SUPPLEMENT TO "FOUNDATIONS OF INTRINSIC HABIT FORMATION": APPENDIX C
 (Econometrica, Vol. 78, No. 4, July 2010, 1341-1373)

By Kareen Rozen

This supplement contains additional results that combine with Lemmas 1-22 in Appendix A to prove Theorem 2, giving monotonicity properties of the period utility under Axiom GM. ${ }^{1}$

C.1. ADDITIONAL RESULTS FOR SUFFICIENCY

Lemma 23: $\forall T \in \mathbb{N}, \bar{x}=\left(x_{0}, x_{1}, \ldots, x_{T}\right) \in \mathbb{R}^{T+1}, \exists h_{\bar{x}, T} \in H$ such that

$$
\left(x_{0}, x_{1}, \ldots, x_{T}, 0,0, \ldots\right) \in C_{h_{\bar{x}, T+1}}^{*} .
$$

PROOF: For arbitrary h, define c^{h} by $c_{0}^{h}=x_{0}+\varphi(h), c_{t}^{h}=x_{t}+\varphi\left(h c_{0}^{h} c_{1}^{h} \cdots\right.$ $\left.c_{t-1}^{h}\right)$ for all $1 \leq t \leq T$, and $c_{t}^{h}=\varphi\left(h c_{0}^{h} c_{1}^{h} \cdots c_{t-1}^{h}\right)$ for $t>T . \varphi$ is strictly increasing, so we may choose $h_{\bar{x}, T} \in H$ sufficiently large so that ($c_{0}^{h_{\bar{x}, T}}, c_{1}^{h_{\bar{x}, T}}, \ldots, c_{T}^{h_{\bar{x}, T}}$) is nonnegative. But if ($c_{0}^{h_{\bar{x}, T}}, c_{1}^{h_{\bar{x}, T}}, \ldots, c_{T}^{h_{\bar{x}}, T}$) is nonnegative, then so is ${ }^{T+1} c^{h_{\bar{x}, T}}$. Moreover, the stream is ultimately weakly decreasing. Therefore, $c^{h_{\bar{x}, T}} \in$ C.
Q.E.D.

Lemma 24: Under Axiom GM, the period utility u is an increasing function.
Proof: Suppose u is not increasing. Because it is continuous, there exist some $x \in \mathbb{R}$ and $\alpha>0$ such that $\forall \alpha^{\prime} \in(0, \alpha], u\left(x+\alpha^{\prime}\right)<u(x)$.

Let T be arbitrary for the moment. Note that by Lemma 23 there is h^{\prime} such that $(x, x, \ldots, x, 0,0, \ldots) \in C_{h^{\prime}}^{*}$ (where x is repeated $T+1$ times). Again by Lemma 23, there is $h^{\prime \prime}$ such that $(x+\alpha, x, x, \ldots, x, 0,0, \ldots) \in C_{h^{\prime \prime}}^{*}$ (where x by itself is repeated T times). Let $h \geq h^{\prime}, h^{\prime \prime}$ and recall that the $C_{\hat{h}}^{*}$ are nested. Using the representation for \succeq^{*} and the fact that $u(x+\alpha)<u(x)$,

$$
\begin{align*}
& u(x)+\sum_{t=1}^{T} \delta^{t} u(x)+\sum_{t=T+1}^{\infty} \delta^{t} u(0) \tag{27}\\
& \quad>u(x+\alpha)+\sum_{t=1}^{T} \delta^{t} u(x)+\sum_{t=T+1}^{\infty} \delta^{t} u(0)
\end{align*}
$$

Since $(x, x, \ldots, x, 0,0, \ldots) \in C_{h}^{*}$, there is $c \in C$ with $g(h, c)=(x, x, \ldots, x, 0$, $0, \ldots$). Clearly $c+\alpha \in C$ and, by GM, we know $c+\alpha \succ_{h} c$. Moreover, $g(h$,

[^0]$c+\alpha)$ is
\[

$$
\begin{align*}
& \left(x+\alpha, x+\alpha\left(1-\lambda_{1}\right), \ldots\right. \tag{28}\\
& \left.x+\alpha\left(1-\sum_{k=1}^{T} \lambda_{k}\right), \alpha\left(1-\sum_{k=1}^{T+1} \lambda_{k}\right), \alpha\left(1-\sum_{k=1}^{T+2} \lambda_{k}\right), \ldots\right),
\end{align*}
$$
\]

where x appears $T+1$ times. Therefore, by the representation theorem for \succeq^{*},

$$
\begin{align*}
& u(x+\alpha)+\sum_{t=1}^{T} \delta^{t} u\left(x+\alpha\left(1-\sum_{k=1}^{t} \lambda_{k}\right)\right) \tag{29}\\
& \quad+\sum_{t=T+1}^{\infty} \delta^{t} u\left(\alpha\left(1-\sum_{k=1}^{t} \lambda_{k}\right)\right) \\
& >\sum_{t=0}^{T} \delta^{t} u(x)+\sum_{t=T+1}^{\infty} \delta^{t} u(0)
\end{align*}
$$

Combine the right-hand side of (27) and the left-hand side of (29), and rearrange by subtracting the right-hand side of (27). This obtains

$$
\begin{align*}
& \sum_{t=1}^{T} \delta^{t}\left[u\left(x+\alpha\left(1-\sum_{k=1}^{t} \lambda_{k}\right)\right)-u(x)\right] \tag{30}\\
& \quad+\sum_{t=T+1}^{\infty} \delta^{t}\left[u\left(\alpha\left(1-\sum_{k=1}^{t} \lambda_{k}\right)\right)-u(0)\right] \\
& >u(x)-u(x+\alpha)
\end{align*}
$$

which is strictly positive. Since each $\lambda_{k}>0$ and $\sum_{k=1}^{\infty} \lambda_{k} \leq 1$, we know that the value $\alpha\left(1-\sum_{k=1}^{t} \lambda_{k}\right) \in[0, \alpha)$ for every t and is, in fact, strictly positive as $t<\infty$. The assumption that u dips below $u(x)$ just to the right of x implies that

$$
\sum_{t=1}^{T} \delta^{t}\left[u\left(x+\alpha\left(1-\sum_{k=1}^{t} \lambda_{k}\right)\right)-u(x)\right]<0
$$

This sum decreases in T. By continuity, u is bounded on $[0, \alpha]$. Choose T large enough so that $\sum_{t=T+1}^{\infty} \delta^{t}\left[u\left(\alpha\left(1-\sum_{k=1}^{t} \lambda_{k}\right)\right)-u(0)\right]$ is small enough to bring about the contradiction $0>0$ from (30). This is possible because Lemma 23 permits us to find h large enough so that the constructed streams are in C^{*}.
Q.E.D.

Lemma 25: Assume Axiom GM. If $\sum_{k=1}^{\infty} \lambda_{k}<1$, then $u(\cdot)$ is strictly increasing on $(0, \infty)$, and if $\sum_{k=1}^{\infty} \lambda_{k}=1$, then there is a with $0<a \leq \infty$ such that $u(\cdot)$ is strictly increasing either on $(-a, \infty)$ or on $(-\infty, a)$.

Proof: By Lemma 24 we know that $u(\cdot)$, is an increasing function. To prove it is strictly increasing on the relevant ranges, we will consider the two cases separately.

Case (i) - $\sum_{k=1}^{\infty} \lambda_{k}=1$. First we will show that $u(\cdot)$ is strictly increasing in some interval around 0 . To complete the proof, we will show that there cannot exist $x>0>y$ such that $u(\cdot)$ does not increase strictly at both x and y. To see the first point, take any $q>0$ and let $h=(\ldots, q, q)$ and $c=(q, q, \ldots)$. Then $g(h, c)=(0,0, \ldots)$ and for small α, both $c+\alpha \succ_{h} c$ and $c \succ_{h} c-\alpha$ by Axiom GM. Using the representation for \succeq^{*}, we get

$$
\sum_{t=0}^{\infty} \delta^{t} u\left(\alpha\left(1-\sum_{k=1}^{t} \lambda_{k}\right)\right)>\sum_{t=0}^{\infty} \delta^{t} u(0)>\sum_{t=0}^{\infty} \delta^{t} u\left(-\alpha\left(1-\sum_{k=1}^{t} \lambda_{k}\right)\right)
$$

By monotonicity of $u(\cdot)$, it must be that $u(\cdot)$, increases strictly in a neighborhood of 0 . For the second point, suppose by contradiction that there exist $x>0>y$ such that $u(\cdot)$ does not increase strictly at both x and y. By continuity and monotonicity of $u(\cdot)$ there is $\alpha>0$ such that $u(\cdot)$ is constant on $(x, x+\alpha)$ and on $(y, y+\alpha)$. Without loss of generality suppose that x, y are rational (else take some rational x, y inside the interval). Since x, y are rational there exist m, n such that $m x=-n y$. Let $c^{*}=\left(x^{m}, y^{n}, x^{m}, y^{n}, \ldots\right)$ (i.e., x is repeated m times, then y is repeated n times, etc.). Because the compensating streams are constant, we may use the characterization (25) in Lemma 21 to find $h \in H$ large enough so that there is $c \in C$ satisfying $g(h, c)=c^{*}$. Observe by GM that $c+\alpha / 2 \succ_{h} c$, a contradiction to the assumption that $u(\cdot)$ is constant on $(x, x+\alpha)$ and $(y, y+\alpha)$.

Case (ii) - $\sum_{k=1}^{\infty} \lambda_{k}<1$. In this case, for any $q \in Q$, if we set $h=(\ldots, q, q)$ and $c=(q, q, \ldots)$, then

$$
g(h, q)=\left(q\left[1-\sum_{k=1}^{\infty} \lambda_{k}\right], q\left[1-\sum_{k=1}^{\infty} \lambda_{k}\right], \ldots\right)
$$

As q is arbitrary, for any $x \geq 0,(x, x, x, \ldots) \in C^{*}$. Suppose to the contrary that $u(\cdot)$ is not increasing from the right at x. Since $u(\cdot)$ is continuous and weakly increasing, this implies that there exists some $\beta^{+}>0$ such that for every $0<\beta \leq \beta^{+}, u(x+\beta)=u(x)$. Take h, c such that $g(h, c)=(x, x, x, \ldots)$. By $\mathrm{GM}, c+\beta \succ_{h} c$. Then the representation says that

$$
\sum_{t=0}^{\infty} \delta^{t} u\left(x+\beta\left(1-\sum_{k=1}^{t} \lambda_{k}\right)\right)>\sum_{t=0}^{\infty} \delta^{t} u(x)
$$

Since $0<\beta \leq \beta^{+}$and $\sum_{k=1}^{t} \lambda_{k}<1, u\left(x+\beta\left(1-\sum_{k=1}^{t} \lambda_{k}\right)\right)=u(x)$ for every $t \geq 0$, we have a contradiction.
Q.E.D.

C.2. ADDITIONAL RESULTS FOR NECESSITY

LEMMA 26: Suppose that $\sum_{k=1}^{\infty} \lambda_{k}<1$. Then, the following situations exist:
(i) For any $\gamma>0$, there are no $c \in C, h \in H$ such that $c \geq(\gamma, \gamma, \ldots)$ and $g(h, c) \leq(0,0, \ldots)$.
(ii) For any $\gamma<0$, there are no $c \in C, h \in H$ such that $g(h, c) \leq(\gamma, \gamma, \ldots)$.

Proof: To see (i), we first note that if $g(h, c) \leq(0,0, \ldots)$, then $c_{0} \leq \varphi(h)$, $c_{1} \leq \varphi\left(h c_{0}\right), c_{2} \leq \varphi\left(h c_{0} c_{1}\right)$, and so forth. Using the monotonicity of φ and recursive substitution, we see that $c_{1} \leq \varphi(h \varphi(h)), c_{2} \leq \varphi(h \varphi(h) \varphi(h \varphi(h)))$, and so forth. But by Lemma 8, the compensating streams ($\varphi(h), \varphi(h \varphi(h))$, $\varphi(h \varphi(h) \varphi(h \varphi(h))), \ldots)$ tend to zero.

Similarly, to see (ii), note that if $g(h, c) \leq(\gamma, \gamma, \ldots)$, then $c_{0} \leq \varphi(h)+\gamma$, $c_{1} \leq \varphi\left(h c_{0}\right)+\gamma \leq \varphi(h \varphi(h))+\lambda_{1} \gamma+\gamma$. But since $\gamma<0$, we may drop the term $\lambda_{1} \gamma$ to obtain $c_{1} \leq \varphi(h \varphi(h))+\gamma$. In this manner, $c_{2} \leq \varphi(h \varphi(h) \varphi(h \varphi(h)))+\gamma$ and so on. The stream ($\varphi(h), \varphi(h \varphi(h)), \varphi(h \varphi(h) \varphi(h \varphi(h))), \ldots)$ tends to zero asymptotically and $\gamma<0$ is fixed, implying c is eventually negative, a contradiction.
Q.E.D.

When $\sum_{k=0}^{\infty} \lambda_{k}<1$, part (i) in Lemma 26 means the argument of u cannot always be strictly negative when the consumption stream is bounded from zero (we cannot shift down a stream using GM to conclude u is increasing in the negative range). Part (ii) means the argument of u cannot be bounded below zero (we cannot shift up a stream using GM to conclude u is increasing in the negative range). It suffices that u is sensitive on the nonnegative domain to satisfy GM. To see why it suffices that for some $0<a \leq \infty, u$ is only strictly increasing either on $(-\infty, a)$ or $(-a, \infty)$ when $\sum_{k=0}^{\infty} \lambda_{k}=1$, use Lemma 20. By (25), there cannot exist h and c such that $g(h, c)$ is always positive and bounded from zero (c would be unbounded) or always negative and bounded from zero (c would violate nonnegativity).

Cowles Foundation and Dept. of Economics, Yale University, Box 208281, New Haven, CT 06520-8281, U.S.A.; kareen.rozen@yale.edu.

[^0]: ${ }^{1}$ To ease cross-referencing, we continue the enumeration of results and equations from the main paper.

