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S.1. PROVING PROPOSITION 4

PROPOSITION 4: Suppose that the regularity condition

∂2

∂p∂α
Dt(p�αt) < 0

holds for all αt and all c ≤ p≤ v̄. Then if there is a single demand parameter, that
is, T = 2, there is a unique sequential equilibrium.

PROOF: Since there is only one generation of consumers (in period 1), we
suppress the period subscript whenever no confusion can arise. We prove
Proposition 4 through a series of claims.

CLAIM 1: In any equilibrium, we have amax
1 > 0.

PROOF: First, we show that in any equilibrium we must have q∗ > 0. Sup-
pose, to the contrary, that we had q∗ = 0. Then by posting a price p′ ∈ (c� v̄) in
period 1, an inactive firm would be sure to sell, making the deviation profitable,
a contradiction to equilibrium. Hence we must have q∗ > 0.

Next, suppose, contrary to the statement of Claim 1, we had amax
1 = 0. We

argue that p2(a2;0) then cannot be constant on [0� q∗]. If p2(a2;0) were con-
stant on [0� q∗], then in period 2, unit q∗ would sell in state α or else firms could
increase revenues by setting p2(a2;0)− ε for sufficiently small ε. Since q∗ sells
in all states, if p2(a2;0) < v̄ held, a firm could increase revenues by raising its
price and continuing to sell in all states α > α. If p2(a2;0)= v̄ held, a firm not
producing could profitably enter, establishing a contradiction.

Thus a range of prices is offered in period 2, that is, p2(q
∗;0) > p2(0;0)

must hold. But then a firm posting p2(0;0) in period 2 would have a profitable
deviation to post p2(0;0)+ δ(v̄)/2 in period 1, because a range of consumers
including type v̄ would be willing to purchase at that price. This contradiction
establishes that amax

1 > 0. Q.E.D.

CLAIM 2: In any equilibrium, there exists α̃ ≤ ᾱ and a C1 function ā1(α) de-
fined on [α� α̃] satisfying dā1

dα
> 0 and ā1(̃α)= amax

1 .
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PROOF: First, we prove the result if ψv1 is a simple function for every v, that
is, the range of ψv1 consists of finitely many values. Let q denote a position in
the period-1 queue, so that 0 ≤ q≤D(0�α). Also let

μv1(α)= −
∂D(v�α)

∂p

D(0�α)

denote the proportion of type (v�1) customers present in period 1 when the
state is α. By the strong law of large numbers, the proportion of type (v�1)
customers in any interval of length Δq in the queue when the state is α equals
μv1(α). Hence, on any interval on which ψv1(a1) is constant in a1, we have

Δa1

Δq
=

∫ v̄

v

μv1(α)ψ
v
1(a1)dv(S1)

for Δq sufficiently small. Note that because a1 < a
max
1 , the right side of (S1)

must be strictly positive. On taking limits as Δq → 0 and separating the result-
ing differential equation by variables, we obtain

dq= da1∫ v̄

v

μv1(α)ψ
v
1(a1)dv

	(S2)

For any α that results in ā1(α) < a
max
1 , integrating (S2) and dividing by D(0�α)

yields

1 =
∫ ā1(α)

0

da1∫ v̄

v

−∂D(v�α)
∂p

ψv1(a1)dv

	(S3)

Totally differentiating equation (S3) with respect to α yields

1∫ v̄

v

−∂D(v�α)
∂p

ψv1(a1)dv

dā1(α)

dα
(S4)

−
∫ ā1(α)

0

∫ v̄

v

−ψv1(a1)
∂2D(v�α)

∂p∂α
dv

[∫ v̄

v

−∂D(v�α)
∂p

ψv1(a1)dv

]2 da1 = 0	

By assumption, we have ∂2D(v�α)
∂p∂α

< 0 whenever v ≥ c. Furthermore, since firm
optimality requires p1(a1)≥ c, consumer optimality requires ψv1(a1)= 0 for all



DYNAMIC COMPETITION 3

v < c. It follows that the second term in (S4) is strictly positive and, hence, that
ā1(α) is strictly increasing in α. Thus we may define β1 = ā−1

1 .
Next, for general measurable ψv1(a1), there exist simple functions ψv�n1 (a1)≤

ψv1(a1) such that ψv�n1 (a1) ↑ψv1(a1) for every a1. Hence for each n, there exists a
strictly increasing function ān1(α) that solves the analogue of (S4), with inverse
function βn1(a1). Furthermore, from (S4) we have

dβn1
da1

(ān1(α))=

⎛
⎜⎜⎜⎜⎝

(∫ v̄

v

−∂D(v�α)
∂p

ψv�n1 (ā
n
1(α))dv

)

×
∫ ān1 (α)

0

∫ v̄

v

−ψv�n1 (a1)
∂2D(v�α)

∂p∂α[∫ v̄

v

−∂D(v�α)
∂p

ψv�n1 (a1)dv

]2 da1

⎞
⎟⎟⎟⎠

−1

	

On taking limits as n→ ∞, we therefore obtain

dβ1

da1
(ā1(α))=

⎛
⎜⎜⎜⎜⎝

(∫ v̄

v

−∂D(v�α)
∂p

ψv1(ā1(α))dv

)

×
∫ ā1(α)

0

∫ v̄

v

−ψv1(a1)
∂2D(v�α)

∂p∂α[∫ v̄

v

−∂D(v�α)
∂p

ψv1(a1)dv

]2 da1

⎞
⎟⎟⎟⎠

−1

�

so β1 is a strictly increasing function. It follows that for ar1 < a
max
1 , the state

α ∈ [α� α̃) is revealed. Q.E.D.

Extend ā1(α) to equal amax
1 for α ∈ [̃α� ᾱ]. Also, let ā1(v�α) denote the mea-

sure of period-1 sales to consumers with valuations greater than or equal to v
in state α. Then the set of market-clearing prices on residual demand, denoted
as P∗(α), is given by

P∗(α)= {p≤ v̄ :D(p�α)− ā1(p�α)= q∗ − ā1(α)}
if residual supply is positive and the above set is nonempty, and by P∗(α)= {0}
if D(p�α) − ā1(p�α) < q

∗ − ā1(α) for all p. We adopt the convention that
P∗(α)= {v̄} if ā1(α)= q∗.
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CLAIM 3: We either have (i) α̃= ᾱ or (ii) there exists p∗ such that P∗(α)= {p∗}
for almost all α ∈ [̃α� ᾱ].

PROOF: First, we argue that for all α > α̃, with the possible exception of a
single state, P∗(α) is single-valued. From Claim 2, it follows that there are con-
sumers of all valuations who have not yet been released from the queue when
amax

1 units have been sold. Therefore, the residual demand curve is downward
sloping and never vertical for prices between v and v̄. For prices below v, resid-
ual demand is vertical at the quantity D(0�α) − amax

1 . Thus, P∗(α) is single-
valued, with the only exception being states in which we have D(0�α) = q∗,
which occurs for at most one state.

Suppose that the claim is false, so that we have α̃ < ᾱ and P∗(α) is not
almost-everywhere constant on the interval [̃α� ᾱ]. Consider the event E, in
which we have ā1(α) = amax

1 . Note that E has probability 1 − F(̃α) > 0. Also,
let E′ denote the set of states in E for which P∗(α) is single-valued.

If amax
1 = q∗, then following eventE, no output remains to be sold in period-2.

By convention we then have P∗(α)= v̄ for all α ∈ E, contradicting the suppo-
sition that P∗(α) is not almost-everywhere constant.

If amax
1 < q∗, then we claim that the period-2 equilibrium price function fol-

lowing the event E must be nondegenerate: a positive measure of the remain-
ing output is priced higher than p2(0;amax

1 ). This is because if p2(a2;amax
1 ) was a

constant function, taking on the value p̂ for all a2 ∈ [0� q∗ −amax
1 ], then all of the

output must sell in period 2 with probability 1. Otherwise, a firm that posted p̂
could gain by posting a marginally lower price, as this would guarantee a sale
with probability 1. Note that the period-2 quantity demanded at the price p̂
is greater than or equal to q∗ − amax

1 in states where P∗(α) is single-valued if
and only if p̂≤ P∗(α), so that we must have p̂≤ minα∈E′ P∗(α). However, since
P∗(α) is not almost-everywhere constant, there then is a positive probability of
excess demand at the price p̂. But then a firm that never sells in period 1 can
profitably deviate to posting a period-1 price marginally above p̂, as it would
be sure to sell at this price in event E. To see why this is true, consider any
consumer with v > p̂. If this consumer arrives at the market in period 1 and
faces p̂+ ε as the lowest remaining price, she will surely purchase when ε is
sufficiently small, since her expected payoff from waiting is strictly less than
v− p̂, due to the positive probability of being rationed. The profitable devia-
tion contradicts equilibrium, so we have established that whenever amax

1 < q∗,
the period-2 pricing function must be nondegenerate.

Suppose that the firm posting the price p2(0;amax
1 ) in period 2 (that must

never be selling in period 1) deviates to posting the price p2(0;amax
1 )+ ε in pe-

riod 1 for some ε > 0. Consider any consumer with v > p2(0;amax
1 ). If this con-

sumer arrives at the market in period 1 and faces p2(0;amax
1 )+ ε as the lowest

remaining price, she will surely purchase when ε is sufficiently small, since her
expected payoff from waiting is strictly less than v − p2(0;amax

1 ), because the
period-2 pricing function is nondegenerate. Consequently, the deviating firm
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would be sure to sell in period 1 in event E, thereby securing a net expected
revenue strictly greater than p2(0;amax

1 ), which contradicts equilibrium.
We have shown that the supposition that Claim 3 is false leads to a contra-

diction, establishing the desired result. Q.E.D.

CLAIM 4: In period 2, all remaining output is allocated efficiently. For α < α̃,
all firms set the same market-clearing price, p2(α) ∈ P∗(α). For α ≥ α̃, all firms
post the same price, p∗.

PROOF: First consider the case in which α< α̃ holds. We have ā1(α) < a
max
1 ,

so period-1 activity reveals the state and, therefore, P∗(α). Consider the lowest
period-2 posted price, p2(0; ā1(α)). We must have p2(0; ā1(α)) ≥ min[p :p ∈
P∗(α)], because a firm posting a price of min[p :p ∈ P∗(α)] is guaranteed to
sell, no matter what prices are posted by the other firms in period 2. Consider
the highest period-2 posted price in state α, which we can write as p2(q

∗ −
ā1(α); ā1(α)). If the measure of output posted at this price is zero, then the
firm posting p2(q

∗ − ā1(α); ā1(α)) does not sell in state α, since the measure
of consumers with valuation at least min[p :p ∈ P∗(α)] is q∗ − ā1(α), so all
of the residual demand has been exhausted, a contradiction.1 If the measure of
output posted at the price p2(q

∗ − ā1(α); ā1(α)) is positive, then either none of
the output posted at this price sells—a contradiction—or a positive measure of
the output posted at this price sells in state α. If a positive measure sells, then
the firm posting p2(0; ā1(α)) has a profitable deviation to slightly undercut
p2(q

∗ − ā1(α); ā1(α)), unless the latter price equals the former. Therefore, we
have shown that all firms post the same price in period 2, which we denote as
p2(α). We cannot have p2(α) >max[p :p ∈ P∗(α)], because not all the output
would sell and a firm could increase expected revenues by slightly undercutting
the price. Thus, we have p2(α) ∈ P∗(α).

Next consider the case in which α≥ α̃ holds (event E occurs). If α̃ < ᾱ holds
then from Claim 3, we know that for almost all α ∈ E, there exists a unique
market clearing price, p∗. Also, p∗ cannot be zero, because the argument in the
first paragraph of Claim 3 would allow us to conclude that D(0�α) < q∗ holds
for all α < ᾱ; sequential rationality on the part of firms requires all period-2
transactions to take place at a price of zero for all α < ᾱ. Since some firms
withhold output until period 2, this contradicts the requirement that firms re-
ceive an expected revenue of at least c. If α̃ = ᾱ holds, then (i) if amax

1 = q∗,
there is no output remaining in period 2, and by convention we denote p∗ = v̄;
and (ii) if amax

1 < q∗, there are two subcases. If D(0� ᾱ) ≤ q∗ holds, then for
all α < ᾱ, the firms withholding output until period 2 learn that there is ex-
cess supply, so sequential rationality requires them to set a price of zero. If

1The contradiction occurs if p2(0; ā1(α)) > 0, since positive revenues are possible. If
p2(0; ā1(α)) = 0 occurs, then residual supply must exceed residual demand and all transactions
must occur at a price of 0. Posted prices on the excess supply are irrelevant and we identify all
equilibria that differ only on this irrelevant dimension.
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D(0� ᾱ) > q∗ holds, then there is a unique market clearing price we denote by
p∗, satisfying p∗ > v.

Thus, we conclude thatp∗ > v holds, and residual demand atp∗ equals resid-
ual supply for almost all α ∈ E. We must have p2(0;amax

1 )≥ p∗, because a firm
posting this price sells with probability 1, no matter what prices are posted
by the other firms in period 2. Consider the highest period-2 posted price in
event E, which we can write as p2(q

∗ − amax
1 ;amax

1 ). If p2(q
∗ − amax

1 ;amax
1 ) >

p2(0;amax
1 ) holds and the measure of output posted at the higher price is zero,

then the firm posting p2(q
∗ − amax

1 ;amax
1 ) does not sell for almost all α ∈ E.

This is because residual demand at p∗ equals residual supply for almost all
α ∈ E, and is exhausted at that price, a contradiction. If, on the other hand,
p2(q

∗ − amax
1 ;amax

1 ) > p2(0;amax
1 ) holds and the measure of output posted at

p2(q
∗ − amax

1 ;amax
1 ) is positive, then either (i) none of the output posted at this

price sells for almost all α ∈E, in which case a firm posting this price has a prof-
itable deviation to post p∗ instead, a contradiction, or (ii) a positive measure of
the output posted at p2(q

∗ −amax
1 ;amax

1 ) sells for a positive-measure subset of E.
In the latter case, a firm posting p2(q

∗ − amax
1 ;amax

1 ) has a profitable deviation
to undercut its price slightly, increasing its probability of selling from less than
1 to 1 for all states in this positive-measure subset of E. Therefore, we must
have p2(q

∗ − amax
1 ;amax

1 ) = p2(0;amax
1 ), so all firms charge the same price. To

see that this price equals p∗, we must rule out all firms posting the same price,
p′, that exceeds p∗. Since p∗ is the unique market-clearing price for almost all
α ∈ E, it follows that a firm posting p′ sells with probability strictly less than
1, due to rationing of excess supply. By slightly undercutting the price p′, this
firm increases its probability of selling in event E to 1, a contradiction. Q.E.D.

Henceforth, we let p∗(α) denote the price that all firms post in period 2 in
state α, where p∗(α) can be an arbitrary selection from P∗(α) for α < α̃ and
p∗(α)= p∗ for α≥ α̃.

CLAIM 5—Martingale Property: For every a1 ≤ amax
1 , we have

p1(a1)=

∫ ᾱ

β1(a1)

p∗(α)f (α)dα∫ ᾱ

β1(a1)

f (α)dα

	(S5)

PROOF: Consider a firm that sets the price, p1(a1). This firm sells in period 1
if and only if ā1(α)≥ a1. Hence, its probability of selling in period 1 is

π1(a1)=
∫ ᾱ

β1(a1)

f (α)dα	
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When ā1(α) < a1, this firm sells in period 2 at the market-clearing price, p∗(α).
Hence, expected revenue (as of the beginning of period 1) equals

p1(a1)π1(a1)+
∫ β1(a1)

α

p∗(α)f (α)dα	

Meanwhile, consider the firm that posts p1(a
max
1 ) in period 1 and consider

two cases. If amax
1 < q∗ holds, then there are two subcases. If α̃= ᾱ holds, then

this firm sells in period 1 with probability 0, so its expected revenue is

∫ ᾱ

α

p∗(α)f (α)dα	(S6)

Since expected revenue must be equated across firms in equilibrium, we have

p1(a1)π1(a1)+
∫ β1(a1)

α

p∗(α)f (α)dα

=
∫ β1(a1)

α

p∗(α)f (α)dα+
∫ ᾱ

β1(a1)

p∗(α)f (α)dα�

which implies

p1(a1)

∫ ᾱ

β1(a1)

f (α)dα=
∫ ᾱ

β1(a1)

p∗(α)f (α)dα	

Thus, the martingale condition (S5) holds. If α̃ = ᾱ holds, then expected rev-
enue is given by

∫ α̃

α

p∗(α)f (α)dα+p1(a
max
1 )

∫ ᾱ

α̃

f (α)dα	

We claim that p1(a
max
1 ) = p∗ must hold. If we have p1(a

max
1 ) > p∗, then firms

that withhold output until period 2 should instead post price p1(a
max
1 ) in pe-

riod 1 and increase revenue with positive probability. If we have p1(a
max
1 ) < p∗,

then the firm posting p1(a
max
1 ) in period 1 should instead withhold output until

period 2. Thus, p1(a
max
1 )= p∗ holds and expected revenue is given by (S6). By

the argument for the previous subcase, the martingale condition follows.
For the case, amax

1 = q∗, the firm posting p1(a
max
1 )= v̄ in period 1 will sell in

period 1 whenever α≥ α̃. Expected revenues are

v̄

∫ ᾱ

α̃

f (α)dα+
∫ α̃

α

p∗(α)f (α)dα	
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Under our convention that P∗(α) = {v̄} if ā1(α) = q∗, we have p∗(α) = v̄ for
α ≥ α̃. Expected revenues are given by (S6), so the martingale condition (S5)
follows. Q.E.D.

CLAIM 6: We have p∗(α)= P(q∗�α) for all α.

PROOF: Since p1(a1) is nondecreasing, the right side of (S5) must also be
nondecreasing in a1. Therefore, we must have maxα p∗(α)= p∗. Let ṽ denote
the lowest valuation type that purchases in period 1. That is,

ṽ= inf{v :ψv1(a1) > 0 for some a1 ≤ amax
1 }	

Consider the following two cases:

CASE 1—ṽ ≥ p∗: In this case, all consumers who purchase in period 1 have
valuation greater than or equal to p∗(α), so rationing is efficient and we have
p∗(α)= P(q∗�α) for all α< α̃ and almost all α ∈E.2 Since we have p∗(α)= p∗

for all α ∈E and P(q∗�α) is strictly increasing in α, it follows that under Case 1,
the interval E must be degenerate, that is, α̃= ᾱ holds. From the argument of
Claim 4, p∗(ᾱ)= P(q∗� ᾱ) must hold as well.

CASE 2—ṽ < p∗: We start by calculating ā1(v�α), the measure of period-1
sales made to consumers with valuations v′ ≥ v in state alpha. Let a(v�q�α)
denote the measure of period-1 sales made to consumers with valuations v′ ≥ v
in state α when position q in the queue has been reached. Analogously to the
derivation of (S1), we have

da

dq
(v�q�α)=

∫ v̄

v

ψv
′

1 (a)μ
v′
1 (α)dv

′	(S7)

Let a(q�α) denote the measure of period-1 sales made in state α when position
q in the queue has been reached. It follows from (S1) that

da

dq
(q�α)=

∫ v̄

v

ψv
′

1 (a)μ
v′
1 (α)dv

′	(S8)

Combining (S7) and (S8) yields

da(v�q�α)

da(q�α)
=

∫ v̄

v

ψv
′

1 (a)
∂

∂p
D(v′�α)dv′

∫ v̄

v

ψv
′

1 (a)
∂

∂p
D(v′�α)dv′

2There is at most one state for which P(q∗�α) is the entire interval [0� v], leading to a trivial
sort of multiple equilibria, based on the period-2 price in this state. We identify all equilibria that
differ only on which market-clearing price is posted in period 2 in this state.
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and, hence, that

ā1(v�α)=
∫ ā1(α)

0

∫ v̄

v

ψv
′

1 (z)
∂

∂p
D(v′�α)dv′

∫ v̄

v

ψv
′

1 (z)
∂

∂p
D(v′�α)dv′

dz	(S9)

Since ā1(α)= ā1(v�α), it follows from (S9) that for all α and all v≤ ṽ,

ā1(α)− ā1(v�α)=
∫ ā1(α)

0

⎛
⎜⎜⎜⎝

∫ v

v

ψv
′

1 (z)
−∂
∂p
D(v′�α)dv′

∫ v̄

v

ψv
′

1 (z)
−∂
∂p
D(v′�α)dv′

⎞
⎟⎟⎟⎠ dz = 0(S10)

The final equality follows because ψv′1 (a1)= 0 for all v′ < ṽ and all a1.

Define Ã+(a1) ≡ {α ≥ β1(a1) :p∗(α) > ṽ}. Notice that we must also have
P(q∗�α) > ṽ for almost all α ∈ Ã+(a1). With P(q∗�α) ≤ ṽ, we would have
D(̃v�α)≤ q∗, and from (S10),D(̃v�α)− ā1(̃v�α)≤ q∗ − ā1(α), implying a price
clearing the residual market in period 2 that is weakly below ṽ. This cannot oc-
cur because p∗(α) is the market-clearing price for almost all α and p∗(α) > ṽ
holds for all α ∈ Ã+(a1). Therefore, we have

p∗(α)≥ P(q∗�α) > ṽ for almost all α ∈ Ã+(a1)	(S11)

Also define Ã−(a1) ≡ {α ≥ β1(a1) : p∗(α) ≤ ṽ}. Then, for almost all α ∈
Ã−(a1), output is rationed efficiently:

p∗(α)= P(q∗�α)≤ ṽ for almost all α ∈ Ã−(a1)	(S12)

Denote the utility of purchasing in period 1, net of the utility of waiting,
by Δ(v�a1). Consider now a sequence (vn�an1) such that ψvn1 (a

n
1) > 0 and such

that vn ↓ ṽ. Since [0� amax
1 ] is compact, the sequence an1 has a convergent sub-

sequence, whose limit we denote by ã1. Renumbering the subsequence, if nec-
essary, we can assume that an1 → ã1. Since ψvn1 (a

n
1) > 0, we must have Δ(vn�

an1) ≥ 0. Because Δ is a continuous function, it then follows that Δ(̃v�
ã1)≥ 0.

Let the beliefs of type ṽ, conditional on arriving at the queue in period 1
when the measure of transactions is a1, be denoted by f (α|̃v�a1). Then we
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have

Δ(̃v� ã1)= δ(̃v)−

∫ ᾱ

β1 (̃a1)

p∗(α)f (α)dα∫ ᾱ

β1 (̃a1)

f (α)dα

+

∫ ᾱ

β1 (̃a1)

min{p∗(α)� ṽ}f (α|̃v� ã1)dα∫ ᾱ

β1 (̃a1)

f (α|̃v� ã1)dα

≤ δ(̃v)−

∫ ᾱ

β1 (̃a1)

P(q∗�α)f (α)dα∫ ᾱ

β1 (̃a1)

f (α)dα

+

∫ ᾱ

β1 (̃a1)

min{p∗(α)� ṽ}f (α|̃v� ã1)dα∫ ᾱ

β1 (̃a1)

f (α|̃v� ã1)dα

= δ(̃v)−

∫ ᾱ

β1 (̃a1)

P(q∗�α)f (α)dα∫ ᾱ

β1 (̃a1)

f (α)dα

+
(∫

Ã− (̃a1)

min{p∗(α)� ṽ}f (α|̃v� ã1)dα

+
∫
Ã+ (̃a1)

min{p∗(α)� ṽ}f (α|̃v� ã1)dα

)
/∫ ᾱ

β1 (̃a1)

f (α|̃v� ã1)dα	

Using (S11) and (S12), we have

Δ(̃v� ã1) ≤ δ(̃v)−

∫ ᾱ

β1 (̃a1)

P(q∗�α)f (α)dα∫ ᾱ

β1 (̃a1)

f (α)dα
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+

∫
Ã− (̃a1)

P(q∗�α)f (α|̃v� ã1)dα+
∫
Ã+ (̃a1)

ṽf (α|̃v� ã1)dα∫ ᾱ

β1 (̃a1)

f (α|̃v� ã1)dα

< δ(̃v)−

∫ ᾱ

β1 (̃a1)

P(q∗�α)f (α)dα∫ ᾱ

β1 (̃a1)

f (α)dα

+

∫ ᾱ

β1 (̃a1)

P(q∗�α)f (α|̃v� ã1)dα∫ ᾱ

β1 (̃a1)

f (α|̃v� ã1)dα

	

Because type ṽ is the lowest valuation that buys in period 1 and Assump-
tion 5 holds, f (α) dominates f (α|̃v� ã1) in the monotone likelihood ratio order
and, hence, in the order of first-order stochastic dominance. Since P(q∗�α) is
increasing in α, we have

Δ(̃v� ã1) < δ(̃v)	

We have shown above that Δ(̃v� ã1)≥ 0, which implies δ(̃v) > 0. Therefore,
ṽ > v̂. Since ᾱ ∈ Ã+(̃a1), it follows from (S11) that P(q∗� ᾱ) > ṽ. Thus, we have

P(q∗� ᾱ) > ṽ > v̂≥ P(q∗� ᾱ)�

a contradiction. Therefore, Case 2 cannot arise. Q.E.D.

CLAIM 7: The equilibrium quantity is the efficient quantity, q∗ = qe.

PROOF: From Claims 5 and 6, we have

p1(0)=
∫ ᾱ

α

P(q∗�α)f (α)dα	(S13)

If q∗ > qe holds, then we have p1(0) < c and the firm posting p1(0) has a prof-
itable deviation not to produce. If q∗ < qe holds, then we have p1(0) > c. If
a firm not producing deviates and produces, this has a negligible effect on q∗,
so sequential rationality and the previous claims imply that the pricing func-
tion following a unilateral deviation satisfies (S13). Thus, a firm not producing
could produce, post the price p1(0), and receive positive profits. Q.E.D.
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Lemmas 11–13 establish the existence of a unique cutoff equilibrium satisfy-
ing v∗(a1)≥ v̂, for the subgame following the output choice, qe. This completes
the proof of Proposition 4. Q.E.D.

S.2. PROVING PROPOSITION 5

PROPOSITION 5: For the model with multiplicative uncertainty, there is an equi-
librium that is Pareto optimal, characterized as follows.

(i) We have q∗ = qe.
(ii) If the state equals (α1� 	 	 	 �αT−1), then art = āt(αt;ar1� 	 	 	 � art−1) for all t =

1� 	 	 	 � T − 1, where

āt(αt;ar1� 	 	 	 � art−1)= qLt−1(a
r
1� 	 	 	 � a

r
t−1)+ αtDt(p̄t(a

r
1� 	 	 	 � a

r
t−1))	

(iii) For all t, all t ′ ≤ t, and all equilibrium private histories apt , we have
ψv�t

′
t (at;ar1� 	 	 	 � art−1� a

p
t )= 1 if and only if v≥ p̄t(ar1� 	 	 	 � art−1).

(iv) For all t = 1� 	 	 	 �T , and all histories (ar1� 	 	 	 � a
r
t−1), we have

pt(at;ar1� 	 	 	 � art−1)

=E[P(qe�α1� 	 	 	 �αT−1)|α1 = αr1� 	 	 	 �αt−1 = αrt−1�

αt ≥ βt(at;ar1� 	 	 	 � art−1)]�
where

βt(at;ar1� 	 	 	 � art−1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αt� if at ≤ qLt−1(a

r
1� 	 	 	 � a

r
t−1)+ αtDt(p̄t(a

r
1� 	 	 	 � a

r
t−1))�

at − qLt−1(a
r
1� 	 	 	 � a

r
t−1)

Dt(p̄t(a
r
1� 	 	 	 � a

r
t−1))

�

if at ≥ qLt−1(a
r
1� 	 	 	 � a

r
t−1)+ αtDt(p̄t(a

r
1� 	 	 	 � a

r
t−1))	

(v) For all t = 1� 	 	 	 �T and all histories (ar1� 	 	 	 � a
r
t−1), we have

qLt−1(a
r
1� 	 	 	 � a

r
t−1)

=
t−1∑
τ=1

αrτ
[
Dτ(p̄t(a

r
1� 	 	 	 � a

r
t−1))−Dτ(p̄t−1(a

r
1� 	 	 	 � a

r
t−2))

]
	

PROOF: First, note that if consumers behave according to (iii) and firms be-
have according to (iv), then βt(at;ar1� 	 	 	 � art−1) and qLt−1(a

r
1� 	 	 	 � a

r
t−1) are well

defined. The reason is that purchases by newly active consumers in period t in
state αt are

αtDt(P(q
e�αr1� 	 	 	 �α

r
t−1� ᾱt� 	 	 	 � ᾱT−1))�(S14)
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and purchases by consumers who became active in previous periods, qLt−1,
are by those with valuations between P(qe�αr1� 	 	 	 �α

r
t−2� ᾱt−1� 	 	 	 � ᾱT−1) and

P(qe�αr1� 	 	 	 �α
r
t−1� ᾱt� 	 	 	 � ᾱT−1),

t−1∑
τ=1

αrτ
[
Dt(P(q

e�αr1� 	 	 	 �α
r
t−1� ᾱt� 	 	 	 � ᾱT−1))(S15)

−Dt(P(q
e�αr1� 	 	 	 �α

r
t−2� ᾱt−1� 	 	 	 � ᾱT−1))

]
	

Equating the sum of (S14) and (S15) to at , and solving for αt , yields the formula
for βt(at;ar1� 	 	 	 � art−1). If the solution is less than αt , then for every demand
state αt , purchases will necessarily continue beyond at and the lowest possible
value of αt is αt .

Second, note that for all t ≤ T −1, we have P(qe�α1� 	 	 	 �αT−1)≤ p̄t ≤ p̄ < v̂.
This implies that any generation t consumer for which δ(v) > 0 purchases in
period t, and that no consumer with valuation v ≤ P(qe�α1� 	 	 	 �αT−1) pur-
chases before period T . Given that for each realization of demand we have
(αr1� 	 	 	 �α

r
T−1)= (α1� 	 	 	 �αT−1), it then follows that

pT(aT ;ar1� 	 	 	 � arT−1)= P(qe�α1� 	 	 	 �αT−1)�

that is, all firms with output remaining in period T set the market-clearing price
for the realized demand state. It follows from (iii) that all consumers with val-
uation above P(qe�α1� 	 	 	 �αT−1) purchase in period T if they have not already
done so, that consumers with a lower valuation do not purchase, and that all
output is sold. Because output is allocated efficiently and because no consumer
experiences positive delay costs in equilibrium, it follows that the allocation is
Pareto optimal. We now show that sequential rationality is satisfied.

We have already shown in our general existence argument that prices are
martingales and that sequential rationality by firms is satisfied. To show sequen-
tial rationality on the part of consumers, multiplicative uncertainty implies that
when arriving at the market in period t, all consumers from generations t or
earlier share the same beliefs about (α1� 	 	 	 �αT−1) as firms. Consider a con-
sumer with valuation v, who has not purchased before period t and observes
the price, pt(at;ar1� 	 	 	 � art−1). By the martingale property associated with (iv),
all continuation strategies in which she purchases with probability 1 in some
period yield the same expected payment.

Case 1. Suppose v≥ P(qe�αr1� 	 	 	 �αrt−1� ᾱt� 	 	 	 � ᾱT−1) and δ(v)= 0 hold. Se-
quential rationality requires her to purchase eventually since her valuation ex-
ceeds the highest price she could face in period T , and from the martingale
property, she is indifferent between purchasing in period t and delaying pur-
chase. In particular, purchasing in period t is optimal.

Case 2. Suppose v ≥ P(qe�αr1� 	 	 	 �α
r
t−1� ᾱt� 	 	 	 � ᾱT−1) and δ(v) > 0 hold.

Purchasing in period t yields the same utility as deviations in which she even-
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tually purchases with probability 1, if we were to ignore the delay costs in-
curred. Deviations in which she does not always purchase yield strictly lower
utility than purchasing in period t, so all such deviations yield strictly lower
utility when the delay cost is taken into account. Thus, purchasing in period t
is strictly preferred to the best alternative.

Case 3. Suppose v < P(qe�αr1� 	 	 	 �α
r
t−1� ᾱt� 	 	 	 � ᾱT−1) holds. Because we

have P(qe�αr1� 	 	 	 �α
r
t−1� ᾱt� 	 	 	 � ᾱT−1) ≤ p̄, our assumptions imply δ(v)= 0.

Therefore, she is indifferent between purchasing in period t and always pur-
chasing in period T . Since there is a positive probability that P(qe�α1� 	 	 	 �
αT−1) > v holds, waiting until period T and only purchasing when her valuation
exceeds the price yields strictly higher utility. Thus, a deviation to purchasing
in period t strictly lowers utility.3 Q.E.D.

S.3. SALES BOUND UNDER MULTIPLICATIVE UNCERTAINTY

We assume that demand is multiplicative, that is, that Dt(p�αt) = αtDt(p)
for all t = 1� 	 	 	 �T − 1. We make two additional assumptions:

ASSUMPTION S.1: There exists 0 < L < K < ∞ such that for all t and p ∈
[0� v̄], we have

L≤
∣∣∣∣dDt

dp

∣∣∣∣ ≤K	

ASSUMPTION S.2: There exists 0<α< ᾱ <∞ such that for all t, we have

α≤ αt < ᾱt ≤ ᾱ	

Note that Assumption S.1 implies that v = 0. Furthermore, it follows from
Assumptions S.1 and S.2 that Dt(p�αt) > 0 for all p< v̄.

Consider the number of people who purchase in some period t < T . Old
consumers entering period t who purchase in that period have valuations be-
tween p̄t−1 and p̄t . Thus the number of such people equals

t−1∑
τ=1

ατ[Dτ(p̄t)−Dτ(p̄t−1)]	

3Following a unilateral deviation by a firm to post a price greater than pt(amax
t ;ar1� 	 	 	 � art−1),

the continuation strategy given in (iii) remains sequentially rational. After a deviation by a
firm to post a price less than pt(0;ar1� 	 	 	 � art−1), purchasing is sequentially rational if v ≥
P(q∗�αr1� 	 	 	 �α

r
t−1�αt� 	 	 	 �αT−1). For lower valuations, it may become optimal for a consumer

to purchase, and one could compute the new cutoff for each firm deviation. We skip this detail
because the firm’s deviation cannot be optimal.
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Next, consider the generation t consumers who purchase in period t, that is,
those whose valuation exceeds p̄t . The number of such consumers equals

αtDt(p̄t)	

The number of consumers purchasing in period t, expressed as a fraction of
total sales over the demand season, therefore equals

gt(α1� 	 	 	 �αT−1)

t−1∑
τ=1

ατ[Dτ(p̄t)−Dτ(p̄t−1)] + αtDt(p̄t)

T−1∑
τ=1

ατDτ(P(q
∗�α1� 	 	 	 �αT−1))

	

The same expression is also valid in period T , provided we use the convention
that p̄T = P(q∗�α1� 	 	 	 �αT−2�αT−1) and DT ≡ 0.

Let q∗
T denote the equilibrium output when the number of periods is T . We

can then prove the following lemma.

LEMMA S.1: Suppose that there exists ε > 0 such that for all T , we have
P(q∗

T � ᾱ1� 	 	 	 � ᾱT−2� ᾱT−1) ≤ v̄ − ε. Suppose also that Assumptions S.1 and S.2
hold. Then gt(α1� 	 	 	 �αT−1)→ 0 as T → ∞.

PROOF: Let us first bound p̄t−1 − p̄t . Note that by definition, P(q∗
T �α1� 	 	 	 �

αT−2�αT−1) solves

T−1∑
t=1

αtDt(P(q
∗
T �α1� 	 	 	 �αT−2�αT−1))= q∗

T 	

Applying the implicit function theorem, we have

∂P(q∗
T �α1� 	 	 	 �αT−2�αT−1)

∂αt

= Dt(P(q
∗
T �α1� 	 	 	 �αT−2�αT−1))

T−1∑
τ=1

ατ

∣∣∣∣∂Dt

∂p
(P(q∗

T �α1� 	 	 	 �αT−2�αT−1))

∣∣∣∣
	

Using Assumption S.1 it follows that

Dt(P(q
∗
T �α1� 	 	 	 �αT−2�αT−1))≤Dt(0)≤Kv̄	

Furthermore, it follows from Assumptions S.1 and S.2 that

T−1∑
τ=1

ατ

∣∣∣∣∂Dt

∂p
(P(q∗

T �α1� 	 	 	 �αT−2�αT−1))

∣∣∣∣ ≥ (T − 1)αL
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and so

∂P(q∗
T �α1� 	 	 	 �αT−2�αT−1)

∂αt
≤ Kv̄

(T − 1)αL
	

Hence, for any t such that 2 ≤ t ≤ T holds, we have

p̄t−1 − p̄t =
∫ ᾱt

αt

∂P(q∗
T �α

r
1� 	 	 	 �α

r
t−1�αt� ᾱt+1� 	 	 	 � ᾱT−1)

∂αt
dαt(S16)

≤ Kv̄

(T − 1)αL
(ᾱt − αt)≤ ᾱ− α

α

Kv̄

(T − 1)L
	

It follows from the mean value theorem that

Dτ(p̄t)−Dτ(p̄t−1)=
∣∣∣∣∂Dt

∂p
(p̃t)

∣∣∣∣(p̄t−1 − p̄t)≤K(p̄t−1 − p̄t)(S17)

for some p̃t ∈ (p̄t� p̄t−1). Using (S17) and (S16), we therefore have

t−1∑
τ=1

ατ[Dτ(p̄t)−Dτ(p̄t−1)] ≤ ᾱ

α

K2

L
(ᾱ− α)v̄	(S18)

Next, let us bound period t sales to newly arriving customers. Using the
mean value theorem, we have

Dt(p̄t)=Dt(p̄t)−Dt(v̄)=
∣∣∣∣∂Dt

∂p
(p̂t)

∣∣∣∣(v̄− p̄t)

for some p̂t ∈ (p̄t� v̄). Using Assumptions S.1 and S.2, we therefore have

αtDt(p̄t)≤ ᾱK(v̄− p̄t)≤ ᾱKv̄	(S19)

Finally, let us derive a lower bound to sales over the demand season. Again,
using the mean value theorem and Assumption S.1, we have

Dτ(P(q
∗
T �α1� 	 	 	 �αT−1))=Dτ(P(q

∗
T �α1� 	 	 	 �αT−1))−Dτ(v̄)

≥ L(v̄− P(q∗
T �α1� 	 	 	 �αT−1))≥Lε

and so

T−1∑
τ=1

ατDτ(P(q
∗
T �α1� 	 	 	 �αT−1))≥ α(T − 1)Lε	(S20)
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Combining (S18), (S19), and (S20) we finally obtain

gt(α1� 	 	 	 �αT−1)≤ 1
T − 1

ᾱ

α

K

L

v̄

ε

[
K

L

ᾱ− α
α

+ 1
]
	(S21)

The result then follows because the right side of (S21) converges to zero as
T → ∞. Q.E.D.

S.4. EXAMPLES

S.4.1. Verifying the Assumptions for the T = 2 Example

Here we verify that the T = 2 example with information effects in Section 4.1
satisfies Assumptions 1–5.

The demand specificationD(p�α)= 1−pα implies that v= 0, v̄= 1 and that
Assumption 1 is satisfied. Assumption 2 holds vacuously, since there is only
one batch of demand. Assumption 3 is satisfied whenever A< 1 holds. Since
v̂= p̄=

√
3

2 , Assumption 4 is satisfied. To verify Assumption 5, we compute

−
∂D(v�α)

∂p

D(v�α)
= αvα−1

1 − vα 	

Therefore,

∂

∂α

⎡
⎢⎢⎣ln

⎛
⎜⎜⎝−

∂D(v�α)

∂p

D(v�α)

⎞
⎟⎟⎠

⎤
⎥⎥⎦ = [ln(vα)+ 1 − vα]

α(1 − vα) 	(S22)

Since the term in brackets is increasing in vα for all α ∈ [1�2] and all v ∈ (0�1),
and is zero at vα = 1, then the term in brackets must be negative and the entire
expression must be negative. This establishes that Assumption 5(i) is satisfied.
From (S22), we have

∂2

∂v ∂α

⎡
⎢⎢⎣ln

⎛
⎜⎜⎝−

∂D(v�α)

∂p

D(v�α)

⎞
⎟⎟⎠

⎤
⎥⎥⎦ = [vα ln(vα)+ 1 − vα]

v(1 − vα)2
	

The term in brackets is decreasing in vα for all α ∈ [1�2] and all v ∈ (0�1),
and is zero at vα = 1, so the term in brackets must be positive and the entire
expression must be positive. This establishes that Assumption 5(ii) is satisfied.
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Finally, we consider the additional assumption required in our uniqueness
proof, Proposition 4, that we have

∂2

∂v ∂α
D(v�α) < 0(S23)

for all α ∈ [1�2] and all v ∈ (c�1). We have

∂2

∂v ∂α
[1 − vα] = −vα−1(ln(vα)+ 1)	(S24)

From (S24), we see that (S23) holds whenever we have vα > e−1  0	36787944.
Since c  0	819875713 and since we have

min
v≥c

α∈[1�2]
vα = c2�

(S23) must hold.

S.4.2. An Example With Multiplicative Uncertainty and T = 3

Demand in period t ∈ {1�2} is given by

Dt(p�αt)= αt(1 −p)	
Therefore, the aggregate demand and inverse demand are given by

D(p�α1�α2)= (α1 + α2)(1 −p)�
P(q�α1�α2)= 1 − q

α1 + α2
	

It follows that v= 0 and v̄= 1. Any specification of δ(v) satisfying our main-
tained assumptions will work, since all consumers with a positive δ(v) will pur-
chase in the period in which they first arrive. Let us set

δ(v)=

⎧⎪⎪⎨
⎪⎪⎩

0 for v≤ 3
4

,

1
100

(
v− 3

4

)
for v≥ 3

4
.

It is convenient to set the marginal production cost as

c = 6 ln 3 − 10 ln 2 + 1  0	6602	

We assume that α1 and α2 are independent and identically distributed ac-
cording to the uniform density on [1�2]. We have

f (α1�α2)= 1 for all (α1�α2) ∈ [1�2] × [1�2]	



DYNAMIC COMPETITION 19

Then the equilibrium quantity q∗ = qe solves∫ 2

α1=1

∫ 2

α2=1

(
1 − q

α1 + α2

)
dα2 dα1 = c = 6 ln(3)− 10 ln(2)+ 1�

yielding q∗ = qe = 1. Since ᾱ1 = ᾱ2 = 2, we have

p̄= 1 − 1
2 + 2

= 3
4
	

In period 1, all consumers with v ≥ p̄ purchase,4 so total purchases in pe-
riod 1 will be α1(1 − p̄). This allows us to infer the minimum possible period-1
demand state, as a function of period-1 transactions a1, as

β1(a1)=

⎧⎪⎨
⎪⎩

1 for a1 ≤ α1(1 − p̄)= 1
4

,

4a1 for
1
4
< a1 ≤ ᾱ1(1 − p̄)= 1

2
.

Prices in period 1 are given by

p1(a1)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c = 6 ln(3)− 10 ln(2)+ 1 for a1 ≤ 1
4

,∫ 2

4a1

∫ 2

1

(
1 − 1

α1 + α2

)
dα2 dα1∫ 2

4a1

∫ 2

1
dα2 dα1

for
1
4
< a1 ≤ 1

2
.

(S25)

For a1 ∈ [ 1
4 �

1
2 ], equation (S25) yields the closed-form expression

p1(a1)= 1 − (
(1 + 4a1) ln(1 + 4a1)− 2(1 + 2a1) ln(1 + 2a1)

+ (6 − 4a1) ln(2)− 3 ln(3)
)
/(2 − 4a1)	

Figure S1 is a plot of p1(a1).
We now proceed to period 2. Based on Proposition 5 and the relations

αr1 = 4ar1 and p̄2(a
r
1) = 1 − 1

αr1+2 = 1 − 1
4ar1+2 , we can compute the measure of

consumers who are born in period 1 but purchase at the beginning of period 2,
qL1 (a

r
1). These are the consumers with valuations between p̄2(a

r
1) and p̄:

qL1 (a
r
1)= αr1

[
(1 − p̄2(a

r
1))− (1 − p̄)]

= ar1(1 − 2ar1)
1 + 2ar1

	

4By setting v̂ = 3
4 , this means that all consumers with a higher valuation strictly prefer to pur-

chase in period 1 and all consumers with a lower valuation strictly prefer to wait.



20 R. DENECKERE AND J. PECK

FIGURE S1.—Period 1 posted prices.

The minimum possible period-2 demand state, as a function of the period-1
history ar1 and the period-2 transactions a2, is given by

β2(a2;ar1)=
⎧⎨
⎩

1 for a2 ≤ amin
2 (ar1)�

a2(4ar1 + 2)− 2ar1(1 − 2ar1)
for amin

2 (ar1) < a2 ≤ 1 − ar1�
(S26)

where

amin
2 (ar1)= qL1 (ar1)+ 1 − p̄2(a

r
1)= 2ar1 − 4(ar1)

2 + 1
2(1 + 2ar1)

	

Prices in period 2 are given by

p2(a2;ar1)=

∫ 2

β2(a2;ar1)

(
1 − 1

4ar1 + α2

)
dα2

2 −β2(a2;ar1)
�

which yields the closed-form expression

p2(a2;ar1)= 1 + ln(a2 + ar1)
2 − a2(4ar1 + 2)+ 2ar1(1 − 2ar1)
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Moving on to period 3, all transactions occur at the market-clearing price for
the realized demand state,

P(1�αr1�α
r
2)= 1 − 1

αr1 + αr2
	(S27)

We can compute the measure of consumers who are born in period 1 or pe-
riod 2, but who purchase in period 3, qL2 (a

r
1� a

r
2). These are the consumers with

valuations between P(1�αr1�α
r
2) and p̄2(a

r
1) or in terms of the revealed demand

states,

qL2 = 1 − αr1 + αr2
αr1 + 2

	(S28)

Using αr1 = 4ar1 and using (S26) to derive αr2 = ar2(4ar1 + 2)− 2ar1(1 − 2ar1), sub-
stituting into (S27), and simplifying, we have

p3(a3;ar1� ar2)= 1 − 1
2(ar1 + ar2)(1 + 2ar1)

�

qL2 (a
r
1� a

r
2)= 1 − ar1 − ar2	

It is interesting to note that even though all consumers with an option value
of waiting delay their purchases, most of the sales occur before period 3. From
(S28), the maximum possible quantity sold in period 3 occurs when αr1 = 1 and
αr2 = 1, where one-third of the output is sold in period 3.5
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5Sales across the three periods are then ( 1
4 �

5
12 �

1
3 ). If, instead, the realized demand states are

at their mean values, αr1 = 3
2 and αr2 = 3

2 , sales are ( 3
8 �

27
56 �

1
7 ). Finally, if the realized demand states

are at their maximum values, αr1 = 2 and αr2 = 2, sales are ( 1
2 �

1
2 �0).
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