SUPPLEMENT TO "FOUNDATIONS OF INTRINSIC HABIT FORMATION": APPENDIX C (Econometrica, Vol. 78, No. 4, July 2010, 1341–1373)

BY KAREEN ROZEN

This supplement contains additional results that combine with Lemmas 1-22 in Appendix A to prove Theorem 2, giving monotonicity properties of the period utility under Axiom GM.¹

C.1. ADDITIONAL RESULTS FOR SUFFICIENCY

LEMMA 23: $\forall T \in \mathbb{N}, \bar{x} = (x_0, x_1, \dots, x_T) \in \mathbb{R}^{T+1}, \exists h_{\bar{x},T} \in H \text{ such that}$

 $(x_0, x_1, \ldots, x_T, 0, 0, \ldots) \in C^*_{h_{\bar{\tau}}}$

PROOF: For arbitrary *h*, define c^h by $c_0^h = x_0 + \varphi(h)$, $c_t^h = x_t + \varphi(hc_0^h c_1^h \cdots c_{t-1}^h)$ for all $1 \le t \le T$, and $c_t^h = \varphi(hc_0^h c_1^h \cdots c_{t-1}^h)$ for t > T. φ is strictly increasing, so we may choose $h_{\bar{x},T} \in H$ sufficiently large so that $(c_0^{h_{\bar{x},T}}, c_1^{h_{\bar{x},T}}, \dots, c_T^{h_{\bar{x},T}})$ is nonnegative. But if $(c_0^{h_{\bar{x},T}}, c_1^{h_{\bar{x},T}}, \dots, c_T^{h_{\bar{x},T}})$ is nonnegative, then so is ${}^{T+1}c^{h_{\bar{x},T}}$. Moreover, the stream is ultimately weakly decreasing. Therefore, $c^{h_{\bar{x},T}} \in C$.

LEMMA 24: Under Axiom GM, the period utility u is an increasing function.

PROOF: Suppose *u* is not increasing. Because it is continuous, there exist some $x \in \mathbb{R}$ and $\alpha > 0$ such that $\forall \alpha' \in (0, \alpha]$, $u(x + \alpha') < u(x)$.

Let *T* be arbitrary for the moment. Note that by Lemma 23 there is h' such that $(x, x, ..., x, 0, 0, ...) \in C_{h'}^*$ (where *x* is repeated T + 1 times). Again by Lemma 23, there is h'' such that $(x + \alpha, x, x, ..., x, 0, 0, ...) \in C_{h''}^*$ (where *x* by itself is repeated *T* times). Let $h \ge h'$, h'' and recall that the $C_{\hat{h}}^*$ are nested. Using the representation for \succeq^* and the fact that $u(x + \alpha) < u(x)$,

(27)
$$u(x) + \sum_{t=1}^{T} \delta^{t} u(x) + \sum_{t=T+1}^{\infty} \delta^{t} u(0)$$
$$> u(x+\alpha) + \sum_{t=1}^{T} \delta^{t} u(x) + \sum_{t=T+1}^{\infty} \delta^{t} u(0)$$

Since $(x, x, ..., x, 0, 0, ...) \in C_h^*$, there is $c \in C$ with g(h, c) = (x, x, ..., x, 0, 0, ...). Clearly $c + \alpha \in C$ and, by GM, we know $c + \alpha \succ_h c$. Moreover, g(h, c) = (x, x, ..., x, 0, c).

¹To ease cross-referencing, we continue the enumeration of results and equations from the main paper.

© 2010 The Econometric Society

DOI: 10.3982/ECTA7302

 $(c + \alpha)$ is

(28)
$$\left(x + \alpha, x + \alpha(1 - \lambda_1), \dots, x + \alpha\left(1 - \sum_{k=1}^T \lambda_k\right), \alpha\left(1 - \sum_{k=1}^{T+1} \lambda_k\right), \alpha\left(1 - \sum_{k=1}^{T+2} \lambda_k\right), \dots\right)$$

where x appears T + 1 times. Therefore, by the representation theorem for \geq^* ,

(29)
$$u(x+\alpha) + \sum_{t=1}^{T} \delta^{t} u \left(x + \alpha \left(1 - \sum_{k=1}^{t} \lambda_{k} \right) \right) \\ + \sum_{t=T+1}^{\infty} \delta^{t} u \left(\alpha \left(1 - \sum_{k=1}^{t} \lambda_{k} \right) \right) \\ > \sum_{t=0}^{T} \delta^{t} u(x) + \sum_{t=T+1}^{\infty} \delta^{t} u(0).$$

Combine the right-hand side of (27) and the left-hand side of (29), and rearrange by subtracting the right-hand side of (27). This obtains

(30)
$$\sum_{t=1}^{T} \delta^{t} \left[u \left(x + \alpha \left(1 - \sum_{k=1}^{t} \lambda_{k} \right) \right) - u(x) \right] + \sum_{t=T+1}^{\infty} \delta^{t} \left[u \left(\alpha \left(1 - \sum_{k=1}^{t} \lambda_{k} \right) \right) - u(0) \right] > u(x) - u(x + \alpha),$$

which is strictly positive. Since each $\lambda_k > 0$ and $\sum_{k=1}^{\infty} \lambda_k \le 1$, we know that the value $\alpha(1 - \sum_{k=1}^{t} \lambda_k) \in [0, \alpha)$ for every *t* and is, in fact, strictly positive as $t < \infty$. The assumption that *u* dips below u(x) just to the right of *x* implies that

$$\sum_{t=1}^{T} \delta^{t} \left[u \left(x + \alpha \left(1 - \sum_{k=1}^{t} \lambda_{k} \right) \right) - u(x) \right] < 0.$$

This sum decreases in *T*. By continuity, *u* is bounded on $[0, \alpha]$. Choose *T* large enough so that $\sum_{t=T+1}^{\infty} \delta^t [u(\alpha(1 - \sum_{k=1}^{t} \lambda_k)) - u(0)]$ is small enough to bring about the contradiction 0 > 0 from (30). This is possible because Lemma 23 permits us to find *h* large enough so that the constructed streams are in C^* .

LEMMA 25: Assume Axiom GM. If $\sum_{k=1}^{\infty} \lambda_k < 1$, then $u(\cdot)$ is strictly increasing on $(0, \infty)$, and if $\sum_{k=1}^{\infty} \lambda_k = 1$, then there is a with $0 < a \le \infty$ such that $u(\cdot)$ is strictly increasing either on $(-a, \infty)$ or on $(-\infty, a)$.

PROOF: By Lemma 24 we know that $u(\cdot)$, is an increasing function. To prove it is strictly increasing on the relevant ranges, we will consider the two cases separately.

Case (i)— $\sum_{k=1}^{\infty} \lambda_k = 1$. First we will show that $u(\cdot)$ is strictly increasing in some interval around 0. To complete the proof, we will show that there cannot exist x > 0 > y such that $u(\cdot)$ does not increase strictly at both x and y. To see the first point, take any q > 0 and let $h = (\ldots, q, q)$ and $c = (q, q, \ldots)$. Then $g(h, c) = (0, 0, \ldots)$ and for small α , both $c + \alpha \succ_h c$ and $c \succ_h c - \alpha$ by Axiom GM. Using the representation for \succeq^* , we get

$$\sum_{t=0}^{\infty} \delta^{t} u \left(\alpha \left(1 - \sum_{k=1}^{t} \lambda_{k} \right) \right) > \sum_{t=0}^{\infty} \delta^{t} u(0) > \sum_{t=0}^{\infty} \delta^{t} u \left(-\alpha \left(1 - \sum_{k=1}^{t} \lambda_{k} \right) \right).$$

By monotonicity of $u(\cdot)$, it must be that $u(\cdot)$, increases strictly in a neighborhood of 0. For the second point, suppose by contradiction that there exist x > 0 > y such that $u(\cdot)$ does not increase strictly at both x and y. By continuity and monotonicity of $u(\cdot)$ there is $\alpha > 0$ such that $u(\cdot)$ is constant on $(x, x + \alpha)$ and on $(y, y + \alpha)$. Without loss of generality suppose that x, y are rational (else take some rational x, y inside the interval). Since x, y are rational there exist m, n such that mx = -ny. Let $c^* = (x^m, y^n, x^m, y^n, \ldots)$ (i.e., x is repeated m times, then y is repeated n times, etc.). Because the compensating streams are constant, we may use the characterization (25) in Lemma 21 to find $h \in H$ large enough so that there is $c \in C$ satisfying $g(h, c) = c^*$. Observe by GM that $c + \alpha/2 >_h c$, a contradiction to the assumption that $u(\cdot)$ is constant on $(x, x + \alpha)$ and $(y, y + \alpha)$.

Case (ii)— $\sum_{k=1}^{\infty} \lambda_k < 1$. In this case, for any $q \in Q$, if we set $h = (\dots, q, q)$ and $c = (q, q, \dots)$, then

$$g(h,q) = \left(q\left[1-\sum_{k=1}^{\infty}\lambda_k\right], q\left[1-\sum_{k=1}^{\infty}\lambda_k\right], \ldots\right).$$

As *q* is arbitrary, for any $x \ge 0$, $(x, x, x, ...) \in C^*$. Suppose to the contrary that $u(\cdot)$ is not increasing from the right at *x*. Since $u(\cdot)$ is continuous and weakly increasing, this implies that there exists some $\beta^+ > 0$ such that for every $0 < \beta \le \beta^+$, $u(x + \beta) = u(x)$. Take *h*, *c* such that g(h, c) = (x, x, x, ...). By GM, $c + \beta >_h c$. Then the representation says that

$$\sum_{t=0}^{\infty} \delta^{t} u \left(x + \beta \left(1 - \sum_{k=1}^{t} \lambda_{k} \right) \right) > \sum_{t=0}^{\infty} \delta^{t} u(x).$$

Since $0 < \beta \le \beta^+$ and $\sum_{k=1}^{t} \lambda_k < 1$, $u(x + \beta(1 - \sum_{k=1}^{t} \lambda_k)) = u(x)$ for every $t \ge 0$, we have a contradiction. Q.E.D.

C.2. ADDITIONAL RESULTS FOR NECESSITY

LEMMA 26: Suppose that $\sum_{k=1}^{\infty} \lambda_k < 1$. Then, the following situations exist: (i) For any $\gamma > 0$, there are no $c \in C$, $h \in H$ such that $c \ge (\gamma, \gamma, ...)$ and $g(h, c) \le (0, 0, ...)$.

(ii) For any $\gamma < 0$, there are no $c \in C$, $h \in H$ such that $g(h, c) \leq (\gamma, \gamma, ...)$.

PROOF: To see (i), we first note that if $g(h, c) \leq (0, 0, ...)$, then $c_0 \leq \varphi(h)$, $c_1 \leq \varphi(hc_0)$, $c_2 \leq \varphi(hc_0c_1)$, and so forth. Using the monotonicity of φ and recursive substitution, we see that $c_1 \leq \varphi(h\varphi(h))$, $c_2 \leq \varphi(h\varphi(h)\varphi(h\varphi(h)))$, and so forth. But by Lemma 8, the compensating streams $(\varphi(h), \varphi(h\varphi(h)))$, $\varphi(h\varphi(h)\varphi(h\varphi(h)))$, ...) tend to zero.

Similarly, to see (ii), note that if $g(h, c) \leq (\gamma, \gamma, ...)$, then $c_0 \leq \varphi(h) + \gamma$, $c_1 \leq \varphi(hc_0) + \gamma \leq \varphi(h\varphi(h)) + \lambda_1\gamma + \gamma$. But since $\gamma < 0$, we may drop the term $\lambda_1\gamma$ to obtain $c_1 \leq \varphi(h\varphi(h)) + \gamma$. In this manner, $c_2 \leq \varphi(h\varphi(h)\varphi(h\varphi(h))) + \gamma$ and so on. The stream $(\varphi(h), \varphi(h\varphi(h)), \varphi(h\varphi(h)\varphi(h\varphi(h))), ...)$ tends to zero asymptotically and $\gamma < 0$ is fixed, implying *c* is eventually negative, a contradiction. *Q.E.D.*

When $\sum_{k=0}^{\infty} \lambda_k < 1$, part (i) in Lemma 26 means the argument of *u* cannot always be strictly negative when the consumption stream is bounded from zero (we cannot shift down a stream using GM to conclude *u* is increasing in the negative range). Part (ii) means the argument of *u* cannot be bounded below zero (we cannot shift up a stream using GM to conclude *u* is increasing in the negative range). It suffices that *u* is sensitive on the nonnegative domain to satisfy GM. To see why it suffices that for some $0 < a \le \infty$, *u* is only strictly increasing either on $(-\infty, a)$ or $(-a, \infty)$ when $\sum_{k=0}^{\infty} \lambda_k = 1$, use Lemma 20. By (25), there cannot exist *h* and *c* such that g(h, c) is always positive and bounded from zero (*c* would be unbounded) or always negative and bounded from zero (*c* would violate nonnegativity).

Cowles Foundation and Dept. of Economics, Yale University, Box 208281, New Haven, CT 06520-8281, U.S.A.; kareen.rozen@yale.edu.

Manuscript received July, 2007; final revision received March, 2010.