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APPENDIX C: ADDITIONAL PROOFS FOR APPENDIX B

PROOF OF LEMMA 6: In each of the above problems, the policy (a� c�W ) =
(0�0� erΔw) is an available policy that satisfies all the constraints and deliv-
ers a value of at least F(w) + [minF ′](erΔ − 1)w̄ = F(w) + O(Δ). Let ĥ =
E

Δ[h(a(z))], û= E
Δ[u(c(Δ(x+a(z))))], and Ŵ = E

Δ[W (Δ(x+a(z))� z)]. The
promise keeping constraint implies that

Ŵ −w = r̃ΔerΔ(w + ĥ− û)= O(Δ)�

since w ∈ [ ¯w� w̄], ĥ ∈ [0�h(A)], and û ∈ [0� ū]. Therefore, W (Δ(x+a(z))� z)−
w = (W (Δ(x+ a(z))� z)− Ŵ )+ (Ŵ −w) implies

E
Δ
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W
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Δ
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)
� z

) −w
)2] =V

Δ
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(
Δ
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� z

)] +O
(
Δ2

)
�

Consequently, for Y either ΦΔ�q(a� c�W ;F�w) or ΦΔ(a� c�W ;F), we have Y ≥
F(w)+O(Δ) and

Y ≤ r̃ΔA+ e−rΔ

(
F(w)+ r̃ΔerΔF ′(w)(w+ ĥ− û)

+ maxF ′′

2
V

Δ
[
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(
Δ

(
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)
� z

)]) +O
(
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)
�

which, after rearranging terms, gives the result for an appropriate V . Q.E.D.

PROOF OF LEMMA 7: Since GX(·|z) are linearly independent, let φz(x) be
the functions bounded by some B such that∫

φz(x)gX|Z(x|z)= 0�
∫

φz(x)gX|Z
(
x|z′) <−1 ∀z� z′�

Fix some (ā� h̄) and consider the optimal policy a(·)� v(·� ·) for the problem
Θ(ā� h̄). We define v∗(x� z) = v(x� z)+ εφz(x) and let a∗(·) be defined by the
(FOCΘ). Note that, for all z,∫

R

2εφz(x)g
′
X|Z(x|z)dx=O(ε)�
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and so, from (FOCΘ), |a(z) − a∗(z)| = O(ε). This implies that, for ã =
EZ[a∗(z)] and h̃= EZ[h(a∗(z))] |ā− ã|� |h̄− h̃| = O(ε). On the other hand,

E
[∣∣v∗(x� z)2 − v(x� z)2

∣∣] ≤ ε2M2 + 2E
[∣∣εφz(x)v(x� z)

∣∣]
≤ ε2M2 + 2εM

√
E
[
v(x� z)2

]
= ε2M2 + 2εM

√
Θ(ā� h̄)� Q.E.D.

PROOF OF LEMMA 10: (i) Fix ε > 0 and consider a function v that satisfies
E[v(x� z)2] ≤ 1. For any δ > 0, pick Mδ big enough so that (from Lebesgue’s
Monotone Convergence Theorem)∫ [∫

|v|>Mδ

v2(x� z)gX|Z(x|z)dx
]
dGZ(z) ≤ δ�(36)

From Chebyshev’s inequality,

PZ

[∫
|v|>Mδ

v2(x� z)gX|Z(x|z)dx > γ

]
≤ δ

γ
�(37)

Therefore, for all z for which
∫

|v|>Mδ
v2(x� z)gX|Z(x|z)dx≤ γ,∫

|v|>Mδ

∣∣v(x� z)g′
X|Z(x|z)∣∣dx

≤
[∫

|v|>Mδ

v2(x� z)gX|Z(x|z)dx×
∫

g′
X|Z(x|z)2

gX|Z(x|z) dx

]1/2

≤
√
γM̄�

The result thus follows by picking γ = ε2/M̄ and δ= εγ.
(ii) Let γ and δ be as in (i) and Mδ be such that (36) holds. For any z for

which
∫

|v|>Mδ
v2(x� z)gX|Z(x|z)dx≤ γ and any z′, we have∫

|v|>Mδ

∣∣v(x� z)gX|Z
(
x|z′)∣∣dx

≤
[∫

|v|>Mδ

v2(x� z)gX|Z(x|z)dx×
∫

gX|Z
(
x|z′)2

gX|Z(x|z) dx

]1/2

≤
√
γM̄�

where the last inequality follows from the assumption (A3). The proof then
follows from (37). Q.E.D.

PROOF OF LEMMA 11: (i) For every x and z, |g′
X|Z(x|z)−g′

X|Z(x−δ(z)|z)| ≤
δ|g′′

X|Z(x − ξ(x� z)|z)| for some ξ(x� z) ∈ [0� δ(z)] ⊂ [0� δ̂]. Therefore, with δ̄
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and M̄ the constants in (A2), for every δ ≤ min{δ̄� ε

MM̄
} we have that∫

|v|≤M

∣∣v(x� z)[g′
X|Z(x|z)− g′

X|Z
(
x− δ(z)|z)]∣∣dx

≤ δM

∫ ∣∣g′′
X|Z

(
x− ξ(x� z)|z)∣∣dx≤ δMM̄ ≤ ε�

which establishes (27). The proof of (ii) is analogous and is omitted.
(iii) Similarly, for any δ ≤ min{δ̄� ε/[M2

√
M̄]}, we have that∫ ∫

|v|≤M

∣∣v(x� z)2
(
g(x� z)− g

(
x− a(z)� z

))∣∣dxdz
≤ δM2

∫ ∫ ∣∣g′
X|Z

(
x− ξ(x� z)|z)gZ(z)

∣∣dxdz
≤ δM2

∫ [∫
g′
X|Z

(
x− ξ(x� z)|z)2

gX|Z(x|z) dx

]1/2

gZ(z)dz ≤ δM2
√
M̄ ≤ ε�

with the second inequality following from the Cauchy–Schwarz inequality,
which establishes the lemma. Q.E.D.

APPENDIX D: THE HJB EQUATION

The following lemma establishes a property of the variance of continuation
values function Θ that will be crucial to all the following results on the proper-
ties of the HJB equation.

LEMMA 15: Suppose (A2) holds. Then the variance of continuation values
function is bounded away from zero for strictly positive expected effort levels,

Θ(ā� h̄)≥ ¯θ > 0 ∀ā > 0� h̄�(38)

PROOF: Consider function Θn that is defined just as Θ except that the condi-
tion (TRΘ) is dropped. On the one hand, trivially, Θ ≥Θn. On the other hand,
from Lemma 1 it follows that

Θn ≥ γ2

min
z

IgX|Z(·|z)
≥ γ2

M̄
> 0�

where γ is such that h′(a) ≥ γ for a > 0 and M̄ is from assumption (A2).
Q.E.D.

The following lemma establishes some basic properties of the solution of the
HJB equation.
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LEMMA 16: Suppose Θ(ā� h̄)≥ ¯θ > 0.
(i) For any initial conditions F( ¯w) and F ′( ¯w), the HJB equation (7) has a

unique solution F in any interval [ ¯w� w̄] ⊂ R.
(ii) F is twice continuously differentiable and (F�F ′) depends continuously on

the initial conditions.
(iii) F ′ is monotone with respect to F ′( ¯w). That is, if F1 and F2 are two solutions

of the HJB equation in an interval [ ¯w� w̄] ⊂ R with F1( ¯w) = F2( ¯w) and F ′
1( ¯w) >

F ′
2( ¯w), then F ′

1(w) > F ′
2(w) (and hence F1(w) > F2(w)) for all w> ¯w.

PROOF: See Sannikov (2008). Q.E.D.

COROLLARY 2: The HJB equation (7) with the boundary conditions (8) and
(9) has a unique solution F .

The corollary follows immediately from Lemma 16. Note also that the con-
tinuity and monotonicity in the initial slope suggest the natural procedure for
computing F .

LEMMA 17: Suppose Θ(ā� h̄)≥ ¯θ > 0. The solution F of the HJB equation (7)
with the boundary conditions (8) and (9) is strictly concave.

PROOF: See Sannikov (2008). Q.E.D.

Part (i) of the next lemma establishes that the function F in the statement
of Theorem 1 satisfies the HJB equation (22), with the constraint “ā > 0”
dropped. Part (ii) shows a related result for the general case from Section 5,
which will be used in Appendix F below.

LEMMA 18:
(i) The function F in Theorem 1 solves HJB equation (22).

(ii) For any [ ¯w� w̄] ⊂ (0�wsp), there exists γ > 0 such that, for all sufficiently
small ζ, the Fζ as in Theorem 3 solves equation (19) on [ ¯w� w̄] with an additional
constraint ā≥ γ.

PROOF: (i) For any λ ∈ R, let Hλ be the linear function tangent to the re-
tirement curve {(w� ¯F(w)) :w ∈ [0� ū)} with the slope λ (if λ ≥ ¯F

′(0), Hλ(w) =
λw). On the one hand, since F and ¯F are concave and F ≥ ¯F , for any w ∈ I
we have F(w) ≥ HF ′(w)(w). On the other hand, for any w ∈ I, the value of
the maximization problem in the expression above under constraint ā = 0 is
at most maxc{−c + F ′(w)(w − u(c))} = ¯F(w

′) + ¯F
′(w′)(w − w′) = HF ′(w)(w),

where w′ is such that either ¯F
′(w′) = F ′(w) or w′ = 0 in case F ′(w) > ¯F

′(0).
Consequently, choosing ā = 0 in the maximization problem above can never
be strictly optimal. Equivalently, since F satisfies the HJB equation (7), it also
satisfies the equation (22) with the constraint “ā > 0” dropped.
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(ii) We may assume wsp > 0. Note also that, for any ζ > 0 and Fζ as in The-
orem 1, we have

F̄ ′(w̄sp)≤ F ′
ζ(w)≤ F̄( ¯w)/ ¯w�

for all w ∈ [ ¯w� w̄]. We will establish that there is α > 0 such that, for any ζ and
w ∈ [ ¯w� w̄], Fζ(w) − HF ′

ζ (w)(w) ≥ α. If not, then let {wn}� {w′
n}� {ζn}, and {αn}

with wn ∈ [ ¯w� w̄], w′
n ≤ wsp, ζn ↓ 0, αn ↓ 0 be such that Fζn(wn)−HF ′

ζn
(wn)(wn)≤

αn (where w′
n is such that ¯F

′(w′
n) = F ′

ζn
(wn)). We consider three cases, and in

each derive a contradiction.
Case 1: Suppose that, for some δ > 0 and all n, w′

n ∈ [δ�wsp −δ]. The concav-
ity of Fζn and ¯F implies that Fζn(wn)−HF ′

ζn
(wn)(wn)≥ Fζn(w

′
n)−HF ′

ζn
(wn)(w

′
n)=

Fζn(w
′
n)− ¯F(w

′
n). But, since Fζn is increasing as ζn ↓ 0 (Proposition 1, part (i)),

Fζn(w
′
n)− ¯F(w

′
n)≥ infw∈[δ�wsp−δ] Fζ1(w)− ¯F(w) > 0, a contradiction.

Case 2: If w′
n ↓ 0 (we might assume so by choosing a subsequence), then

we would have Fζn(wn) → HF ′
ζn

(wn)(wn) → ¯F
′(0) × wn. By concavity of all Fζn ,

this would imply that, first, Fζn(w) → ¯F
′(0) × w for all w ∈ [0�wn], and sec-

ond, that there is a sequence {w′′
n}, w′′

n ∈ [0�wn], such that F ′
ζn
(w′′

n)→ ¯F
′(0) and

F ′′
ζn
(w′′

n)→ 0. But then

Fζn

(
w′′

n

) → max
a�c

{
(a− c)+ ¯F

′(0)
(
w′′

n + h(a)− u(c)
)}

= max
a

{
a+ ¯F

′(0)
(
w′′

n + h(a)
)}

> ¯F
′(0)w′′

n�

where the equality follows from the fact that ¯F
′(0) = 1

u′(0) and strict concav-
ity of u, while the inequality follows from h′

+(0) < u′(0). This establishes the
required contradiction.

Case 3: If w′
n ↑ wsp, we derive the contradiction in the analogous way as in

Case 2.
We have established that, for all ζ and w ∈ [ ¯w� w̄], Fζ(w) − HF ′

ζ (w)(w) ≥
α > 0. On the other hand, for any ζ and w ∈ [ ¯w� w̄], if we restrict the policy
on the right-hand side of equation (22) to satisfy ā ≤ γ, for sufficiently small
γ > 0, then

sup
ā≤γ�h̄�c

{
(ā− c)+ F ′

ζ(w)
(
w + h̄− u(c)

) + 1
2
F ′′
ζ (w)r max

{
ζ�Θ(ā� h̄)

}}

≤ max
c

{
−c + F ′

ζ(w)
(
w − u(c)

) + 1
2
F ′′
ζ (w)rζ

}
+ α

2

≤HF ′
ζ (w)(w)+ α

2
≤ Fζ(w)− α

2
�

where the first inequality follows because F ′
ζ are uniformly bounded on [ ¯w� w̄]

and h̄ ≤ ā
A
h(A). This establishes the lemma. Q.E.D.
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D.1. Proof of Proposition 1

The proposition is based on the following “single crossing” lemma.

LEMMA 19: Consider two functions Θ ≥DΘ+ ¯Θ ≥ 0, and suppose that FΘ�F ¯Θ :
I → R solve the corresponding HJB equations (7) with FΘ′′ ≤ 0.

(i) If for some w, FΘ(w) = F ¯Θ(w) and FΘ′(w′) > F ¯Θ′(w′) in a right neighbor-
hood of w, then FΘ′(w′) > F ¯Θ′(w′) for all w′ >w.

(ii) Assume Θ>DΘ+ ¯Θ. If for some w, FΘ(w) = F ¯Θ(w) and FΘ′(w) ≥ F ¯Θ′(w),
then FΘ′(w′) > F ¯Θ′(w′) for all w′ >w.

Note that the precondition of part (i) is implied by (but is not equivalent to)
FΘ(w) = F ¯Θ(w) and FΘ′(w) > F ¯Θ′(w).

PROOF OF LEMMA 19: We prove only part (i) (the proof of part (ii) is anal-
ogous). First, by assumption, FΘ′(w′) > F ¯Θ′(w′) for all w′ >w sufficiently close
to w. Suppose now that there exists w′ > w with FΘ′(w′) ≤ F ¯Θ′(w′)—we now
assume that w′ is the smallest with this property. Since FΘ′ >(w�w′) F ¯Θ′, we have
that FΘ(w′) > F ¯Θ(w′). Therefore, it must be the case that FΘ′′(w′) > F ¯Θ′′(w′);
otherwise, since FΘ′′(w′) ≤ 0 and Θ ≥DΘ+ ¯Θ, every policy (ā� h̄� c) would yield
a weakly higher value of the right-hand side of HJB equation (7) for F ¯Θ(w′)
than for FΘ(w′). But then FΘ′′(w′) > F ¯Θ′′(w′) implies that FΘ′(w′′) < F ¯Θ′(w′′)
for w′′ in a left neighborhood of w′, contradicting the minimality of w′.

Q.E.D.

Given the lemma, the proof of part (i) of Proposition 1 proceeds as follows.
Applying part (i) of Lemma 19 to w = 0, if FΘ′(0) > F ¯Θ′(0), then FΘ′(w′) >
F ¯Θ′(w′) for all w′ > 0. Therefore, F ¯Θ ≥ ¯F would imply FΘ(w′) > ¯F(w

′) for
all w′ > 0, violating the boundary conditions for FΘ. Using the analogous ar-
gument, F ¯Θ′(w) ≥ FΘ′(w) for all w ∈ [0�wΘ

sp], and so F ¯Θ(w) ≥ FΘ(w), for all
w ∈ [0�wΘ

sp], establishing part (i) of the proposition. The proof of part (ii) is
analogous.

We note that part (i) of Proposition 1 is immediately applicable to the limit
values for the general case defined in Theorem 3 (as it is applicable to the
functions Fζ and weak inequalities are preserved in the limit). The following
lemma shows that, under an additional mild constraint, part (ii), that is, strict
monotonicity, is applicable to the general case as well.

Consider the following assumption:
(Cont) Θ(ā� h̄)≥ δ(ā) for a continuous δ with δ(ā) > 0 when ā > 0.
For example, the assumption (Cont) is always satisfied in the pure hidden

information case.37

37Roughly: for ā > 0 it must be the case, from (FOCΘ-PHI), that v′ is bounded below above
zero at a range with strictly positive mass (that depends on ā). This implies (Cont), for appropri-
ate δ.
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LEMMA 20: Assume (Cont) holds. Then F as in Theorem 3 solves the HJB
equation (7) with boundary conditions (8) and (9).

PROOF: Choose any [ ¯w� w̄] ⊂ (0�wsp). Part (ii) of Lemma 18 guarantees
that, for sufficiently small ζ, all Fζ satisfy the constraint ā ≥ γ on [ ¯w� w̄], for
some γ > 0. Therefore, for sufficiently small ζ, all Fζ satisfy, on [ ¯w� w̄],

F ′′(w)= inf
ā≥γ�h̄�c

{
F(w)− (ā− c)− F ′(w)

(
w + h̄− u(c)

)
rΘ(ā� h̄)/2

}
�

with the right-hand side Lipschitz continuous in (w�F(w)�F ′(w)), since Θ ≥
δ(γ) > 0 for ā≥ γ.

Part (i) of Proposition 1 guarantees that Fζ converge in the supremum norm
as ζ ↓ 0 to a function F . Since F ′

ζ are uniformly bounded on [ ¯w� w̄], it fol-
lows that all F ′′

ζ and F ′
ζ are Lipschitz continuous with the same Lipschitz con-

stant, and so F ′
ζ converge to F ′ not only in L1 but in the supremum norm, by

the Arzela–Ascoli Theorem. Uniform Lipschitz continuity guarantees also that
F ′ = d

dw
F , that F ′′ := limζ↓0 F

′′
ζ exists, and F satisfies the above equation (all on

[ ¯w� w̄]). Since the set [ ¯w� w̄] is arbitrary, this proves that F solves (7) in (0�wsp),
and so establishes proof of the lemma. Q.E.D.

D.2. Proof of Proposition 2

The proof follows from the following lemma.

LEMMA 21: For any δ > 0, there is ε > 0 sufficiently small and w̃ ∈ [0� w̄sp]
such that the following holds: If rΘ ≤ ε, then the solution F of the HJB equation
(7) with initial conditions

F(w̃) = F̄(w̃)− δ� F ′(w̃) = F̄ ′(w̃)

satisfies

F ′′ ≤[0�w̄sp] −2δ
ε
�

PROOF: For any λ ∈ [F̄ ′(w̄sp)�∞), let Gλ be the linear function tangent to
the first best frontier {(w� F̄(w)) : w ∈ [0� w̄sp]} with the slope λ. We will show
that if, for an arbitrary w ∈ [0�wsp],

GF ′(w)(w)− F(w) ≥ δ�(39)

then F ′′(w) ≤ − 2δ
ε

. Note that then, as long as − 2δ
ε

≤ minw∈[0�w̄sp] F̄ ′′(w), the
above condition will be satisfied over the whole interval [0� w̄sp], which will
establish the lemma.
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The HJB equation (7) takes the form

F ′′(w) ≤ min
a�h�c

2
rΘ(a�h)

{
F(w)− (a− c)− F ′(w)

(
w + h− u(c)

)}
�(40)

Let w′ be such that F ′(w) = F̄ ′(w′). For the policy (a(w′)� c(w′)) in the prob-
lem (1) at w′, we have

F(w)− (
a
(
w′) − c

(
w′)) − F ′(w)

(
w + h

(
a
(
w′)) − u

(
c
(
w′)))

= F̄
(
w′) − (

a
(
w′) − c

(
w′)) − F̄ ′(w′)(w′ + h

(
a
(
w′)) − u

(
c
(
w′)))

+ [
F(w)− F̄

(
w′) + F ′(w)

(
w′ −w

)]
= [

F(w)− F̄
(
w′) + F ′(w)

(
w′ −w

)] ≤ −δ�

where the last equality follows from (1), while the last inequality follows from
(39). Since (a(w′), h(a(w′))� c(w′)) is an available policy in the problem (40)
and rΘ ≤ ε, this establishes that F ′′(w) ≤ − 2δ

ε
. Q.E.D.

Given the lemma, for any δ > 0, the solution F of the HJB equation (7) with
initial conditions F(w̃) = F̄(w̃)−δ, F ′(w̃) = F̄ ′(w̃) with w̃ ∈ [δ� w̄sp] will satisfy
F( ¯w) = ¯F( ¯w) and F(w̄) = ¯F(w̄) for some 0 < ¯w< w̄ < w̄sp. This together with
Proposition 6 and part (ii) of Lemma 5 establishes the proof of the proposi-
tion.

APPENDIX E: PROOF OF PROPOSITION 3

Fix period length Δ > 0 and densities g and γ satisfying (14). Fix also a
contract38 {cn} together with action plans {ag�n}� {aγ�n} such that {cn}� {ag�n}
is incentive compatible under g and {cn}� {aγ�n} is incentive compatible un-
der γ, and they deliver expected discounted utilities wg�wγ ∈ [0� ū) to the
agent. In any period n and after any history of public signals (y0� � � � � yn−1),
the contract and action plans give rise to a pair of continuation values wg�n

and wγ�n (with wg = wg�0 and wγ = wγ�0) as well as a per-period policy
(ag�n� aγ�n� cn(y)�Wg�n(y)�Wγ�n(y)), where Wg�n(y) and Wγ�n(y) are the continu-
ation value functions at the end of the period for the respective noise densities.
The policies are such that the promise keeping and the incentive compatibility

38All the objects introduced in this section also depend on the history of public signals
(y0� � � � � yn−1) and so can be treated as random variables. Throughout the section, we will sup-
press it from the notation.
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constraints are satisfied:

wφ�n = E
Δ
φ

[
r̃Δ

[
u
(
cn

(
Δ(x+ aφ�n)

)) − h(aφ�n)
]

+ e−rΔWφ�n

(
Δ(x+ aφ�n)

)]
� (PK2)

aφ�n ∈ arg max
â∈A

E
Δ
φ

[
r̃Δ

[
u
(
cn

(
Δ(x+ â)

)) − h(â)
]

+ e−rΔWφ�n

(
Δ(x+ â)

)]
� (IC2)

for φ ∈ {g�γ}. Let p = {(ag�n� aγ�n� cn(y)�Wg�n(y)�Wγ�n(y))}n∈N be the complete
dynamic policy function. Finally, let F

Δ�p
φ�n (wφ�n) be the principal’s continua-

tion value from period n onwards, and for a function f : [0� ū) → R, define
T

Δ�p
φ�n (f ) = ΦΔ

φ(aφ�n� cn�Wφ�n; f ), for φ ∈ {g�γ}. Thus TΔ�p
φ�n (f ) is the principal’s

continuation value if he follows the policy p in period n and the continuation
value in period n+ 1 is given by f .

To establish the proposition, we show that if wg�wγ ∈ (0�wsp), then there
is δ > 0 such that, for sufficiently small Δ, FΔ�p

g�0 (wg) + F
Δ�p
γ�0 (wγ) ≤ F(wg) +

F(wγ)− δ, where F is as in Theorem 1.
For the proof of the proposition, we use the following five claims. Claim 1

is related to Lemma 5. It shows roughly that for a given contract {cn} and
incentive compatible action plans {ag�n}� {aγ�n} and the policies p they give
rise to, how far the value of the contracts generated by them falls short
of F (F(wg) + F(wγ) − F

Δ�p
g�0 (wg) − F

Δ�p
γ�0 (wγ)) can be expressed as a dis-

counted expected sum of how far each policy applied to F falls short of F
(F(wg�n)− TΔ�p

g�n (F)+ F(wγ�n)− TΔ�p
γ�n (F)). Taking the expectation with respect

to the density ζ(y) = min{g(y)�γ(y)} provides a lower bound and simplifies
the analysis.

The idea behind the construction in the remaining four claims is as follows.
For any ε > 0, consider the set Sε = {(wg�wγ) ∈ [ε�wsp − ε]2 : |wg − wγ| >
ε�max{wg�wγ} > w0 + ε}, where w0 is such that F ′(w0) = ¯F

′(0) = − 1
u′(0) .

Claim 2 shows that once the pair of continuation values (wg�n�wγ�n) are in
this set, F(wg�n) − TΔ�p

g�n (F) + F(wγ�n) − TΔ�p
γ�n (F) must be negative. The rea-

son is that, to achieve F(wg�n) + F(wγ�n), the wages paid in the separate
two optimal policies for each noise distribution must be different (such that
−1/u′(cg) = F ′(wg), and −1/u′(cγ) = F ′(wγ)), whereas the single contract re-
stricts the per-period policy to have the same wage for each distribution.

Claim 3 shows that if F(wg�n) − TΔ�p
g�n (F) + F(wγ�n) − TΔ�p

γ�n (F) is to remain
small, it must be that the variances (under density ζ) of Wg − Wγ must be
bounded away from zero, and the variances of continuation values Wg, Wγ not
too big. This follows from the results in the paper: for the policy p to fare
well, the continuation values for each noise must be approximately linear in
likelihood ratio. Also, since the likelihood ratios are linearly independent by
assumption, Wg −Wγ cannot be too small. Using Claim 3, Claim 4 shows that,



10 T. SADZIK AND E. STACCHETTI

under policies p, once the process of continuation values (wg�wγ) enters set Sε,
it must stay there for a while with nonnegligible probability (under ζ); Claim 5
shows that, starting at any interior point of continuation values, the process en-
ters Sε in finite time with nonnegligible probabilities. Those results, together
with Claim 2, establish the proposition.

Define ζ(y) = min{g(y)�γ(y)} (and accordingly ζΔ(y) = min{gΔ(y)�
γΔ(y)}).

CLAIM 1: For the function F as in Theorem 1 and any N ∈N,

F(wg)+ F(wγ)− F
Δ�p
g�0 (wg)− F

Δ�p
γ�0 (wγ)

≥ E
Δ
ζ

[
N∑
n=0

e−rnΔ
(
F(wg�n)− TΔ�p

g�n (F)+ F(wγ�n)− TΔ�p
γ�n (F)

)
+ e−r(N+1)Δ

(
F(wg�N+1)− F

Δ�p
g�N+1(wg�N+1)

+ F(wγ�N+1)− F
Δ�p
γ�N+1(wγ�N+1)

)]
�

PROOF: For any (wg�wγ) ∈ [0� ū)2, we have

F(wg)+ F(wγ)− F
Δ�p
g�0 (wg)− F

Δ�p
γ�0 (wγ)

= F(wg)+ F(wγ)− T
Δ�p
g�0

(
F

Δ�p
g�1

) − T
Δ�p
γ�0

(
F

Δ�p
γ�1

)
= F(wg)+ F(wγ)− T

Δ�p
g�0 (F)− T

Δ�p
γ�0 (F)

+ T
Δ�p
g�0 (F)+ T

Δ�p
γ�0 (F)− T

Δ�p
g�0

(
F

Δ�p
g�1

) − T
Δ�p
γ�0

(
F

Δ�p
γ�1

)
= F(wg)+ F(wγ)− T

Δ�p
g�0 (F)− T

Δ�p
γ�0 (F)

+ e−rΔ
E

Δ
g

[
F(wg�1)− F

Δ�p
g�1 (wg�1)

]
+ e−rΔ

E
Δ
γ

[
F(wγ�1)− F

Δ�p
γ�1 (wγ�1)

]
≥ F(wg)+ F(wγ)− T

Δ�p
g�0 (F)− T

Δ�p
γ�0 (F)

+ e−rΔ
E

Δ
ζ

[
F(wg�1)− F

Δ�p
g�1 (wg�1)+ F(wγ�1)− F

Δ�p
γ�1 (wγ�1)

]
�

Iterating the inequality yields the proof. Q.E.D.

CLAIM 2: For ε > 0, there is δ1 such that, for any (wg�n�wγ�n) ∈ Sε and a suffi-
ciently small Δ> 0,

F(wg�n)− TΔ�p
g�n (F)+ F(wγ�n)− TΔ�p

γ�n (F) > δ1Δ�



AGENCY MODELS WITH FREQUENT ACTIONS 11

PROOF: Let us define T
Δ�q�p
φ�n (f ) = Φ

Δ�q
φ (aφ�n� cn�Wφ�n; f�wφ�n), for φ ∈

{g�γ}. Using analogues to Lemmas 12 and 14, we establish that, for any δ′ > 0,
there is δ such that, for sufficiently small Δ, if F(wφ�n)− T

Δ�p
φ�n (F) < δΔ, then∣∣TΔ�q�p

φ�n (F)− T
Δ�p
φ�n (F)

∣∣ < δ′Δ�

for φ ∈ {g�γ}.
Fix ε > 0. In view of the above bound, it is sufficient to establish that there

is δ1 such that, for (wg�n�wγ�n) ∈ Sε, we have F(wg�n) − TΔ�q�p
g�n (F) + F(wγ�n) −

TΔ�q�p
γ�n (F) > δ1Δ, and so, due to Proposition 6 and Lemmas 12 and 14, to show

that

TΔ�q
g F(wg�n)− TΔ�q�p

g�n (F)+ TΔ�q
γ F(wγ�n)− TΔ�q�p

γ�n (F) > δ1Δ�

where TΔ�q
g and TΔ�q

γ stand for operator TΔ�q under the respective noise densi-
ties.

We have

T
Δ�q
φ F(wφ�n)

= sup
c

−r̃Δ
{
c + F ′(wφ�n)u(c)

} + sup
a�W

ΨΔ
φ (a�W ;F�wφ�n)�

T Δ�q�p
g�n (F)+ TΔ�q�p

γ�n (F)

= −r̃Δ
{
2cn + F ′(wg�n)u(cn)+ F ′(wγ�n)u(cn)

}
+ΨΔ

g (ag�n�Wg�n;F�wg�n)+ΨΔ
γ (aγ�n�Wγ�n;F�wγ�n)�

where

ΨΔ
φ(a�W ;F�w) = e−ΔrF(w)+ r̃Δ

{
a+ F ′(w)

(
w + h(a)

)}
+ e−Δr

E
Δ
φ

[
1
2
F ′′(w)

(
W (Δx)−w

)2
]
�

φ ∈ {g�γ}. Thus, we have

TΔ�q
g F(wg�n)− TΔ�q�p

g�n (F)+ TΔ�q
γ F(wγ�n)− TΔ�q�p

γ�n (F)

≥ sup
c

−r̃Δ
{
c + F ′(wg�n)u(c)

} + sup
c

−{
c + F ′(wγ)u(c)

}
+ r̃Δ

{
2cn + F ′(wg�n)u(cn)+ F ′(wγ�n)u(cn)

}
> δ1�

for some δ1 > 0. The second inequality follows from the strict concavity of u
and the fact that F ′′ is bounded away from 0, and so |F ′(wg�n) − F ′(wγ�n)| is
bounded away from zero as long as |wg�n −wγ�n|> ε. Q.E.D.
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CLAIM 3: For ε > 0, there is δ2 > 0 such that, for any (wg�n�wγ�n) ∈
[ε�wsp − ε]2 and a sufficiently small Δ, if

F(wg�n)− TΔ�p
g�n (F)+ F(wγ�n)− TΔ�p

γ�n (F) < δ2Δ�(41)

then

V
Δ
ζ

[
Wg�n

(
Δ(x+ ag�n)

) −Wγ�n

(
Δ(x+ aγ�n)

)]
> δ2Δ�(42)

as well as

F(wg�n)− TΔ�p
g�n (F)+ F(wγ�n)− TΔ�p

γ�n (F)(43)

> δ2

(
V

Δ
g

[
Wg�n

(
Δ(x+ ag�n)

)] −Δ

(
rh′(A)

)2

IgX

)

+ δ2

(
V

Δ
γ

[
Wγ�n

(
Δ(x+ aγ�n)

)] −Δ

(
rh′(A)

)2

IγX

)
�

PROOF: Lemmas 20 and 8 imply that, for certain δ2 > 0 and sufficiently
small Δ, if (41) holds and (wg�n�wγ�n) ∈ [ε�wsp − ε]2, then ag�aγ > γ > 0.
But then Lemmas 8 and 1 imply that Wφ�n(Δ(xφ�n + aφ�n)) ≈ E

Δ
φ[Wφ�n(Δ(x +

aφ�n))] + √
ΔDφ

g′
φ(x)

gφ(x)
(in L2(φ

Δ) and so in L2(ζ
Δ)), for φ ∈ {g�γ}. Thus the

first inequality follows from (14). On the other hand, F ′′ bounded away from
zero immediately implies the second inequality. Q.E.D.

CLAIM 4: For ε > 0 there are δ3�T > 0 such that, for any (wg�0�wγ�0) ∈ Sε and
a sufficiently small Δ,

E
Δ
ζ

[
T/Δ∑
n=0

e−rnΔ
(
F(wg�n)− TΔ�p

g�n (F)+ F(wγ�n)− TΔ�p
γ�n (F)

)] ≤ δ3

implies

P
Δ
ζ

[
(wg�n�wγ�n) ∈ Sε/2� n = 0� � � � � T/Δ

]
> δ3�

PROOF: If the precondition is satisfied, then (43) in Claim 3 implies that, for
φ ∈ {g�γ},

V
Δ
φ

[
(wφ�n −wφ�n′)

] ≤ 1
δ2

(
T

(
rh′(A)

)2

IgX

+ δ3

)
=: CT�δ3
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for n < n′ ≤ T/Δ, with CT�δ3 → 0 as T�δ3 → 0. We also have

E
Δ
φ

[
(wφ�n′ −wφ�n)

]2 ≤ DT�δ3

for n < n′ ≤ T/Δ, with DT�δ3 → 0 as T�δ3 → 0. Thus if τ is the stopping time of
the process |wφ�t −wφ�0| reaching the set [α�∞), we have

P
Δ
φ

[
max
n≤T/Δ

|wφ�n −wφ�0| ≥ α
]

= P
Δ
φ

[
max
n≤T/Δ

|wφ�n −wφ�0| ≥ α� |wφ�T/Δ −wφ�0| ≥ α/2
]

+ P
Δ
φ

[
max
n≤T/Δ

|wφ�n −wφ�0| ≥ α� |wφ�T/Δ −wφ�0|<α/2
]

≤ P
Δ
φ

[|wφ�T/Δ −wφ�0| ≥ α/2
] + P

Δ
φ

[|wφ�T/Δ −wφ�τ| ≥ α/2
]

≤ 2
CT�δ3 +DT�δ3

α2/4
�

It follows that

P
Δ
ζ

[
(wg�n�wγ�n) /∈ Sε/2 for some n ≤ T/Δ|(wg�0�wγ�0) ∈ Sε

]
≤ P

Δ
ζ

[
max
n≤T/Δ

|wg�n −wg�0| ≥ ε/4 or max
n≤T/Δ

|wγ�n −wγ�0| ≥ ε/4
]

≤ P
Δ
ζ

[
max
n≤T/Δ

|wg�n −wg�0| ≥ ε/4
]
+ P

Δ
ζ

[
max
n≤T/Δ

|wγ�n −wg�0| ≥ ε/4
]

≤ P
Δ
g

[
max
n≤T/Δ

|wg�n −wg�0| ≥ ε/4
]
+ P

Δ
γ

[
max
n≤T/Δ

|wγ�n −wg�0| ≥ ε/4
]

≤ 8
CT�δ3 +DT�δ3

ε2/16
→ 0�

as T�δ3 → 0. This establishes the claim. Q.E.D.

CLAIM 5: For ε > 0, there are δ4�T > 0 such that, for any (wg�0�wγ�0) ∈
[ε�wsp − ε]2 and a sufficiently small Δ,

E
Δ
ζ

[
T/Δ−1∑
n=0

e−rnΔ
(
F(wg�n)− TΔ�p

g�n (F)+ F(wγ�n)− TΔ�p
γ�n (F)

)] ≤ δ3

implies

P
Δ
ζ

[
(wg�T/Δ�wγ�T/Δ) ∈ Sε

]
> δ4�
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PROOF: The proof relies on (42) in Claim 3. It is similar to the proof of the
previous claim and is omitted. Q.E.D.

Given the claims, the rest of the proof is as follows. If (wg�wγ) ∈ Sε, then,
for the constants as in the claims,

F(wg)+ F(wγ)− FΔ�p
g (wg)− FΔ�p

γ (wγ)

≥ E
Δ
ζ

[
N∑
n=0

e−rnΔ
(
F(wg�n)− TΔ�p

g�n (F)+ F(wγ�n)− TΔ�p
γ�n (F)

)]

≥ min
{
δ3�

1 − e−rT

1 − e−rΔ
δ3δ1

}
�

where the first inequality follows from Claim 1 and the second inequality fol-
lows from Claims 2 and 4.

If, on the other hand, (wg�wγ) ∈ [ε�wsp − ε]2 \ Sε, then

F(wg)+ F(wγ)− FΔ�p
g (wg)− FΔ�p

γ (wγ)

≥ E
Δ
ζ

[
T/Δ−1∑
n=0

e−rnΔ
(
F(wg�n)− TΔ�p

g�n (F)+ F(wγ�n)− TΔ�p
γ�n (F)

)

+ e−rT
(
F(wg�T/Δ)− F

Δ�p
g�T/Δ(wg�T/Δ)+ F(wγ�T/Δ)− F

Δ�p
γ�T/Δ(wγ�T/Δ)

)]

≥ min
{
δ4� e

−rT δ4 min
{
δ3�

1 − e−rT

1 − e−rΔ
δ3δ1

}}
�

where the first inequality follows from Claim 1 and the second inequality fol-
lows from Claim 5 and the inequalities above. This establishes the proof of the
proposition.

We note that the proof can be extended beyond the pure hidden action case
and IgX = IγX . As regards the equality of Fisher information quantities, this
guarantees that the limits of the values of contracts Fg and Fγ for two noise
distributions are the same function F (Lemma 1). Because of that, as long as
the continuation values wg and wγ are not the same, the derivatives F ′

g(wg)
and F ′

γ(wγ) differ as well, which is crucial for Claim 2. Dropping the assump-
tion IgX = IγX , the proof would be analogous, yet the computation of the set
of continuation values (wg�wγ) for which F ′

g(wg) �= F ′
γ(wγ) would be cumber-

some.
On the other hand, the assumption of pure hidden action models was also

not crucial for the proof: For two different information structures, the proof
will work as long as, roughly, the optimal policies in the problem of minimizing
variance of continuation values are sufficiently different (see Claim 3).
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APPENDIX F: PROOFS FOR SECTION 5.1

In this section, we establish Theorem 3 and the analogue of Theorem 2,
which takes the following form (see the definition of simple contract action
plan below):

THEOREM 4: For ζ > 0, let Fζ be as in Theorem 3 and fix period length Δ,
agent’s promised value w ∈ [0� ū), and an approximation error ε > 0. A corre-
sponding simple contract-action plan is incentive compatible by construction and
[O(ε)+O(Δ1/3)+O(ζ)]-suboptimal.

The proof of the theorems follows just as in Appendix A from Lemma 5 and
the following version of Proposition 6, which is proven in Section F.1.

PROPOSITION 7: Fix ζ ≥ 0 and Fζ solving the HJB equation (19) on an interval
I with F ′′

ζ < 0. Then |TΔ
I Fζ − Fζ|IΔ = o(Δ) + O(ζΔ). Moreover, for any ε > 0,

Δ> 0, and w ∈ IΔ, ΦΔ(a� c�W ;Fζ)≥ Fζ(w)−O(εΔ)−O(ζΔ), where (a� c�W )
is a simple policy defined for (Fζ� ε�Δ�w) by (11) and (12).

The simple contract-action plans are defined almost identically to those in
Section 3.2 as follows. First, let us define the appropriate Bellman operators
as in Section 3.2. For an interval I ⊂ R and any function f : I → R, define the
new function TΔ

I f : I → R by

TΔ
I f (w) = sup

a�c�W

ΦΔ(a� c�W ; f )(44)

subject to

a(z) ∈A ∀z� c(y)≥ 0 and W (y) ∈ I ∀y�
w = E

Δ
[
r̃Δ

[
u
(
c
(
Δ

(
x+ a(z)

))) − h
(
a(z)

)]
+ e−rΔW

(
Δ

(
x+ a(z)

))]
� (PK)

a(x) ∈ arg max
â∈A

r̃Δ
[
u
(
c
(
Δ(x+ â)

)) − h(â)
]

+ e−rΔW
(
Δ(x+ â)

) ∀x� (IC-PHI)

We note that the Belman operator TΔ
I excludes reporting by the agent. How-

ever, in the pure hidden information case, this is without loss of generality:
With reporting, there may not exist two different noise realizations resulting in
the same signal in equilibrium (as incentive compatibility would be violated).
Thus, reporting is redundant.

Consider the following definition of simple policies (compare Definitions 1
and 3).
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DEFINITION 4: For any ζ ≥ 0 and Fζ solving (19) on an interval I, period
length Δ> 0, agent’s promised value w ∈ I, and an approximation error ε > 0,
define a simple policy (a� c�W ) as follows. Let (ā� h̄� c) be an ε-suboptimal pol-
icy of (19) at w, and for the corresponding (ā� h̄), let (a� v) be an ε-suboptimal
policy of (20).

If w ∈ IΔ, let

c(y)= c�

W (y)= C + √
Δr̃erΔ ×

⎧⎨
⎩
v(−M) if y/

√
Δ<−M ,

v(y/
√
Δ) if |y/√Δ| ≤ M ,

v(M) if y/
√
Δ>M ,

a(z) is an action that satisfies the (IC) constraint in (44),

where M is such that PX([−M�M]) ≥ 1 −ε and C is chosen to satisfy the (PK)
constraint in (44). If w /∈ IΔ, define the policy as in (12).

The definition differs from the one in Section 3.2 in that: (i) argument func-
tion is Fζ , not F , (ii) reporting is ignored, (iii) continuation value function must
be nondecreasing, (iv) range of signals for which incentives are provided (or
Mε) is readjusted. Given the above definition, simple contract-action plans are
defined as in Definition 1.

Notice that, unlike in the model analyzed in the paper, there is no additional
incentive compatibility constraint associated with truthful reporting, and so,
by construction, simple policies are fully incentive compatible. Also, as before,
(PK) is satisfied by construction, and W (y) ∈ I if Δ is sufficiently small. Thus,
simple policies are feasible for the problem (44), and so Proposition 7 verifies
only that they are close to optimal.

F.1. Proof of Proposition 7

As in the paper, define TΔ�c
I by restricting the consumption schedule c(y) to

be constant. Let us also define TΔ�d
I f (w) as TΔ�c

I f (w) with the additional con-
straints that a(·) is piecewise continuously differentiable and W (·) is continu-
ous. Finally, we modify the simplified operator TΔ�q defined in (4) by replacing
the local (first-order) incentive constraint (FOCq) by 39

r̃h′(a(x)) = e−rΔW ′(Δx) ∀x� (FOCq-PHI)

39When a(z) = 0 or a(z) = A, at an optimum the inequalities in the (IC) constraint are at-
tained with equality (see, e.g., Edmans and Gabaix (2011)).
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The proof of Proposition 7 is established by a sequence of lemmas, simi-
larly as in Appendix A. Regarding the values, the line of the argument can be
illustrated as follows:

F ∼
Lemma 22

TΔ�qF ∼
Lemma 23

TΔ�d
I F ∼

Lemma 25
TΔ�c
I F ∼

Lemma 14
TΔ
I F�

Note that the last equivalence follows from the same lemma as in the paper.
Here we focus on the other three.

First, Lemma 8 extends readily to the current pure hidden information case.
Likewise, we extend the definition of quadratic simple policies (see Defini-
tion 2).40

REMARK 1: In the pure hidden information case, the v in the definition of
a quadratic simple policy at w is continuous and piecewise twice continuously
differentiable (see the definition of Θ). We assume that for any ε > 0, there
is a common finite set D such that the set of functions v′′ for all w ∈ I are
equicontinuous outside of D, which is without loss of generality.

The following is essentially a corollary of Lemma 8.

LEMMA 22: Fix ζ ≥ 0 and Fζ solving the HJB equation (19) on an in-
terval I with F ′′

ζ < 0. Then |TΔ�qFζ − Fζ |I = o(Δ) + O(ζΔ). Moreover, for
any ε�Δ > 0, w ∈ I, and corresponding quadratic simple policy (aq� cq�Wq),
ΦΔ�q(aq� cq�Wq;Fζ�w)≥ Fζ(w)−O(Δε)−O(ζΔ), uniformly in I.

PROOF: From Lemma 8, we have

TΔ�qFζ(w)− Fζ(w)

= sup
ā�h̄�c

r̃Δ

{
(ā− c)+ F ′

ζ(w)
(
w + h̄− u(c)

)

+ erΔ
r̃

2
F ′′
ζ (w)Θ(ā� h̄)− Fζ(w)

}
+O

(
Δ2

)
=O(ζΔ)+O

(
Δ2

)
�

The last equality follows because Fζ satisfies the HJB equation (19). Lemma 8
also yields that ΦΔ�q(aq� cq�Wq;Fζ�w)≥ Fζ(w)−O(Δ2)−O(Δε)−O(ζΔ), es-
tablishing the proof. Q.E.D.

We establish now the crucial Lemma 23, the analogue of Lemma 12 in the
paper. First, we extend the general definition of simple policies to the pure
hidden information case (compare Definition 3 in the paper).

40Note that since the reporting is suppressed, the continuation value functions v in the defini-
tion of Θ and W

q
Δ in the definition of quadratic simple policies depend only on a single variable y .
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DEFINITION 5: For a twice differentiable function F : I → ∞ with F ′′ < 0,
ε > 0, Δ> 0, w ∈ IΔ, and quadratic simple policies (aq� cq�Wq) in the problem
TΔ�qF(w) based on (a� v), define the simple policy (a� c�W ) for TΔ�c

I F(w) as

c = cq�

W (y)= C +

⎧⎪⎨
⎪⎩
Wq(−

√
ΔMε) if Δx< −√

ΔMε,
Wq(Δx) if |Δx| ≤ √

ΔMε,
Wq(

√
ΔMε) if Δx>

√
ΔMε,

a(z) is an action that satisfies the (IC) constraint in (44)�

where Mε is such that PX([−Mε�Mε]) ≥ 1 − ε and C is chosen to satisfy the
(PK) constraint in (44).

LEMMA 23: Let F : I → R be twice continuously differentiable with F ′′ < 0.
Then |TΔ�c

I F − TΔ�qF |IΔ = o(Δ). Moreover, for fixed ε > 0, Δ > 0, and w ∈ IΔ,
consider quadratic simple policy (aq� cq�Wq) for TΔ�qF(w). If Δ and ε are suf-
ficiently small, for the corresponding simple policy (a� c�W ), ΦΔ(a� c�W ;F) ≥
ΦΔ�q(aq� cq�Wq;F�w)−O(εΔ)− o(Δ), uniformly in w.

PROOF: Fix ε > 0, Δ > 0 such that
√
Δ < δ/A, for δ as in Lemma 11 (with

M = Mε), and w ∈ IΔ.
Step 1: In this step, we show that ΦΔ(a� c�W ;F) ≥ ΦΔ�q(aq� cq�Wq;F�w) −

O(εΔ), uniformly in w. Since ε is arbitrary, by Lemma 8, this establishes
|TΔ�qF − TΔ�d

I F |+
IΔ

= o(Δ).
First, the inequality (29) holds by the same arguments as before. It will thus

be enough to establish (32), (33), and (34).
Given the definition of W , the necessary local version of (IC) takes the fol-

lowing form:41

r̃h′(a(x)) = e−rΔW ′(y)= r̃v′(√Δ
(
x+ a(x)

))
�(45)

whereas, given the definition of Wq and (FOCq-PHI), we have

r̃h′(aq(x)
) = e−rΔW ′

q(Δx) = r̃v′(
√
Δx)�

Let D be the finite set of points such that each v in the definition of the policy
is twice continuously differentiable on R \D (see Remark 1) and consider the
set

NΔ
ε = [−Mε/

√
Δ�Mε/

√
Δ−A] ∖ ⋃

d∈D

{
d/

√
Δ+ ζ : ζ ∈ [0�A]}�

41Recall that the W function, just as Wq , is constant in the second argument.
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For sufficiently small Δ, PΔ[NΔ
ε ] ≥ 1 − ε. Moreover, for any x ∈ NΔ

ε , v′ is con-
tinuously differentiable on [√Δx�

√
Δ(x+a(x))]. Consequently, for all such x,

|h′(aq(x) − h′(a(x))| ≤ √
Δmaxv′′, where the maximum is taken over the set

[−Mε�Mε], and hence

∣∣aq(x)− a(x)
∣∣ ≤

√
Δmaxv′′

infh′′ �

Since P
Δ[NΔ

ε ] ≥ 1 − ε, we have that the inequalities (32) and (33) hold. More-
over, by taking the maximum over maxv′′ over [−Mε�Mε] for all w (which is
well defined, due to the assumption of equicontinuity), we establish that the
bounds in those inequalities are uniform in w ∈ IΔ. Finally, (34) follows from
Lemma 10 just as in the previous case. This establishes the proof.

Step 2: In this step, we show that |TΔ�d
I F(w)− TΔ�qF(w)|+

IΔ
= o(Δ).42

For a policy (a� c�W ) that is εΔ-suboptimal in the problem TΔ
I �dF(w), de-

fine (aq� cq�Wq) as follows. Let cq = c, aq(x) = a(x) for x ∈ [−Mε/
√
Δ + 1�

Mε/
√
Δ − 1], aq(x) = 0 for x /∈ [−Mε/

√
Δ�Mε/

√
Δ], and aq piecewise con-

tinuously differentiable. Wq is constant in the second argument and is de-
fined by the local IC in (4), continuity, and (PK). The policy (aq� cq�Wq) is
feasible by construction, and we must prove that ΦΔ�q(aq� cq�Wq;F�w) ≥
ΦΔ(a� c�W ;F)−O(εΔ).

On the one hand, PΔ[aq(x) = a(x)] ≥ 1 − 2ε for sufficiently small Δ, which
implies the analogues of (32) and (33). On the other hand, for all ¯x� x̄ ∈
[−Mε/

√
Δ�Mε/

√
Δ],

Wq(Δx̄� z)−Wq(Δ¯x�z)

= r̃erΔ
∫ x̄

¯x
Δh′(aq(x)

)
dx= r̃erΔ

∫ x̄

¯x
Δh′(a(x))dx

= r̃erΔ
[∫ x̄

¯x
Δh′(a(x))(1 + a′(x)

)
dx−Δ

(
h
(
a(x̄)

) − h
(
a(¯x)

))]

=W
(
Δ

(
x̄+ a(x̄)

)
� x̄

) −W
(
Δ

(
¯x+ a(¯x)

)
� ¯x

) +O(Δ)�

where the last inequality follows from the local neccesary version of (IC-PHI).
Consequently, V

Δ[Wq(Δx�x)] ≤ V
Δ[W (Δ(x + a(x))�x)1|x|≤Mε/

√
Δ] + O(Δ2).

Moreover, since V
Δ[W (Δ(x+a(x))�x)] ≤ V Δ (Lemma 6) and W ′ ∈ [0�h′(A)],

there is Kε such that, for any Δ, |x| ≤ Mε/
√
Δ implies y ∈ B, where B = {y |

|W (y)− E
Δ[W (Δ(x+ a(x))�x)]| ≤ √

ΔKε}. Altogether, ΦΔ�q(aq� cq�Wq;F�w)

42In Step 1, we used the fact that the quadratic simple policies, for all Δ, are based on the same
set of v functions from the definition of Θ. In particular, the Wq functions have the same number
of points of discontinuity, for all Δ. In this step, without additional proofs we cannot assume such
uniformity, and so the construction is different.
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is equal to

r̃Δ
(
E

Δ
[
a(x)

] − c
) + e−rΔ

[
F(w)+ F ′(w)EΔ

[
W

(
Δ

(
x+ a(x)

)
�x

) −w
]

+ 1
2
F ′′(w)VΔ

[
W

(
Δ

(
x+ a(x)

)
�x

)
1B

]] +O(εΔ)

≤ΦΔ(a� c�W ;F)+O(εΔ)�

which establishes the lemma. Q.E.D.

We move on to establish “TΔ�d
I F ∼

Lemma 25
TΔ�c
I F .” The following Lemma 24 is

related to the standard results in the static mechanism design.

LEMMA 24: Suppose X ≡ Z. For any Δ > 0 and w ∈ IΔ, if (a� c�W ) satisfies
(IC) in TΔ�c

I F(w), then x + a(x) is nondecreasing. Conversely, if (a� c�W ) sat-
isfies the local version of (IC) almost everywhere and x+ a(x) is nondecreasing,
then (a� c�W ) satisfies the IC.

PROOF: The proof is standard, but we provide it for completeness. Suppose
first that (a� c�W ) is incentive compatible. Therefore, for any x′ > x,

−r̃h
(
a
(
x′)) + e−rΔW

(
Δ

(
x′ + a

(
x′))�x′)

≥ −r̃h
(
a(x)− (

x′ − x
)) + e−rΔW

(
Δ

(
x+ a(x)

)
�x

)
�

−r̃h
(
a(x)

) + e−rΔW
(
Δ

(
x+ a(x)

)
�x

)
≥ −r̃h

(
a
(
x′) + (

x′ − x
)) + e−rΔW

(
Δ

(
x′ + a

(
x′))�x′)�

Hence,

h
(
a
(
x′)) − h

(
a(x)− (

x′ − x
)) ≤ h

(
a
(
x′) + (

x′ − x
)) − h

(
a(x)

)
�

Since h is convex, this implies that a(x′)≥ a(x)− (x′ − x).
Conversely, we argue by contradiction. Assume that (a� c�W ) satisfies the

local IC and x+ a(x) is nondecreasing. Let

V
(
x�x′) = −r̃h

(
a
(
x′) + (

x′ − x
)) + erΔW

(
Δ

(
x′ + a

(
x′))�x′)�

By local IC, V2(x�x) = 0 for all x. Suppose that for some x′ > x, we have 0 <
V (x�x′)− V (x�x). Then

0 <

∫ x′

x

V2(x� s)ds =
∫ x′

x

[
V2(x� s))− V2(s� s)

]
ds

= −
∫ x′

x

∫ s

x

V12(z� s)dz ds�
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But

V12(z� s)= r̃h′′(a(s)+ (s − z)
)(

1 + a′(s)
) ≥ 0�

which is a contradiction. The case V (x�x′) > V (x�x) with x′ < x is analo-
gous. Q.E.D.

LEMMA 25: Let Z = X , and let F : I → R be twice continuously differentiable
with F ′′ < 0. Then |TΔ�d

I F = TΔ�c
I F |IΔ = o(Δ).

PROOF: Fix Δ�ε > 0 and consider any Δ-suboptimal policy (a� c�W ) for
TΔ�cF(w). Let Mε be such that P

Δ
X[[−Mε/

√
Δ�Mε/

√
Δ]] ≥ 1 − ε. We con-

struct a policy (ad� cd�Wd) as follows. Below, the function ad(·) is derived
from the function a(·) so that ad(·) is piecewise continuously differentiable
and x + ad(x) is nondecreasing. Then we let cd = c, and Wd be such that it
satisfies the local version of (IC):

r̃h′(ad(x)
) = e−rΔW ′

d

(
Δ

(
x+ ad(x)

))
�

is continuous, and the constant of integration is adjusted so that it satisfies the
PK condition. By Lemma 24, the policy (ad� cd�Wd) is feasible by construction.

Below, we will define ad so that ad(x) = 0 if x /∈ [−Mε/
√
Δ�Mε/

√
Δ + A],

x+ ad(x) is nondecreasing, and∫ Mε/
√
Δ

−Mε/
√
Δ

∣∣ad(x)− a(x)
∣∣dx≤ ε and

∫ Mε/
√
Δ

−Mε/
√
Δ

∣∣a′
d(x)− a′(x)

∣∣dx≤ ε�(46)

Recall that if f is nondecreasing, then f is differentiable a.e. and
∫ b

a
f ′(x)dx≤

f (b)− f (a).43 Since

h′(ad(x)
)(

1 + a′
d(x)

) − h′(a(x))(1 + a′(x)
)

= h′(ad(x)
)(
a′
d(x)− a′(x)

) + (
h′(ad(x)

) − h′(a(x)))(1 + a′(x)
)
�

(46) implies that, for any ¯x� x̄ ∈ [−Mε/
√
Δ�Mε/

√
Δ],

Wd

(
Δ

(
x̄+ ad(x̄)

)) −Wd

(
Δ

(
¯x+ ad(¯x)

))
= r̃erΔΔ

∫ x̄

¯x
h′(ad(x)

)(
1 + a′

d(x)
)
dx

≤W
(
Δ

(
x̄+ a(x̄)

)) −W
(
Δ

(
¯x+ a(¯x)

))
+ r̃erΔΔ

[
h′(A)ε+ maxh′′

[
2Mε√
Δ

+ a(x̄)− a(¯x)
]]

�

43See, for example, Theorem 2 in Chapter 5 of Royden (1988).



22 T. SADZIK AND E. STACCHETTI

The rest of the proof will follow as in the last step of Lemma 12 to establish
that ΦΔ(ad� cd�Wd;F) ≥ΦΔ(a� c�W ;F)−O(εΔ).

We now construct an ad satisfying (46) and x+ad(x) is nondecreasing. First,
note that since, for any y > x, we have a(x) ≥ a(y) − y−x

Δ
, a may not dis-

continuously decrease. Therefore, the set of points D ⊂ [−Mε/
√
Δ�Mε/

√
Δ]

at which a may be discontinuous is at most countable. Moreover, if J =∑
x∈D(a(x+)− a(x−)), then

J +
∫ Mε/

√
Δ

−Mε/
√
Δ

(
1 + a′(x)

)
dx= 2Mε√

Δ
+ a(x̄)− a(¯x)≤A+ 2Mε√

Δ
�

Since 1 + a′(x) ≥ 0, this implies that J ≤ A + 2Mε√
Δ

. Let Df be a finite set of
points where a is discontinuous such that

∑
x∈Df

(a(x+) − a(x−)) ≥ J − ε/2,
and let δ = minx∈Df

(a(x+)− a(x−)).
For any n ∈ N and x ∈ [−Mε/

√
Δ�Mε/

√
Δ], let

a′
n(x) = n

2

∫ x+1/n

x−1/n
a′(s)ds�

The function a′
n is differentiable, and for any x, a′

n(x) ≥ −1 (since a′(x) ≥
−1). From Lebesgue’s Density Theorem, it follows that for sufficiently large n,∫ Mε/

√
Δ

−Mε/
√
Δ
|a′

n(x)− a′(x)|dx≤ δ.

Finally, for Df = {d1� � � � � ḋn}, d0 = −Mε/
√
Δ, dn+1 = Mε/

√
Δ, and for any

x ∈ [di�di+1), let

ad(x)= a(di)+
∫ x

di

a′
n(s)ds�

The function ad satisfies (46) and x+ ad(x) is nondecreasing by construction,
which establishes the proof. Q.E.D.

REFERENCES

EDMANS, A., AND X. GABAIX (2011): “Tractability in Incentive Contracting,” Review of Financial
Studies, 24 (9), 2865–2894. [16]

ROYDEN, H. L. (1988): Real Analysis (Third Ed.). New York: Macmillan Publishing Company.
[21]

SANNIKOV, Y. (2008): “A Continuous-Time Version of the Principal–Agent Problem,” Review of
Economic Studies, 75 (3), 957–984. [4]

Dept. of Economics, UCLA, 8283 Bunche Hall, P.O. Box 147703, Los Angeles,
CA 90095, U.S.A.; tsadzik@econ.ucla.edu

and

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201501%2983%3A1%2B%3C1%3ASTAMWF%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/EdGa2011&rfe_id=urn:sici%2F0012-9682%28201501%2983%3A1%2B%3C1%3ASTAMWF%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Roy1988&rfe_id=urn:sici%2F0012-9682%28201501%2983%3A1%2B%3C1%3ASTAMWF%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/San2008&rfe_id=urn:sici%2F0012-9682%28201501%2983%3A1%2B%3C1%3ASTAMWF%3E2.0.CO%3B2-D
mailto:tsadzik@econ.ucla.edu
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/EdGa2011&rfe_id=urn:sici%2F0012-9682%28201501%2983%3A1%2B%3C1%3ASTAMWF%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/San2008&rfe_id=urn:sici%2F0012-9682%28201501%2983%3A1%2B%3C1%3ASTAMWF%3E2.0.CO%3B2-D


AGENCY MODELS WITH FREQUENT ACTIONS 23

Dept. of Economics, NYU, 19 West Fourth St., New York, NY 10012, U.S.A.;
ennio@nyu.edu.

Manuscript received March, 2012; final revision received October, 2014.

mailto:ennio@nyu.edu

	Appendix C: Additional Proofs for Appendix B
	Appendix D: The HJB Equation
	Proof of Proposition 1
	Proof of Proposition 2

	Appendix E: Proof of Proposition 3
	Appendix F: Proofs for Section 5.1
	Proof of Proposition 7

	References
	Author's Addresses

