
Online Appendix for “Improving the Numerical Performance of

BLP Static and Dynamic Discrete Choice Random Coefficients

Demand Estimation”

Jean-Pierre Dubé, Jeremy T. Fox, Che-Lin Su

December 2011

1 Implementation Details for MPEC and NFP

In this section, we discuss the implementation details for MPEC and NFP applied to the BLP demand
estimation problem. In order for a gradient-based solver to perform effectively, researchers need to provide
the first-order and second-order closed form derivatives along with their respective sparsity patterns. Without
this additional information, both MPEC and NFP may fail to converge or may require considerably more
iterations (and hence more computation time) to find a solution to the optimization problem. We provide
derivatives and sparsity patterns in our publicly available MATLAB code. Below, we provide formulas for
the derivatives and sparsity patterns. We also use specific numerical examples to explore the implications of
derivatives and sparsity patterns for the performance of the optimization algorithms.

1.1 Supplying First- and Second-Order Derivatives and Their Sparsity Pattens

In principle, the KNITRO solver, the one we use, can perform MPEC or NFP with only the first-order
derivatives. Supplying the second-order closed form derivatives increases the accuracy of the search direction
and decreases the number of iterations needed to find a solution. Therefore, for large-dimensional problems
or for problems with a large number of simulation draws to evaluate the share equations, supplying the
second-order closed form derivatives and the Hessian to the solver leads to substantial speed improvements.
Supplying second-order closed form derivatives can also lead to large speed improvements for NFP. We
have seen examples where providing the second-order closed form derivatives to KNITRO decreases NFP’s
computational time by 80% or more. Consequently, second-order derivatives can reduce the computation
time for NFP applied to large-dimensional demand estimation problems from a matter of days to a matter
of hours; see the example with 250 markets, 25 products, and 3000 draws reported in Table 6 in the paper.

A naive implementation of MPEC could lead some researchers to conclude that it cannot handle large-
dimensional problems with many variables and many constraints. However, the BLP demand estimation
problem is typically very sparse. Most state-of-the-art solvers (e.g. KNITRO) are able to exploit the sparsity
structure of an optimization problem, reducing the amount of memory required. Thus, supplying the sparsity
pattern of the constraint Jacobian and the Hessian decreases the memory required and enables the solver
to manage problems with a large number of variables and constraints. We have successfully implemented
MPEC for problems with 12,552 variables and 12,542 constraints and observed it to perform 26 times faster
than NFP.

1

Some researchers may incorrectly conclude that supplying the sparsity pattern of the Hessian is not
important for the NFP algorithm because its outer-loop involves a small number of parameters. However, as
we show below, computing the gradient and the Hessian for NFP requires the inverse of the matrix

�
∂s(ξ;θ)

∂ξ

�
.

When the numbers of markets and products are large, the inverse matrix
�
∂s(ξ;θ)

∂ξ

�−1
term needed to evaluate

the gradient and the Hessian can become computationally prohibitive unless the sparsity structure of the
matrix

�
∂s(ξ;θ)

∂ξ

�
is provided.

1.2 Formulae for the Gradients and Hessians of NFP and MPEC

We derive the gradients and Hessians of NFP and MPEC respectively applied to the normal random coeffi-
cients logit demand system used in BLP (1995) and many other empirical papers. To simplify the notation,
we denote the market share equation for product j in market t as

sj (ξt; θ) =
´ exp(x�

j,tβ−ᾱpj,t+ξj,t+
�

k xj,t,kνkσβk
−pj,tνK+1σα)

1+
�J

i=1 exp(x�
i,tβ−ᾱpi,t+ξi,t+

�
k xi,t,kνkσβk

−pi,tνK+1σα)
dF (ν)

=
´

Tj(ξt, ν; θ)dF (ν) ,

where θ = (β, α, σβ , σα)
�, and ν ∼ N(0, IK+1).

1.2.1 Derivatives of MPEC

The MPEC formulation is

min
(θ,ξ,g)

g�Wg

subject to s(ξ; θ) = S,

g = Z �ξ.

The Lagrangian for MPEC is

L(θ, ξ, g, λsλg) = g�Wg + λ�
s(s(ξ; θ)− S) + λ�

g(g − Z �ξ).

The gradient of the MPEC objective function is

∇(θ,ξ,g)g
�Wg =




0
0

2Wg



 .

The constraint Jacobian for MPEC is
� ∂s

∂θ
∂s
∂ξ 0

0 −Z � Ig

�
,

where the components of the constraint Jacobian are as follows:

∂sj(ξt; θ)

∂βk

=

ˆ
Tj(ξt, ν; θ)(xj,t,k −

�

i

Ti(ξt, ν; θ)xi,t,k)dF (ν)

∂sj(ξt; θ)

∂α
=

ˆ
Tj(ξt, ν; θ)(pj,t −

�

i

Ti(ξt, ν; θ)pi,t)dF (ν)

2

∂sj(ξt; θ)

∂σβk

=

ˆ
Tj(ξt, ν; θ)(xj,t,k −

�

i

Ti(ξt, ν; θ)xi,t,k)νkdF (ν)

∂sj(ξt; θ)

∂σα
=

ˆ
Tj(ξt, ν; θ)(pj,t −

�

i

Ti(ξt, ν; θ)pi,t)νK+1dF (ν)

∂sj(ξt; θ)

∂ξj,t
=

ˆ
Tj(ξt, ν; θ)(1− Tj(ξt, ν; θ))dF (ν)

∂sj(ξt; θ)

∂ξi,t
= −

ˆ
Tj(ξt, ν; θ))Ti(ξt, ν; θ))dF (ν) ,

and
Ig is an identity matrix.

The Hessian of the Lagrangian is

∇2L(θ, ξ, g, λsλg) = ∇2(g�Wg) +
J×T�

j=1

λsj∇2sj(ξ, θ) =





∂2L
∂θ2

∂2L
∂θ∂ξ 0

∂2L
∂ξ∂θ

∂2L
∂ξ2 0

0 0 ∂2L
∂g2



 ,

where

∂2L
∂θ2

=
J∗T�

j=1

λsj
∂2sj(ξ, θ)

∂θ2

∂2L
∂θ∂ξ

=
J∗T�

j=1

λsj
∂2sj(ξ, θ)

∂θ∂ξ

∂2L
∂ξ2

=
J∗T�

j=1

λsj
∂2sj(ξ, θ)

∂ξ2

∂2L
∂g2

= 2W,

and

∂2sj(ξt; θ)

∂ξ2jt
=

ˆ
Tj(ξt, ν; θ)(1− Tj(ξt, ν; θ))(1− 2Tj(ξt, ν; θ))dF (ν),

∂2sj(ξt; θ)

∂ξjt∂ξit
= −

ˆ
Tj(ξt, ν; θ)Ti(ξt, ν; θ)(1− 2Tj(ξt, ν; θ))dF (ν),

∂2si(ξt; θ)

∂ξjt∂ξit
= −

ˆ
Tj(ξt, ν; θ)Ti(ξt, ν; θ)(1− 2Ti(ξt, ν; θ))dF (ν),

∂2sj(ξt; θ)

∂ξ2it
= −

ˆ
Tj(ξt, ν; θ)Ti(ξt, ν; θ)(1− 2Ti(ξt, ν; θ))dF (ν),

∂2sj(ξt; θ)

∂ξit∂ξkt
=

ˆ
Tj(ξt, ν; θ)(T (ξt, ν; θ)(2Tk(ξt, ν; θ))dF (ν),

∂2sj(ξt; θ)

∂σ2
βk

=

ˆ
Tj(ξt, ν; θ)(xj,t,k −

J�

i=1

Ti(ξt, ν; θ)xi,t,k)
2ν2kdF (ν)

+

ˆ
Tj(ξt, ν; θ)

�
−

J�

i=1

�
Ti(ξt, ν; θ)

�
xi,t,k −

J�

l=1

Tl(ξt, ν; θ)xl,t,k

�
νk

�
xi,t,k

�
νkdF (ν)

3

(a) Sparsity Pattern of the Jacobian (b) Sparsity Pattern of the Hessian

Figure 1: Sparsity Patterns of the Jacobian and the Hessian

∂2sj(ξt; θ)

∂σβk∂σβm

=

ˆ
Tj(ξt, ν; θ)(xj,t,m −

J�

i=1

Ti(ξt, ν; θ)xi,t,m)νm(xj,t,k −
J�

i=1

Ti(ξt, ν; θ)xi,t,k)νkdF (ν)

+

ˆ
Tj(ξt, ν; θ)

�
−

J�

i=1

�
Ti(ξt, ν; θ)

�
xi,t,m −

J�

l=1

Tl(ξt, ν; θ)xl,t,m

�
νm

�
xi,t,k

�
νkdF (ν)

∂2sj(ξt; θ)

∂σβk∂ξjt
=

ˆ
Tj(ξt, ν; θ)(1− 2Tj(ξt, ν; θ))(xj,t,k −

J�

i=1

Ti(ξt, ν; θ)xi,t,k)νkdF (ν)

∂2sj(ξt; θ)

∂σβk∂ξit
=

ˆ
Tj(ξt, ν; θ)(xj,t,k + xi,t,k − 2

J�

l=1

Tl(ξt, ν; θ)xl,t,k)νkdF (ν) .

We now discuss the sparsity structure of the Jacobian and Hessian in MPEC. In BLP demand estimation
problems, markets are assumed not to exhibit any unobserved interdependence. Consequently, the unob-
served demand shocks in one market do not appear in the share equations of other markets. This feature
leads to a sparse Jacobian and Hessian in the MPEC formulation. Let n(y) denote the number of elements
in the vector y. Recall that T and J are the number of markets and products, respectively, and hence
n(ξ) = T × J . The size of the Jacobian matrix is (n(ξ) + n(g)) × (n(θ) + n(ξ) + n(g)). The number of
nonzero elements in the Jacobian is around (n(θ)+n(g))×n(ξ)+T ×J2. Since n(ξ) is typically much larger
than n(θ)+n(g), the density of the Jacobian matrix (defined as the ratio of the number of nonzero elements
and the number of total elements) is in the order of 1

T . For the Hessian, the total number of elements is
(n(θ) + n(ξ) + n(g))2, and the number of nonzero elements is around 2 × n(θ) × n(ξ) + T × J2 + n(g)2.
The density of the Hessian is also in the order of 1

T . We illustrate graphically the sparsity patterns of the
constraint Jacobian and the Hessian for T = 50 markets and J = 25 products in Figure 1a below. The
y-axis indicates the position of rows, the x-axis indicates the position of columns, and the cells in blue color
indicate the location of nonzero elements. nz is the number of nonzero elements in the matrix.

4

1.2.2 Derivatives of NFP

The NFP formulation is
min
θ

Q(ξ(θ)) = ξ(θ)�ZWZ �ξ(θ),

where ξ(θ) = s−1(S, θ). By the implicit function theorem, we have

dξ(θ)

dθ
= −

�
∂s(ξ; θ)

∂ξ

�−1 ∂s(ξ; θ)

∂θ
.

The gradient of NFP is

∇θQ(θ) =
dξ(θ)

dθ

�
dQ(ξ(θ))

dξ
= −2

∂s(ξ; θ)
�

∂θ

�
∂s(ξ; θ)

�

∂ξ

�−1
dQ(ξ(θ))

dξ
.

The Hessian of NFP is

∇2
θQ(θ) =

�
d2Q(θ)

dθkdθm

�
,

where

d2Q(ξ(θ))

dθkdθm
= − d

dθ

�
∂s(ξ; θ)

�

∂θ

��
∂s

�

∂ξ

�−1
dQ(ξ(θ))

dξ

−∂s(ξ; θ)
�

∂θ

d

dθ




�
∂s(ξ; θ)

�

∂ξ

�−1


 dQ(ξ(θ))

dξ

−∂s(ξ; θ)
�

∂θ

�
∂s(ξ; θ)

�

∂ξ

�−1
d

dθ

�
dQ(ξ(θ))

dξ

�

= −
�

∂2s

∂θk∂θm
− ∂2s

∂θk∂ξ

�
∂s

∂ξ

�−1 ∂s

∂θm

�� �
∂s

�

∂ξ

�−1
dQ(ξ(θ))

dξ

+
∂s

�

∂θk

�
∂s

�

∂ξ

�−1


 ∂2s

∂ξ∂θm
+

JT�

j=1

�
dξ

dθm

�

j

∂2s

∂ξ∂ξj





� �
∂s

�

∂ξ

�−1
dQ(ξ(θ))

dξ

+
∂s

�

∂θk

�
∂s

�

∂ξ

�−1
d2Q(ξ(θ))

dξ2

�
∂s

∂ξ

�−1 ∂s

∂θm

= − ∂2s
�

∂θk∂θm

�
∂s

�

∂ξ

�−1
dQ(ξ(θ))

dξ

+
∂s

�

∂θm

�
∂s

�

∂ξ

�−1
∂2s

�

∂θk∂ξ

�
∂s

�

∂ξ

�−1
dQ(ξ(θ))

dξ

+
∂s

�

∂θk

�
∂s

�

∂ξ

�−1
∂2s

�

∂ξ∂θm

�
∂s

�

∂ξ

�−1
dQ(ξ(θ))

dξ

− ∂s
�

∂θk

�
∂s

�

∂ξ

�−1
∂2s

�

∂ξ∂ξj

�
∂s

�

∂ξ

�−1
dQ(ξ(θ))

dξ

�
∂s

∂ξ

�−1 ∂s

∂θm

+
∂s

�

∂θk

�
∂s

�

∂ξ

�−1
d2Q(ξ(θ))

dξ2

�
∂s

∂ξ

�−1 ∂s

∂θm
.

5

Computing the gradient and the Hessian for NFP requires the evaluation of the terms
�
∂s(ξ;θ)

∂ξ

�−1
∂s(ξ;θ)

∂θ

and
�
∂s(ξ;θ)�

∂ξ

�−1
∂Q(ξ(θ))

∂ξ . When the number of markets and products are large, calculating
�
∂s(ξ;θ)

∂ξ

�−1
∂s(ξ;θ)

∂θ

and
�
∂s(ξ;θ)�

∂ξ

�−1
∂Q(ξ(θ))

∂ξ can become computationally prohibitive unless the sparsity structure of the matrix
�
∂s(ξ;θ)

∂ξ

�
is provided.

1.3 A Numerical Example

In this section, we investigate the implications of supplying different levels of derivative information for the
computational times of NFP and MPEC. We begin with a simple demand estimation example consisting of
a single simulated dataset with 50 markets, 25 products and 1000 simulation draws. The demand parameter
values are the same as those used in the paper. We compare the performance of NFP and MPEC using the
KNITRO solver in two different implementations.

In the first implementation, we provide KNITRO only with first-order derivatives. For MPEC, we also
provide the sparsity pattern of the constraint Jacobian. In the second implementation, we supply KNITRO
with both first-order and second-order derivatives. For MPEC, we also provide the sparsity patterns of the
constraint Jacobian and the Hessian. For each implementation, we use five different starting values for the
parameter search.

We report the numerical results in Table 1. For NFP, the computational time required for the imple-
mentation with both first- and second-order derivatives is only around 30% of the time required for the
implementation with only first-order derivatives. The provision of the second-order derivatives reduces the
numbers of iterations, function/gradient evaluations, and even contraction mapping iterations required for
solving the estimation problem. In turn, the second-order derivatives reduce the overall computational time.
MPEC exhibits a similar computational time improvement, with the implementation using both first- and
second-order derivatives requiring only 30% of the time needed for the implementation with only first-order
derivatives. When the second-order derivatives are provided, the solver does not need to approximate the
Hessian with the gradient information. As a result, the number of gradient evaluations needed for estimating
the model is reduced dramatically, reducing the overall computational time.

As we discussed above, for MPEC to solve demand estimation problems with a few thousand market-
product pairs, the researcher needs to provide the sparsity patterns of the constraint Jacobian and the
Hessian. In our experiment using 2,000 markets and 15 products, both NFP and MPEC ran out of memory
on a computer with 12 GB of RAM when sparsity information was not supplied. However, when sparsity
information was supplied, MPEC was able to solve examples with 2,000 markets and products using only
500 MB RAM.

Table 1: Numerical Results for Supplying Different Levels of Derivative Information

Algorithm Derivatives CPU Time Major Function Gradient Contraction
(min.) Iterations Evaluations Evaluations Iterations

NFP 1st order 261 105 202 110 392,701
1st and 2nd order 83 48 72 53 137,629

MPEC 1st order 49 125 163 1256
1st and 2nd order 14 102 145 107

The results are based on one dataset and five starting values for each case. The mean intercept is 2. MPEC and NFP produce
the same lowest objective value. See the footnote to Table 3 in the main text for other details.

6

2 KNITRO Outputs for MPEC and NFP

In comparing the relative performance of different computational algorithms (e.g. NFP and MPEC), one
should consider the computational burden associated with function evaluations. In this section, we provide
sample KNITRO output for MPEC and NFP to illustrate the potential computational time cost associated
with the evaluation of the functions (objective and constraints) and their derivatives. We intentionally focus
on an example embodying a large-dimensional optimization problem. We use the Monte Carlo experiment
reported in section 7 of the paper, with a dataset consisting of 500 markets, 25 products, and 1000 simulation
draws. For MPEC, there are 12,552 variables and 12,542 constraints, which suggests that the number of
elements in the constraint Jacobian and the Hessian are 157,427,184 (= 15, 452× 15, 552)=and 157,552,794
(= 15, 552 × 15, 552), respectively. However, the number of nonzero elements in Jacobian and Hessian are
much smaller: 900,252 for the Jacobian and 225,918 for the Hessian. The Jacobian and the Hessian are
highly sparse, with densities of 0.5% for the Jacobian and 0.14% for the Hessian. By supplying the sparsity
patterns of the Jacobian and the Hessian, the solver does not need to store the full Jacobian and Hessian
matrices in memory and, hence, can use sparse numerical linear algebra routines in the iteration process.

For this example, the computational times for NFP and MPEC are 26,854 CPU seconds and 1,010 CPU
seconds, respectively. A striking feature of the output for both MPEC and NFP is the fact that the majority of
the computational time is spent on evaluating the functions and their derivatives. For MPEC, around 97% of
the total computational time is spent on evaluating the objective function, the constraints (share equations),
and their gradients and Hessians; only 3% of the 1,009 seconds is used for solving the optimization problem.
For NFP, almost all (99.99%) of the total computational time is spent on evaluating the GMM objective
function and its gradient and Hessian; less than 1 second is spent on solving the optimization problem.
The output also shows that NFP needs fewer iterations and fewer evaluations of the objective function,
the gradient and the Hessian in comparison with MPEC. However, NFP needs around 50,000 contraction
mapping iterations in the solution process, which amounts to evaluating the share equations 50,000 times
(while MPEC needs to evaluate the share equations only 26 times). In summary, when comparing different
computational methods, one should take into account the time and effort needed to evaluate functions and
their derivatives. In this example, despite the high dimension optimization problem, MPEC still turns out
to be computationally lighter, and hence faster than NFP due to the number of function evaluations.

7

KNITRO output for MPEC

======================================
KNITRO 6.0.1
======================================
algorithm: 1
maxit: 100
Problem Characteristics

Objective goal: Minimize
Number of variables: 12552
Number of constraints: 12542
Number of nonzeros in Jacobian: 900252
Number of nonzeros in Hessian: 225918
Iter Objective FeasError OptError ||Step|| CGits
-------- -------------- ---------- ---------- ---------- -------
0 1.676037e+03 2.555e-05
1 3.913200e+02 5.336e-02 1.647e+03 3.708e+04 0
2 5.582143e+01 4.518e-02 5.407e+02 3.179e+04 0
3 5.490694e+01 6.111e-02 7.338e+02 9.727e+03 0
4 5.798389e+01 4.086e-02 2.650e-02 8.044e+02 18
5 4.232980e+01 5.781e-02 3.982e-02 5.688e+02 1
6 2.163262e+01 1.063e-02 4.623e+02 6.109e+03 0
7 2.103637e+01 2.238e-02 1.775e+02 6.327e+03 0
8 2.294612e+01 1.665e-02 1.652e-02 3.670e+02 9
9 1.928737e+01 2.025e-02 3.636e+00 6.691e+02 0
10 1.846350e+01 3.030e-03 6.082e+00 2.021e+03 0
11 1.829924e+01 1.249e-03 1.957e+00 1.332e+03 0
12 1.835531e+01 1.009e-05 1.301e-01 1.984e+02 0
13 1.835618e+01 2.535e-08 7.653e-05 7.147e+00 0
14 1.835618e+01 1.569e-14 1.000e-08 7.046e-03 0
EXIT: Locally optimal solution found.
Final Statistics

Final objective value = 1.83561823632553e+01
Final feasibility error (abs / rel) = 1.57e-14 / 1.57e-14
Final optimality error (abs / rel) = 1.00e-08 / 1.00e-08
of iterations = 14
of CG iterations = 28
of function evaluations = 26
of gradient evaluations = 15
of Hessian evaluations = 14
Total program time (secs) = 1008.97015 (1010.558 CPU time)
Time spent in evaluations (secs) = 982.10559
===

8

KNITRO output for NFP

======================================
KNITRO 6.0.1
Ziena Optimization, Inc.
======================================
algorithm: 1
maxit: 100
Problem Characteristics

Objective goal: Minimize
Number of variables: 5
Number of constraints: 0
Number of nonzeros in Jacobian: 0
Number of nonzeros in Hessian: 15
Iter Objective FeasError OptError ||Step|| CGits
-------- -------------- ---------- ---------- ---------- -------
0 1.675984e+03 0.000e+00
1 7.598950e+02 0.000e+00 3.045e+01 8.941e-01 3
2 1.222743e+02 0.000e+00 3.258e+01 5.827e-01 0
3 2.846721e+01 0.000e+00 7.568e+00 1.314e-01 0
4 1.938900e+01 0.000e+00 1.233e+00 1.589e-01 0
5 1.840068e+01 0.000e+00 3.342e-01 1.952e-01 0
6 1.835634e+01 0.000e+00 1.483e-02 4.430e-02 0
7 1.835618e+01 0.000e+00 6.258e-05 2.657e-03 0
8 1.835618e+01 0.000e+00 9.762e-07 8.256e-06 0
EXIT: Locally optimal solution found.
Final Statistics

Final objective value = 1.83561823709107e+01
Final feasibility error (abs / rel) = 0.00e+00 / 0.00e+00
Final optimality error (abs / rel) = 9.76e-07 / 9.76e-07
of iterations = 8
of CG iterations = 3
of function evaluations = 9
of gradient evaluations = 9
of Hessian evaluations = 8
Total program time (secs) = 26781.08008 (26854.102 CPU time)
Time spent in evaluations (secs) = 26780.39648
===

9

3 Extension: Maximum Likelihood Estimation

In this section, we outline how a researcher would adapt static MPEC to a likelihood-based estimation of
random-coefficients-logit demand. Some researchers prefer to work with likelihood-based estimators and,
more specifically, with Bayesian MCMC estimators (Yang et al 2003 and Jiang et al 2008) based on the
joint density of observed prices and market shares.1 Besides efficiency advantages, the ability to evaluate
the likelihood of the data could be useful for testing purposes. The trade-off relative to GMM is the need
for additional modeling structure which, if incorrect, could lead to biased parameter estimates. Like GMM,
the calculation of the density of market shares still requires inverting the system of market share equations.
Once again, MPEC can be used to circumvent the need for inverting the shares, thereby offsetting a layer
of computational complexity and a potential source of numerical error. Below we outline the estimation of
a limited information approach that models the data-generating process for prices in a “reduced form” (this
motivation is informal as we do not specify a supply-side model and solve for a reduced form). However,
one can easily adapt the estimator to accommodate a structural (full-information) approach that models the
data-generating process for supply-side variables, namely prices, as the outcome of an equilibrium to a game
of imperfect competition (assuming the equilibrium exists and is unique).

Recall that the system of market shares is defined by

sj (xt, pt, ξt; θ) =

ˆ
β

exp
�
β0 + x�

j,tβ
x − βppj,t + ξj,t

�

1 +
�J

k=1 exp
�
β0 + x�

k,tβ
x − βppk,t + ξk,t

�dFβ (β; θ) . (1)

We assume, as in a triangular system, that the data-generating process for prices is

pj,t = z�j,tγ + ηj,t, (2)

where zj,t is a vector of price-shifting variables and ηj,t is a mean-zero, i.i.d. shock. To capture the poten-
tial endogeneity in prices, we assume the supply and demand shocks have the following joint distribution:

(ξj,t, ηj,t)
� ≡ uj,t ∼ N(0,Ω) where Ω =

�
σ2
ξ σξ,η

σξ,η σ2
η

�
. Let ρ = σξ,η

σξση
.

The system defined by equations (1) and (2) has the joint density function

fs,p (st, pt; Θ) = fξ|η (st | xt, pt; θ,Ω) |Jξ→s| fη (pt | zt; γ,Ω) ,

where Θ =
�
θ, γ, σ2

ξ , σξ,η, σ2
η

�
is the vector of model parameters, fξ|η(·|·) is the marginal density of ξ condi-

tional on η, fη(·|·) is a Gaussian density with variance σ2
η, and Jξ→s is the Jacobian matrix corresponding

to the transformation of variables of ξj,t to shares. The density of ξj,t conditional on ηj,t is

fξ|η (st | xt, pt; θ,Ω) =
J�

j=1

1
√
2πσξ

�
1− ρ2

exp



−1

2

�
ξj,t − ρ σξ

ση
ηj,t

�2

σ2
ξ (1− ρ2)



 .

Note that the evaluation of ξj,t requires inverting the market share equations, (1).
1One can also think of Jiang et al. (2008) as an alternative algorithm for finding the parameters. The MCMC approach is

a stochastic search algorithm that might perform well if the BLP model produces many local optima because MCMC will not
be as likely to get stuck on a local flat region. Because our goal is not to study the role of multiple local minima, we do not
explore the properties of a Bayesian MCMC algorithm.

10

The element Jj,k in row l and column k of the Jacobian matrix, Jξ→s, is

Jj,l =






´
β

�
1− exp(β0+x�

j,tβ
x−βppj,t+ξj,t)

1+
�J

k=1 exp(β0+x�
k,tβ

x−βppk,t+ξk,t)

�
exp(β0+x�

j,tβ
x−βppj,t+ξj,t)

1+
�J

k=1 exp(β0+x�
k,tβ

x−βppk,t+ξk,t)
dFβ (β; θ) , j = l

−
´
β

exp(β0+x�
j,tβ

x−βppj,t+ξj,t)
1+

�J
k=1 exp(β0+x�

k,tβ
x−βppk,t+ξk,t)

exp(β0+x�
l,tβ

x−βppl,t+ξl,t)
1+

�J
k=1 exp(β0+x�

k,tβ
x−βppk,t+ξk,t)

dFβ (β; θ) , j �= l

.

Standard maximum likelihood estimation would involve searching for parameters, ΘLISML, that maximize
the following log-likelihood function

l (Θ) =
T�

t=1

log (fs,p (st, pt; Θ)) .

This would consist of a nested inner loop to compute the demand shocks, ξj,t, via numerical inversion (the
NFP contraction mapping).

The equivalent MPEC approach entails searching for the vector of parameters (Θ, ξ) that maximizes the
constrained optimization problem

max l (Θ, ξ) =
T�

t=1

log
�
fξ|η (st | xt, pt; θ,Ω) |Jξ→s| fη (pt | zt; γ,Ω)

�

subject to s(ξ; θ) = S.

4 Monte Carlo: Varying the Quality of the Data

In principle, the quality of the data could influence the convexity of the objective function and, hence, the
trajectory of the outer loop search. To assess the role of “data quality”, we construct a set of sampling
experiments that manipulate the power of the instruments (the correlation between the prices, p, and the
instruments, z). Let zj,t,d = ũj,t,d + νuj,t, where uj,t is a random shock that also affects price and ν is a
measure of the power of the instruments. Higher ν’s result in more powerful instruments. By generating
the prices before the instruments, we ensure that prices, shares, and product characteristics are unaffected
by the power of the instruments. Thus, the NFP inner loop and the MPEC market share constraints are
identical when ν varies. Only the instruments in the moment conditions vary. We use the identity matrix
for the GMM weighting matrix to avoid instrument power affecting the choice of weighting matrix.

Table 2 lists the results from five runs with differing levels of instrument power. The table lists the
value of ν and the resulting R2 from a regression of price on all excluded-from-demand and non-excluded
instruments. We see that R2 decreases as the power of the instruments decreases. In all specifications,
MPEC is faster than NFP. MPEC’s speed decreases with instrument power, although the decrease from 118
to 159 seconds is not large compared to the total run time of NFP, which ranges from 342 to 619 seconds.
We have no theoretical explanation for the pattern relating NFP’s speed and instrument power. To some
extent, the pattern is driven by the fact that NFP encounters convergence problems as we increase the power
of the instruments. When ν = 0.5, only 50% (10 out of 20) of the replications fail to converge for all five

11

starting values, for NFP. Naturally, this convergence problem could be a practical concern if the researcher
mistakenly interprets the point at which the solver stops as a local minimum even though the gradient-based
solver is unable to detect convergence.

Table 2: Monte Carlo Results Varying the Data Quality: The Power of Instruments

Instrument R2 Implementation Runs Converged CPU Time (s) Elasticities
Power (ν) (fraction) Bias RMSE Value

1/2 0.75 NFP 0.50 619 0.028 0.173 -8.16
MPEC 1 118 0.023 0.173 -8.16

1/4 0.69 NFP 1 342 0.058 0.140 -8.16
MPEC 1 129 0.058 0.140 -8.16

1/6 0.62 NFP 1 447 -0.020 0.158 -8.15
MPEC 1 135 -0.020 0.158 -8.15

1/8 0.57 NFP 1 376 -0.022 0.186 -8.13
MPEC 1 135 -0.022 0.186 -8.13

1/16 0.46 NFP 1 512 -0.111 0.312 -8.07
MPEC 1 159 -0.090 0.323 -8.05

There are 20 replications for each experiment. Each replication uses ten starting values to ensure a global minimum is found.
The NFP-tight implementation has �in = 10−14 and �out = 10−6. There is no inner loop in MPEC; �out = 10−6 and
�feasible = 10−6. The same 100 simulation draws are used to generate the data and to estimate the model. The column R2

reports the (mean across replications) R2 from the regression of price on all instruments, treating each product in each market
as a separate observation. The meaning of ν is described in the text. These simulations were run on a different computer than
the simulations in the main text.

12

5 Monte Carlo: Dynamic BLP with One Consumer Type

Table 3: Monte Carlo Results for Dynamic BLP with One Consumer Type for δ = 0.96: NFP versus MPEC

MPEC NFP
Speeds 335.55 secs. 553.50 secs.
Parameters Mean RMSE Mean RMSE Truth
Utility intercept product 1 3.9557 0.1780 3.9556 0.1780 4.0000
Utility intercept product 2 2.9572 0.2015 2.9572 0.2015 3.0000
Utility price coefficient, type 1 -1.0030 0.0101 -1.0030 0.0101 -1.0000
Price, product 1, constant 0.2111 0.0345 0.2111 0.0345 0.2000
Price, product 1, lagged price of product 1 0.7962 0.0136 0.7962 0.0136 0.8000
Price, product 1, lagged price of product 2 0.0026 0.0098 0.0026 0.0098 0.0000
Price, product 2, constant 0.2071 0.0378 0.2071 0.0378 0.2000
Price, product 2, lagged price of product 1 0.0037 0.0168 0.0037 0.0168 0.0000
Price, product 2, lagged price of product 2 0.7935 0.0156 0.7935 0.0156 0.8000
Demand shocks, Cholesky variance term 0.9958 0.0173 0.9958 0.0173 1.0000
Covariance btw supply and demand, Cholesky variance term 0.5015 0.0215 0.5015 0.0215 0.5000
Supply shocks, Cholesky variance term 0.8647 0.0152 0.8647 0.0152 0.8660
% of replications routine reports convergence 100% 100%

There are 20 replications for each of MPEC and NFP. The same synthetic data are used for both MPEC and NFP. Each
replication uses five starting values to do a better job at finding a global minimum. The NFP implementation has �ξin = 10−14

, �Vin = 10−14 and �out = 10−6. There is no inner loop in MPEC; �out = 10−6 and �feasible = 10−6. The data have T = 50

periods and M = 20 distinct markets. Each market has two competing products. The Chebyshev regression approximation
to the value function uses a fourth-order polynomial and five interpolation nodes. The numerical integration of future states
uses Gauss-Hermite quadrature with three nodes. NFP uses numerical derivatives, as coding the derivatives of dynamic BLP is
infeasible for many problems and automatic differentiation slowed NFP considerably in the results in the main text. MPEC uses
automatic differentiation in the form of the package MAD. The percentage of replications where the routine reports convergence
is the fraction of the 20 replications where the lowest objective function coincided with an exit flag of 0 from KNITRO.

13

Table 4: Monte Carlo Results for Dynamic BLP with One Consumer Type for δ = 0.99: NFP versus MPEC

MPEC NFP
Speeds 671.49 secs. 1295.50 secs.
Parameters Mean RMSE Mean RMSE Truth
Utility intercept product 1 4.0684 0.7235 3.3907 1.7473 4.0000
Utility intercept product 2 3.0692 0.7316 2.3913 1.7844 3.0000
Utility price coefficient, type 1 -0.9885 0.0380 -0.9987 0.0152 -1.0000
Price, product 1, constant 0.1929 0.0682 0.2171 0.0655 0.2000
Price, product 1, lagged price of product 1 0.8170 0.0532 0.8022 0.0546 0.8000
Price, product 1, lagged price of product 2 -0.0044 0.0295 0.0000 0.0520 0.0000
Price, product 2, constant 0.1770 0.1102 0.2058 0.0813 0.2000
Price, product 2, lagged price of product 1 -0.0195 0.0557 -0.0065 0.0436 0.0000
Price, product 2, lagged price of product 2 0.8330 0.0860 0.8089 0.0585 0.8000
Demand shocks, Cholesky variance term 1.0139 0.0468 1.0053 0.0334 1.0000
Covariance btw supply and demand, Cholesky variance term 0.4985 0.0255 0.5050 0.0219 0.5000
Supply shocks, Cholesky variance term 0.8652 0.0152 0.8640 0.0159 0.8660
% of replications routine reports convergence 100% 90%

There are 20 replications for each of MPEC and NFP. The same synthetic data are used for both MPEC and NFP. Each
replication uses five starting values to do a better job at finding a global minimum. The NFP implementation has �ξin = 10−14

, �Vin = 10−14 and �out = 10−6. There is no inner loop in MPEC; �out = 10−6 and �feasible = 10−6. The data have T = 50

periods and M = 20 distinct markets. Each market has two competing products. The Chebyshev regression approximation
to the value function uses a fourth-order polynomial and four interpolation nodes. The numerical integration of future states
uses Gauss-Hermite quadrature with three nodes. NFP uses numerical derivatives, as coding the derivatives of dynamic BLP is
infeasible for many problems and automatic differentiation slowed NFP considerably in the results in the main text. MPEC uses
automatic differentiation in the form of the package MAD. The percentage of replications where the routine reports convergence
is the fraction of the 20 replications where the lowest objective function coincided with an exit flag of 0 from KNITRO.

References

[1] Jiang, R., P. Manchanda and P. E. Rossi (2009): “Bayesian Analysis of Random Coefficient
Logit Models Using Aggregate Data,” Journal of Econometrics, 149, 126–148.

[2] Yang, Sha, Yuxin Chen and Greg M. Allenby (2003). "Bayesian Analysis of Simultaneous De-
mand and Supply," Quantitative Marketing and Economics, 1, 251-304.

14

