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APPENDIX A: PROOF FOR SECTION 2

A.1. Proof of Proposition 1

Necessity. Considerβ in R
K and assume that there is a latent random variable

ε uncorrelated with x such that the latent variable y∗ ≡ xβ+ ε lies within the
observed bounds, that is, xβ+ε ∈ [y; y]. Denoting y = (y+y)/2 and using that
ε is uncorrelated with x, we have

E(x�(xβ− y))=E(x�(y∗ − y))=E(x�E(y∗ − y | x))�
We also have

−(y − y)
2

≤ y∗ − y ≤ (y − y)
2

�

which yields bounds on u(x)≡E(y∗ − y | x), Q.E.D.

−E
(
(y − y)

2

∣∣∣ x)≤ u(x)≤E
(
(y − y)

2

∣∣∣ x)�
Setting Δ(x)=E(y−y2 | x), there thus exists a measurable u(x) ∈ [−Δ(x)�Δ(x)]
such that E(x�(xβ− y))=E(x�u(x)).

Sufficiency. Conversely, let us assume that there exists u(x) in [−Δ(x)�Δ(x)]
such that

E(x�(xβ− y))=E(x�u(x))�(A.1)

We are going to construct a random variable ε that is uncorrelated with x and
is such that y∗ ≡ xβ+ ε lies within the observed bounds.

First, consider λ a random variable whose support is [0�1], which is indepen-
dent of y and y , and whose conditional mean given x is

E(λ | x)= 1
2
u(x)

Δ(x)
+ 1

2
�

Second, define ε as

ε= −xβ+ (1 − λ)y + λy�
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By construction, y∗ ≡ xβ+ ε is consistent with the observed censoring mecha-
nism, that is, y∗ ∈ [y; y]. Let us prove that ε is also uncorrelated with x. Con-
sider, for almost any x,

E(y | x)−E(xβ+ ε | x)= E

(
(y + y)

2

∣∣∣ x)−E((1 − λ)y + λy | x)

= E

(
(1 − 2λ)

(y − y)
2

∣∣∣ x)

= E((1 − 2λ) | x)E
(
(y − y)

2

∣∣∣ x)

= E

(
−u(x)
Δ(x)

Δ(x)
∣∣∣ x)= −u(x)�

where we used that λ is independent of y and y . Therefore, we have E(ε | x)=
E(y − xβ | x)+ u(x), which implies

E(x�ε)= E(x�(y − xβ))+E(x�u(x))

= −E(x�u(x))+E(x�u(x))= 0�

using the moment condition (A.1) involving y�β, and u(x).

APPENDIX B: PROOFS FOR SECTION 3

B.1. Proof of Proposition 2

The support function in direction q ∈ Sp is obtained as the supremum of the
expression

q�β=E(zq(y + u(z)))�(B.1)

where u(z) varies in [Δ(z)�Δ(z)]. The supremum of the scalar E(zqu(z)) is
obtained by setting u(z) to its maximum (resp. minimum) value when zq is
positive (resp. negative) and by setting u(z) to any value when zq is equal to 0.
It yields a set of “supremum” functions

uq(z)= Δ(z)+ (Δ(z)−Δ(z))1{zq > 0} +Δ∗(z)1{zq = 0}�(B.2)

where Δ∗(z) ∈ [Δ(z)�Δ(z)]. Note that uq(z) is unique (almost everywhere
(a.e.) Pz) if Pr(zq = 0) = 0. From now on, the uniqueness of uq(z) should al-
ways be understood as “almost everywhere Pz .”

Recall that by equation (3), E(y − y | z)= Δ(z), E(y − y | z)= Δ(z), so that
the support function or the supremum of (B.1) is equal to

δ∗(q | B)=E(zqwq)�
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where

wq = y + 1{zq > 0}(y − y)�
Note that the term Δ∗(z) in uq(z) disappears because it is multiplied within
the second expectation by zq, which is equal to 0 at these values. It implies, as
expected, that δ∗(q | B) is unique even though uq(z) is not.

Furthermore, when Pr(zq = 0) > 0, since Δ∗(z) varies in [Δ(z)�Δ(z)],
the functions uq(z) defined by equation (B.2) generate all the points β =
(E(z�x))−1E(z�(y + uq(z))) that belong to the tangent space to B whose
outer-pointing normal vector is q (an exposed face in the vocabulary used in
the next proposition).

If we select the specific value of uq(z) that corresponds to Δ∗(z)= 0, we get
the particular value of β,

βq = (E(z�x))−1E(z�wq)�

and, by definition,

δ∗(q | B)= q�βq�

Finally, the interior of B is not empty if we can prove that, for any q ∈ Sp,

sup
β∈B

q�β> inf
β∈B
q�β

or, equivalently, that

δ∗(q | B) >−δ∗(−q | B)�
Start from consequences of definitions,

zq = q�(E(z�x))−1z� = −z−q�

wq −w−q = (ȳ − y)(1{zq > 0} − 1{zq < 0})�
so that

δ∗(q | B)+ δ∗(−q | B)= E(|zq|(ȳ − y))
= E

(|zq|E((ȳ − y) | z))
= E

(|zq|(Δ(z)−Δ(z)))> 0

because of equation (3) and |zq| > 0 with positive probability because of the
full rank assumption in R.2.



4 C. BONTEMPS, T. MAGNAC, AND E. MAURIN

This quantity δ∗(q | B)+ δ∗(−q | B) is the width of B in direction q, and by
using the same argument,

min
q∈Sp

(δ∗(q | B)+ δ∗(−q | B)) > 0

since Sp is compact. Q.E.D.

B.2. Proof of Lemma 3

We use the expression derived in Proposition 2:

δ∗(q | B)=E(zqwq)=E(zqy)+E(zq1{zq > 0}(y − y))�(B.3)

First of all, the support function of a convex set is convex and, therefore, is
differentiable except at a countable number of directions q denoted Df . In
this proof, we characterize Df . It corresponds to the set of directions that are
orthogonal to the exposed faces of B. We also characterize kink points of set B.

B.2.1. Characterization of Df

The first term on the right-hand side (RHS) of equation (B.3) is linear in q
since (see the previous proof)

zq = z(E(x�z))−1q�

and thus is continuously differentiable on Sp. The second term can be written
as

ψ(q)=E(z∗q1{z∗q > 0})�
where z∗ = z(E(x�z))−1(y − y). The set of points Df is the set of points where
ψ(q) is not differentiable.

Fix q ∈ Sp. For any t ∈ Sp,

ψ(t)−ψ(q)= E(z∗(t − q)1{z∗q > 0})
+E(z∗t(1{z∗t > 0} − 1{z∗q > 0}))�

so that

ψ(t)−ψ(q)−E(z∗1{z∗q > 0})(t − q)(B.4)

=E(z∗t(1{z∗t > 0} − 1{z∗q > 0}))�
Points of nondifferentiability depend on the expression in the RHS. It is the
sum of three terms:

A1 =E(z∗t1{z∗t > 0� z∗q < 0})�
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A2 = −E(z∗t1{z∗q > 0� z∗t ≤ 0})�
A3 =E(z∗t1{z∗q= 0� z∗t > 0})�

Regarding A1 and A2, when z∗t > 0 and z∗q < 0, we have

0< z∗t = z∗(t − q)+ z∗q < z∗(t − q)�
whereas when z∗q > 0 and z∗t ≤ 0, we have

z∗(t − q) < z∗t ≤ 0�

Hence, we get

0 ≤ |A1| ≤ E(‖z∗‖)‖t − q‖Pr(z∗t > 0� z∗q < 0)�

0 ≤ |A2| ≤ E(‖z∗‖)‖t − q‖Pr(z∗q > 0� z∗t ≤ 0)�

As Pr(z∗t > 0� z∗q < 0) = Pr(z∗(t − q) > −z∗q > 0), we have limt→q Pr(z∗t >
0� z∗q < 0) = 0. Similarly, limt→q Pr(z∗q > 0� z∗t ≤ 0) = 0, so that these in-
equalities imply

A1 = o(‖t − q‖) and A2 = o(‖t − q‖)�
since Assumption R.3 implies that E(‖z∗‖) is bounded.

Regarding the last term A3, note that in the case in which Pr(z∗q = 0)= 0,
we have A3 = 0 and thus ψ(q) is differentiable at q. Its gradient is given by
equation (B.4),

∇qψ(q)=E(z∗1{z∗q > 0})�
and is continuous in q.

Consider now the case in which Pr(z∗q = 0) > 0. When t → q, both in Sp,
define

t − q= hs+ o(h)�
where h= ‖t − q‖ and s ∈ Sp, s�q= 0. We have

A3 = E(z∗t1{z∗q= 0� z∗t > 0})
= E(z∗(t − q)1{z∗q= 0� z∗(t − q) > 0})
= Pr(z∗q= 0)E(z∗s1{z∗s ≥ 0} | z∗q= 0)h+ o(h)�

It follows that ψ has different gradients in different directions s, which depend
on the term

E(z∗1{z∗s ≥ 0} | z∗q= 0)�
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This vector is constant for any s if and only if (using s and −s)
E(|z∗s| | z∗q= 0)= 0�

The support of z∗ conditional on (z∗q = 0) boils down to {0}, that is, if and
only if the conditional support of z itself is {0}. This case is excluded by As-
sumption R.2 and, therefore, function ψ(q) is not differentiable.

Overall, the points of nondifferentiability of the support function are direc-
tions q such that Pr(z∗q = 0) = Pr(zq = 0) > 0. There can be no more than a
countable number of such points.

B.2.2. Exposed Faces

Using Lemma 3, we obtain, for any q that does not belong to Df ,

∂δ∗(q | B)
∂q� = (E(z�x))−1E(z�wq)= βq�

As δ∗(q | B)= q�βq and βq ∈ arg maxβ∈B(q�β), this result is a disguised enve-
lope theorem.

Assume now that B has an exposed face Bf . By definition, Bf is the inter-
section of B with one of its supporting hyperplane Hf that is not reduced to a
singleton. If qf denotes the vector orthogonal toHf , we have, for any βf in Bf ,

δ∗(qf | B)= q�
f βf �

which means (see equation (B.2)) that there exists Δ∗
f (z) in [Δ(z)�Δ(z)] such

that (recall that βqf = (E(z�x))−1E(z�wqf ))

βf = βqf + (E(z�x))−1E(z�Δ∗
f (z)1{zqf = 0})

= βqf + (E(z�x))−1E(z�Δ∗
f (z) | zqf = 0)Pr(zqf = 0)�

For the set of all βf not to be reduced to the singleton {βqf }, we clearly need
that Pr(zq = 0) > 0 and that the conditional support of z is not reduced to {0}.

Conversely, suppose that there exists a direction q such that Pr(zq = 0) > 0
and suppose that the conditional support of z is not reduced to {0}. Denote
βq = (E(z�x))−1E(z�wq) and let Hq denote the supporting hyperplane at βq
orthogonal to q. Consider the set Bf of all βf such that there exists Δ∗

f (z) in
[Δ(z)�Δ(z)] such that

βf = βq + (E(z�x))−1E(z�Δ∗
f (z)1{zq = 0})

= βq + (E(z�x))−1E(z�Δ∗
f (z) | zq = 0)Pr(zq = 0)�

Bf is clearly included in B ∩Hq. Also, as Pr(zq = 0) is positive and the condi-
tional support of z is not reduced to {0}, the second term in the RHS is itself
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nonzero for at least some Δ∗
f (z), which implies that Bf is not reduced to the

singleton {βq} and that B has an exposed face.

B.2.3. Kinks

Assume that Pr(zq = 0)= 0 so that the support function is differentiable and
B is strictly convex. Even in this case, it is still possible to observe points βk ∈
∂B where the tangent space is not unique (kinks), that is, points of the surface
such that there exist at least two distinct vectors q and r (r �= q) satisfying βk =
βq = βr . When there exist such points, the relationship between directions of
the unit sphere and points of the frontier of B is no longer one-to-one. This
complicates the construction of testing procedures (as shown in Section 4) and
is the reason why it is useful to characterize setups where B has kinks. We
have

βq = βr
⇔ E(z�wq)=E(z�wr)

⇔ E
(
z�(ȳ − y)(1{zq > 0} − 1{zr > 0}))= 0

⇔ E
(
z�(ȳ − y)(1{zq > 0� zr < 0} − 1{zq < 0� zr > 0}))= 0�

the last equation holding because we have assumed that Pr(zq = 0)= 0.
Premultiplying the last equation by q�(E(z�x))−1, we get

βq = βr
⇒ E

(
zq(ȳ − y)(1{zq > 0� zr < 0} − 1{zq < 0� zr > 0}))= 0�

Given that the term within the expectation is necessarily nonnegative, the
fact that the expectation is zero implies necessarily

Pr{zq > 0� zr < 0} = Pr{zq < 0� zr > 0} = 0�

It follows that the existence of q and r (r �= q) satisfying the latter condition
is not only sufficient, but also necessary for the existence of kinks. Q.E.D.

B.3. Proof of Lemma 4

We have already proven that conditions (9) and (10) are necessary. Now we
want to prove that they are sufficient. Specifically, we suppose that conditions
(9) and (10) hold true and we want to prove that

E
(
z�(xβ− (y + u(z))))= 0�
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To prove this, we are going to show that z can be written as a linear combination
of zF and zH . Note first that

zF = z(E(z�z))−1E(z�x)
[
E(x�z)(E(z�z))−1E(z�x)

]−1/2

= z(E(z�z))−1/2QF�

where QF is a [m�p] matrix of rank p satisfying Q�
FQF = Ip (where Ip is the

identity matrix of dimension p). Second, denotingA= ( 0
Im−p

)
as the [m�m−p]

selection matrix, the definition of zs implies

zs = zA= z(E(z�z))−1/2As�

where As = (E(z�z))1/2A.
Denoting PF =QFQ

�
F and PH = Im −PF , then PF and PH are two orthogonal

projections and we have

ζs = zs − zFE(z�
F z

s)= z(E(z�z))−1/2(Im − PF)As

= z(E(z�z))−1/2PHA
s�

which implies

zH = ζs(ζs�ζs)−1/2 = z(E(z�z))−1/2PHA
s(As�PHAs)−1/2

= z(E(z�z))−1/2QH�

where QH = PHA
s(As�PHAs)−1/2 is a matrix of dimension [m�m− p] of rank

(m−p) satisfying Q�
HQH = Im−p and Q�

FQH = 0 (as a matrix).
Overall, the relationship between (zF� zH) and z boils down to

(zF� zH)= z(E(z�z))−1/2(QF�QH)= z(E(z�z))−1/2Q�

where the [m�m] matrix Q = (QF�QH) satisfies Q�Q = Im and hence has full
rank. Hence z can be written (zF� zH)Q−1(E(z�z))1/2, that is, a linear combi-
nation of zF and zH . In such a case, conditions (9) and (10) imply

E
(
z�(xβ− (y + u(z))))= 0�

which finishes the proof. Q.E.D.

We can now show that the choice of zs among z is without loss of generality.
Suppose that zH associated with a given subset of supernumerary instruments
zs satisfies condition (10). Then B is nonempty because condition (10) is suf-
ficient. Yet, if B is nonempty and since condition (10) is necessary, condition
(10) is necessarily satisfied by any other subset of (m−p) instruments (say z∗

H)
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constructed from an alternative z∗s satisfying the same condition as zs. Over-
all, because condition (10) is both necessary and sufficient for the condition
that B is not empty, when it is satisfied by a given subset of supernumerary
instruments, it is necessarily satisfied by any alternative subsets.

There is another interesting way to see why restrictions involved with con-
dition (10) are invariant to the choice of the specific subset of supernumerary
instruments. As discussed above, zH can be written as z(E(z�z))−1/2QH , where
the m−p columns of matrix QH are an orthonormal basis of the kernel of the
orthogonal projection onto x(z). Changing one specific subset of supernumer-
ary instruments zH into an alternative subset z∗

H boils down to moving from one
orthonormal basis QH to an alternative basis Q∗

H (i.e., to Q∗
H =QHR, where R

is an orthogonal matrix). In other words, for any z∗
H satisfying the same condi-

tions as zH , there exists necessarily an orthogonal matrix R (with R=Q�
HQ

∗
H)

such that z∗
H = zHR. This basic linear relationship between all possible subsets

of supernumerary instruments implies that when linear moment condition (10)
is satisfied by a given subset, it is necessarily satisfied by any alternative subset.

B.4. Proof of Proposition 6

We assume that the Sargan condition (as given by Proposition 5) is satisfied
so that the intersection of the set BU and the hyperplane, γ = 0, is not empty.
Both sets {γ = 0} and BU are convex. The support function of BU is δ∗(x∗

1 | BU),
where x∗

1 = (q1�λ1). The support function of {γ = 0}, if x∗
2 = (q2�λ2), is

δ∗(x∗
2 | {γ = 0})= sup

(β�γ)∈{γ=0}
β�q2 + γ�λ2 = sup

β∈Rp

β�q2

=
{

0� if q2 = 0,
+∞� if q2 �= 0.

Corollary 16.4.1 of Rockafellar (1970, p. 146) states that the support function
δ∗(x∗), where x∗ = (q�λ), of the intersection of two convex sets such that their
relative interiors11 have one point in common, can be written

δ∗(x∗ | BU ∩ {γ = 0})= inf
(x∗

1�x
∗
2):x∗

1+x∗
2=x∗

(
δ∗(x∗

1 | BU)+ δ∗(x∗
2 | {γ = 0}))(B.5)

and the infimum is attained.
Therefore, when the hyperplane {γ = 0} is not tangent to BU and their inter-

section is not empty, their relative interiors have all the points of the relative
interior of their intersection in common, and we have

δ∗((q�λ) | B)= inf
(λ1�λ2):λ1+λ2=λ

δ∗((q�λ1) | BU)= inf
λ1
δ∗((q�λ1) | BU)�

11Let the smallest affine set containing C , be aff(C). Let B(x�ε) be the ball centered at x
and of diameter ε/2. The relative interior of a set C is defined as ri(C) = {x ∈ aff(C); ∃ε > 0�
B(x�ε)∩ aff(C)⊂C}.
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as the RHS is independent of λ2 and λ. Furthermore, the infimum in λ1 is
attained.

On the other hand, when the hyperplane {γ = 0} is tangent toBU , the relative
interiors have no points in common, since all intersection points belong to the
closure of BU . The same Corollary 16.4.1 of Rockafellar (1970) nonetheless
states that we should replace equation (B.5) by its closure even though the
infimum is not necessarily attained.

Specifically, the condition under which the hyperplane {γ = 0} is tangent
to BU is obtained when the origin point belongs to the frontier of BSargan (see
Section 3.2.3). Without loss of generality, suppose that BU is included in the
half-space γ ≥ 0 (i.e., γ is a completely positive vector) by changing signs of
subparameters of γ if necessary. We now consider two cases.

In the first case, in which the support function is differentiable, there are
no exposed faces and the tangency of the hyperplane {γ = 0} to BU results
in a single intersection point. Set B is reduced to a point and is no longer a
proper set. Let (βI�0) be the intersection point and consider one hyperplane
that is tangent to set BU at this point. If there is a kink of set BU at this point,
there exist many hyperplanes tangent to set BU . In any case, choose one and
denote (qI�λI) as its normal vector-oriented outward set BU , where λI could
be infinite (recall that qI ∈ Sp). For any value λ≤ λI , we have ∀(β�γ) ∈ BU ,

qIβ+ λγ ≤ qIβ+ λIγ (as γ ≥ 0)

≤ qIβ+ λI0 (as δ(qI�λI)= (qI�λI)(βI�0)�)

= qIβ+ λ0�

The support function for (qI�λ) is also equal to δ((qI�λI) | BU). If λI is
finite, the minimum is attained for any λ≤ λI .

If set BU is smooth at (βI�0), there is only one tangent space at (βI�0) and
this is only possible if λI = −∞; consequently, the infimum of δ∗((qI�λ) | BU)
is not attained. Otherwise, if set BU is not smooth, the infimum can be attained
at a finite λI .

In the second case, in which the support function is not differentiable, there
are exposed faces and set B is a proper set. Depending on the smoothness of
BU at the frontier points of the intersection with the hyperplane γ = 0, the
previous discussion can be extended to see whether the infimum of δ∗((qI�λ) |
BU) is attained. Q.E.D.

B.5. The Construction of BU

Let s = (q�λ) be the direction used for estimating BU , where λ the compo-
nents relative to the variables zH . By definition of BU , we have that[

β
γ

]
= [E(z�x) :E(z�zH)]−1E

[
z�(y + u(z))]�
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The support function of BU is as in Proposition 2,

δ∗(s | BU)=E(zsws)�
where zs = s�Ω�z��ws = y + (y − y)1{zs > 0}, and

Ω= [E(z�x) :E(z�zH)]−1�

The last matrix is well defined because of the rank conditions R.2 and Ap-
pendix B.3.

The invariance of this construction to the specific choice of zH follows the
same argument as before. Write

zHγ = zHQQ�γ� λ�γ = λ�QQ�γ

for any arbitrary orthogonal matrix Q. The solution is thus invariant to the
choice of Q provided that (zH�γ�λ) is changed into (zHQ�Q�γ�Q�λ). Mini-
mizing with respect to λ or Q�λ is equivalent.

APPENDIX C: PROOFS FOR SECTION 4

We let M denote a generic majorizing constant.

C.1. Proof of Proposition 9

We use that

δ∗(q | B)=E(zqwq)= q�(E(z�x))−1E(z�wq)= q�Σ�E(z�wq)�

where Σ=E(x�z)−1. The estimator that we consider is

δ̂∗
n(q | B)= 1

n

n∑
i=1

zn�qiwn�qi�

where

zn�qi = q�Σ̂�
n z

�
i �

wn�qi = y
i
+ 1{zn�qi > 0}(yi − yi)�

and Σ̂n is an estimate of Σ.
Define ‖Σ‖ = Tr(Σ) and choose M arbitrarily such that M > Tr(Σ). We now

show that we can construct an estimate of Σ satisfying ‖Σ̂n‖ ≤M . Define Σ̂un as
the sample analog of Σ,

Σ̂un =
(

1
n

n∑
i=1

x�
i zi

)−1

�(C.1)



12 C. BONTEMPS, T. MAGNAC, AND E. MAURIN

and define Σ̂n, the estimate of Σ, as

Σ̂n =

⎧⎪⎨
⎪⎩
Σ̂un� if ‖Σ̂un‖ ≤M ,

Σ̂un

(
M

‖Σ̂un‖

)
� if not.(C.2)

The element (q� Σ̂n) always belongs to the bounded setΘ= Sp×{‖Σ‖ ≤M}.
Under the conditions of Proposition 8, Σ̂n is almost surely consistent:

lim
n→∞

Pr
(

sup
n>N

‖Σ̂n −Σ‖ ≥ ε
)

= 0�

Under the conditions of Proposition 9, Σ̂un and Σ̂n are asymptotically equiva-
lent,

√
n(Σ̂n − Σ̂un) P→

n→∞
0�(C.3)

and the estimate is asymptotically normal,

√
n(vec(Σ̂�

n −Σ�)) �⇒ N(0�W )�(C.4)

We proceed in two steps. As the first step is simple, we give the proof of
consistency and asymptotic normality at the same time.

C.1.1. Consistency and Asymptotic Normality: Σ Is Known

Suppose that Σ is known and denote

zqi = ziΣq� wqi = y
i
+ 1{zqi > 0}(yi − yi)�

Consider function fθ indexed by θ= (q�Σ) ∈Θ from the support of (zi� y
i
� yi)

to R such that

fθ(zi� y
i
� yi)= zqiwqi = q�Σ�z�

i (yi + 1{q�Σ�z�
i > 0}(yi − yi))�

Note that F = {fθ;θ ∈Θ} is a parametric class and is indexed by a parameter
θ lying in a bounded set Θ.

As the proof of Lemma 3 shows, this function is convex in Σq and, therefore,
is Lipschitzian,

|fθ1(zi� yi� yi)− fθ2(zi� yi� yi)| ≤ max(‖z�
i yi‖�‖z�

i yi‖)‖q�
1 Σ

�
1 − q�

2 Σ
�
2 ‖(C.5)

≤Mmax(‖z�
i yi‖�‖z�

i yi‖)‖θ1 − θ2‖�
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where the last equality (and the constant M <∞) is derived from the bounds
on Θ.

Under Assumption R.3, we have

E
(
max(‖z�

i yi‖�‖z�
i yi‖)

)
<∞�

so that F = {fθ;θ ∈Θ} is a Glivenko–Cantelli class (see, for instance, van der
Vaart (1998, p. 271)). By the definition of such a class, we have, uniformly
over Θ,

1
n

n∑
i=1

fθ(zi� y
i
� yi)= 1

n

n∑
i=1

zqiwqi
a�s�→
n→∞

E(zqiwqi)�

Also, under the conditions of Proposition 9, we have

E
(
max(‖z�

i yi‖�‖z�
i yi‖)2

)
<∞�

so that F = {fθ;θ ∈ Θ} is a Donsker class (for instance, van der Vaart (1998,
p. 271)). By the definition of such a class, the empirical process

√
nτn(q)= √

n

(
1
n

n∑
i=1

zqiwqi −E(zqiwqi)
)

converges in distribution, uniformly inΘ, to a Gaussian process with zero mean
and covariance function

E(zqiwqizriwri)−E(zqiwqi)E(zriwri)�

The second step of the proof of Proposition 9 consists of replacing Σ by the al-
most sure limit Σ̂n defined above. Consistency is proved in Appendix D, since
this result was already shown in Beresteanu and Molinari (2008). We rely heav-
ily on Section 19.4 of van der Vaart (1998), where relevant properties are pro-
posed.

C.1.2. Asymptotic Distribution When Σ Is Estimated

We analyze the asymptotic behavior of τn(q), which is defined as

τn(q)= √
n

(
1
n

n∑
i=1

zn�qiwn�qi −E(zqiwqi)
)
�

Denote τn(q)≡An(q)+Bn(q), where

An(q)= √
n

(
1
n

n∑
i=1

zn�qiwn�qi −E(zn�qiwn�qi)
)
�
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Bn(q)= √
n(E(zn�qiwn�qi)−E(zqiwqi))�

where E(zn�qiwn�qi) is evaluated along a specific sequence {Σ̂n}n≥1 and the ex-
pectation operator is taken with respect to the probability measure of zi, y

i
,

and yi (see Section 19.4 of van der Vaart (1998)).
To begin with An(q), let θ= (q�Σ) be the true value and let θ̂n = (q� Σ̂n) be

its estimate. Let us prove that if θ̂n
P→n→∞ θ uniformly in q, then

E(zn�qiwn�qi − zqiwqi)2 =E(fθ̂n(zi� yi� yi)− fθ(zi� y
i
� yi))

2 P→
n→∞

0�(C.6)

Using equation (C.5), we have

|fθ̂n(zi� yi� yi)− fθ(zi� y
i
� yi)| ≤Mmax(‖z�

i yi‖�‖z�
i yi‖)‖θ̂n − θ‖�

so that

E(fθ̂n(zi� yi� yi)− fθ(zi� y
i
� yi))

2

≤M2E
(
max(‖z�

i yi‖�‖z�
i yi‖)2

)‖θ̂n − θ‖2�

Under the conditions of Proposition 9, E(max(‖z�
i yi‖�‖z�

i yi‖)2) <∞ and is
independent of q. As ‖θ̂n − θ‖2 tends in distribution to 0 uniformly in q ∈ Sp

(equation (C.3)), it tends also in probability to 0, uniformly in q ∈ Sp, which
finishes the proof. Hence, we can apply Lemma 19.24 of van der Vaart (1998),
so that An(q) has the same distribution as

Cn(q)= √
n

(
1
n

n∑
i=1

zqiwqi −E(zqiwqi)
)
�(C.7)

uniformly in q ∈ S. Therefore, the problem boils down to computing the limit
of processes Bn(q) and Cn(q) as given in the following lemma.

LEMMA 13: We have, uniformly in q ∈ Sp,

(i) Bn(q)− √
nE

(|q�(Σ�
n −Σ�)z�

i |(ȳi − y
i
)(1{ziΣq= 0}))/2

− √
nq�(Σ̂�

n (Σ
�)−1 − I)β∗

q

P→
n→∞

0�

and

(ii) Cn(q)− √
n

(
1
n

n∑
i=1

zqiε
∗
qi

)
− √

nq�(I − Σ̂�
n (Σ

�)−1)β∗
q

P→
n→∞

0�

where β∗
q = Σ�E(z�

i w
∗
qi), ε

∗
qi =wqi − xiβ∗

q, and w∗
qi =wqi + 1

2(ȳi − yi)1{zqi = 0}.
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PROOF: For convenience sake, we rewrite w∗
qi,

w∗
qi = yi +

1
2
(ȳi − y

i
)(1{zqi > 0} + 1{zqi ≥ 0})�

and note that E(zqiwqi)=E(zqiw∗
qi).

We first prove (i). Write

Bn(q)= √
n(E(zn�qiwn�qi)−E(zqiw∗

qi))

= √
nE(zn�qi(wn�qi −w∗

qi))+E((zn�qi − zqi)w∗
qi)

≡ B1
n(q)+B2

n(q)�

By definition of zn�qi = q�Σ̂�
n z

�
i and zqi = q�Σ�z�

i , and as we are evaluating
these expressions along a specific sequence {Σ̂n}n≥1, the second term on the
RHS is equal to

B2
n(q)= √

n(q�(Σ̂n −Σ)�E(z�
i w

∗
qi))

= √
nq�(Σ̂n −Σ)�(Σ�)−1β∗

q

= √
nq�(Σ̂�

n (Σ
�)−1 − I)β∗

q�

using the definition of β∗
q.

The first term on the RHS is equal by replacement of wn�qi and w∗
qi to

B1
n(q)= √

nE

(
zn�qi(ȳi − y

i
)

×
(

1{zn�qi > 0} − 1
2
(1{zqi > 0} + 1{zqi ≥ 0})

))

= √
nE

(
(zn�qi − zqi)(ȳi − y

i
)

×
(

1{zn�qi > 0} − 1
2
(1{zqi > 0} + 1{zqi ≥ 0})

))

+ √
nE

(
zqi(ȳi − y

i
)

×
(

1{zn�qi > 0} − 1
2
(1{zqi > 0} + 1{zqi ≥ 0})

))
�
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The first two lines is the sum of two terms,

B11
n (q)= √

nE

(
(zn�qi − zqi)(ȳi − y

i
)

(
1{zn�qi > 0} − 1

2

)
1{zqi = 0}

)
�

B12
n (q)= √

nE
(
(zn�qi − zqi)(ȳi − y

i
)

× (1{zn�qi > 0} − 1{zqi > 0})1{zqi �= 0})�
and the last two lines is equal to

B13
n (q)= √

nE
(
zqi(ȳi − y

i
)(1{zn�qi > 0} − 1{zqi > 0}))�

We shall prove that B12
n (q) and B13

n (q) are bounded from above by oP(1) terms.
Considering B13

n (q) first, use the Cauchy–Schwarz inequality and write

|B13
n (q)| ≤

√
n[E(ȳi − y

i
)2]1/2

[
E
(
z2
qi|1{zn�qi > 0} − 1{zqi > 0}|)]1/2

�

since squares of dummy variables are equal to themselves. Denote genericM =
[E(ȳi − y

i
)2]1/2 and write

|B13
n (q)| ≤ √

nM
[
E
(
z2
qi|1{zn�qi > 0} − 1{zqi > 0}|)]1/2

≤ √
nM

[
E
(
z2
qiE

(|1{zn�qi > 0} − 1{zqi > 0}| | zqi
))]1/2

≤ √
nM

[
E
(
z2
qi Pr

(|√n(zn�qi − zqi)| ≥ |√nzqi| | zqi
))]1/2

�

since the alternation in signs between zn�qi and zqi means that
√
n(zn�qi − zqi) is

bounded further away from zero when n increases.
As the number of mass points is finite, there exists a finite α > 0 such that

there is no mass point between zq = 0 (excluded) and (zq)2 = α, and such that
the density function of (zq)2 between these two values is bounded. Write the
upper bound on (B13

n (q))
2 as the sum of two terms:

nM2E
(
z2
qi Pr

(|√n(zn�qi − zqi)|> |√nzqi| | zqi
) | z2

qi ≤ α
)

Pr(z2
qi ≤ α)�(C.8)

nM2E
(
z2
qi Pr

(|√n(zn�qi − zqi)|> |√nzqi| | zqi
) | z2

qi > α
)

Pr(z2
qi > α)�

Using the conditions in Proposition 9, consider 0 < μ < min(2�γ) so that
E(‖x�z‖2+μ) <∞. We also have

‖√n(Σ̂n −Σ)‖2+μ =OP(1)�
Using

|√n(zn�qi − zqi)|2+μ ≤ ‖√n(Σ̂n −Σ)‖2+μ‖zi‖2+μ
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and the same conditions in Proposition 9, there exists Mn =OP(1) such that

sup
z2
qi≤α

E
(|√n(zn�qi − zqi)|2+μ | zqi

)≤Mn and

E
(|√n(zn�qi − zqi)|2+μ)≤Mn�

Use Markov inequality with exponent 2 +μ to write

Pr
(|√n(zn�qi − zqi)|> |√nzqi| | zqi

)≤ E(|√n(zn�qi − zqi)|2+μ | zqi)
|√nzqi|2+μ �

so that the first line of equation (C.8) is bounded by

(
√
n)−μM2

∫ α

0
E
(|√n(zn�qi − zqi)|2+μ | zqi

)|zqi|−μ Pr(d(zqi)2)

≤ (√n)−μM2 sup
(zqi)

2≤α
E
(|√n(zn�qi − zqi)|2+μ | zqi

)∫ α

0
|zqi|−μd(zqi)2�

as the density of (zqi)2 is bounded on (0�α]. The last term can then be written
as

(
√
n)−μM2Mn

[
(zqi)

2−μ

1 −μ/2
]α

0

= (√n)−μM2Mn

α1−μ/2

1 −μ/2 �

which is oP(1).
Moreover, using the same Markov inequality, the second line is bounded by

(
√
n)−μM2

∫ +∞

α

E
(|√n(zn�qi − zqi)|2+μ | zqi

)|zqi|−μ Pr(d(zqi)2)

≤ (√n)−μ M
2

αμ/2
E
(|√n(zn�qi − zqi)|2+μ | z2

qi > α
)
�

which is oP(1). This proves that (B13
n (q))

2 is bounded by an oP(1) term.
As for B12

n (q), first we can use the Cauchy–Schwarz inequality to show that

|B12
n (q)|<

(
E[√n(zn�qi − zqi)(ȳi − y

i
)]2
)1/2

× (
E
(|1{zn�qi > 0} − 1{zqi > 0}|1{zqi �= 0}))1/2

�

Since zn�qi − zqi = q�(Σ�
n −Σ�)z�

i , the first term in the product is bounded by

‖√n(Σ�
n −Σ�)‖(E[z�

i (ȳi − yi)]2
)1/2 =OP(1)�
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because all variables are in L2. The second term is bounded by

Pr
(|√n(zn�qi − zqi)| ≥ |√nzqi|� zqi �= 0

)= oP(1)

using a similar proof as in the above proof for B13
n (q). We thus have B12

n (q)=
oP(1).

Therefore,

B1
n(q)= B11

n (q)+ oP(1)

= √
nE

( |zn�qi − zqi|
2

(ȳi − y
i
)1{zqi = 0}

)
+ oP(1)

= √
nE

(|q�(Σ�
n −Σ�)z�

i |(ȳi − y
i
)1{zqi = 0})/2 + oP(1)�

Adding B2
n(q) and B1

n(q) finishes the proof of (i).
To prove (ii), use zq = q�Σ�z�

i to write

Cn(q)= √
n

(
1
n

n∑
i=1

zqiwqi −E(q�Σ�z�
i w

∗
qi)

)
�

Using wqi = xiβ∗
q + ε∗

qi, we have

Cn(q)= √
n

(
1
n

n∑
i=1

zqiε
∗
qi

)

+ √
n

(
1
n

n∑
i=1

q�Σ�z�
i xiβ

∗
q −E(q�Σ�z�

i w
∗
qi)

)
�

Using E(zqiw∗
qi)= E(zqiwqi)= E(zqixiβ

∗
q), the second term on the right-hand

side is equal to

√
nq�Σ�

(
1
n

n∑
i=1

z�
i xi

)
β∗
q − √

nq�β∗
q

= √
nq�(Σ�(Σ̂u�n )

−1 − I)β∗
q

= √
nq�(Σ�(Σ̂�

n )
−1 − I)β∗

q + op(1)
= √

nq�Σ�(Σ̂�
n )

−1(I − Σ̂�
n (Σ

�)−1)β∗
q + op(1)�
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The third line uses that
√
n(Σ̂un − Σ̂n)

P→n→∞ 0 by equation (C.3) and uniform
bounds on q�Σ, and β∗

q. Moreover, as Σ̂n is bounded and its inverse exists,
Σ�(Σ̂�

n )
−1 a�s�→n→∞ I and we have, uniformly in q,

Cn(q)= √
n

(
1
n

n∑
i=1

q�Σ�z�
i ε

∗
qi

)
+ √

nq�(I −Σ−1Σ̂n)
�β∗

q + op(1)�
Q.E.D.

Summing the different terms in the lemma implies that τn(q) is asymptoti-
cally equivalent to

√
n

(
1
n

n∑
i=1

zqiε
∗
qi

)
+ √

nE
(|q�(Σ�

n −Σ�)z�
i |(ȳi − y

i
)1{zqi = 0})/2�

If there are no exposed faces (i.e., Pr(ziΣq = 0) = 0), the second term is
identically equal to zero, whereas ε∗

qi boils down to the residual of the instru-
mental variable (IV) regression of wq onto x, using instruments z so that τn(q)
converges in distribution, uniformly in q, to a Gaussian process centered at
zero, and of covariance function

E(zqiεqiεrizri)�

with εqi =wqi − xiβq.
Suppose that there exist exposed faces (Pr(zqi = 0) > 0). Write

Σq= (Ip ⊗ q�) vec(Σ�)

so that, using the asymptotic normality of the estimate of vec(Σ�) in equation
(C.4), we have

√
nq�(Σ�

n −Σ�)z�
i = √

n
(
vec(Σ�

n )
� − vec(Σ�)�

)
(Ip ⊗ q)z�

i

= √
nη�W 1/2(Ip ⊗ q)z�

i + oP(1)�
where η is a multivariate standard normal random variable of dimension p2

independent of zi. Q.E.D.

C.2. Proof of Proposition 10

When β0 is outside (resp. inside) set B but not on the frontier, we know that
infq T∞(q) is strictly negative (resp. positive). As Tn(q) converges uniformly in
q to T∞(q), minq Tn(q) is negative (resp. positive) and bounded away from zero
for n sufficiently large. Therefore,

√
nTn(qn) tends to −∞ (resp. +∞).
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Consider now the case β0 ∈ ∂B and let Q(β0) be the set of all q0 ∈ Sp that
minimize T∞(q;β0), that is, the set of all q0 ∈ Sp that satisfy δ∗(q0 | B)= q�

0 β0.
Set Q(β0) is a nonempty compact subset of Sp. We first consider the case in
which Q(β0) is a singleton. In the second part, the proof is extended to the
case in which Q(β0) may contain more than one element of Sp.

C.2.1. Q(β0) Is a Singleton: Q(β0)= {q0}
As δ∗(q | B) is differentiable (Assumption D), the empirical stochastic pro-

cess defined for q ∈ Sp as

√
n(Tn(q;β0)− T∞(q;β0))= √

n(δ̂∗
n(q | B)− δ∗(q | B))= τn(q)

converges to a Gaussian process (Proposition 9) whose sample paths are uni-
formly continuous on the unit sphere Sp endowed with the usual Euclidean
norm. Hence τn(·) is stochastically equicontinuous (for instance, Andrews
(1994, p. 2251)).

Let qn ∈ Sp be any sequence of directions defined as near minimizers of the
empirical counterpart Tn(q;β0) defined as

Tn(qn;β0)≤ min
q
Tn(q;β0)+ oP(1)�

Standard arguments employed for Z estimators (e.g., van der Vaart (1998))
when the objective function has a unique well separated minimum imply that

plim
n→∞

qn = q0�

Because (i) τn(·) is stochastically equicontinuous, (ii) qn ∈ Sp, and
(iii) plimn→∞ qn = q0, Andrews (1994, equation (3.36), p. 2265) showed that

√
n(Tn(qn;β0)− Tn(q0;β0))

P→
n→∞

0�

The proof finishes by using the asymptotic distribution of
√
nTn(q0;β0) as

stated in the text.

C.2.2. Q(β0) Is not a Singleton

The proof proceeds in various steps:
1. We select and characterize a unique q∗

0 from Q(β0).
2. We construct a sequence of well separated minima of minimization pro-

grams that tend to q∗
0.

3. We show that any sequence of minimizers of the empirical programs con-
verges to q∗

0.
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Step 1. The selection of a single q∗
0 ∈ Q(β0). For this, we select a vector ori-

ented outward set B and consider its projection on the smallest convex cone
that includes Q(β0):

C(β0)= {λq0;q0 ∈ Q(β0)�λ≥ 0} = {v;δ∗(v | B)− v�β0 ≤ 0}�
The vector oriented outward set B can be constructed as the difference be-
tween β0, which is a frontier point of B, and any interior point β∗ of B. For
instance the “center” of B obtained by setting u(z)= Δ(z)+Δ(z)

2 is interior and

β∗ =E
(
Σ�z� ȳ + y

2

)
�

Denote v0 = β0 − β∗ �= 0 and note that as β∗ ∈ int(B), we have, for all q0 in
Q(β0),

δ∗(q0 | B)− q�
0 β

∗ > 0 �⇒ q�
0 v0 > 0�(C.9)

The projection of v0 on the convex cone C(β0) is given by

min
v�δ∗(v|B)−v�β0≤0

(v0 − v)�(v0 − v)
2

�(C.10)

This projection is unique and defined by v∗
0 = λ∗q∗

0, where (λ∗� q∗
0) is the argu-

ment of the minimum,

min
(λ≥0�q∈Q(β0))

(v0 − λq)�(v0 − λq)∝ min
(λ≥0�q∈Q(β0))

{−2λq�v0 + λ2}�

which yields λ∗ = q∗�
0 v0 > 0 (see equation (C.9)) whereas q∗

0 is the argument of

max
q∈Q(β0)

q�v0�

Vector q∗
0 is unique because it is a (normalized) projection. Furthermore, when

v0
‖v0‖ ∈ Q(β0) (or, equivalently, v0 ∈ C(β0)), we have q∗

0 = v0
‖v0‖ , whereas in other

cases q∗
0 belongs to the frontier of Q(β0).

Step 2. Minimization programs whose well separated solutions converges to q∗
0.

The estimation of q∗
0 cannot proceed directly from program (C.10) since we do

not know the set of constraints, Q(β0). Consider the generalization of (C.10)
for any α≥ 0,

b(α)≡ min
v�δ∗(v|B)−v�β0≤α

(v0 − v)�(v0 − v)
2

�(C.11)

where b(α) is continuous and nonincreasing in α because the constraint is con-
tinuous. The unique solution of this program, denoted v∗

α, is the projection of
v0 = β0 −β∗ on the convex cone {v ∈ R

p�δ∗(v | B)− v�β0 ≤ α}.
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We state a sequence of lemmas that are proved below in Appendix C.2.3.
It turns out that the following equivalent characterization of this program

will be more amenable to estimation.

LEMMA 14: For any α > 0, the strictly convex program (C.11) is equivalent to
the minimization of

Ψa(q)= δ∗(q | B)− q�β0 − aq�v0�

where a is an increasing function of α.

This equivalence covers the case where a > 0. We need to complete this
result by showing how the minimizer qa of Ψa(q) converges to q∗

0 when a→ 0.

LEMMA 15: The limit of the sequence {qa}a>0 exists when a→ 0 and is equal
to q∗

0. Furthermore,

Ψa(q
∗
0)−Ψa(qa)= o(a)�

Moreover, we have the following uniform result.

LEMMA 16:

∀ε > 0�∃a0 > 0�∃η> 0 such that(C.12)

inf
0<a≤a0�‖q−q∗

0‖≥ε
Ψa(q)−Ψa(qa)

a
> η�

Step 3. Estimation of qa and convergence to q∗
0. Finally, we construct the esti-

mate of qa. Fix a > 0. Define the perturbed estimated convex program as

Ψn�a(q;β0)= δ̂∗
n(q | B)− q�β0 − aq�v0�n�

where v0�n = β0 − β̂∗
n and β̂∗

n = 1
n

∑n

i=1 Σ̂
�
n zi

ȳi+yi
2 .

Define qn�a as a near minimizer of Ψn�a:

Ψn�a(qn�a)≤ inf
q
Ψn�a(q)+OP

(
n−1/2

)
�

We have

Ψn�a(qn�a)≤Ψn�a(qa)+OP
(
n−1/2

)
�

whereas the square-root uniform convergence of Ψn�a to Ψa ensures that

Ψn�a(qn�a)=Ψa(qn�a)+OP
(
n−1/2

)
�
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Using successively the last equality and the previous inequality, we can write

0 ≤ Ψa(qn�a)−Ψa(qa)=Ψn�a(qn�a)−Ψa(qa)+OP
(
n−1/2

)
≤ Ψn�a(qa)−Ψa(qa)+OP

(
n−1/2

)
≤ sup

q

|Ψa(q)−Ψn�a(q)| +OP
(
n−1/2

)
�

We thus have

Ψa(qn�a)−Ψa(qa)

a
≤ supq |Ψa(q)−Ψn�a(q)| +OP(n−1/2)

a
�

Let an = O(n−α) be a sequence such that α < 1/2. Because of equicontinuity
and n1/2 convergence of δ̂∗

n(q | B) to δ∗(q | B) and of v0�n to v0, we have that

nα sup
q

|Ψan(q)−Ψn�an(q)| P→
n→∞

0�

Then

Ψan(qn�an)−Ψan(qan)

an
≤ oP(1)

and, therefore,

∀η> 0� lim
n→∞

Pr
(
Ψan(qn�an)−Ψan(qan)

an
> η

)
= 0�

By condition (C.12), for any ε > 0, there exist n0 and η > 0 such that, for n≥
n0, the event

{d(qn�an� q∗
0)≥ ε} ⊂

{
Ψan(qn�an)−Ψan(qan)

an
> η

}
�

Therefore,

∀ε > 0� lim
n→∞

Pr
(
d
(
qn�an� q

∗
0

)≥ ε)= 0 �⇒ qn�an − q∗
0

P→
n→∞

0�

To finish the proof of Proposition 10 we can now use the same argument as in
Appendix C.2.1 so that

√
n
(
Tn
(
qn�an;β0

)− Tn(q∗
0;β0)

) P→
n→∞

0�

The variance of Tn(q∗
0;β0) is estimated as the variance of Tn(qn�an;β0).

Q.E.D.
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C.2.3. Proofs of Lemmas 14–16

PROOF OF LEMMA 14: Let α0 = δ∗(v0 | B)− v�
0 β0. We have v∗

α = v0 for any
α ≥ α0, whereas in other cases, the optimal solution v∗

α is such that the con-
straint is binding, δ∗(v∗

α | B)− v∗�
α β0 = α. If v0

‖v0‖ ∈ Q(β0), we have that α0 = 0
and

q∗
0 = v∗

α

‖v∗
α‖

= v0

‖v0‖ ∀α≥ 0�

When v0
‖v0‖ /∈ Q(β0) and α runs from 0 to α0, then v∗

α describes a trajectory
between v∗

0 and v0. We now characterize this trajectory.
It is easier to work with the equivalent dual program (Rockafellar (1970))

α= min
v�(v0−v)�(v0−v)/2≤b(α)

(δ∗(v | B)− v�β0)�(C.13)

where b(α) runs from (v0−v∗0)�(v0−v∗0)
2 to 0 to generate the same trajectory {v∗

α}α≥0.
Writing the program (C.13) as the Lagrangian where a > 0,

L(v�a)= δ∗(v | B)− v�β0(C.14)

+ a
(
(v0 − v)�(v0 − v)

2
− b(α)

)
�

we obtain the first order condition (by Assumption D, δ∗(v | B) is differen-
tiable)

βqα −β0 − a(α)(v0 − v∗
α)= 0�

where qα = v∗α
‖v∗α‖ ∈ Sp and βqα = ∂δ∗(v|B)

∂v
|v∗α . To obtain a, multiply the equation by

(v0 − v∗
α)

�:

2a(α)b(α)= (v0 − v∗
α)

�(βqα −β0)�

When α = 0, then βqα = β0 and, therefore, a(α) = 0 since v0
‖v0‖ /∈ Q(β0) and

b(α) > 0. Furthermore, a(α) is continuous in α for any α< α0 since all objects
in the expression are continuous.

We now prove that a(α) is increasing with α. Consider 0< α < α′ < α0 and
the optimal solutions v∗

α and v∗
α′ , where v∗

α �= v∗
α′ because

δ∗(v∗
α | B)− v∗�

α β0 = α< δ∗(v∗
α′ | B)− v∗�

α′ β0 = α′�
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Note that by optimality,

L(v∗
α� a(α))= δ∗(v∗

α | B)− v∗�
α β0

< δ∗(v∗
α′ | B)− v∗�

α′ β0

+ a(α)
(
(v0 − v∗

α′)�(v0 − v∗
α′)

2
− b(α)

)
�

L(v∗
α� a(α

′))= δ∗(v∗
α | B)− v∗�

α β0

+ a(α′)
(
(v0 − v∗

α)
�(v0 − v∗

α)

2
− b(α′)

)

> δ∗(v∗
α′ | B)− v∗�

α′ β0�

so that by differencing,

a(α′)(b(α)− b(α′)) >−a(α)(b(α′)− b(α))
⇒ (a(α′)− a(α))(b(α)− b(α′)) > 0�

As b(α) is nonincreasing, it implies that a(α) is increasing with α from a(0)= 0
to limα→α0 a(α)= +∞.

We can thus generates the arc {v∗
α}α>0 equivalently by making a varies be-

tween 0 and ∞. Let us rewrite the minimization program (C.14) so as to con-
sider vectors on Sp, since estimates are defined on Sp only:

L(λq�a)= δ∗(λq | B)− (λq)�β0 + a
(
(v0 − λq)�(v0 − λq)

2
− b(α)

)

= λ(δ∗(q | B)− q�β0)+ a
(
(v0 − λq)�(v0 − λq)

2
− b(α)

)
�

Minimizing with respect to λ yields the first order condition for the optimal
solution λq,

δ∗(q | B)− q�β0 + a(λq − q�v0)= 0�

which implies that

L(λqq�a)= a
(

−λ
2
q

2
− b(α)

)
�

−aλq = δ∗(q | B)− q�β0 − aq�v0 ≡Ψa(q)�

When a > 0, minimizing L(λqq�a) is equivalent to maximizing λq and, thus, is
equivalent to minimizing Ψa(q). As L(λqq�a) is a strictly convex program, the
minimizer of Ψa(q) is unique and well separated. Q.E.D.
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PROOF OF LEMMA 15: To begin with, it is useful to note that −a‖v0‖ pro-
vides a lower bound of Ψa(q),

Ψa(q)= δ∗(q | B)− q�β0 − aq�v0 ≥ −a‖v0‖�
because β0 ∈ B, and q and v0

‖v0‖ belong to Sp.
We consider in turn two cases:
• Assume first that v0

‖v0‖ ∈ Q(β0). In such a case, q∗
0 = v0

‖v0‖ and Ψa(q
∗
0) =

−a‖v0‖. Hence, given that qa is unique and that −a‖v0‖ is a lower bound for
Ψa(q), we have necessarily qa = q∗

0 for any a > 0.
• Assume now that v0

‖v0‖ /∈ Q(β0). By definition of qa as a minimum,

Ψa(qa)= δ∗(qa | B)− q�
a β0 − aq�

a v0 ≤Ψa(q
∗
0)= −aq∗�

0 v0�

since δ∗(q∗
0 | B)= q∗�

0 β0. It implies that

0 ≤ δ∗(qa | B)− q�
a β0 ≤ a(qa − q∗

0)
�v0 ≤ 2a‖v0‖�(C.15)

since β0 ∈ B (the left-hand side, δ∗(qa | B)− q�
a β0, is nonnegative) and since

‖qa − q∗
0‖ ≤ 2. Consequently, we have

lim
a→0
(δ∗(qa | B)− q�

a β0)= 0�

and the distance between set Q(β0) and qa tends to zero by continuity of the
function δ∗(q | B)− q�β0.

Consider now qm to be any accumulation point of the sequence qa, that is,
any point satisfying, ∀η > 0, ∃a0 > 0 such that ∀a < a0�‖qa − qm‖ < η.12 Be-
cause Q(β0) is compact, qm ∈ Q(β0). We are going to show that qm = q∗

0. By
definition of qa and q∗

0, we have

Ψa(qa)

a
≤ Ψa(q

∗
0)

a
= −q∗�

0 v0 ≤ −q�
mv0�

where the first inequality holds true because qa minimizes Ψa on the unit
sphere, whereas the second inequality holds true because qm ∈ Q(β0) and q∗

0
maximizes q�v0 on Q(β0). Furthermore, since δ∗(q | B) ≥ q�β0 for any q on
the unit sphere, we have

Ψa(qa)

a
= δ∗(qa | B)− q�

a β0

a
− q�

a v0 ≥ −q�
a v0�

12Such a sequence exists because the distance between qa and Q(β0), a compact set, tends to
zero. In the following discussion, we work with a instead of working with a sequence indexed by
a without loss of generality.
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Combining this inequality with the two previous ones, we have

−q�
a v0 ≤ −q∗�

0 v0 ≤ −q�
mv0�

By taking limits and using that qa tends to qm when a tends to zero, we obtain
that q�

mv0 = q∗�
0 v0. Given the definition of q∗

0, it means that qm is the argument
of maxq∈Q(β0) q

�v0. But this argument is unique and is precisely q∗
0. Hence, we

have necessarily qm = q∗
0 and therefore,

lim
a→0

‖qa − q∗
0‖ = 0�(C.16)

Furthermore, as

0 ≤ Ψa(q
∗
0)−Ψa(qa)

a
≤ (qa − q∗

0)
�v0

we have

Ψa(q
∗
0)−Ψa(qa)= o(a)�(C.17) Q.E.D.

PROOF OF LEMMA 16: First, the lemma is trivially satisfied when v0
‖v0‖ ∈

Q(β0) since qa = q∗
0 = v0

‖v0‖ and, therefore,

Ψa(q)−Ψa(qa)

a
≥ −

(
q− v0

‖v0‖
)�
v0 = 1

2
‖v0‖

∥∥∥∥q− v0

‖v0‖
∥∥∥∥

2

�

the last equality resulting from the expansion

‖q‖2 = 1 =
∥∥∥∥q− v0

‖v0‖ + v0

‖v0‖
∥∥∥∥

2

(C.18)

= 1 + 2
(
q− v0

‖v0‖
)�

v0

‖v0‖ +
∥∥∥∥q− v0

‖v0‖
∥∥∥∥

2

�

Consequently, this quantity is bounded from below by a positive number when
‖q− v0

‖v0‖‖ ≥ ε.
Assume now that v0

‖v0‖ /∈ Q(β0). We first show that, for a given q, if the in-
fimum is attained when a tends to zero, then it is strictly positive. Using the
results of Lemma 15, we know that when a→ 0, qa → q∗

0, and Ψa(qa)

a
→ −q∗�

0 v0,
one of the following alternatives holds:

• We have q ∈ Q(β0) and Ψa(q)

a
= −q�v0 ≥ −q∗�

0 v0 by construction of q∗
0.

Consequently,

Ψa(q)−Ψa(qa)

a
→
a→0

−(q− q∗
0)

�v0�

which is strictly positive when ‖q− q∗
0‖ ≥ ε.
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• We have q /∈ Q(β0). In this case Ψa(q)

a
→ +∞ and cannot deliver the infi-

mum.
As qa tends to q∗

0 when a tends to zero, there exists some a0 for which the
joint events {0< a ≤ a0} and {‖q− q∗

0‖ ≥ ε} imply that ‖q− qa‖ ≥ ε
2 . Assume

now by contradiction that the infimum over 0< a≤ a0 is not positive. By con-
tinuity of function Ψa(q)−Ψa(qa)

a
in a and q when a > 0 (see Lemma 14), and as

the infimum is positive at the limit a→ 0, a nonpositive infimum can only be
obtained at some a > 0. This is a contradiction because qa is a well separated
minimum for any a > 0 (Lemma 14).

The infimum in 0 ≤ a≤ a0 is therefore positive for any q such that q ∈ Sp ∩
{‖q− q∗

0‖ ≥ ε}. The last set is a compact set in q. The infimum over such qs is
thus positive also. Q.E.D.

C.3. Proof of Proposition 12

By Condition S, the relative interiors of sets BU and {γ = 0} have points in
common and the infimum is attained at λ0(q) (see the end of Appendix B.4).
As Sp is compact, let Λ denote a compact set of R

m such that for all q ∈ Sp,
λ0(q) ∈ int(Λ).

The proof consists of three steps:
1. Under Assumption D that the unconstrained set BU has no faces, the es-

timate of the unconstrained support function is a consistent and asymptotically
Gaussian random process (Proposition 9).

2. The minimization of the estimate δ̂∗
n((q�λ) | BU)with respect to λ holding

q constant for any q can be analyzed as in Proposition 10.
(a) If λ0(q), the minimizer of the true support function, is unique, then any

near minimizer in λ of δ̂∗
n((q�λ) | BU) is a

√
n-consistent and asymptotically

normal estimate of δ∗(q | B).
(b) If λ0(q) is not unique, we define a perturbed criterion so as to construct

an estimate λn(q) of one single element λ∗
0(q). Then δ̂∗

n((q�λn(q)) | BU) is a√
n-consistent and asymptotically normal estimate of δ∗(q | B).
In both cases, this argument is valid for any finite list of q and the vector of

those estimates is jointly asymptotically normal.
3. The derived process τn(q) = √

n(δ̂∗
n((q�λn(q)) | BU) − δ∗(q | B)) is

stochastically equicontinuous.
Using Andrews (1994, p. 2251), the three steps prove that τn(q) is a consis-

tent and asymptotically Gaussian random process.
Step 1. According to what was developed above, the empirical stochastic pro-

cess τUn (·), defined for s= (q�λ) ∈ Sm, the unit sphere in R
m, as

τUn (s)= √
n(δ̂∗

n(s | BU)− δ∗(s | BU))�
converges to a Gaussian process whose sample paths are uniformly continuous
on the unit sphere Sm, using the usual Euclidean norm. Hence τUn (·) is stochas-
tically equicontinuous (for instance, Andrews (1994, p. 2251)).
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Step 2. Fix q ∈ Sp the unit sphere in R
p and let S(q) be the set of all s(q)=

(q�λ0(q)) that minimize δ∗(s | BU) with respect to λ, that is,

δ∗(q | B)= δ∗(s(q) | BU)= min
λ∈Λ

δ∗(s | BU)�

S(q) is a nonempty subset included in the interior of the compact set SB =
Sp × Λ ⊂ Rm by the above. Note also that to obtain the standard evaluation
on the unit sphere, some renormalization is necessary since ‖s‖ ≥ ‖q‖ = 1, and
this is done using the positive homogeneity of support functions,

δ∗(s | BU)= ‖s‖δ∗
(
s

‖s‖
∣∣∣ BU

)
�

where s
‖s‖ ∈ Sm. In the following discussion, we directly deal with the support

function δ∗(s | BU) extended to the compact set SB in this way.
We first consider the case where S(q) is a singleton. In the second part of the

proof, S(q) potentially contains more than one element of R
m, the issue being

to select one specific element of S(q) and to construct a consistent estimate of
it.

(a) Suppose that S(q) is a singleton, S(q) = {s0 = (q�λ0)} ⊂ int(SB). Let
sn = (q�λn) ∈ SB be any sequence of directions defined as near minimizers of
the empirical counterpart δ̂∗

n(sn | BU) defined as

δ̂∗
n(sn | BU)≤ min

λ∈Λ
δ̂∗
n(s = (q�λ) | BU)+ oP(1)�

Define the estimate of δ∗(q | B) as the value at the near minimizer:

δ̂∗
n(q | B)= δ̂∗

n(sn | BU)�(C.19)

First, standard arguments employed for Z estimators (see van der Vaart
(1998), for instance) imply that

plim
n→∞

λn = λ0�

Second, because (i) τUn (·) is stochastically equicontinuous, (ii) sn ∈ Sp ×Λ, and
(iii) plimn→∞ sn = s0, Andrews (1994, equation (3.36), p. 2265) showed that

√
n(δ̂∗

n(sn | BU)− δ̂∗
n(s0 | BU)) P→

n→∞
0�

The step finishes by using the asymptotic distribution of δ̂∗
n(s0 | BU),

√
n(δ̂∗

n(s0 | BU)− δ∗(s0 | BU)) d�
n→∞

N
(
0� Vs0

)
�
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which implies that

√
n(δ̂∗

n(q | B)− δ∗(q | B)) d�
n→∞

N
(
0� Vs0

)
�

using equation (C.19) and where Vs0 is consistently estimated by Vsn .
Note that the same result applies to a finite vector (δ̂∗

n(q1 | B)� δ̂∗
n(q2 | B)�

� � � � δ̂∗
n(qJ | B)) using the same arguments.

(b) Suppose now that S(q) is not a singleton because there are various min-
imizers of δ∗(s | BU) in λ. Note first that set S(q)⊂ int(SB) is convex and com-
pact because δ∗(s | BU) is convex and continuous. We first select and character-
ize a unique (q�λ∗

0) from S(q). Consider the smallest convex cone that includes
S(q),

C S(q)= {cs0; s0 ∈ S(q)� c ≥ 0}�
and consider the projection of (q�0) on C S(q). This projection is unique and
is defined by c∗s∗0 , where (c∗� s∗0) is the argument of the minimum,

min
(c≥0�(q�λ)∈S(q))

∥∥((1 − c)q�−cλ)∥∥2 = min
(c≥0�s∈S(q))

{(1 − c)2 + c2λ�λ}�

since q�q= 1. It yields c∗ = 1
1+λ�λ > 0, whereas λ∗

0 is the argument of

min
λ�(q�λ)∈S(q)

λ�λ�

Vector λ∗
0 is unique because it is a (normalized) projection. Given this fact, we

can define a sequence of perturbed programs such that s∗0 corresponds to the
limit of the sequence of minima. Specifically, for any a > 0, let

Ψa(s)= δ∗(s | BU)+ aλ�λ�

Because δ∗(s | BU) is convex in λ and λ�λ is strictly convex in λ, then Ψa(s) is
a strictly convex function in λ.

The minimum sa = (q�λa) of Ψa(s) is unique because we minimize a strictly
convex function on a compact set SB. Furthermore, we now show that λa tends
to λ∗

0 when a→ 0.

LEMMA 17: The limit of the sequence {λa}a>0 exists when a→ 0 and is equal
to λ∗

0.

PROOF: To begin with, it is useful to note that δ∗(s∗0 | BU) provides a lower
bound for Ψa(s),

Ψa(s)≥ δ∗(s∗0 | BU)�
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because s∗0 is a minimizer of δ∗(s | BU).
We consider two cases:
• Assume first that (q�0) ∈ S(q). In such a case, λ∗

0 = 0 and Ψa(s
∗
0)= δ∗(s∗0 |

BU). Hence, given that λa is unique and that δ∗(s∗0 | BU) is a lower bound for
Ψa(s), we have necessarily sa = s∗0 for any a > 0 and hence λa = λ∗

0.
• Assume now that (q�0) /∈ S(q). By definition of λa as a minimum,

Ψa(sa)= δ∗(sa | BU)+ aλ�
a λa

≤ Ψa(s
∗
0)= δ∗(s∗0 | BU)+ aλ∗�

0 λ0�

It implies that

0 ≤ δ∗(sa | BU)− δ∗(s∗0 | BU)≤ a(λ∗�
0 λ

∗
0 − λ�

a λa)≤ aλ∗�
0 λ

∗
0�(C.20)

so that the distance between sa and the set S(q)= {s;δ∗(s | BU)= δ∗(s∗0 | BU)}
tends to zero when a tends to zero by the continuity of function δ∗(s | BU).

Consider now λm to be any accumulation point of the sequence λa, that is,
any point satisfying, ∀η > 0, ∃a > 0 such that ‖λa − λm‖< η. Because S(q) is
compact, sm = (q�λm) ∈ S(q). We are going to show that sm = s∗0 . By definition
of λa and λ∗

0, we have

Ψa(sa)− δ∗(s∗0 | BU)
a

≤ Ψa(s
∗
0)− δ∗(s∗0 | BU)

a
= λ∗�

0 λ
∗
0 ≤ λ�

mλm�

where the first inequality holds true because sa minimizes Ψa whereas the sec-
ond inequality holds true because sm ∈ S(q) is compact and λ∗

0 minimizes λ∗�
0 λ

∗
0

on S(q). Furthermore, because s∗0 ∈ S(q), then

λ�
a λa = Ψa(sa)− δ∗(sa | BU)

a
≤ Ψa(sa)− δ∗(s∗0 | BU)

a
�

Combining the two equations gives

λ�
a λa ≤ λ∗�

0 λ
∗
0 ≤ λ�

mλm�

By taking limits and using that λa tends to λm when a tends to zero, we obtain
that λm = λ∗

0. We thus have shown that

lim
a→0

‖λa − λ∗
0‖ = 0�

Furthermore, we check

0 ≤ Ψa(s
∗
0)−Ψa(sa)

a
≤ λ∗�

0 λ
∗
0 − λ�

a λa

so that, since λa → λ∗
0 when a→ 0, then

Ψa(s
∗
0)−Ψa(sa)= o(a)� Q.E.D.(C.21)
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The next step is to construct an estimate of λa. Before moving on to this
step, we prove a lemma that will be useful for showing that the estimate of λa
actually converges to λ∗

0.

LEMMA 18: We have,

∀ε > 0�∃a0 > 0�∃η> 0�∀a such that(C.22)

inf
0<a≤a0�‖λ−λ∗

0‖≥ε
Ψa(s)−Ψa(sa)

a
> η�

PROOF: First, the lemma is trivially satisfied when s∗0 = (q�0) since λa =
λ∗

0 = 0 for any a and, therefore,

Ψa(s)−Ψa(sa)

a
= λ�λ�

which is bounded from below by ε2 when ‖λ‖ ≥ ε.
Assume that (q�0) /∈ S(q). As in Lemma 16, we first show that the infimum

is positive for a given q and then use the compactness of the space where q
evolves to conclude. We know from Lemma 17 that λ→ λ∗

0 when a tends to 0.
• When s = (q�λ) ∈ S(q), then Ψa(s)−Ψa(sa)

a
→ λ�λ− λ∗�

0 λ0 when a tends to
zero, which is strictly positive when ‖λ− λ∗

0‖ ≥ ε.
• When s = (q�λ) /∈ S(q), then Ψa(s)−Ψa(sa)

a
→ +∞ when a tends to zero and

cannot deliver the infimum.
As λa → λ∗

0 when a tends to zero, there exist some positive a0 such that
the joint events {0 < a < a0} and {‖λ− λ∗

0‖ ≥ ε} imply that ‖λ− λa‖ ≥ ε/2.
Assume now by contradiction that the infimum over 0< a< a0 is not positive.
By continuity of function Ψa(s)−Ψa(sa)

a
in a and s when a > 0, and as the infimum

is positive at the limit a→ 0, a nonpositive infimum can only be obtained at
some a > 0 and sa ∈ SB. This is a contradiction because sa is a well separated
minimum for any a > 0. The compactness of SB∩{s ∈ SB�‖λ− λ∗

0‖ ≥ ε} ensures
that the infimum over such ss in this set is positive also. Q.E.D.

Finally, we construct the estimate of λa. Fix a > 0. Define the perturbed
estimated program as

Ψn�a(s)= δ̂∗
n(s | BU)+ aλ�λ

and restrict the set over which we take the supremum as s ∈ SB.
Define sn�a as a near minimizer of Ψn�a over SB. We can adapt the same kind

of argument used in the proof of Proposition 10 to show that

Ψa(sn�a)−Ψa(sa)

a
≤

sup
s∈SB

|δ∗(s | BU)− δ̂∗
n(s | BU)| +OP(n−1/2)

a
�
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Let an = OP(n
−α), where α < 1/2. Because of equicontinuity and n1/2 con-

vergence of δ̂∗
n(s | BU) to δ∗(s | BU), when s ∈ SB, we have that

nα sup
s∈SB

|δ∗(s | BU)− δ̂∗
n(s | BU)| P→

n→∞
0�

Then

Ψan(sn�an)−Ψan(san)

an
≤ oP(1)�

We thus have

∀η� lim
n→∞

Pr
(
Ψan(sn�an)−Ψan(san)

an
> η

)
= 0�

By condition (C.22), for any ε there exist η> 0 and n0 such that, for any n≥ n0,
the event

{
d
(
sn�an� s

∗
0

)≥ ε}⊂
{
Ψan(sn�an)−Ψan(san)

an
> η

}
�

Therefore,

∀ε� lim
n→∞

Pr
(
d
(
sn�an� s

∗
0

)
> ε

)= 0 �⇒ sn�an − s∗0 P→
n→∞

0�

Then the same argument in part (i) applies and

√
n
(
δ̂∗
n

(
san�n | BU

)− δ̂∗
n(s

∗
0 | BU)

) P→
n→∞

0�

We can then use the asymptotic distribution of δ̂∗
n(s

∗
0 | BU) in place of δ̂∗

n(san�n |
BU). By the same development, it applies to a finite vector of such estimates
defined at values q1� q2� � � � � qJ .

Step 3. We now turn to equicontinuity. As the process τUn (s) is equicontinu-
ous, we know that for any ε > 0 and η> 0, there exists δ such that

lim
n→∞

Pr
[

sup
s1�s2∈Sm�‖s1−s2‖<δ

|τUn (s1)− τUn (s2)|>η
]
< ε�

It is straightforward to extend this result to the compact set SB = Sp×Λ so that

∀ε�∀η�∃δ > 0� lim
n→∞

Pr
[

sup
s1�s2∈SB�‖s1−s2‖<δ

∣∣τUn (s1)− τUn (s2)
∣∣>η]< ε�(C.23)

Let s1n and s2n be defined as

δ̂∗
n(s1n | BU)= δ̂∗

n(q1�λn(q1) | BU)� δ̂∗
n(s2n | BU)= δ̂∗

n(q2�λn(q2) | BU)�
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where for j = 1�2, λn(qj) are minimizers of δ̂∗
n(qj�λn(qj) | BU) defined as

δ̂∗
n(sjn | BU)= min

λ∈Λ
δ̂∗
n(sj | BU)= min

λ∈Λ
δ̂∗
n((qj�λ) | BU)

if they are unique or defined by the argument used in Step 2(b) if they are not.
Consider the difference

δ̂∗
n(s1n | BU)− δ̂∗

n(s2n | BU)
= min

λ∈Λ
δ̂∗
n((q1�λ) | BU)− min

λ∈Λ
δ̂∗
n((q2�λ) | BU)

= min
λ∈Λ

(
δ̂∗
n((q1�λ) | BU)− δ̂∗

n((q2�λ) | BU)

+ δ̂∗
n((q2�λ) | BU)

)− min
λ∈Λ

δ̂∗
n((q2�λ) | BU)

≥ min
λ∈Λ

(
δ̂∗
n((q1�λ) | BU)− δ̂∗

n((q2�λ) | BU)
)
�

Alternatively, consider

δ̂∗
n(s1n | BU)− δ̂∗

n(s2n | BU)
= min

λ∈Λ
δ̂∗
n((q1�λ) | BU)− min

λ
δ̂∗
n((q2�λ) | BU)

= min
λ∈Λ

δ̂∗
n((q1�λ) | BU)

− min
λ∈Λ

(
δ̂∗
n((q1�λ) | BU)− δ̂∗

n((q1�λ) | BU)+ δ̂∗
n((q2�λ) | BU)

)
≤ −min

λ∈Λ
(−δ̂∗

n((q1�λ) | BU)+ δ̂∗
n((q2�λ) | BU)

)
= max

λ∈Λ

(
δ̂∗
n((q1�λ) | BU)− δ̂∗

n((q2�λ) | BU)
)
�

Consequently,

|δ̂∗
n(s1n | BU)− δ̂∗

n(s2n | BU)|
≤ max

λ∈Λ

∣∣δ̂∗
n((q1�λ) | BU)− δ̂∗

n((q2�λ) | BU)
∣∣�

By definition,

τn(q1)− τn(q2)= τUn (s1n)− τUn (s2n)

= √
n
(
δ̂∗
n(s1n | BU)− δ̂∗

n(s2n | BU)
)
�
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so that for any (ε�η)and for any δ satisfying equation (C.23),

lim
n→∞

Pr
[

sup
‖q1−q2‖<δ

|τn(q1)− τn(q2)|>η
]

= lim
n→∞

Pr
[

sup
‖q1−q2‖<δ

∣∣√n(δ̂∗
n(s1n | BU)− δ̂∗

n(s2n | BU)
)∣∣>η]

≤ lim
n→∞

Pr
[

sup
‖q1−q2‖<δ

√
nmax

λ∈Λ

∣∣δ̂∗
n((q1�λ) | BU)− δ̂∗

n((q2�λ) | BU)
∣∣>η]

= lim
n→∞

Pr
[

sup
s1�s2∈SB�‖s1−s2‖<δ

∣∣√n(δ̂∗
n((q1�λ) | BU)

− δ̂∗
n((q2�λ) | BU)

)∣∣>η]
= lim

n→∞
Pr
[

sup
s1�s2∈SB�‖s1−s2‖<δ

∣∣√n(δ̂∗
n(s1 | BU)− δ̂∗

n(s2 | BU)
)∣∣>η]

< ε�

This proves that the process τn(q) is equicontinuous by equation (C.23).
The proof when the minimizers are replaced by near minimizers can be

adapted in a straightforward way. Q.E.D.

APPENDIX D: ADDITIONAL EXPERIMENTS AND ANALYSIS

D.1. Additional Monte Carlo Experiments

We report three additional experiments to assess the performance of our
inference and test procedures. In these experiments, the dependent variable is
bounded and censored by intervals and the identified set is of dimension 2. In
the first two experiments, the frontier of the identified set has no kinks and no
exposed faces. In the first experiment, the number of instruments is the same
as the number of parameters and serves as a benchmark, while we use one
supernumerary instrument in the second experiment. We explore the case of an
identified set that is neither smooth nor strictly convex in the third experiment.

D.1.1. Smooth and Strictly Convex Sets

Consider the model

y∗ = 0�x1 + 0�x2 + ε�

where x� = (x1�x2)
� is a standard normal vector while ε is independent of x

and uniformly distributed on [−1/2�1/2]. The true value of β is (0�0)�. We
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FIGURE D.1.—Set B, y = 0�x1 + 0�x2 + ε, (x1�x2)
� ∼N(0� I2).

assume that y∗ is observed by intervals defined as (Ik = [−1/2 + k/K;−1/2 +
(k+ 1)/K], k= 0� � � � �K − 1).

The support function of the identified setB is constant (see Appendix D.2.1),

δ∗(q | B)= 2Δ√
2π
�

where Δ = 1
2K . In other words, the identified set B is a circle whose radius is

2Δ√
2π

(see Figure D.1).
We draw 1000 simulations in four different sample size experiments: n=100,

500, 1000, and 2500. We report results when the number of intervals, K, is
equal to 2, as our results are robust when K increases. The three quartiles as
well as the mean of the distribution of the estimated support function at one
angle are displayed in Table V, although all angles give the same results. Even
for small sample size, the identified set is well estimated and, unsurprisingly,
the interquartile interval decreases when the sample size increases.

With respect to the performance of test procedures, let β0 = 0 be the center
of B and let βr a point on a ray such that the distance between 0 and βr is
equal to r times the value of the radius of B, a definition that is valid for any
ray since set B is a disk around the true value β0 = 0. Point βr belongs to B
if and only if r ≤ 1 and β1 belongs to the frontier. For r varying stepwise from
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TABLE V

RESULTS RELATED TO THE ADDITIONAL MONTE CARLO SIMULATIONS IN APPENDIX D.1.1 FOR
THE SET B IN FIGURE D.1a

n Mean Q1 Q2 Q3

100 0.198 0.178 0.197 0.216
500 0.199 0.190 0.199 0.208

1000 0.199 0.193 0.199 0.206
2500 0.199 0.196 0.199 0.203

aSupport function δ(q) for q= (0�1)� . True unknown value 0.199.

0 to 3, we computed the rejection frequencies at a 5% level for the two tests
developed in Section 4.2: whether βr belongs to B against the alternative that it
does not (Test 1); whether it belongs to the frontier of B against the alternative
that it does not (Test 2). Results are reported in Table VI. These results show
that the size of the three tests is very accurate and remains very close to 5%
even for n = 100 and that the power of these tests is very good even in small
samples.

D.1.2. Smooth Set With One Supernumerary Instrument

The simulated model is as before except that the second explanatory variable
x2 is now generated by

x2 = πe2 +
√

1 −π2e3�

where (e2� e3) are independent and identically distributed (i.i.d.) standard nor-
mal variables. Moreover, letw= νe3 +√

1 − ν2e4 be another observed variable,
where e4 is i.i.d. standard normal. Using general notations, we have x= (x1�x2)
and z = (x1� e2�w). Variables x1, e2, andw are used for estimating set B instead
of x1 and x2, and we have, therefore, one supernumerary instrument. Note that
parameter π (respectively ν) measures the strength of the correlation between
x2 and e2 (respectively x2 and w).

Setting q= (cosθ� sinθ)�, the support function can be expressed as (see Ap-
pendix D.2.2)

δ∗(q | B)= 2Δ√
2π

√
cos2 θ+ sin2 θ

π2 + ν2(1 −π2)
�

When ν = 1, set B is the same as in the previous example because x2 is a deter-
ministic function of e2 and w. Moreover, when π and ν are positive and strictly
lower than 1, there is some information loss due to the use of e2 and w instead
of x2, and set B is stretched along the second axis (see Figure D.2).
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TABLE VI

PERCENTAGE OF REJECTIONS FOR THE TWO TESTS IN THE EXAMPLE IN APPENDIX D.1.1a

Test 1 Test 2
(H0 :βr ∈ B) (H0 :βr ∈ ∂B)

r n= 100 n= 500 n= 1000 n= 2500 n= 100 n= 500 n= 1000 n= 2500

0.01 0% 0% 0% 0% 70�9% 100% 100% 100%
0.05 0% 0% 0% 0% 69�9% 100% 100% 100%
0.1 0% 0% 0% 0% 67�7% 100% 100% 100%
0.2 0% 0% 0% 0% 60�1% 100% 100% 100%
0.3 0% 0% 0% 0% 51�6% 99�9% 100% 100%
0.4 0% 0% 0% 0% 40�5% 99�6% 100% 100%
0.5 0% 0% 0% 0% 29�4% 97�3% 99�9% 100%
0.6 0�5% 0% 0% 0% 19�6% 85�4% 99% 100%
0.65 0�7% 0% 0% 0% 16�2% 73�3% 97�1% 100%
0.7 1% 0% 0% 0% 12�7% 61�1% 89�8% 99�9%
0.75 1�3% 0�1% 0% 0% 9�7% 45�8% 76�2% 99%
0.8 1�6% 0�1% 0% 0% 7�9% 31�5% 58�2% 92�3%
0.85 2�6% 0�3% 0�2% 0% 6�5% 19�7% 36�5% 73�2%
0.9 3�2% 0�7% 0�5% 0�1% 5�7% 10�4% 19�7% 39�9%
0.95 5�1% 2% 1�5% 0�6% 5�3% 5�1% 8�5% 13�6%
1 6.9% 5% 5.2% 5.5% 5.6% 4.1% 5.2% 5%
1.05 10�1% 10�7% 14% 22�9% 6�5% 6�4% 9�4% 15�3%
1.1 14% 21�5% 29�9% 54�1% 8�4% 12�3% 20�8% 43�2%
1.15 17�7% 33�9% 50�7% 82�8% 11�2% 24% 37�1% 74�4%
1.2 21�5% 47�1% 70�7% 97�1% 14�9% 35�9% 58�7% 93�3%
1.25 25% 62�3% 85�6% 99�6% 19�1% 50�4% 78�1% 99�1%
1.3 30�6% 75�2% 94�7% 100% 22�3% 64�7% 89�9% 100%
1.35 36�4% 86�4% 98�1% 100% 26�2% 77�4% 96�3% 100%
1.4 43�9% 93�4% 99�6% 100% 31�7% 87�6% 98�8% 100%
1.45 49�8% 97�6% 99�9% 100% 37�4% 94% 99�7% 100%
1.5 57�8% 98�8% 100% 100% 45�1% 97�9% 99�9% 100%
2 96�3% 100% 100% 100% 93�8% 100% 100% 100%
2.25 99�3% 100% 100% 100% 98�6% 100% 100% 100%
2.5 99�9% 100% 100% 100% 99�7% 100% 100% 100%
2.75 100% 100% 100% 100% 99�9% 100% 100% 100%
3 100% 100% 100% 100% 100% 100% 100% 100%

aThe point tested is βr = r√
2Π

[
1
0

]
. β1 is on the frontier of B.

As before, we draw 1000 simulations in four sample size experiments:
n =100, 500, 1000, and 2500 with π = ν = 0�9. Table VII displays descriptive
statistics (mean and quartiles) related to the distribution of the estimated sup-
port function at one angle. Table VIII displays the percentage of rejections
for the tests for different points along the x-axis. The line that corresponds to
the frontier point (r = 1) is reported in bold. As before, there is no significant
distortion when using supernumerary instruments in the estimation and test
procedures.
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FIGURE D.2.—Set B, y = 0�x1 + 0�x2 + ε, z = (x1� e2�w).

D.1.3. A Set With Kinks and Faces

In this experiment, the explanatory variable has mass points so that the iden-
tified set has exposed faces. Also its support is discrete so that the identified
set has kinks. The simulated model is

y∗ = 1
2

+ x

8
+ ε�

where x is equal to −1 with probability 1
2 , and to 1 with probability 1

2 , and
where ε is independent of x and is uniformly distributed on [− 1

4 �
1
4 ]. The true

value of β is ( 1
2 �

1
8)

�. As before, we only observe y∗ by intervals (I1 = [0� 1
2 ]

TABLE VII

RESULTS RELATED TO THE ADDITIONAL MONTE CARLO SIMULATIONS IN APPENDIX D.1.2
WITH SUPERNUMERARY INSTRUMENTS FOR THE SET B IN FIGURE D.2a

n Mean Q1 Q2 Q3

100 0.244 0.216 0.242 0.268
500 0.244 0.232 0.244 0.256

1000 0.243 0.234 0.243 0.252
2500 0.243 0.238 0.243 0.248

aSupport function δ(q) for q= (0�1)� . True unknown value 0.243.
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TABLE VIII

PERCENTAGE OF REJECTIONS FOR THE TWO TESTS IN THE EXAMPLE IN APPENDIX D.1.2a

Test 1 Test 2
(H0 :βr ∈ B) (H0 :βr ∈ ∂B)

r n= 100 n= 500 n= 1000 n= 2500 n= 100 n= 500 n= 1000 n= 2500

0 0% 0% 0% 0% 62�1% 100% 100% 100%
0.05 0% 0% 0% 0% 62% 100% 100% 100%
0.1 0% 0% 0% 0% 59�7% 100% 100% 100%
0.2 0% 0% 0% 0% 54% 100% 100% 100%
0.3 0% 0% 0% 0% 45�6% 100% 100% 100%
0.4 0% 0% 0% 0% 34�4% 99�5% 100% 100%
0.5 0�1% 0% 0% 0% 23�2% 96�4% 99�9% 100%
0.6 0�4% 0% 0% 0% 15�7% 83�5% 99�3% 100%
0.7 1% 0% 0% 0% 9�7% 59�1% 87�8% 99�8%
0.8 2�8% 0% 0% 0% 6�4% 28% 52�1% 90�7%
0.85 3�6% 0�3% 0�1% 0% 5�7% 15�6% 32�9% 70%
0.9 4�6% 0�9% 0�5% 0�1% 5�4% 8�9% 15�4% 33�7%
0.92 5�2% 1�5% 0�7% 0�2% 5�3% 6�3% 9�5% 23%
0.94 5�4% 2�1% 1% 0�8% 5�6% 5% 6�1% 14�6%
0.96 5�6% 2�8% 2% 1�3% 5�5% 4�7% 4�6% 7�8%
0.98 6�8% 3�5% 3�2% 3�4% 5�9% 4�4% 4�4% 4�8%
0.99 7�1% 4�4% 4�4% 4�1% 5�8% 4�4% 4�4% 5%
1 7.9% 5.4% 5.9% 5.5% 6.1% 4.8% 3.9% 5.2%
1.01 8�3% 6�3% 7�2% 8�5% 6�3% 4�8% 4�7% 5�6%
1.02 8�5% 7�3% 8�4% 11�5% 6�4% 5% 5�8% 6�7%
1.04 9�7% 9�7% 12�1% 18�7% 6�6% 6% 8% 12�4%
1.06 10�2% 12�9% 16�6% 28�5% 7�3% 7�6% 10�1% 19�5%
1.08 11�3% 17�4% 22�4% 40�4% 7�9% 9�9% 14�3% 28�9%
1.1 12�3% 20�3% 29�3% 55�8% 8�5% 12�7% 20�1% 41�4%
1.2 21�6% 47�5% 70�6% 97�3% 13�8% 35�2% 58�6% 94�3%
1.3 33�6% 75�3% 95�9% 100% 22�9% 64�9% 92�2% 100%
1.4 46�1% 93�3% 99�5% 100% 34�7% 87�5% 98�8% 100%
1.5 60�9% 98�3% 100% 100% 47% 97�2% 100% 100%
1.6 69�6% 99�9% 100% 100% 60�9% 99�6% 100% 100%
1.8 88�5% 100% 100% 100% 81�5% 100% 100% 100%
2.05 97�9% 100% 100% 100% 94�8% 100% 100% 100%
2.3 99�8% 100% 100% 100% 99�3% 100% 100% 100%
2.55 100% 100% 100% 100% 100% 100% 100% 100%
2.8 100% 100% 100% 100% 100% 100% 100% 100%

aThe point tested βr is located on the x-axis. r is the fraction of the distance from the origin with respect to the
distance origin–frontier point on this axis. r = 1 is the frontier point (results in bold), r = 0 to the origin.

and I2 = [ 1
2 �1]). The identified set B2 can be shown to be the convex envelop

of the four points ( 3
4 �

1
8), (

1
2 �

3
8), (

1
4 �

1
8), and ( 1

2 �− 1
8) (see Appendix D.2.3). As

in the previous example, we simulate 1000 draws for four sample sizes: 100,
500, 1000, and 2500. The same conclusions concerning the estimation of the
set remain valid here (see Figure D.3 and Table IX).
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FIGURE D.3.—Set B, y = 1
2 + x

8 + ε, x ∈ {−1�1}.

One feature of this toy example is that, despite the presence of exposed
faces, the additional term τ1(q) in the asymptotic distribution of the support
function (see Proposition 9) vanishes (see Appendix D.2.3) and we can apply
the test procedures developed in the Gaussian case. We focus on the points
belonging to the half-line starting from the central point β∗ = (1/2�1/8) and
parallel to the x-axis. As before, we index the points by r, the fraction of the
distance to the frontier along this axis, and β1 = (3/4�1/8), the frontier point
is now a kink of set B.

Table X displays the rejection rate for the test of the frontier for different
values of r (from 0.01 to 2) at a 5% level test and Table XI reports the results
for the test for the interior. In the columns labeled an = 0, we display results
that ignore that there is a kink, whereas by Proposition 10 we should be us-
ing perturbed programs (an > 0). Surprisingly, for the frontier test, we do not
overreject too much, but we do overreject for the interior test. In the panels

TABLE IX

RESULTS RELATED TO THE ADDITIONAL MONTE CARLO SIMULATIONS IN APPENDIX D.1.2 FOR
THE NONSMOOTH SET SHOWN IN FIGURE D.3a

n Mean Q1 Q2 Q3

100 0.374 0.360 0.375 0.390
500 0.375 0.369 0.375 0.382

1000 0.375 0.371 0.375 0.380
2500 0.375 0.372 0.375 0.378

aSupport function δ(q) for q= (0�1)� . True unknown value 0.375.
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TABLE X

PERCENTAGE OF REJECTIONS FOR THE TEST H0 :βr ∈ ∂B FOR THE NONSMOOTH SET OF
APPENDIX D.1.3

Test With an = 0 Test With an = 0�5
n1/3

r n= 100 n= 500 n= 1000 n= 2500 n= 100 n= 500 n= 1000 n= 2500

0.010 100% 100% 100% 100% 100% 100% 100% 100%
0.050 100% 100% 100% 100% 100% 100% 100% 100%
0.100 99�8% 100% 100% 100% 100% 100% 100% 100%
0.200 100% 100% 100% 100% 100% 100% 100% 100%
0.300 99�8% 100% 100% 100% 99�8% 100% 100% 100%
0.400 98�5% 100% 100% 100% 98�5% 100% 100% 100%
0.500 94�1% 100% 100% 100% 95% 100% 100% 100%
0.600 78�2% 100% 100% 100% 84% 100% 100% 100%
0.700 41�9% 99�8% 100% 100% 61�3% 99�8% 100% 100%
0.800 9�9% 90�9% 100% 100% 29�1% 96�2% 100% 100%
0.850 4�2% 60�6% 94�5% 100% 15�4% 85�7% 99�2% 100%
0.900 1�8% 20% 52�6% 97�7% 7�6% 55�3% 87�3% 99�9%
0.910 1�6% 14�7% 40�4% 92�9% 6�4% 48�3% 79�6% 99�8%
0.920 1�8% 9% 28�5% 84�2% 5�8% 40�1% 70�2% 98�8%
0.930 2�3% 5�6% 18�8% 66�4% 4�8% 30�8% 59�8% 96�2%
0.940 2�3% 3�4% 11% 44�1% 4�3% 23�6% 47% 90�1%
0.950 2�7% 2�1% 6�6% 25�4% 3�9% 17% 33�5% 76�7%
0.960 2�9% 1�7% 3�4% 13�1% 3�7% 11�9% 20�9% 54�4%
0.970 3�3% 1�6% 2�8% 5�5% 3�8% 7�9% 12% 32�1%
0.980 3�8% 2�4% 3�4% 2�4% 3�8% 4�9% 8% 14�9%
0.990 4�9% 3�9% 3�9% 1�9% 4�7% 4�2% 5�3% 6�2%
1.000 6.4% 6.5% 6.4% 4.7% 5.3% 5.2% 5.2% 4.9%
1.010 7�9% 9�3% 11�7% 12�3% 5�7% 7�3% 9�2% 9�2%
1.020 9% 13�1% 19�7% 30�4% 6�4% 9�9% 15�8% 22�6%
1.030 10�1% 16�9% 29�4% 53�2% 7�9% 13�6% 23�6% 44�4%
1.040 12�3% 25�6% 41% 73�5% 9�8% 19�1% 34�8% 67�4%
1.050 14�1% 33�7% 54�3% 88�2% 11�9% 27�8% 48�6% 86�4%
1.060 16�4% 44% 67�4% 95�7% 13�6% 37�8% 62�5% 94�7%
1.070 19�3% 52�9% 80�3% 98�9% 15�7% 46�5% 76�7% 98�7%
1.080 21�8% 63�3% 88�7% 99�5% 18�1% 59�1% 86�8% 99�4%
1.090 24�2% 71% 93�9% 99�9% 21�2% 67�7% 92�2% 99�8%
1.100 27�7% 79�2% 97% 100% 23�6% 76�6% 96% 100%
1.150 48�4% 98�5% 100% 100% 44�6% 98�3% 100% 100%
1.200 68�6% 100% 100% 100% 66% 100% 100% 100%
1.300 95�1% 100% 100% 100% 94�7% 100% 100% 100%
1.400 99�9% 100% 100% 100% 99�8% 100% 100% 100%
1.500 100% 100% 100% 100% 100% 100% 100% 100%
1.600 100% 100% 100% 100% 100% 100% 100% 100%
1.700 100% 100% 100% 100% 100% 100% 100% 100%
1.800 100% 100% 100% 100% 100% 100% 100% 100%
1.900 100% 100% 100% 100% 100% 100% 100% 100%
2.000 100% 100% 100% 100% 100% 100% 100% 100%
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TABLE XI

PERCENTAGE OF REJECTIONS FOR THE TEST H0 :βr ∈ B FOR THE NONSMOOTH SET

Test with an = 0 Test with an = 0�5
n1/3

r n= 100 n= 500 n= 1000 n= 2500 n= 100 n= 500 n= 1000 n= 2500

0.010 0% 0% 0% 0% 0% 0% 0% 0%
0.050 0% 0% 0% 0% 0% 0% 0% 0%
0.100 0% 0% 0% 0% 0% 0% 0% 0%
0.200 0% 0% 0% 0% 0% 0% 0% 0%
0.300 0% 0% 0% 0% 0% 0% 0% 0%
0.400 0% 0% 0% 0% 0% 0% 0% 0%
0.500 0% 0% 0% 0% 0% 0% 0% 0%
0.600 0% 0% 0% 0% 0% 0% 0% 0%
0.700 0% 0% 0% 0% 0% 0% 0% 0%
0.800 0% 0% 0% 0% 0% 0% 0% 0%
0.850 0�5% 0% 0% 0% 0�2% 0% 0% 0%
0.900 1�9% 0�1% 0% 0% 0�9% 0% 0% 0%
0.910 2�0% 0�1% 0% 0% 1�2% 0% 0% 0%
0.920 2�5% 0�3% 0% 0% 1�5% 0�1% 0% 0%
0.930 3�1% 0�3% 0% 0% 2�0% 0�1% 0% 0%
0.940 3�3% 0�4% 0% 0% 2�4% 0�1% 0% 0%
0.950 4�0% 1�1% 0�2% 0% 2�9% 0�6% 0% 0%
0.960 5�5% 1�8% 1�1% 0% 3�8% 0�9% 0�1% 0%
0.970 6�6% 3�3% 2�3% 0�2% 4�8% 1�5% 0�6% 0%
0.980 8�2% 5�1% 3�6% 1�3% 5�6% 2�6% 1�8% 0�3%
0.990 9�1% 7�4% 6�2% 3�3% 6�3% 4�6% 3�3% 1�4%
1.000 10.8% 10.6% 11.7% 9.3% 7.9% 7.6% 7.4% 5.3%
1.010 12�9% 14�3% 20�3% 22�1% 9�5% 10�8% 14�0% 15�4%
1.020 14�8% 21�4% 29�5% 44�7% 11�5% 14�7% 22�6% 34�3%
1.030 16�9% 28�6% 40�9% 65�9% 13�0% 20�9% 33�7% 57�4%
1.040 20�1% 38�2% 53�9% 83�4% 15�9% 30�5% 47�2% 79�0%
1.050 22�5% 48�8% 66�8% 93�2% 18�7% 41�0% 60�6% 91�6%
1.060 25�6% 56�9% 79�7% 97�4% 21�3% 49�3% 74�7% 96�9%
1.070 29�4% 65�9% 88�2% 99�4% 23�7% 61�0% 85�9% 98�9%
1.080 33�1% 74�7% 93�3% 99�8% 28�0% 70% 91�6% 99�7%
1.090 37�6% 81�2% 96�8% 100% 32�5% 78�2% 95�9% 100%
1.100 43�4% 87�0% 98�5% 100% 37�3% 85�0% 98�2% 100%
1.150 61�8% 99�4% 100% 100% 57�7% 99�2% 100% 100%
1.200 81�0% 100% 100% 100% 77�5% 100% 100% 100%
1.300 97�8% 100% 100% 100% 97�6% 100% 100% 100%
1.400 99�9% 100% 100% 100% 99�9% 100% 100% 100%
1.500 100% 100% 100% 100% 100% 100% 100% 100%
1.600 100% 100% 100% 100% 100% 100% 100% 100%
1.700 100% 100% 100% 100% 100% 100% 100% 100%
1.800 100% 100% 100% 100% 100% 100% 100% 100%
1.900 100% 100% 100% 100% 100% 100% 100% 100%
2.000 100% 100% 100% 100% 100% 100% 100% 100%
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labeled an = 0�5
n1/3 , we display the rejection rates using the perturbed program

defined in Proposition 10. Rejection rates are pretty close to the nominal size
for both the frontier test and the interior test. Perturbing the program leads
to quite efficient correction for the presence of kinks except perhaps for very
small sample sizes. Sample size properties can also be improved while estimat-
ing the variance with i.i.d. bootstrap techniques.

D.2. Computations of Appendix D.1

D.2.1. Example in Appendix D.1.1

The simulated model is

y∗ = 0x1 + 0x2 + ε�
We compute δ∗(q|B) using z = x as instruments. As Σ−1 = E(x�x) = I2, we
have

zq = xq= cosθx1 + sinθx2�

wq = y −Δ+ 2Δ1{zq > 0}�
Using (

x1

x2

zq

)
∼ N

([0
0
0

]
�

[ 1 0 cosθ
0 1 sinθ

cosθ sinθ 1

])
�

we obtain

Ex11zq>0 = 1√
2π

cosθ and Ex21zq>0 = 1√
2π

sinθ

and, therefore

δ∗(q|B)=E(zqwq)= 2Δ√
2π
�

The frontier points are

βq =E(x�wq)= 2Δ√
2π

[
cosθ
sinθ

]
�

D.2.2. Example in Appendix D.1.2

The simulated model is

y∗ = 0x1 + 0x2 + ε� x2 = πe2 +
√

1 −π2e3� w= νe3 +
√

1 − ν2e4�
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where (e2� e3� e4) is a standard unit normal vector. It is convenient to define
μ= ν√1 −π2 and a2 = π2 +μ2 = π2 + ν2(1 −π2).

To conform with general notations, let x = (x1�x2) and z = (x1� e2�w). As
there exists one supernumerary restriction, we first evaluate zF and zH as de-
fined in Appendix B. As E(z�z)= I3, we have

E(x�z)=
(

1 0 0
0 π μ

)
�

[E(x�z)E(z�z)−1E(z�x)]−1/2 =
(

1 0
0 a−1

)
�

and

z�
F = [

E(x�z)(E(z�z))−1E(z�x)
]−1/2

E(x�z)E(z�z)−1z�

=
(

x1
πe2 +μw

a

)
�

which is standard unit bivariate normally distributed. Moreover, as

E(z�
F z)=

(1 0 0
0

π

a

μ

a

)
�

the normalized vector (0 μ

a
−π

a
)� belongs to the kernel of this operator

and, consequently, zH = μe2−πw
a

.
To construct BU , we use (zF� zH) and we write

Σ� =
[
E

(
x1

a−1(πe2 +μw)
zH

)
(x1 x2 zH )

]−1

=
(1 0 0

0 a−1 0
0 0 1

)
�

Let q= (q1� q2)
� such that q2

1 + q2
2 = 1 and define

zq�λ = (q�λ)

(
x1

a−2(πe2 +μw)
zH

)

= x1q1 + (a−2(πe2 +μw))q2 + zHλ�
The variance of zq�λ is, therefore,

Vq�λ = q2
1 + q2

2

a2
+ λ2�
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As in the previous example,

wq�λ = y −Δ+ 2Δ1{zq�λ > 0}�
The covariances of zq�λ with the variables of interest are

E(zq�λx1)= q1�E
(
zq�λ(a

−1(πe2 +μw)))
= a−1q2�E(zq�λzH)= λ�

so that, for instance,

Ex11zq�λ>0 = 1√
2π

q1√
Vq�λ

�

using the normality assumptions. Consequently, a closed-form expression for
δ∗(q�λ|BU) is

δ∗(q�λ|BU)= 2Δ√
2π

√
q2

1 + q2
2

a2
+ λ2�

This function is minimized when λ= 0 and BU is an ellipsoid orthogonal to the
hyperplane γ = 0. Its projection on the hyperplane is also an ellipse and the
identified set is an ellipse:

δ∗(q|B)= 2Δ√
2π

√
q2

1 + q2
2

a2
�

D.2.3. Example in Appendix D.1.3

The simulated model is

y∗ = 1
2

+ x

8
+ ε

and variable z ≡ (1�x1)
� denotes the instruments. As Σ= (E(z�z))−1 = I2, we

can derive the variables of interest

zq = zΣq= cosθ+ x sinθ�

wq = y + 1
2

1{zq > 0}�

y = 1
2

1{y∗ ≥ 0�5}�
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As E(y)= 1
4 and E(xy)= 1

8 , we can derive the frontier points

βq = ΣE(z�wq)= E(z�y)+ 1
2
E(z�1{zq > 0})

=
⎡
⎢⎣

1
4
1
8

⎤
⎥⎦+

⎡
⎢⎣

1
2
E(1{zq > 0})

1
2
E(x11{zq > 0})

⎤
⎥⎦ �

Let θ0 = π/4. For θ between −θ0 and θ0, zq is always positive regardless of
the value of x:

E1{zq > 0} = 1�

Ex1{zq > 0} = 0�

and βq = [ 3
4 ; 1

8 ]�.
For θ between θ0 and −θ0 + π, zq is negative when x = −1; otherwise it is

positive:

E1{zq > 0} = 1
2
�

Ex1{zq > 0} = 1
2
�

and βq = [ 1
2 ; 3

8 ]�.
We similarly obtain βq = [ 1

4 ; 1
8 ]� when θ is between θ0 +π, and obtain θ0 +π

and βq = [ 1
2 ;− 1

8 ]� for θ between θ0 −π and −θ0.
The term τ1(q) defined in Proposition 9 is equal to zero when P(zq = 0)=

0, that is, when θ �= (2k+1)Π
4 . When θ = Π/4, zq = 0 when x = −1, which

occurs with probability 1/2. However, the term q�(Σ̂n − Σ)z� is equal to
1√
2
(1 + x) 1

n

∑n

i=1 xi, which is equal to zero when x = −1. The additional term
in the asymptotic distribution τ1(q) is therefore equal to zero. The proof is
similar for other values of θ.

D.3. Proof of Proposition 8

We denote by M a generic majorizing constant. The estimate of the support
function is

1
n

n∑
i=1

zn�qiwn�qi = 1
n

n∑
i=1

fθ̂n(zi� yi� yi)�

where θ̂n = (q� Σ̂n). First, under the conditions of Proposition 8, the class F =
{fθ;θ ∈ Θ} is a Glivenko–Cantelli class. By construction of the estimate Σ̂n
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(see Appendix C.1 above), θ̂n belongs to Θ. It is thus immediate that, for every
sequence of functions fθ̂n ∈ F and uniformly in q ∈ S, we have∣∣∣∣∣1

n

n∑
i=1

fθ̂n(zi� yi� yi)−E(fθ̂n(zi� yi� yi))
∣∣∣∣∣ a�s�→
n→∞

0�(D.1)

Second, as matrix Σ is estimated by its almost surely consistent empirical
analog Σ̂n,

lim
n→∞

Pr
(

sup
n>N

‖Σ̂n −Σ‖ ≥ ε
)

= 0�

we have

lim
n→∞

Pr
(

sup
n>N

sup
q∈S

‖θ̂n − θ‖ ≥ ε
)

= 0�

Use equation (C.5),

|fθ̂n(zi� yi� yi)− fθ(zi� y
i
� yi)| = |zn�qiwn�qi − zqiwqi|

≤ max(‖z�
i yi‖�‖z�

i yi‖)M‖θ̂n − θ‖�
to conclude that, uniformly over q ∈ S, we have

|fθ̂n(zi� yi� yi)− fθ(zi� y
i
� yi)| a�s�→

n→∞
0�(D.2)

To finish the proof, notice that the sequence fθ̂n(zi� yi� yi) is uniformly
bounded for q ∈ S, because, by majorization and triangular inequality, we have

fθ̂n(zi� yi� yi)= |zn�qiwn�qi| ≤ ‖q�Σ�
n ‖(‖z�

i yi‖ + ‖z�
i yi‖)

= ‖Σn‖(‖z�
i yi‖ + ‖z�

i yi‖)
since ‖q‖ = 1. Therefore, as ‖Σn‖ ≤M ,

sup
q∈S

|fθ̂n(zi� yi� yi)| ≤M(‖z�
i yi‖ + ‖z�

i yi‖)�

As zi, y , and y
i

are in L2 (Assumption R.2), it implies that

E sup
q∈S

|fθ̂n(zi� yi� yi)| ≤M <+∞�

Thus, equation (D.2) implies that, by the dominated convergence theorem,
uniformly over q,

E|fθ̂n(zi� yi� yi)− fθ(zi� y
i
� yi)| a�s�→

n→∞
0�
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From the latter equation, equation (D.1), and the triangular inequality, we thus
conclude that, uniformly for q ∈ S,

1
n

n∑
i=1

zn�qiwn�qi
a�s�→
n→∞

E(zqiwqi)�
Q.E.D.

D.4. Construction of the Confidence Region in Proposition 11

As before, for simplicity of exposition, we focus on the case whereB is strictly
convex and smooth. We here provide a simple way to construct CInα when α <
1/2; that is,

CInα =
{
β;

√
n√
V̂qn

(Tn(qn;β)) > Nα

}
�

where

Tn(q;β)= (δ̂∗
n(q|B)− q�β)

and where qn is any sequence of local minimizers of Tn(q;β) over the unit
sphere (and therefore depends on β). Therefore, the confidence region is also

given by CInα = {β;minq∈S(Tn(q;β)) >
√
V̂qn√
n

Nα}.
The estimated set B̂n is included in CInα as Nα < 0 for any α< 1/2 and as for

all β belonging to the estimated set B̂n,

min
q∈S

(δ̂∗
n(q|B)− q�β)≥ 0�

Consider any point βf ∈ ∂B̂n ⊂ CInα, the frontier of the estimated set B̂n.
There exists at least one, and possibly a set (which is the intersection of a cone
and S) denoted C(βf ), of vectors qf ∈ S such that

Tn(qf ;βf)= δ̂∗
n(qf |B)− q�

f βf = 0�

∀q ∈ Sp� Tn(q;βf )≥ Tn(qf ;βf)= 0�

Choose such a qf and consider the points βf(λ), where λ≥ 0� on the half-line
defined by βf and direction qf :

βf(λ)= βf + λqf �
We have

Tn(q;βf (λ))= Tn(q;βf )+ q�(βf −βf(λ))
= Tn(q;βf )− λq�qf �
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where −λq�qf ≥ −λq�
f qf = −λ and Tn(q;βf ) ≥ Tn(qf ;βf) = 0 for any q, as

seen above. As a consequence,

Tn(q;βf (λ))≥ −λ= Tn(qf ;βf(λ))�
where vector qf , which minimizes Tn(q;βf ), also minimizes Tn(q;βf(λ)).

We can therefore characterize the points of the half-line that belongs to CInα.
Given that λ is positive,

βf(λ) ∈ CInα if and only if λ≤ −
√
V̂qf√
n

Nα�

so that segment (βf �βf −
√
V̂qf√
n

Nαqf ] is included in CInα. We thus have proved
that

B̂n ∪
{ ⋃
βf ∈∂Bn

⋃
qf ∈C(βf )

(
βf �βf −

√
V̂qf√
n

Nαqf

)}
⊂ CInα�(D.3)

where C(βf ) is the cone defined above.
Conversely, let us prove that CInα is included in the set on the left-hand side

(LHS). Let βc be a point in CInα. If βc belongs to B̂n, the inclusion is proved.
Assume that βc is outside the estimated set and let βf be the point on the fron-
tier of B̂n that is the projection of βc on B̂n. The projection is unique because
set B̂ is convex.

Write βc −βf = λqf for some direction qf ∈ S and some λ > 0. We have that

q�
f (βc −βf)≤ q�

f (βc −β)

for any β ∈ B̂n because βf is the projection of βc on set B̂n along the direction
qf . We thus have q�

f βf ≥ q�
f β, which proves that δ̂∗

n(qf | B) = q�
f βf . The pair

(βf �qf ) satisfies the condition of the previous paragraphs.
As βc is a point of CInα, then λ is necessarily less than or equal to the value

−
√
V̂qf√
n

Nα. Thus it belongs to the LHS of equation (D.3). As a consequence,
equation (D.3) is an equality. Q.E.D.

D.5. Behavior of ξn(β) When the Set Is a Singleton

When B = {β0}, it means that wq is constant and equal to ye (either y or y).
Consequently, β0 = E(z�x)−1E(z�ye). Let βn be the point where the previous
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expectations are replaced by their empirical counterparts: δ̂∗
n = q�βn. A central

limit theorem can therefore be applied to βn,
√
n(βn −β0) −→

n→+∞
N(0� V )�

where V is some positive definite matrix.
If we test a point β �= β0, then ξn(β) tends to −∞ (q0 is in this case β−β0

‖β−β0‖ ).
When β= β0,

Tn(q;β0)= (δ̂n(q)− q�β0)

= q�(βn −β0)�

In this case, qn = − βn−β0
‖βn−β0‖ and Tn(qn;β0)= −‖βn −β0‖.

After standardization,

ξn(β0)= −‖u‖�
where u tends asymptotically toward a standard normal distribution. If we use
the usual critical values to construct the confidence region, that is, Nα, the
probability that ξn(β0) is greater than this value is not 1 − α, but 1 − 2α.

D.6. Uniform Confidence Regions

Starting from the end of Appendix B.1, the width of set B for direction q is
equal to

Δ(q)= δ∗(q | B)+ δ∗(−q | B)=E(|zqi|(ȳi − yi))�
As by assumption, ȳi− yi > 0 and Pr(zqi = 0) < 1 because of the rank condition
in Assumption R.2, the limit point Δ = 0 is outside the range of data that we
consider.

Its empirical counterpart is

Δ̂n(q)=
(

1
n

n∑
i=1

|zn�qi|(ȳi − y
i
)

)
�

Therefore, if we extend our setting to include the case Δ= 0 because |zqi|(ȳi −
yi)= 0 almost surely zi, we have

Pr(Δ̂n(q)= 0 | Δ(q)= 0)= 1�

so that trivially

√
n(Δ̂n(q)−Δ(q)) P−→

n→∞�Δ(q)=0
0�
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More generally, consider a sequence of experiments indexed by ε ↓ 0 such
that Pr(|zqi|(ȳi − yi) < ε) = 1 and Pr(|zqi|(ȳi − yi) > ε/2) > 0. Therefore,
Δ(q)=E(|zqi|(ȳi − yi)) and ε go to zero at the same rate.

We have

√
n(Δ̂n(q)−Δ(q))= √

n

(
1
n

n∑
i=1

|zn�qi|(ȳi − y
i
)−E(|zqi|(ȳi − y

i
))

)
�

which has a variance approximately equal to V (|zqi|(ȳi − y
i
)) which is bounded

by a term OP(ε
2) and, therefore, OP(Δ2). We thus have

√
n|Δ̂n(q)−Δ(q)| ≤OP(Δ(q))�

The next proposition provides an extension of Lemma 4 of Imbens and Man-
ski (2004) in the multivariate case for constructing a uniform confidence re-
gion.

PROPOSITION 19: Let

σ̂q =
√
V̂q =

√
q�Σ̂nV̂ (z�εq)Σ̂nq�

A confidence interval, in direction q, of asymptotic level equal to 1 − α is
defined by the collection of the points such that ξ(β)≥ Ñ q

α , where Ñ q
α satisfies

the equation

�

(
Ñ q
α + √

n
Δ̂n(q)

σ̂q

)
−�(−Ñ q

α )= α�

The overall confidence region C̃Inα, which is the union of the previous sets, is
then characterized by

lim
n→+∞

inf
β∈B�P∈P

Pr(β ∈ C̃Inα)= 1 − α�

in which P is the set of probability distributions that satisfy the condition

P = {P(ȳi� y
i
� zi) such that ∀q;Pr(zqi = 0)= 0 and Assumption R}�
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