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BY KAREEN ROZEN

This supplement contains additional results that combine with Lemmas 1–22 in Ap-
pendix A to prove Theorem 2, giving monotonicity properties of the period utility under
Axiom GM.1

C.1. ADDITIONAL RESULTS FOR SUFFICIENCY

LEMMA 23: ∀T ∈ N, x̄= (x0�x1� � � � � xT ) ∈ R
T+1, ∃hx̄�T ∈ H such that

(x0�x1� � � � � xT �0�0� � � �) ∈C∗
hx̄�T+1

�

PROOF: For arbitrary h, define ch by ch0 = x0 + ϕ(h), cht = xt + ϕ(hch0 c
h
1 · · ·

cht−1) for all 1 ≤ t ≤ T , and cht = ϕ(hch0 c
h
1 · · · cht−1) for t > T . ϕ is strictly increas-

ing, so we may choose hx̄�T ∈ H sufficiently large so that (chx̄�T0 � c
hx̄�T
1 � � � � � c

hx̄�T
T )

is nonnegative. But if (chx̄�T0 � c
hx̄�T
1 � � � � � c

hx̄�T
T ) is nonnegative, then so is T+1chx̄�T .

Moreover, the stream is ultimately weakly decreasing. Therefore, chx̄�T ∈
C. Q.E.D.

LEMMA 24: Under Axiom GM, the period utility u is an increasing function.

PROOF: Suppose u is not increasing. Because it is continuous, there exist
some x ∈ R and α> 0 such that ∀α′ ∈ (0�α], u(x+ α′) < u(x).

Let T be arbitrary for the moment. Note that by Lemma 23 there is h′ such
that (x�x� � � � � x�0�0� � � �) ∈ C∗

h′ (where x is repeated T + 1 times). Again by
Lemma 23, there is h′′ such that (x + α�x�x� � � � � x�0�0� � � �) ∈ C∗

h′′ (where x
by itself is repeated T times). Let h ≥ h′�h′′ and recall that the C∗

ĥ
are nested.

Using the representation for 	∗ and the fact that u(x+ α) < u(x),

u(x)+
T∑
t=1

δtu(x)+
∞∑

t=T+1

δtu(0)(27)

> u(x+ α)+
T∑
t=1

δtu(x)+
∞∑

t=T+1

δtu(0)�

Since (x�x� � � � � x�0�0� � � �) ∈ C∗
h, there is c ∈ C with g(h� c) = (x�x� � � � � x�0�

0� � � �). Clearly c + α ∈ C and, by GM, we know c + α �h c. Moreover, g(h�

1To ease cross-referencing, we continue the enumeration of results and equations from the
main paper.
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c + α) is (
x+ α�x+ α(1 − λ1)� � � � �(28)

x+ α

(
1 −

T∑
k=1

λk

)
�α

(
1 −

T+1∑
k=1

λk

)
�α

(
1 −

T+2∑
k=1

λk

)
� � � �

)
�

where x appears T +1 times. Therefore, by the representation theorem for 	∗,

u(x+ α)+
T∑
t=1

δtu

(
x+ α

(
1 −

t∑
k=1

λk

))
(29)

+
∞∑

t=T+1

δtu

(
α

(
1 −

t∑
k=1

λk

))

>

T∑
t=0

δtu(x)+
∞∑

t=T+1

δtu(0)�

Combine the right-hand side of (27) and the left-hand side of (29), and re-
arrange by subtracting the right-hand side of (27). This obtains

T∑
t=1

δt

[
u

(
x+ α

(
1 −

t∑
k=1

λk

))
− u(x)

]
(30)

+
∞∑

t=T+1

δt

[
u

(
α

(
1 −

t∑
k=1

λk

))
− u(0)

]

> u(x)− u(x+ α)�

which is strictly positive. Since each λk > 0 and
∑∞

k=1 λk ≤ 1, we know that
the value α(1 − ∑t

k=1 λk) ∈ [0�α) for every t and is, in fact, strictly positive as
t < ∞. The assumption that u dips below u(x) just to the right of x implies
that

T∑
t=1

δt

[
u

(
x+ α

(
1 −

t∑
k=1

λk

))
− u(x)

]
< 0�

This sum decreases in T . By continuity, u is bounded on [0�α]. Choose T
large enough so that

∑∞
t=T+1 δ

t[u(α(1 − ∑t

k=1 λk)) − u(0)] is small enough
to bring about the contradiction 0 > 0 from (30). This is possible because
Lemma 23 permits us to find h large enough so that the constructed streams
are in C∗. Q.E.D.
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LEMMA 25: Assume Axiom GM. If
∑∞

k=1 λk < 1, then u(·) is strictly increasing
on (0�∞), and if

∑∞
k=1 λk = 1, then there is a with 0 < a ≤ ∞ such that u(·) is

strictly increasing either on (−a�∞) or on (−∞� a).

PROOF: By Lemma 24 we know that u(·), is an increasing function. To prove
it is strictly increasing on the relevant ranges, we will consider the two cases
separately.

Case (i)—
∑∞

k=1 λk = 1. First we will show that u(·) is strictly increasing in
some interval around 0. To complete the proof, we will show that there can-
not exist x > 0 > y such that u(·) does not increase strictly at both x and y .
To see the first point, take any q > 0 and let h = (� � � � q�q) and c = (q�q� � � �).
Then g(h� c) = (0�0� � � �) and for small α, both c + α �h c and c �h c − α by
Axiom GM. Using the representation for 	∗, we get

∞∑
t=0

δtu

(
α

(
1 −

t∑
k=1

λk

))
>

∞∑
t=0

δtu(0) >
∞∑
t=0

δtu

(
−α

(
1 −

t∑
k=1

λk

))
�

By monotonicity of u(·), it must be that u(·), increases strictly in a neighbor-
hood of 0. For the second point, suppose by contradiction that there exist
x > 0 > y such that u(·) does not increase strictly at both x and y . By con-
tinuity and monotonicity of u(·) there is α > 0 such that u(·) is constant on
(x�x + α) and on (y� y + α). Without loss of generality suppose that x� y are
rational (else take some rational x� y inside the interval). Since x� y are ratio-
nal there exist m�n such that mx= −ny . Let c∗ = (xm� yn�xm� yn� � � �) (i.e., x is
repeated m times, then y is repeated n times, etc.). Because the compensating
streams are constant, we may use the characterization (25) in Lemma 21 to find
h ∈ H large enough so that there is c ∈ C satisfying g(h� c) = c∗. Observe by
GM that c + α/2 �h c, a contradiction to the assumption that u(·) is constant
on (x�x+ α) and (y� y + α).

Case (ii)—
∑∞

k=1 λk < 1. In this case, for any q ∈ Q, if we set h = (� � � � q�q)
and c = (q�q� � � �), then

g(h�q) =
(
q

[
1 −

∞∑
k=1

λk

]
� q

[
1 −

∞∑
k=1

λk

]
� � � �

)
�

As q is arbitrary, for any x ≥ 0, (x�x�x� � � �) ∈ C∗. Suppose to the contrary
that u(·) is not increasing from the right at x. Since u(·) is continuous and
weakly increasing, this implies that there exists some β+ > 0 such that for every
0 < β ≤ β+, u(x + β) = u(x). Take h� c such that g(h� c) = (x�x�x� � � �). By
GM, c +β�h c. Then the representation says that

∞∑
t=0

δtu

(
x+β

(
1 −

t∑
k=1

λk

))
>

∞∑
t=0

δtu(x)�
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Since 0 < β ≤ β+ and
∑t

k=1 λk < 1, u(x + β(1 − ∑t

k=1 λk)) = u(x) for every
t ≥ 0, we have a contradiction. Q.E.D.

C.2. ADDITIONAL RESULTS FOR NECESSITY

LEMMA 26: Suppose that
∑∞

k=1 λk < 1. Then, the following situations exist:
(i) For any γ > 0, there are no c ∈ C, h ∈ H such that c ≥ (γ�γ� � � �) and

g(h� c)≤ (0�0� � � �).
(ii) For any γ < 0, there are no c ∈ C, h ∈H such that g(h� c)≤ (γ�γ� � � �).

PROOF: To see (i), we first note that if g(h� c) ≤ (0�0� � � �), then c0 ≤ ϕ(h),
c1 ≤ ϕ(hc0), c2 ≤ ϕ(hc0c1), and so forth. Using the monotonicity of ϕ and
recursive substitution, we see that c1 ≤ ϕ(hϕ(h)), c2 ≤ ϕ(hϕ(h)ϕ(hϕ(h))),
and so forth. But by Lemma 8, the compensating streams (ϕ(h)�ϕ(hϕ(h))�
ϕ(hϕ(h)ϕ(hϕ(h)))� � � �) tend to zero.

Similarly, to see (ii), note that if g(h� c) ≤ (γ�γ� � � �), then c0 ≤ ϕ(h) + γ,
c1 ≤ ϕ(hc0)+γ ≤ ϕ(hϕ(h))+λ1γ+γ. But since γ < 0, we may drop the term
λ1γ to obtain c1 ≤ ϕ(hϕ(h))+γ. In this manner, c2 ≤ ϕ(hϕ(h)ϕ(hϕ(h)))+γ
and so on. The stream (ϕ(h)�ϕ(hϕ(h))�ϕ(hϕ(h)ϕ(hϕ(h)))� � � �) tends to
zero asymptotically and γ < 0 is fixed, implying c is eventually negative, a con-
tradiction. Q.E.D.

When
∑∞

k=0 λk < 1, part (i) in Lemma 26 means the argument of u cannot
always be strictly negative when the consumption stream is bounded from zero
(we cannot shift down a stream using GM to conclude u is increasing in the
negative range). Part (ii) means the argument of u cannot be bounded below
zero (we cannot shift up a stream using GM to conclude u is increasing in the
negative range). It suffices that u is sensitive on the nonnegative domain to
satisfy GM. To see why it suffices that for some 0 < a ≤ ∞, u is only strictly
increasing either on (−∞� a) or (−a�∞) when

∑∞
k=0 λk = 1, use Lemma 20.

By (25), there cannot exist h and c such that g(h� c) is always positive and
bounded from zero (c would be unbounded) or always negative and bounded
from zero (c would violate nonnegativity).
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