb for all t ∈ [0� τ). Now observe that because f is of class
C1((b�∞)), F is of class C1({(X�W ) ∈ R++ × R+ | W/X > b}). Moreover,
since f is continuous at b and f ′ has a finite right-hand limit f ′

+(b) at b, we
can continuously extend the derivative of F to the set {(X�W ) ∈ R++ × R+ |
W/X = b}. This in turn ensures that we can apply the change of variable
formula for processes of locally bounded variation (Dellacherie and Meyer
(1982, Chapter VI, Section 92)) to the pair (X�W·−) = {(Xt�Wt−)}t≥0, yield-
ing

e−rTF(XT+�WT)(D.3)

= F(X0�W0−)

+
∫ T

0
e−rt[(ρWt− + λHt)FW (Xt�Wt−)− rF(Xt�Wt−)]dt

+
∫ T

0
e−rtFX(Xt�Wt−)(dX

d�c
t +Xtgt dt)

−
∫ T

0
e−rtFW (Xt�Wt−)dL

c
t

+
∑
t∈[0�T ]

e−rt[F(Xt+�Wt)− F(Xt�Wt−)]

for all T ∈ [0� τ), where Xd�c and Lc stand for the pure continuous parts of
Xd and L. For each t ∈ [0�T ], we have the decomposition of the jump in
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F(Xt�Wt−) at time t,

F(Xt+�Wt)− F(Xt�Wt−)

= F(Xt+�Wt)− F(Xt�Wt)

+ F(Xt�Wt− −Ht�Nt −�Lt)− F(Xt�Wt− −Ht�Nt)

+ F(Xt�Wt− −Ht�Nt)− F(Xt�Wt−)�

reflecting that Wt = Wt− − Ht�Nt − �Lt , where �Nt = Nt − Nt− and �Lt =
Lt −Lt− for all t ∈ [0�T ], with N0− = L0− = 0 by convention. Now fix T ∈ [0� τ)
and, as in Appendix A, let Mt = Nt − λt for all t ≥ 0. Using the above decom-
position along with

∑
t∈[0�T ]

e−rt[F(Xt�Wt− −Ht�Nt)− F(Xt�Wt−)]

=
∫ T

0
e−rt[F(Xt�Wt− −Ht)− F(Xt�Wt−)]dNt�

we can then rewrite (D.3) as

e−rTF(XT+�WT)(D.4)

= F(X0�W0−)+
∫ T

0
e−rt[F(Xt�Wt− −Ht)− F(Xt�Wt−)]dMt

+A1 +A2 +A3�

where A1 is a standard integral with respect to time,

A1 =
∫ T

0
e−rt

{
(ρWt− + λHt)FW (Xt�Wt−)(D.5)

− λ[F(Xt�Wt−)− F(Xt�Wt− −Ht)]
+ FX(Xt�Wt−)Xtgt − rF(Xt�Wt−)

}
dt�

A2 accounts for downsizing, that is, negative changes in the size of the
project,

A2 =
∫ T

0
e−rtFX(Xt�Wt−)dX

d�c
t(D.6)

+
∑
t∈[0�T ]

e−rt[F(Xt+�Wt)− F(Xt�Wt)]�
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and A3 accounts for changes in cumulative transfers,

A3 = −
∫ T

0
e−rtFW (Xt�Wt−)dL

c
t(D.7)

+
∑
t∈[0�T ]

e−rt[F(Xt�Wt− −Ht�Nt −�Lt)

− F(Xt�Wt− −Ht�Nt)]

We now treat each of these terms in turn.

Consider first A1. For each t ∈ [0�T ], let wt = Wt−/Xt and ht = Ht/Xt .
Since F is homogenous of degree 1, we have FW (Xt�Wt−) = f ′

+(wt) and
FX(Xt�Wt−)= f (wt)−wtf

′
+(wt) for all t ∈ [0�T ]. Thus

A1 =
∫ T

0
e−rtXt

{[(ρ− gt)wt + λht]f ′
+(wt)− λ[f (wt)− f (wt − ht)](D.8)

− (r − gt)f (wt)
}
dt

≤
∫ T

0
e−rtXt

{[(ρ− gt)wt + λb]f ′
+(wt)− λ[f (wt)− f (wt − b)]

− (r − gt)f (wt)
}
dt

≤
∫ T

0
e−rtXt(−μ+ λC + gtc)dt�

where the first and second inequalities, respectively, follow from the concav-
ity of f and from Lemma D.1.1, along with the fact that wt ≥ ht ≥ b for all
t ∈ [0�T ] by limited liability and incentive compatibility.

Consider next A2. Since F is homogenous of degree 1, we have

A2 =
∫ T

0
e−rt[f (wt)−wtf

′
+(wt)]dXd�c

t(D.9)

+
∑
t∈[0�T ]

e−rtWt

[
Xt+

Wt

f

(
Wt

Xt+

)
− Xt

Wt

f

(
Wt

Xt

)]

≤ 0�

where the inequality can be justified as follows. Since f is concave and vanishes
at 0, f (w)−wf ′

+(w) ≥ 0 for all w ≥ 0. Because the process Xd�c is decreasing,
this implies that the first term on the right-hand side of (D.9) is nonpositive.
The properties of f stated above also imply that f (w)/w is a decreasing func-
tion of w. Since Wt/Xt+ ≥ Wt/Xt for all t ∈ [0�T ], this implies that the second
term on the right-hand side of (D.9) is nonpositive. As a result of this, we have
A2 ≤ 0.
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Consider finally A3. Since F is homogenous of degree 1 and f is concave, we
have

F(Xt�Wt− −Ht�Nt −�Lt)− F(Xt�Wt− −Ht�Nt)

=Xt

[
f

(
Wt− −Ht�Nt −�Lt

Xt

)
− f

(
Wt− −Ht�Nt

Xt

)]

≤ −f ′
+

(
Wt− −Ht�Nt

Xt

)
�Lt

≤ �Lt

for all t ∈ [0�T ], where the last inequality reflects that f ′
+ ≥ −1. Using again

the fact that −FW (Xt�Wt−) = −f ′
+(wt) ≤ 1 for all t ∈ [0�T ] along with the def-

inition of A3, we therefore obtain that

A3 ≤
∫ T

0
e−rt dLc

t +
∑
t∈[0�T ]

e−rt�Lt =
∫ T

0
e−rt dLt
(D.10)

Substituting the upper bounds (D.8), (D.9), and (D.10) for A1, A2, and A3 into
(D.4) and rearranging then yields

F(X0�W0−) ≥ e−rTF(XT+�WT)(D.11)

+
∫ T

0
e−rt

{
Xt[(μ− gtc)dt −C dNt] − dLt

}+ M̃T

for all T ∈ [0� τ), where the process M̃ = {M̃t}t≥0 is defined by

M̃t =
∫ t∧τ

0
e−rs[F(Xs�Ws−)− F(Xs�Ws− −Hs)+XsC]dMs∧τ(D.12)

for all t ≥ 0. For each t ≥ 0,

E
[∫ t∧τ

0
e−rs|F(Xs�Ws−)− F(Xs�Ws− −Hs)+XsC|ds

]

= E
[∫ t∧τ

0
e−rsXs

∣∣∣∣f
(
Ws−

Xs

)
− f

(
Ws− −Hs

Xs

)
+C

∣∣∣∣ds
]

≤ E
[∫ t∧τ

0
e−rs

(
Ws− sup

w∈(b�wp]

{|f ′(w)|}+XsC
)
ds

]

≤ E
[∫ t∧τ

0
e−rs

(
W0−e(ρ+λ)s sup

w∈(b�wp]

{|f ′(w)|}+X0e
γsC

)
ds

]
<∞�
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where the first inequality follows from the limited liability constraint (16), and
the second inequality is an immediate consequence of (13) and of the fact that
X grows at most at rate γ. Since the integrand in (D.12) is F N

·∧τ-predictable,
where, by definition F N

·∧τ = {F N
t∧τ}t≥0, a straightforward adaptation of Brémaud

(1981, Chapter II, Lemma L3) shows that M̃ is an F N
·∧τ-martingale under P. In

particular, E[M̃T ] = M̃0 = 0. Taking expectations in (D.11) then leads to

F(X0�W0−)(D.13)

≥ E
[
e−rT∧τF(XT∧τ+�WT∧τ)

+
∫ T∧τ

0
e−rt

{
Xt[(μ− gtc)dt −C dNt] − dLt

}]

= E
[∫ τ

0
e−rt

{
Xt[(μ− gtc)dt −C dNt] − dLt

}]

− E
[

1{T<τ}

(∫ τ

T

e−rt
{
Xt[(μ− gtc)dt −C dNt] − dLt

}

− e−rTF(XT+�WT)

)]

= E
[∫ τ

0
e−rt

{
Xt[(μ− gtc)dt −C dNt] − dLt

}]

− e−rTE
[

1{T<τ}

(
E
[∫ τ

T

e−r(t−T)

× {
Xt[(μ− gtc)dt −C dNt] − dLt

}∣∣∣F N
T

]
− F(XT+�WT)

)]

≥ E
[∫ τ

0
e−rt

{
Xt[(μ− gtc)dt −C dNt] − dLt

}]

− e−rTE
[

1{T<τ}

[
XT(μ− λC)

r − γ
−WT − F(XT+�WT)

]]

for all T ≥ 0, where the first equality reflects that Wτ = 0 by (9), while the
second inequality follows from the fact that X grows at most at rate γ < r and
from the definition (9) of WT , bearing in mind that ρ > r. Now, for each T ≥ 0,

e−rT

∣∣∣∣XT(μ− λC)

r − γ
−WT − F(XT+�WT)

∣∣∣∣
= e−rT

∣∣∣∣XT(μ− λC)

r − γ
−XT+v

(
WT

XT+

)∣∣∣∣



LARGE RISKS AND DYNAMIC MORAL HAZARD 37

≤ e−(r−γ)TX0

[
μ− λC

r − γ
+ v(wp)

]



Since r > γ, taking limits as T goes to ∞ in (D.13) yields (D.2). Hence the
result. Q.E.D.

D.2. Attaining the Upper Bound: The Optimal Contract

We now show that the upper bound (D.2) for the principal’s expected payoff
derived in Proposition D.1.1 can actually be attained by an incentive compat-
ible contract, which is therefore optimal in the class of contracts that induce
maximal risk prevention. We assume as in Proposition D.1.1 that conditions
(C.4) and (C.20) hold.

PROOF OF PROPOSITION 3: Since Λt = λ for all t ≥ 0 under maximal risk
prevention, we have PΛ = P; see Appendix A. It follows from (42) and (43)
that wt > b for all t ≥ 0. This ensures that the size process X = {Xt}t≥0 defined
by (44) always remains strictly positive. The proof then consists of four steps.

Step 1. First justify equation (44) for X . The proposed downsizing policy
stipulates that the project be downsized by a factor [(wt −b)/b]∧1 at any time t
at which the process N jumps. Hence the cumulative downsizing process Xd

satisfies

Xd
t =

∫ t−

0
Xs

(
ws − b

b
∧ 1 − 1

)
dNs

for all t ≥ 0. Next, the proposed investment policy stipulates that the size of
the project grow at rate γ as long as wt > wi and at rate 0 otherwise. Hence the
cumulative investment process Xi satisfies

Xi
t =

∫ t

0
Xsγ1{ws>wi} ds

for all t ≥ 0. As X =X0 +Xd +Xi, X solves the stochastic differential equation

Xt = X0 +
∫ t−

0
Xs

[(
ws − b

b
∧ 1 − 1

)
dNs + γ1{ws>wi} ds

]
(D.14)

for all t ≥ 0. Since X has left-continuous paths, it follows from the exponential
formula for Lebesgue–Stieltjes calculus (Brémaud (1981, Appendix A4, Theo-
rem T4)) that

Xt = X0

∏
s∈(0�t)

[
1 +

(
ws − b

b
∧ 1 − 1

)
�Ns

]
exp

(∫ t

0
γ1{ws>wi} ds

)



38 BIAIS, MARIOTTI, ROCHET, AND VILLENEUVE

for all t ≥ 0, where �Ns = Ns −Ns− for all s ∈ [0� t], with N0− = 0 and
∏

∅ = 1 by
convention. This in turn yields (44) by definition of the stopping times (Tk)k≥1.

Step 2. Now show that

Xtwt =X0w0 +
∫ t−

0

{
Xs[(ρws + λb)ds − bdNs] − dLs

}
(D.15)

for all t ≥ 0. Adapting the integration by parts formula for functions of locally
bounded variation (Dellacherie and Meyer (1982, Chapter VI, Theorem 90))
to the case of the product of two processes with left-continuous paths, we ob-
tain

Xtwt =X0w0 +
∫ t−

0
Xs dws +

∫ t−

0
ws dXs +

∑
s∈[0�t)

�Xs�ws(D.16)

for all t ≥ 0, where �Xs = Xs+ −Xs and �ws = ws+ −ws for all s ∈ [0� t), with∑
∅ = 0 by convention. Substituting (D.14) and (42) into (D.16), and using (45)

yields

Xtwt = X0w0 +
∫ t−

0
[Xs(ρws + λb)ds − dLs]

+
∫ t−

0
Xs

[
(ws − b)

(
ws − b

b
∧ 1

)
−ws

]
dNs

+
∑
s∈[0�t)

Xsb

(
ws − b

b
∧ 1

)(
ws − b

b
∧ 1 − 1

)
(�Ns)

2�

from which (D.15) follows after a straightforward computation.
Step 3. Then show that, for each t ≥ 0, the proposed contract delivers the

agent a continuation payoff Wt = lims↓t Xsws after the realization of uncer-
tainty at time t. From Step 2, we have

Wt = W0− +
∫ t

0
[(ρWs +Xsλb)ds −XsbdNs − dLs]

for all t ≥ 0. Applying the change of variable formula for processes of locally
bounded variation (Dellacherie and Meyer (1982, Chapter VI, Section 92)) to
W = {Wt}t≥0 yields, after simplifications,

e−ρTWT = e−ρtWt −
∫ T

t

e−ρs(XsbdMs + dLs)
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for all T ≥ t, where M is defined as in Appendix A. Since X is F N -predictable
and grows at most at rate γ < ρ, it then follows from Brémaud (1981, Chap-
ter II, Lemma L3) that

Wt = E
[
e−ρ(T−t)WT | F N

t

]+ E
[∫ T

t

e−ρ(s−t) dLs

∣∣∣F N
t

]
(D.17)

for all T ≥ t. Now, observe from (42) and (43) that wt ∈ (b�wp] for all t ≥ 0, so
that

0 < e−ρ(T−t)WT ≤ eρte−(ρ−γ)Twp(D.18)

for all T ≥ t. In addition, an immediate consequence of (43) and (45) is that

∫ T

t

e−ρ(s−t) dLs =
∫ T

t

e−ρ(s−t)Xs[(ρ− γ)wp + λb]1{ws+ =wp} ds(D.19)

≤ Xt[(ρ− γ)wp + λb]
ρ− γ

for all T ≥ t. Note that both (D.18) and (D.19) reflect the fact that X
grows at most at rate γ < ρ. Since L is increasing, the family of functions
{∫ T

t
e−ρ(s−t) dLs}T≥t is increasing and, by (D.19), it is uniformly bounded. Hence,

by the monotone convergence theorem, taking limits as T goes to ∞ in (D.17)
yields

Wt = E
[∫ ∞

t

e−ρ(s−t) dLs

∣∣∣F N
t

]
�

from which the claim follows.
Step 4. From Step 3, the proposed contract generates a continuation util-

ity process that satisfies (13) with Λt = λ and Ht = Xtb for all t ≥ 0. Thus,
by Proposition 1, this contract induces maximal risk prevention. It remains to
show that it is optimal in the class of contracts that induce maximal risk preven-
tion and yield the agent an initial expected payoff W0− given an initial project
size X0. By Proposition D.1.1, we only need to show that this contract yields the
principal an initial expected payoff F(X0�W0−). Fix some T > 0. Proceeding as
for the derivation of (D.4), we obtain

e−rTF(XT+�WT)(D.20)

= F(X0�W0−)+
∫ T

0
e−rt[F(Xt�Wt− −Xtb)− F(Xt�Wt−)]dMt

+A1 +A2 +A3�
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where A1, A2, and A3 are defined as in (D.5), (D.6), and (D.7), with
gt = γ1{wt>wi} and Ht = Xtb for all t ≥ 0. We now treat each of these terms
in turn.

Consider first A1. By (D.8),

A1 =
∫ T

0
e−rtXt

{[(
ρ− γ1{wt>wi}

)
wt + λb

]
f ′(wt)(D.21)

− λ[f (wt)− f (wt − b)] − (
r − γ1{wt>wi}

)
f (wt)

}
dt

=
∫ T

0
e−rtXt(−μ+ λC + gtc)dt�

where the second equality follows from (41), and from the fact that gt =
γ1{wt>wi} and wt ∈ (b�wp] for all t ∈ [0�T ].

Consider next A2. Since the process Xd is purely discontinuous,

A2 =
∑
t∈[0�T ]

e−rt[F(Xt+�Wt)− F(Xt�Wt)](D.22)

=
∑
t∈[0�T ]

e−rt

[
Xt+f

(
Wt

Xt+

)
−Xtf

(
Wt

Xt

)]

=
∑
t∈[0�T ]

e−rtXt

[
wt − b

b
f (b)− f (wt − b)

]
1{�Xt<0}

= 0�

where the second equality follows from the homogeneity of degree 1 of F , the
third follows from the fact that Xt+ = [(wt − b)/b]Xt and Wt = Wt− − Xtb =
Xt(wt − b) when �Xt < 0, and the fourth follows from the linearity of f over
[0� b] along with the fact that �Xt < 0 implies wt − b < b.

Consider finally A3. Since the process L is continuous except perhaps at
time 0,

A3 = −
∫ T

0
e−rtFW (Xt�Wt−)dL

c
t + F(X0�W0− −L0)− F(X0�W0−)(D.23)

= −
∫ T

0
e−rtf ′(wt)Xt[(ρ− γ)wp + λb]1{wt+=wp} dt

+ (W0− −X0w
p)∨ 0

=
∫ T

0
e−rt dLt�
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where the second equality follows from the homogeneity of degree 1 of F to-
gether with (43) and (45), and the third follows from (45) along with the fact
that wt+ =wp implies wt =wp and thus f ′(wt)= −1.

The end of the proof proceeds along the lines of that of Proposition D.1.1.
First, taking expectations in (D.20) and using (D.21), (D.22), and (D.23) leads
to

F(X0�W0−) = E
[
e−rTF(XT+�WT)(D.24)

+
∫ T

0
e−rt

{
Xt[(μ− gtc)dt −C dNt] − dLt

}]

for all T ≥ 0. By construction, Wt/Xt+ = lims↓t ws ∈ [b�wp] for all t ≥ 0. Thus

|e−rTF(XT+�WT)| =
∣∣∣∣e−rTXT+f

(
WT

XT+

)∣∣∣∣
≤ e−(r−γ)TX0 max

w∈[b�wp]

{|f (w)|}
for all T ≥ 0, reflecting that X grows at most at rate γ < r. Then, as in Step 3,
we can take limits as T goes to ∞ in (D.24), which yields

E
[∫ ∞

0
e−rt

{
Xt[(μ− gtc)dt −C dNt] − dLt

}]= F(X0�W0−)�

and the result follows. Q.E.D.

REMARK: An implication of our analysis is that, given (C.4), (C.20) is a suf-
ficient condition for the optimal contract to entail investment. We can actually
show that (C.20) is also necessary for investment to ever be strictly profitable.
Indeed, suppose that (C.20) fails to hold and define an alternative value func-
tion for the principal by

fβ0(w)= vβ0(w)∧ vβ0

(
w

p
β0

)−w

for all w ≥ 0. Observe that since vβ0 is concave over [0�wp
β0

] and v′
β0

= 0 over
[wp

β0
�∞), fβ0 is concave over R+ and f ′

β0
= −1 over [wp

β0
�∞). Hence,

fβ0(w)−wf ′
β0+(w) ≤ fβ0

(
w

p
β0

)−w
p
β0
f ′
β0

(
w

p
β0

)
(D.25)

= vβ0

(
w

p
β0

)≤ c

for all w ≥ 0. Now, proceeding as in the proof of Lemma D.1.1, it is easy to
check that

(ρw+ λb)f ′
β0+(w)− λ

[
fβ0(w)− fβ0(w − b)

]− rfβ0(w)≤ −μ+ λC(D.26)
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for all w ≥ b. From (D.25) and (D.26), we obtain that whenever 0 ≤ g ≤ γ and
w ≥ b,

[(ρ− g)w + λb]f ′
β0+(w)− λ

[
fβ0(w)− fβ0(w − b)

]− (r − g)fβ0(w)(D.27)

≤ −μ+ λC + gc�

in analogy with (D.1). Arguing as in the proof of Proposition D.1.1, the inequal-
ity (D.27) can then be used to show that any contract that induces maximal risk
prevention and yields the agent an initial expected payoff W0− given an initial
project size X0 yields the principal an initial expected payoff at most equal to
Fβ0(X0�W0−) = X0fβ0(W0−/X0). Finally, an incentive compatible contract that
attains this upper bound can easily be constructed along the lines of Proposi-
tion 3, replacing wp by w

p
β0

throughout and requiring that no investment ever
take place, gt = 0 for all t ≥ 0.

D.3. Initialization

Proposition 3 describes the optimal contract for a given initial project size X0

and a given initial promised utility W0− for the agent. In this section, we briefly
examine how X0 and W0− are optimally determined at time 0. Consider for sim-
plicity the case in which the principal is competitive. We then look for a pair
(X0�W0−) that maximizes utilitarian welfare under the constraint that the prin-
cipal breaks even on average. Letting w0 = W0−/X0, the corresponding maxi-
mization problem is

max
(X0�w0)

{
X0[f (w0)+w0]

}
�(D.28)

subject to the principal’s participation constraint

X0f (w0)≥ 0�(D.29)

the agent’s limited liability contraint

w0 ≥ 0�(D.30)

and the feasibility constraint

1 ≥X0�(D.31)

reflecting that the initial size of the project is at most 1. Let η be the La-
grange multiplier for constraint (D.29) and focus on the interesting case where
(1+η)f (w0)+w0 > 0 at the optimum.2 It immediately follows that it is optimal

2This is the case whenever f takes strictly positive values. Otherwise the solution to problem
(D.28)–(D.31) is X0 = w0 = 0 and the project is not operated.
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to start operating the project at full scale, X0 = 1. This result hinges on the ho-
mogeneity of the principal’s value function F . As shown in (D.28), this enables
us to separate at time 0 the determination of the project’s size from that of
the manager’s size-adjusted utility. The initial size-adjusted utility of the agent
is given by the first-order condition f ′(w0) = −1/(1 +η). Two cases arise, de-
pending on whether constraint (D.29) is slack or binding at the optimum. If
f (wp) ≥ 0, this constraint is slack, so that η = 0 and w0 = wp, which, from the
point of view of utilitarian welfare, is optimal. If f (wp) < 0, this constraint is
binding, so that η> 0 and w0 <wp, reflecting that an initial size-adjusted util-
ity for the agent equal to wp is inconsistent with the participation constraint of
the principal.

APPENDIX E: FIRM SIZE DYNAMICS

PROOF OF PROPOSITION 4: We repeatedly use the following simple techni-
cal fact.

FACT 2: Let (Yn)n≥1 be a sequence of real-valued random variables that con-
verges P-almost surely to a constant y� and let (nt)t≥0 be a family of integer-valued
random variables that diverges P-almost surely to ∞ as t goes to ∞. Then the
family (Ynt )t≥0 converges P-almost surely to y as t goes to ∞.

PROOF: Since (Yn)n≥1 converges P-almost surely to y , there exists a mea-
surable set Ω0 with P[Ω0] = 1 such that for each ω ∈ Ω0 and ε > 0, there ex-
ists m0(ω�ε) ≥ 1 such that |Yn(ω) − y| ≤ ε for all n ≥ m0(ω�ε). Next, since
(nt)t≥0 diverges P-almost surely to ∞ as t goes to ∞, there exists a measur-
able set Ω1 with P[Ω1] = 1 such that for each ω ∈ Ω1 and m0 ≥ 1, there ex-
ists t0(ω�m0) ≥ 0 such that nt(ω) ≥ m0 for all t ≥ t0(ω�m0). Hence, for each
ω ∈Ω0 ∩Ω1 and ε > 0, we have nt(ω)≥ m0(ω�ε) and thus |Ynt(ω)(ω)− y| ≤ ε
for all t ≥ t0(ω�m0(ω�ε)). This implies the result as P[Ω0 ∩Ω1] = 1. Q.E.D.

Now, from (47), we have

ln(Xt)

t
= 1

t

[Nt−∑
k=1

ln
(
wTk − b

b
∧ 1

)
+
∫ TNt−

0
γ1{ws>wi} ds(E.1)

+
∫ t

TN
t−
γ1{ws>wi} ds

]

for all t ≥ 0. We now treat each of the terms on the right-hand side of (E.1) in
turn.



44 BIAIS, MARIOTTI, ROCHET, AND VILLENEUVE

CLAIM 1: Let μw be the unique invariant measure associated to the process
{wTk}k≥1. Then

lim
t→∞

1
t

Nt−∑
k=1

ln
(
wTk − b

b
∧ 1

)
= λ

∫
[b�2b)

ln
(
w − b

b

)
μw(dw)�

P-almost surely.

PROOF: The proof goes through a sequence of steps.
Step 1. A straightforward implication of (42) is that {wTk}k≥1 is a Markov

process. Let P : [b�wp] × B([b�wp]) → [0�1] denote the associated transition
function, where B([b�wp]) is the Borel σ-field over [b�wp]. Let A ∈ B([b�wp])
be Markov invariant for {wTk}k≥1, that is, P(w�A) = 1 for all w ∈ A. Then a
further implication of (42) is that for all w ∈ A, A must contain a subset of full
Lebesgue measure in [(w − b) ∨ b�wp]. Hence there are no disjoint Markov
invariant sets and {wTk}k≥1 is Markov ergodic (Stout (1974, Definition 3.6.8)).
We now show that {wTk}k≥1 has a stationary initial distribution. Define tb�wp to
be the minimum amount of time it takes for the process {wt}t≥0 to transit from
b to wp, that is, from (42):

tb�wp = 1
ρ

ln
(
ρwi + λb

ρb+ λb

)
+ 1

ρ− γ
ln
(
(ρ− γ)wp + λb

(ρ− γ)wi + λb

)

(E.2)

Then clearly P(w� {wp}) ≥ exp(−λtb�wp) for all w ∈ [b�wp]. Hence the transi-
tion function P satisfies Condition M in Stokey and Lucas (1989, Chapter 11,
Section 4). Specifically, for each A ∈ B([b�wp]) the following statement holds.
Either wp ∈ A and P(w�A) ≥ exp(−λtb�wp) for all w ∈ [b�wp] or wp /∈ A and
P(w� [b�wp] \ A) ≥ exp(−λtb�wp) for all w ∈ [b�wp]. Let Δ([b�wp]) be the
space of Borel probability measures over [b�wp], and let T ∗ :Δ([b�wp]) →
Δ([b�wp]) be the adjoint operator associated with P and defined by

(T ∗μ)(A)=
∫

[b�wp]
P(w�A)μ(dw)

for all (μ�A) ∈ Δ([b�wp]) × B([b�wp]). Condition M as stated above im-
plies that T ∗ is a contraction of modulus 1 − exp(−λtb�wp) over the space
Δ([b�wp]) endowed with the total variation norm ‖ · ‖TV (Stokey and Lucas
(1989, Lemma 11.11)). Because this is a complete metric space, it follows from
the contraction mapping theorem that T ∗ has a unique invariant measure μw,
which corresponds to the unique stationary initial distribution of {wTk}k≥1.

Step 2. Next we show that∫
[b�wp]

∣∣∣∣ ln
(
w− b

b
∧ 1

)∣∣∣∣μw(dw) <∞
(E.3)
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To do so, define an auxiliary process {ŵt}t≥0 by

ŵt =
[
1 + (ρ− γ + λ)

(
t − TNt−

)]
b∧ 2b

for all t ≥ 0. It is easy to check from (42) that ŵt ≤ wt for all t ≥ 0. Now, for
each k≥ 1,

ŵTk = [1 + (ρ− γ + λ)(Tk − Tk−1)]b∧ 2b�

where T0 = 0 by convention. Thus, by the properties of the Poisson process,
(ŵTk)k≥1 is a sequence of independently and identically distributed random
variables, with

P
[
ŵTk ≤w

]= 1 − exp
(

− λ(w − b)

(ρ− γ + λ)b

)
� if w ∈ [b�2b)�(E.4)

P
[
ŵTk = 2b

]= exp
(

− λ

ρ− γ + λ

)

for all k ≥ 1. Denote by μŵ the corresponding measure over [b�2b]. For each
j ≥ 1 and w ∈ [b�wp], define gj(w) = ln([(w − b)/b] ∧ 1)∨ (−j), and observe
that −j ≤ gj ≤ 0 over [b�wp] and gj = 0 over [2b�wp]. Since ŵTk ≤ wTk for all
k≥ 1,

1
n

n∑
k=1

gj

(
ŵTk

)≤ 1
n

n∑
k=1

gj

(
wTk

)
(E.5)

for all n≥ 1, P-almost surely. Since the random variables (ŵTk)k≥1 are indepen-
dently and identically distributed over [b�2b] according to μŵ, and since the
function gj is measurable and bounded, and hence μŵ-integrable, it follows
from the strong law of large numbers that the sequence ( 1

n

∑n

k=1 gj(ŵTk))n≥1

converges P-almost surely to∫
[b�2b]

gj(w)μŵ(dw)

=
∫ 2b

b

gj(w)
λ

(ρ− γ + λ)b
exp

(
− λ(w − b)

(ρ− γ + λ)b

)
dw�

where the equality follows from (E.4) and from the fact that gj(2b) = 0. Sim-
ilarly, since the process {wTk}k≥1 is Markov ergodic by Step 1, with invariant
measure μw over [b�wp], and since the function gj is measurable and bounded,
and hence μw-integrable, it follows from the strong law of large numbers for
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Markov ergodic processes (Stout (1974, Theorem 3.6.7)) that the sequence
( 1
n

∑n

k=1 gj(wTk))n≥1 converges P-almost surely to

∫
[b�wp]

gj(w)μw(dw)


Combining these observations with (E.5) and using the fact that gj ≤ 0, we
obtain ∫

[b�wp]
|gj(w)|μw(dw)(E.6)

≤
∫ 2b

b

|gj(w)| λ

(ρ− γ + λ)b
exp

(
− λ(w − b)

(ρ− γ + λ)b

)
dw


By construction, the sequence of functions (|gj|)j≥1 is increasing and converges
pointwise to the function |g∞| : [b�wp] → R∪{∞} defined by g∞(w)= ln([(w−
b)/b]∧1) ∈ R∪{−∞} for all w ∈ [b�wp]. Applying the monotone convergence
theorem to both sides of (E.6) and using the fact that g∞(w) = ln((w − b)/b)
if w ∈ [b�2b] then yields∫

[b�wp]

∣∣∣∣ ln
(
w− b

b
∧ 1

)∣∣∣∣μw(dw)(E.7)

≤
∫ 2b

b

∣∣∣∣ ln
(
w − b

b

)∣∣∣∣ λ

(ρ− γ + λ)b
exp

(
− λ(w − b)

(ρ− γ + λ)b

)
dw

<
λ

ρ− γ + λ

∫ 1

0
| ln(x)|dx

= λ

ρ− γ + λ
�

from which (E.3) follows.
Step 3. Since the process {wTk}k≥1 is Markov ergodic by Step 1, with invariant

measure μw over [b�wp], and since the function g∞ is μw-integrable by Step 2,
it follows from the strong law of large numbers for Markov ergodic processes
(Stout (1974, Theorem 3.6.7)) that the sequence ( 1

n

∑n

k=1 g∞(wTk))n≥1 =
( 1
n

∑n

k=1 ln([(wTk − b)/b] ∧ 1))n≥1 converges P-almost surely to

∫
[b�wp]

g∞(w)μw(dw) =
∫

[b�wp]
ln
(
w − b

b
∧ 1

)
μw(dw)

=
∫

[b�2b)
ln
(
w − b

b

)
μw(dw)�
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where the second equality follows from the fact that g∞ = 0 over [2b�wp].
Applying Fact 2 to the sequence (Yn)n≥1 = ( 1

n

∑n

k=1 ln([(wTk − b)/b] ∧ 1))n≥1

and to the family (nt)t≥0 = (Nt−)t≥0, and using the fact that Nt−/t converges
P-almost surely to λ as t goes to ∞ by the strong law of large numbers for the
Poisson process, we then obtain that 1

t

∑Nt−
k=1 ln([(wTk − b)/b] ∧ 1) converges

P-almost surely to λ
∫

[b�2b) ln((w − b)/b)μw(dw) as t goes to ∞. Q.E.D.

CLAIM 2: Let μw+ be the unique invariant measure associated to the process
{wT+

k
}k≥1 and let λ be the exponential distribution with parameter λ. Then

lim
t→∞

1
t

∫ TN
t−

0
1{ws>wi} ds

= 1 − λ

∫
[b�wi)×R+

{[
1
ρ

ln
(
ρwi + λb

ρw+ λb

)]
∧ s

}
μw+ ⊗λ(dw�ds)�

P-almost surely.

PROOF: The proof goes through a sequence of steps.
Step 1. For each w ∈ [b�wi), define tw�wi to be the minimum amount of time

it takes for the process {wt}t≥0 to transit from w to wi, that is, from (42),

tw�wi = 1
ρ

ln
(
ρwi + λb

ρw+ λb

)

(E.8)

For each k≥ 1, consider the integral Ik = ∫ Tk
Tk−1

1{ws>wi} ds, where T0 = 0 by con-
vention. According to (42), two cases must be distinguished. Suppose first that
wT+

k−1
≥ wi. Then ws > wi for all s ∈ (Tk−1�Tk] and, therefore, Ik = Tk − Tk−1.

Suppose next that wT+
k−1

< wi. If Tk − Tk−1 ≤ tw
T+
k−1

�wi , then ws ≤ wi for all

s ∈ (Tk−1�Tk] and, therefore, Ik = 0. Finally, if Tk − Tk−1 > tw
T+
k−1

�wi , then

ws > wi for all s ∈ (Tk−1 + tw
T+
k−1

�wi � Tk] and, therefore, Ik = Tk −Tk−1 − tw
T+
k−1

�wi .

Summing over k = 1� 
 
 
 � n and rearranging, we obtain

1
n

∫ Tn

0
1{ws>wi} ds = 1

n

n∑
k=1

(Tk − Tk−1)(E.9)

− 1
n

n∑
k=1

[
tw

T+
k−1

�wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

for all n≥ 1.
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Step 2. Observe from (42) that the process {Zk}k≥1 = {(wT+
k−1

�Tk − Tk−1)}k≥1

is Markov. Let Q : [b�wp] × R+ × B([b�wp] × R+) → [0�1] denote the asso-
ciated transition function, where B([b�wp] × R+) is the Borel σ-field over
[b�wp] × R+. From (42) again, we have Zk+1 = (h(Zk)�Tk+1 −Tk) for all k≥ 1,
where the function h : [b�wp] × R+ → [b�wp − b] is defined by

h(w� t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
w + λb

ρ

)
eρt − λb

ρ
− b

]
∨ b�

if w ∈ [b�wi) and t ≤ tw�wi �{[(
wi + λb

ρ− γ

)
e(ρ−γ)(t−t

w�wi ) − λb

ρ− γ

]
∧wp − b

}
∨ b�

if w ∈ [b�wi) and t > tw�wi �{[(
w + λb

ρ− γ

)
e(ρ−γ)t − λb

ρ− γ

]
∧wp − b

}
∨ b�

if w ∈ [wi�wp] and t ≥ 0�

with tw�wi as defined in (E.8). Since Zk and Tk+1 − Tk are independent,
and Tk+1 − Tk has distribution λ for all k ≥ 1, this in turn implies that
Q((w� t)�A) = λ(Ah(w�t)) for all (w� t�A) ∈ [b�wp] × R+ × B([b�wp] × R+),
where Aw′ = {t ′ ∈ R+ | (w′� t ′) ∈ A} is the w′ section of A for all w′ ∈
[b�wp]. Now, let A ∈ B([b�wp] × R+) be Markov invariant for {Zk}k≥1,
that is, Q((w� t)�A) = 1 for all (w� t) ∈ A. Then λ(Ah(w�t)) = 1. Moreover,
since (h(w� t)� t ′) ∈ A if t ′ ∈ Ah(w�t), we have Q((h(w� t)� t ′)�A) = 1 and thus
λ(Ah(h(w�t)�t′)) = 1 for all t ′ ∈ Ah(w�t). For each (w� t) ∈ A, consider the set
h(h(w� t)�Ah(w�t)). It follows from the definition of h that h(h(w� t)�Ah(w�t))⊂
[[h(w� t) − b] ∨ b�wp − b]. We now show that h(h(w� t)�Ah(w�t)) has full
Lebesgue measure in [[h(w� t) − b] ∨ b�wp − b]. Observe first that the map-
ping h(h(w� t)� ·) is increasing over R+, with h(h(w� t)�0) = [h(w� t)− b] ∨ b
and h(h(w� t)� t ′)=wp −b for t ′ ≥ tb�wp , with tb�wp as defined in (E.2). Thus we
only need to check that h(h(w� t)�R+ \Ah(w�t)) has Lebesgue measure 0. This
follows from the fact that R+ \Ah(w�t) has λ measure 0 and, thus, has Lebesgue
measure 0 since these two measures are mutually absolutely continuous, along
with the fact that h(h(w� t)� ·) is increasing and absolutely continuous over
any interval of the form [0� n], n ≥ 1, and thus maps sets of Lebesgue mea-
sure 0 onto sets of Lebesgue measure 0 (Rudin (1986, Theorem 7.18)). Since
h(h(w� t)�Ah(w�t)) has full Lebesgue measure in [[h(w� t)− b] ∨ b�wp − b] for
any Markov invariant set A and all (w� t) ∈ A, we have

h
(
h(w1� t1)�A1�h(w1�t1)

)∩ h
(
h(w2� t2)�A2�h(w2�t2)

) 
= ∅
for any Markov invariant sets A1 and A2 and for all (w1� t1) ∈ A1 and
(w2� t2) ∈ A2. As λ(A1�w′′)= λ(A2�w′′)= 1 for all w′′ ∈ h(h(w1� t1)�A1�h(w1�t1))∩
h(h(w2� t2)�A2�h(w2�t2)), we get that A1�w′′ ∩ A2�w′′ 
= ∅ for any such w′′, so that
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A1 ∩ A2 
= ∅. Hence there are no disjoint Markov invariant sets and {Zk}k≥1

is Markov ergodic (Stout (1974, Definition 3.6.8)). To complete this step of
the proof, we show that {Zk}k≥1 has a stationary initial distribution. Pro-
ceeding as in Step 1 of the proof of Claim 1, it is easy to check that the
process {wT+

k
}k≥1 has a unique stationary initial distribution. That is, letting

P+ : [b�wp] × B([b�wp]) → [0�1] denote the associated transition function,
there exists a unique probability measure μw+ over [b�wp] such that, for each
A ∈ B([b�wp]),

μw+(A)=
∫

[b�wp]
P+(w�A)μw+(dw)
(E.10)

Since Zk = (wT+
k−1

�Tk − Tk−1) for all k ≥ 1, and since wT+
k−1

and Tk − Tk−1 are
independent for all k≥ 1, a natural guess for the invariant measure associated
to {Zk}k≥1 is the product measure μw+ ⊗ λ. To verify this, let E1 × E2 be a
measurable rectangle in B([b�wp] × R+). Then, for each k≥ 1, we have

∫
[b�wp]×R+

Q((w� t)�E1 ×E2)μ
w+ ⊗λ(dw�dt)

=
∫

[b�wp]×R+
1{h(w�t)∈E1}λ(E2)μ

w+ ⊗λ(dw�dt)

= λ(E2)

∫
[b�wp]

μw+(dw)

∫
R+

1{h(w�t)∈E1}λ(dt)

= λ(E2)

∫
[b�wp]

P[h(w�Tk − Tk−1) ∈ E1]μw+(dw)

= λ(E2)

∫
[b�wp]

P
[
wT+

k
∈E1 |wT+

k−1
=w

]
μw+(dw)

= λ(E2)

∫
[b�wp]

P+(w�E1)μ
w+(dw)

= λ(E2)μ
w+(E1)

=μw+ ⊗λ(E1 ×E2)�

where the first equality follows from the definition of the transition function Q,
the second follows from Tonelli’s theorem, the third follows from the fact that
Tk −Tk−1 has distribution λ, the fourth follows from the independence of wT+

k−1

and Tk−Tk−1, the fifth follows from the definition of the transition function P+,
the sixth follows from (E.10), and the last follows from the definition of the
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product measure μw+ ⊗ λ. A standard monotone class argument then implies
that

μw+ ⊗λ(A)=
∫

[b�wp]×R+
Q((w� t)�A)μw+ ⊗λ(dw�dt)

for all A ∈ B([b�wp]×R+), so that μw+ ⊗λ is an invariant measure associated
to {Zk}k≥1. Since {Zk}k≥1 is Markov ergodic, this invariant measure is in fact
unique (Stout (1974, Theorem 3.6.7)).

Step 3. Finally we use (E.9) to evaluate the limit of the sequence
( 1
n

∫ Tn

0 1{ws>wi} ds)n≥1. Since the random variables (Tk − Tk−1)k≥1 are inde-
pendently and identically distributed according to the exponential distribu-
tion λ with parameter λ, it follows from the strong law of large numbers
that the sequence ( 1

n

∑n

k=1(Tk − Tk−1))n≥1 converges P-almost surely to 1/λ.
Next, since the process {(wT+

k−1
�Tk − Tk−1)}k≥1 is Markov ergodic by Step 2,

with invariant measure μw+ ⊗ λ over [b�wp] × R+, and since the mapping
(w� s) �→ (tw�wi ∧ s)1{w<wi} is measurable, nonnegative, and bounded above by
(w� s) �→ s, and hence μw+ ⊗ λ-integrable, it follows from the strong law of
large numbers for Markov ergodic processes (Stout (1974, Theorem 3.6.7))
that the sequence(

1
n

n∑
k=1

[
tw

T+
k−1

�wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

)
n≥1

converges P-almost surely to∫
[b�wp]×R+

(tw�wi ∧ s)1{w<wi}μ
w+ ⊗λ(dw�ds)

=
∫

[b�wi)×R+
(tw�wi ∧ s)μw+ ⊗λ(dw�ds)

=
∫

[b�wi)×R+

{[
1
ρ

ln
(
ρwi + λb

ρw+ λb

)]
∧ s

}
μw+ ⊗λ(dw�ds)�

where the second equality follows from the definition (E.8) of tw�wi . Apply-
ing Fact 2 to the sequence (Yn)n≥1 = ( 1

n

∫ Tn

0 1{ws>wi} ds)n≥1 and to the family
(nt)t≥0 = (Nt−)t≥0, and using the fact that Nt−/t converges P-almost surely to λ
as t goes to ∞ by the strong law of large numbers for the Poisson process, we

then obtain that 1
t

∫ TNt−
0 1{ws>wi} ds converges P-almost surely to

1 − λ

∫
[b�wi)×R+

{[
1
ρ

ln
(
ρwi + λb

ρw+ λb

)]
∧ s

}
μw+ ⊗λ(dw�ds)

as t goes to ∞. Q.E.D.



LARGE RISKS AND DYNAMIC MORAL HAZARD 51

CLAIM 3: We have

lim
t→∞

1
t

∫ t

TN
t−

1{ws>wi} ds = 0�

P-almost surely.

PROOF: For each t ≥ 0,

0 ≤ 1
t

∫ t

TNt−
1{ws>wi} ds(E.11)

≤ 1 − TNt−

t
= Nt−

t

[
t

Nt−
− 1

Nt−

Nt−∑
k=1

(Tk − Tk−1)

]



Applying Fact 2 to the sequence (Yn)n≥1 = ( 1
n

∑n

k=1(Tk − Tk−1))n≥1 and to the
family (nt)t≥0 = (Nt−)t≥0, and using the fact that Nt−/t converges P-almost
surely to λ as t goes to ∞ by the strong law of large numbers for the Poisson
process, we then obtain from (E.11) that 1

t

∫ t

TNt−
1{ws>wi} ds converges P-almost

surely to 0 as t goes to ∞. Q.E.D.

Given (E.1) and (E.8), combining Claims 1–3 completes the proof of Propo-
sition 4. Q.E.D.

REMARK: The proofs of Claims 1 and 2 given above directly proceed by es-
tablishing that the processes {wTk}k≥1 and {(wT+

k−1
�Tk − Tk−1)}k≥1 are Markov

ergodic, that is, that they have no disjoint invariant sets. Since the existence of
an invariant measure can be proven in each case by other means, this allows
us to use the strong law of large numbers for Markov ergodic processes (Stout
(1974, Theorem 3.6.7)). A slightly different approach consists in first showing
that the transition functions associated to these processes satisfy Doeblin’s con-
dition (Doob (1953, Chapter V, Section 6)), which ensures the existence of in-
variant measures. We then establish that there exists a unique ergodic set and,
correspondingly, a unique invariant measure. Finally, we use the strong law of
large numbers for Markov processes whose transition functions are known to
satisfy Doeblin’s condition (Doob (1953, Chapter V, Theorem 6.2)). That this
is the case of the transition function P of {wTk}k≥1 is implicit in Step 1 of the
proof of Claim 1, where it is shown that it satisfies Condition M in Stokey and
Lucas (1989, Chapter 11, Section 4). This condition is stronger than Doeblin’s
and implies at once that there exists a unique invariant measure. Consider now
the process {(wT+

k−1
�Tk − Tk−1)}k≥1 with transition Q over [b�wp] × R+. By de-

finition, the transition Q satisfies Doeblin’s condition if there exists a finite
measure ϕ over B([b�wp] × R+), an integer ν ≥ 1, and a number ε > 0 such
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that, for each (w� t�A) ∈ [b�wp]×R+ × B([b�wp]×R+), Qν((w� t)�A)≤ 1−ε
whenever ϕ(A) ≤ ε. We now exhibit a triple (ϕ� ν�ε) such that this condition
holds. To do so, fix some ε ∈ (0�exp(−λtb�wp)), with tb�wp defined as in (E.2),
and consider the measure ϕ = [exp(−λtb�wp)ε/(exp(−λtb�wp) − ε)]δwp−b ⊗ λ�
where δwp−b is the Dirac mass at wp − b. For each A ∈ B([b�wp] × R+),
note that ϕ(A) = [exp(−λtb�wp)ε/(exp(−λtb�wp) − ε)]λ(Awp−b), where Awp−b

is the (wp − b) section of A. This implies, in particular, that λ(Awp−b) ≤
1 − ε/exp(−λtb�wp) whenever ϕ(A)≤ ε, so that in this case

Q2((w� t)�A) = 1 −Q2((w� t)�Ac)

≤ 1 −Q2((w� t)� {wp − b} × R+ ∩Ac)

≤ 1 − exp(−λtb�wp)[1 −λ(Awp−b)]
≤ 1 − ε

for all (w� t) ∈ [b�wp] × R+, where the second inequality follows from the def-
initions of tb�wp and Q. Thus Q satisfies Doeblin’s condition, as claimed. More-
over, observe that for each (w� t�A) ∈ [b�wp] × R+ × B([b�wp] × R+),

Q2((w� t)�A) ≥ exp(−λtb�wp)λ(Awp−b)

=
(

exp(−λtb�wp)

ε
− 1

)
ϕ(A)�

which, since exp(−λtb�wp) > ε, implies that Q2((w� t)�A) > 0 whenever
ϕ(A) > 0. This in turn is a sufficient condition for Q to have a unique er-
godic set (Stokey and Lucas (1989, Theorem 11.10)). We can then show as in
Step 2 of the proof of Claim 2 that the corresponding unique invariant measure
is μw+ ⊗ λ. Finally, Step 3 of the proof of Claim 2 follows from applying the
strong law of large numbers for Markov processes whose transition functions
satisfy Doeblin’s condition (Doob (1953, Chapter V, Theorem 6.2)).

PROOF OF PROPOSITION 5: We first check that (49) holds uniformly in
γ whenever c is close enough to 0. Specifically, using the notation of Ap-
pendix C and keeping in mind that vβ0(b)/b = β0 > v′

β0+(b) by (C.6), sup-
pose that vβ0(b) − bv′

β0+(b) ≥ c. Then, for each γ ∈ (0� r), it must be that
f (b) − bf ′

+(b) = vβγ�γ(b) − bv′
βγ�γ+(b) ≥ c as well. Suppose indeed that the

contrary holds for such a γ. Then, since βγ > β0 by Proposition C.2.2 and
u2(b)/b = 1 > u′

2+(b) by (C.10), we have

c > vβγ�γ(b)− bv′
βγ�γ+(b)

= u1(b)− bu′
1+(b)+βγ[u2(b)− bu′

2+(b)]
> u1(b)− bu′

1+(b)+β0[u2(b)− bu′
2+(b)]

= vβ0(b)− bv′
β0+(b)�
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a contradiction. The claim follows. Now, under (49), we have, by (48),

lim
t→∞

ln(Xt)

t
= λ

∫
[b�2b)

ln
(
w − b

b

)
μw(dw)+ γ
(E.12)

The remainder of the proof then consists of constructing appropriate upper
and lower bounds for

∫
[b�2b) ln((w − b)/b)μw(dw). Consider first the upper

bound. Writing (C.18) at wp and using (C.17) along with the fact that v is non-
negative and increasing yields

wp = μ− λC − γc − (r − γ)v(wp)− λ[v(wp)− v(wp − b)]
ρ− r

<
μ− λC

ρ− r
�

uniformly in γ. Let wp = (μ − λC)/(ρ − r) and define auxiliary processes
{wt}t≥0 and {lt}t≥0 by

wt =w0 +
∫ t−

0

{
(ρws + λb)ds − b

(
ws − b

b
∧ 1

)
dNs − dls

}
�(E.13)

lt = max{w0 −wp�0} +
∫ t

0
(ρwp + λb)1{ws+ =wp} ds(E.14)

for all t ≥ 0. Observe that the process {wt}t≥0 is independent of γ. It is easy to
check from (42), (43), (E.13), and (E.14) that wt ≤wt for all t ≥ 0. Proceeding
as in Claim 1 of the proof of Proposition 4, we can further show that {wTk}k≥1

has a unique stationary initial distribution μw and that∫
[b�2b)

ln
(
w − b

b

)
μw(dw)≤

∫
[b�2b)

ln
(
w − b

b

)
μw(dw) < 0�

uniformly in γ. Here the strict inequality follows from the fact that for each
k≥ 1 and w ∈ (b�wp], there is for each ε > 0 close enough to 0 a strictly pos-
itive probability that wTk+1 < w given that wTk = w + ε, which implies in turn
that the lower bound of the support of the stationary initial distribution μw of
{wTk}k≥1 is b. Therefore, for γ close enough to 0,

λ

∫
[b�2b)

ln
(
w − b

b

)
μw(dw)+ γ < 0�

from which (50) follows by (E.12). Consider next the lower bound. By (E.7),∫
[b�2b)

ln
(
w − b

b

)
μw(dw)≥ − λ

ρ− γ + λ
�
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uniformly in γ. Therefore, if γ > λ2/(ρ− γ + λ),

λ

∫
[b�2b)

ln
(
w − b

b

)
μw(dw)+ γ > 0�

from which (51) follows by (E.12). Hence the result. Q.E.D.

PROOF OF PROPOSITION 6: Consider for each k≥ 1 the σ-fields

F k
1 = σ

(
(w0�T1 − T0)�

(
wT1�T2 − T1

)
� 
 
 
 �

(
wTk−1�Tk − Tk−1

))
�(E.15)

F ∞
k = σ

((
wTk−1�Tk − Tk−1

)
�
(
wTk�Tk+1 − Tk

)
� 
 
 


)
�

and denote by

T =
∞⋂
k=1

F ∞
k(E.16)

the corresponding tail σ-field. Then the following zero–one law holds.

CLAIM 4: For each E ∈ T � either P[E] = 0 or P[E] = 1.

PROOF: We first show that for each ε > 0, there exists n0 ≥ 1 such that

�(k�n�w� t�A)(E.17)

= P
[(
wTk+n−1�Tk+n − Tk+n−1

) ∈ A | (wTk−1�Tk − Tk−1

)= (w� t)
]

− P
[(
wTk+n−1�Tk+n − Tk+n−1 ∈ A

)]
≤ ε

for all k≥ 1, n ≥ n0, (w� t) ∈ [b�wp]×R+, and A ∈ B([b�wp]×R+). A standard
monotone class argument implies that it is enough to verify (E.17) for sets
A = ⋃m

i=1 E
i
1 × Ei

2 that are finite unions of disjoint measurable rectangles in
B([b�wp] × R+). Now, fix some such set A and let Ẽ1

1� 
 
 
 � Ẽ
m̃
1 be the atoms

of the field of subsets of
⋃m

i=1 E
i
1 generated by E1

1� 
 
 
 �E
m
1 . The sets Ẽ1

1� 
 
 
 � Ẽ
m̃
1

form a partition of
⋃m

i=1 E
i
1. Define

Ĩ+ = {
i ∈ {1� 
 
 
 � m̃} | P

[
wTk+n−1 ∈ Ẽi

1 | (wTk−1�Tk − Tk−1

)= (w� t)
]

− P
[
wTk+n−1 ∈ Ẽi

1

]≥ 0
}



As in Claim 1 of the proof of Proposition 4, let T ∗ be the adjoint operator
associated to the transition function P of {wTk}k≥1, and let ‖ · ‖TV be the total
variation norm over the space �([b�wp]) of Borel probability measures over
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[b�wp]. Finally, define h as in Claim 2 of the proof of Proposition 4, and let
μwTk

be the distribution of wTk . We then have

�(k�n�w� t�A)

=
m∑
i=1

{
P
[
wTk+n−1 ∈ Ei

1 | (wTk−1�Tk − Tk−1

)= (w� t)
]

− P
[
wTk+n−1 ∈ Ei

1

]}
λ[Ei

2]

≤ P
[
wTk+n−1 ∈

⋃
i∈Ĩ+

Ẽi
1

∣∣∣(wTk−1�Tk − Tk−1

)= (w� t)

]

− P
[
wTk+n−1 ∈

⋃
i∈Ĩ+

Ẽi
1

]

≤ 1
2

∥∥T ∗n−1
(
δ[h((w−b)∨b�t)+b]∧wp

)− T ∗n−1
(
μwTk

)∥∥
TV

≤ 1
2
(1 − exp(−λtb�wp))n−1

∥∥δw −μwTk

∥∥
TV

≤ (1 − exp(−λtb�wp))n−1�

where the first equality follows from the fact that Tk − Tk−1 is independent of
any random variable measurable with respect to F k−1

0 and thus, in particular,
independent of wTk−1 , the first inequality from the definition of Ĩ+ and from
the assumption that the rectangles that make up A are disjoint; the second in-
equality follows from the definitions of T ∗, h, and μwTk

; and the third inequality
follows from the fact that, as shown in Claim 1 of the proof of Proposition 4,
T ∗ is a contraction of modulus 1 − exp(−λtb�wp). Thus (E.17) holds as soon as
n0 ≥ 1 + ln(ε)/ ln(1 − exp(−λtb�wp)), uniformly in (k�n�w� t�A). The remain-
der of the proof closely follows Bártfai and Révész (1967). As in their Exam-
ple 2, a consequence of condition (E.17) is that for each ε > 0, there exists
n0 ≥ 1 such that the mixing property

P[E | F k
1 ] − P[E] ≤ ε(E.18)

holds for all k ≥ 1, n ≥ n0, and E ∈ F ∞
k+n, P-almost surely. Fix some E ∈ T ,

so that, in particular, E ∈ F ∞
k+n for all n ≥ n0. Since ε is arbitrary, the mix-

ing property (E.18) then implies that P[E | F k
1 ] ≤ P[E] for all k ≥ 1, P-almost

surely. From Doob (1953, Chapter VII, Theorem 4.3), it follows that P[E |∨∞
k=1 F k

1 ] ≤ P[E], P-almost surely. Since E ∈ T ⊂ ∨∞
k=1 F k

1 , we finally have
P[E] = ∫

E
P[E |∨∞

k=1 F k
1 ]dP ≤ ∫

E
P[E]dP = P[E]2. Hence the result. Q.E.D.
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From now on, we implicitly suppose that limt→∞ Nt = ∞, which is without
loss of generality since this event occurs with probability 1.

CLAIM 5: Each of the events {limn→∞ XTn = 0} and {limn→∞ XT+
n

= ∞} be-
longs to T .

PROOF: Consider first {limn→∞ XTn = 0}. Fix some k0 ≥ 1. For each
n ≥ k0 + 1, we have

XTn = X0

N
T−
n∏

k=1

(
wTk − b

b
∧ 1

)
exp

(∫ Tn

0
γ1{ws>wi} ds

)
(E.19)

= X0

n−1∏
k=1

(
wTk − b

b
∧ 1

)

× exp

(
γ

{
n∑

k=1

(Tk − Tk−1)

−
n∑

k=1

[
tw

T+
k−1

�wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

})

= XTk0

n−1∏
k=k0

(
wTk − b

b
∧ 1

)

× exp

(
γ

{
n∑

k=k0+1

(Tk − Tk−1)

−
n∑

k=k0+1

[
tw

T+
k−1

�wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

})

with
∏

∅ = 1 by convention, where the second equality follows from (E.9) and
from the fact that NT−

n
= n − 1. Since XTk0

is a strictly positive random vari-
able, (E.15) and (E.19) jointly imply that {limn→∞ XTn = 0} ∈ F ∞

k0+1. Since k0 is
arbitrary, {limn→∞ XTn = 0} ∈ T by (E.16). The proof for {limn→∞ XT+

n
= ∞} is

similar, observing that

XT+
n

= XT+
k0

n∏
k=k0+1

(
wTk − b

b
∧ 1

)

× exp

(
γ

{
n∑

k=k0+1

(Tk − Tk−1)
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−
n∑

k=k0+1

[
tw

T+
k−1

�wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

})

and that XT+
k0

is a finite random variable. Hence the result. Q.E.D.

CLAIM 6: We have{
lim
t→∞

Xt = 0
}

=
{

lim
n→∞

XTn = 0
}
�{

lim
t→∞

Xt = ∞
}

=
{

lim
n→∞

XT+
n

= ∞
}



PROOF: Consider first {limt→∞ Xt = 0}. For each ω ∈ {limt→∞ Xt = 0} and
ε > 0, there exists t0(ω�ε) ≥ 0 such that |Xt(ω)| ≤ ε for all t ≥ t0(ω�ε).
Since the sequence (Tn(ω))n≥1 is strictly increasing and diverges to ∞, there
exists n0(ω�ε) ≥ 1 such that Tn(ω) ≥ t0(ω�ε) and hence |XTn(ω)(ω)| ≤ ε
for all n ≥ n0(ω�ε). As a result of this, ω ∈ {limn→∞ XTn = 0} and thus
{limt→∞ Xt = 0} ⊂ {limn→∞ XTn = 0}. Conversely, for each ω ∈ {limn→∞ XTn =
0} and ε > 0, there exists n0(ω�ε) ≥ 1 such that |XTn(ω)(ω)| ≤ ε for all
n ≥ n0(ω�ε). Since the process {Xt}t≥0 is increasing on any random interval
(Tk−1�Tk], k ≥ 1, it follows that |Xt(ω)| ≤ ε for all t > Tn0(ω�ε). As a result of
this, ω ∈ {limt→∞ Xt = 0} and thus {limn→∞ XTn = 0} ⊂ {limt→∞ Xt = 0}. Hence
{limt→∞ Xt = 0} = {limn→∞ XTn = 0}, as claimed. The proof that {limt→∞ Xt =
∞} = {limn→∞ XT+

n
= ∞} is similar and is therefore omitted. Q.E.D.

Combining Claims 4–6 completes the proof of Proposition 6. Q.E.D.

APPENDIX F: A HEURISTIC ANALYSIS OF THE
NONCONSTANT RETURNS TO SCALE CASE

In this appendix, we relax the constant returns to scale assumption and pro-
vide a heuristic assessment of the robustness of our results to small nonlinear
perturbations in the private benefits function. Specifically, suppose that the
private benefits from shirking are represented by a function

Bε(X)= BX + εXφ(X)(F.1)

of firm size X , where ε is a nonnegative number, and φ is a bounded, strictly
positive, increasing, and differentiable function.3 In the paper, we consider the

3These assumptions ensure, in particular, that Bε is invertible, and that, in the positive orthant,
the graph of Bε lies in a cone pointed at the origin and whose upper and lower edges cross the
axes at the origin only. Since φ is bounded, there is no loss of generality in assuming that it is
strictly positive: the situation with a strictly negative φ could be mimicked by starting from a
smaller value of B.
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constant returns to scale case where ε = 0. To assess the robustness of our
analysis to this assumption, we heuristically discuss below what happens when
ε is small, but strictly positive. We argue that the key qualitative properties of
the optimal contract are upheld for such a small perturbation.

Denote the principal’s value function by Fε. The Hamilton–Jacobi–Bellman
equation now is written as

rFε(Xt�Wt−) = Xt(μ− λC)(F.2)

+ max
{−Xt�t + (ρWt− + λHt −Xt�t)F

ε
W (Xt�Wt−)

+Xtgt[Fε
X(Xt�Wt−)− c]

− λ[Fε(Xt�Wt−)− Fε(Xtxt�Wt− −Ht)]
}
�

where the maximization in (F.2) is over the set of controls (gt�Ht� �t� xt) that
satisfy

0 ≤ gt ≤ γ�(F.3)

Ht ≥ Bε(Xt)

�λ
�

�t ≥ 0�

Wt− −Ht ≥ Bε(Xtxt)

�λ



The second of these constraints is the agent’s date t incentive compatibility
constraint, while the fourth of these constraints, which parallels condition (19),
expresses the fact that if a loss occurs at date t, reducing by Ht the continuation
utility of the agent, it must still be possible to provide incentives after this loss,
which requires being able to further reduce the agent’s utility by Bε(Xtxt)/�λ,
where Xtxt is the size of the firm after the date t loss.

Optimizing With Respect to �t

The first-order condition with respect to �t is

Fε
W (Xt�Wt−)≥ −1�(F.4)

with equality only if �t > 0. Call W p�ε(Xt) the first value of Wt− at which (F.4)
holds as an equality; this corresponds to the payment threshold for a given
size Xt . In the constant returns to scale case, we have W p�0(Xt) = Xtw

p. As in
Property 1 of the paper, payments are made only when Wt− ≥ W p�ε(Xt). For
the purpose of this heuristic presentation, we assume without proof that the
mapping X �→ W p�ε(X)/X converges uniformly to wp as ε goes to 0.
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Optimizing With Respect to xt

Consider now the case where Wt− < W p�ε(Xt). Property 2 in the paper
states that, in the optimal contract, downsizing is imposed only as the last
resort. Let us now examine what happens when ε > 0. Differentiating the
objective function on the right-hand side of (F.2) with respect to xt yields
XtF

ε
X(Xtxt�Wt− −Ht). In the limit case where ε = 0, this is equal to

f

(
Wt− −Ht

Xtxt

)
− Wt− −Ht

Xtxt

f ′
(
Wt− −Ht

Xtxt

)
> f(b)− bf ′

+(b)(F.5)

> 0�

where, recalling that b = B/�λ, the first inequality follows from the fact that

Wt− −Ht

Xtxt

≥ b+ ε

�λ
φ(Xtxt) > b

by (F.1) and (F.3) along with the strict concavity of f over [b�wp], while the sec-
ond inequality reflects that f vanishes at 0 and is globally concave over R+ but
not differentiable at b. It follows from (F.5) that F 0

X(Xtxt�Wt− −Ht) is strictly
positive and bounded away from 0 over the set of 4-tuples (Xt�xt�Wt−�Ht)
that satisfy (F.3) and Wt− <W p�ε(Xt). Hence, by continuity, we can reasonably
expect that, for ε small enough, Fε

X(Xtxt�Wt− − Ht) > 0 for any such 4-tuple;
this is, for instance, the case if the partial derivative ∂Fε

X/∂ε is bounded. In that
case, it is optimal to let xt be as large as possible in (F.2). This yields

xt = (Bε)−1(�λ(Wt− −Ht))

Xt

∧ 1�(F.6)

which generalizes Property 2 in the paper, reflecting that, for a given degree
of incentives as measured by Ht , downsizing is imposed only when neces-
sary.

Optimizing With Respect to Ht

Consider again the case where Wt− < W p�ε(Xt). Property 3 in the paper
states that, in the optimal contract, the exposure to risk of the agent is min-
imized by letting ht equal the minimal amount b consistent with her exert-
ing effort or, equivalently, by letting Ht equal Xtb. Let us now examine what
happens whenever ε > 0. Substituting (F.6) into (F.2) and right-differentiating
the objective function on the right-hand side of (F.2) with respect to Ht

yields

λ[Fε
W (Xt�Wt−)− Fε

W +(Xt�Wt− −Ht)](F.7)
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if Bε(Xt) < �λ(Wt− −Ht) and

λ

[
Fε
W (Xt�Wt−)− Fε

W +
(
(Bε)−1(�λ(Wt− −Ht))�Wt− −Ht

)
(F.8)

− Fε
X

(
(Bε)−1(�λ(Wt− −Ht))�Wt− −Ht

)
× �λ

(Bε)′((Bε)−1(�λ(Wt− −Ht)))

]

if Bε(Xt) > �λ(Wt− − Ht). Examining each case in turn, we argue below that
the expressions in (F.7) and (F.8) are strictly negative for ε small enough.
In that case, it is optimal to let Ht be as small as possible in (F.2). This
yields

Ht = Bε(Xt)

�λ
�(F.9)

which generalizes Property 3 in the paper, reflecting that it is unnecessary to
expose the agent to more risk than what is required to provide her incentives
to exert effort.

CASE 1—Bε(Xt) < �λ(Wt− −Ht): Denote by Dε
1(Xt�Wt−�Ht) the expres-

sion in (F.7), divided by λ. In the limit case where ε = 0, this is equal to

D0
1(Xt�Wt−�Ht)= f ′

(
Wt−

Xt

)
− f ′

+

(
Wt− −Ht

Xt

)

(F.10)

Using the concavity of f along with the fact that

Ht ≥ bXt + ε

�λ
φ(Xt)

by (F.1) and (F.3), and recalling that wt = Wt−/Xt , it follows from (F.10) that

D0
1(Xt�Wt−�Ht)≤ f ′(wt)− f ′

+(wt − b)
(F.11)

Since we have assumed that the mapping X �→ W p�ε(X)/X converges uni-
formly to wp as ε goes to 0, wt < wp + O(ε) for ε small enough, uniformly
in the pairs (Xt�Wt−) that satisfy Wt− < W p�ε(Xt). Therefore, since the map-
ping w �→ f ′(w) − f ′

+(w − b) is strictly negative and bounded away from 0
over (b�wp] as f is strictly concave over this interval and globally concave
over R+ but not differentiable at b, it follows from (F.11) that, for ε small
enough, D0

1(Xt�Wt−�Ht) is also strictly negative and bounded away from 0
over the set of triples (Xt�Wt−�Ht) that satisfy (F.3), Wt− < W p�ε(Xt), and
Bε(Xt) < �λ(Wt− − Ht). Hence, by continuity, we can reasonably expect that,
for ε small enough, Dε

1(Xt�Wt−�Ht) < 0 for any such triple; this is, for instance,
the case if the partial derivative ∂Fε

W /∂ε is bounded.



LARGE RISKS AND DYNAMIC MORAL HAZARD 61

CASE 2—Bε(Xt) > �λ(Wt− −Ht): Denote by Dε
2(Xt�Wt−�Ht) the expres-

sion in (F.8), divided by λ. In the limit case where ε = 0, this is equal to

D0
2(Xt�Wt−�Ht)= f ′

(
Wt−

Xt

)
− f (b)

b

(F.12)

An alternative way to see this is that when ε = 0, the terms in Ht in
the objective function on the right-hand side of (F.2), HtF

0
W (Xt�Wt−) +

F 0((B0)−1(�λ(Wt− − Ht))�Wt− − Ht), can be rewritten as Htf
′(Wt−/Xt) +

(Wt− − Ht)f (b)/b, from which (F.12) follows on differentiating with respect
to Ht . Now, by (F.1) and (F.3),

Wt−

Xt

≥ b+ ε

�λ
φ(Xt) > b


Therefore, since f vanishes at 0 and is globally concave over R+ but not differ-
entiable at b, we have, from (F.12),

D0
2(Xt�Wt−�Ht)≤ f ′

+(b)− f (b)

b
< 0
(F.13)

It follows from (F.13) that, for ε small enough, D0
2(Xt�Wt−�Ht) is strictly neg-

ative and bounded away from 0 over the set of triples (Xt�Wt−�Ht) that satisfy
(F.3), Wt− <W p�ε(Xt), and Bε(Xt) > �λ(Wt− − Ht). Hence, by continuity, we
can reasonably expect that for ε small enough, Dε

2(Xt�Wt−�Ht) < 0 for any
such triple; this is, for instance, the case if the partial derivatives ∂Fε

X/∂ε and
∂Fε

W /∂ε are bounded.

An important consequence of (F.9) is that downsizing takes place following
a loss at date t if and only if Wt− < 2Bε(Xt)/�λ, that is, if and only if it is
absolutely necessary, so as to maintain limited liability while ensuring incentive
compatibility.

Optimizing With Respect to gt

Consider again the case where Wt− <W p�ε(Xt). It follows from (F.2) that it
is optimal to let gt = γ if

Fε
X(Xt�Wt−) > c(F.14)

and let gt = 0 otherwise. Let W i�ε(Xt) = inf{Wt− > Bε(Xt) | Fε
W (Xt�

Wt−) > c}. Note that, as in the constant returns to scale case, such a value
need not exist if c is too high. In the constant returns to scale case, we have
W i�0(Xt) = Xtw

i with wi < wp whenever it is then strictly optimal to invest,
that is, if f (wp) + wp > c. In particular, it is optimal to invest at rate γ as
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soon as Wt−/Xt exceeds wi. Now consider an arbitrary pair (Xt�Wt−) such
that Wt−/Xt < W p�ε(Xt)/Xt = wp + O(ε), and, as usual, let wt = Wt−/Xt .
Then, if wt > wi, we have F 0

X(Xt�Wt−) = f (wt) − wtf
′(wt) > c. Observe that

this remains true even if wt > wp, for then F 0
X(Xt�Wt−) = f (wp) + wp > c as

f ′(wt) = −1. Hence, by continuity, we can reasonably expect that for ε small
enough, (F.14) holds for any such pair; this is, for instance, the case if the partial
derivative ∂Fε

X/∂ε is bounded. It is then optimal to invest at rate γ at any such
pair whenever ε is small enough, which generalizes Property 4 in the paper.
In terms of Figure 1 in the paper, this indicates, in particular, that any straight
line W = Xw whose slope w lies strictly between wi and wp, and which there-
fore belongs to the investment region in the constant returns to scale case, also
belongs to the investment region in the nonconstant returns to scale case for ε
small enough.

Overall, the above analysis suggests that if the mapping (ε�X�W ) �→
Fε(X�W ) is not too irregular, then the main qualitative features of the opti-
mal contract under constant returns to scale are robust to small perturbations
in the private benefit function. Thus the optimal contract under a small per-
turbation from constant returns to scale could be depicted on a figure similar
to Figure 1 in the paper. The differences would be that the boundary of the
downsizing region would be the nonlinear function Bε(X)/�λ of firm size X
instead of the linear function Xb, and that the upper and lower boundaries of
the investment and no transfers region would be the (presumably nonlinear)
functions W p�ε(X) and W i�ε(X) of firm size X instead of the linear functions
Xwp and Xwi.
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