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BY RAJ CHETTY AND ADAM SZEIDL

THIS MATERIAL SUPPLEMENTS THE PAPER “Consumption Commitments and
Habit Formation.” We provide missing proofs for results stated in the main
paper and we explain the numerical methods used to simulate the model.

S.1. PROOFS OF PROPOSITIONS 2 AND 3

PROOF OF PROPOSITION 2: Since the only risky assets for household i are S
and Si, there exists a unique state price density associated with the household-
specific private market. The following dynamics for adjustable consumption
generates a state price density that prices both risky assets as well as the safe
asset:
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and hence must describe the optimal choice of household i. Because ai0 =A0

for all i, aggregating across i yields, by the strong law of large numbers for a
continuum of agents (Sun (1998)),
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Define a new discount rate δ = ρ − (1 + 1
γ
)π2

I /(2σ
2
I ). Then the dynamics of

aggregate adjustable consumption is given by

At =A0 exp
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This is exactly the dynamics of adjustable consumption that would obtain for
a representative consumer with power utility over At and discount rate δ who
can invest in the publicly traded risky and safe assets. Q.E.D.

PROOF OF PROPOSITION 3: We are interested in characterizing the evolu-
tion of the conditional distribution of yit given a realization of the path of A
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under Q. Using (15), we obtain

d logait =
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is the drift under Q. We first show that F(y	 t) is absolutely continuous for all
t > 0 for almost all realizations of the path of aggregate shocks. We do this
assuming that the initial condition is ai0 =A0 and xi0 =X0 for all agents i, that
is, that the initial distribution F0(y) is concentrated on a single point. For other
initial distributions, the density f (y	 t) can simply be computed as an integral
of these densities with respect to F0(y).

Throughout the argument, we work with the probability measure Q. Our
proof logic is to fix t = T and the realization of At for t ∈ [0	T ], pick a collec-
tion of intervals I ⊂ [L	U], compute an upper bound on the probability that
yT ∈ I, and then establish that the upper bound goes to zero as the total length
of these intervals, denoted |I|, goes to zero. Our upper bound is obtained by
separately bounding the probabilities of two events:

(1) Reaching I through paths that do not involve “too many” adjustments.
Let ỹ i0 = y0 and

dỹit = −θ · dt − σA · dzt − σI · dzit �
Given the dynamics of logait , this specification implies that the evolution of ỹ is
the same as that of y except for the discrete adjustments. In particular, ỹ it = yit
before the first adjustment occurs. More generally, if yi experiences nU upward
and nD downward adjustments in the interval [0	 t], then yit = ỹ it + nD(M −
L)− nU(U −M). Because ỹ it is a Brownian motion with a drift, its density is
bounded from above by some constant which depends on the parameters of
the process, which we denote by K(μa	σA	σI	T ). As a result, for any given
n ≥ 1, the total probability of paths which involve nU < n upward and nD < n
downward adjustments such that yiT ∈ I is at most K(μa	σA	σI	T ) · n2 · |I|.

(2) The total probability of paths that involve at least n adjustments. Let
ỹA0 = y0 and dỹAt = −θ ·dt−σA ·dzt so that ỹAt represents the aggregate shocks
and trend in ỹt , and let ỹI	i0 = 0 and dỹI	it = σI · dzit so that ỹI	it represents the
idiosyncratic shocks. Then ỹ it = ỹAt + ỹI	it . The path of ỹAt contains the same
information as the path of aggregate shocks At , hence we are effectively con-
ditioning on the realization of the path of ỹAt . Set Δy = min(U −M	M −L)/2.



CONSUMPTION COMMITMENTS AND HABIT FORMATION 3

We say that a process ut moves Δy between s and t if |ut − us| = Δy . Suppose
that s1 < s2 are two consecutive adjustment dates for household i. Then either
ỹAt or ỹI	it must move at least Δy between s1 and s2. Because almost surely the
path of ỹAt is continuous, one can straightforwardly verify that there is an upper
boundK(̃yA[0	T ]) on the number of non-overlapping time intervals in [0	T ] over
which yAt moves at least Δy . For ease of notation, in the rest of this proof we
will simply denoteK(̃yA[0	T ])=K. Then, if household i adjusts at least n times in
[0	T ], there must exist at least n−K non-overlapping intervals in [0	T ] over
which ỹI	it moves at least Δy . Assume now that n > 2K+1. At least one of these
intervals—denote it by [s1	 s2]—cannot be longer than T/(n−K). Now cover
the [0	T ] interval with subintervals of length 2T/(n−K) starting at zero, and
by another set starting at T/(n−K). It is clear that an interval in one of these
covers, say [s0	 s3], must fully contain [s1	 s2].

The probability that ỹI	it moves at leastΔy over [s1	 s2] is bounded by the prob-
ability that the difference between the minimum and the maximum of ỹI	it in
[s0	 s3] is at least Δy . Given that the density of the running maximum of a stan-
dard Brownian motion is (2/(πt))1/2e−m2/(2t), this probability is bounded above
by a universal constant times ((n−K)/(πTσ2

I ))
1/2 exp[−Δ2(n−K)/(2Tσ2

I )].
Because the total number of intervals in the two covers we introduced is at
most 2(n − K), the probability that ỹI	it moves at least Δy over an interval of
length at most T/(n − K) is bounded from above by a constant (which de-
pends on T and σI) times (n−K)3/2 exp[−Δ2(n−K)/(2Tσ2

I )]. Recalling the
assumption that n > 2K + 1, the last expression can be bounded above by a
different constant (which depends on T and σ2

I ) times exp[−Δ2n/(8Tσ2
I )].

We now combine these bounds. Given K, which is determined by the path
of ỹAt , and maintaining n > 2K + 1, the total probability that yiT ∈ I is at
most

K(μa	σA	σI	T ) · n2 · |I| +K(
σ2
I 	 T

) · exp
[−Δ2n/

(
8Tσ2

I

)]
�

Setting n = |I|−1/4, for small enough |I| such that n > 2K + 1 is satisfied, the
bound becomes

K(μa	σA	σI	T ) · |I|1/2 +K(
σ2
I 	 T

) · exp
[−Δ2|I|−1/4/

(
8Tσ2

I

)]
	

which goes to zero as |I| goes to zero.
We now turn to the stochastic partial differential equation. Proposition 1 in

Caballero (1993) derives a stochastic partial differential equation, given the
path of aggregate shocks, for the conditional density of a double-barrier Brow-
nian motion with rebirth. Caballero’s equation is

df(y	 t)=
[
θ
∂f (y	 t)

∂y
+ σ2

T

2
∂2f (y	 t)

∂y2

]
dt + σA∂f (y	 t)

∂y
dz�
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Substituting in (16) yields the equation in the text. The boundary conditions
follow directly from Caballero’s proposition.

To derive the dynamics of aggregate commitments, note that Xt =
∫ U

L
ey ×

f (y	 t)dy ·At and we can use Ito’s lemma to write

dXt =At

∫ U

L

ey · df(y	 t) · dy + dAt ·
∫ U

L

eyf (y	 t)dy

+
〈∫ U

L

ey · df(y	 t) · dy	dAt

〉
�

We now evaluate each term on the right-hand side. The first term is

At
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2
dt · dy�

Integrating by parts, and using the boundary conditions, shows that this term
equals

−Xt
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The second term is

Xt · dAt

At

=Xt

((
μ+ π2

2γ2σ2

)
dt + π

γσ
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)
	

while the third term is simply −π2/(γσ)2Xt dt. Collecting terms gives the re-
sult of the proposition. Q.E.D.

S.2. PROOFS OF RESULTS LEADING UP TO THEOREM 1

S.2.1. Proofs of Auxiliary Results About the Commitments Model Including
Proof of Proposition 4

PROOF OF LEMMA 1: We start with the case where wt is driven by a stan-
dard Brownian motion. Let ζy = inf{t ≥ 0 : wt /∈ [L	U]	w0 = y}. Let Fw(t) =
Pr[ζy ≤ t] and h(y	 t)=E[ewt · 1{ζy > t}] be h(y	 t) killed at the boundary. Let
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F(1)y (t)= Fy(t) and F(n+1)
y (t)= ∫ t

0 F
(n)
y∗ (t − τ)dFy(τ)= ∫ t

0 FM(t − τ)dF(n)y (τ) be
the distribution of the n+ 1st exit time. Then

h(y	 t)= h(y	 t)+
∞∑
n=1

∫ t

0
h(M	 t − τ)dF(n)y (τ)(17)

= h(y	 t)+
∫ t

0
h(M	 t − τ)dF∗

y (τ)	

where

F∗
y (t)=

∞∑
n=1

F(n)y (t)= Fy(t)+
∫ t

0
F∗
M(t − τ)dFy(τ)(18)

= Fy(t)+
∫ t

0
FM(t − τ)dF∗

y (τ)

is the expected number of boundary hits until t.
The transition density of the killed diffusion p(y	 y ′	 t) = Pr[ζy > t	 yt = y ′]

can be expressed as an infinite sum of normal densities (Revuz and Yor (1994,
p. 106)), and in particular, is infinitely many times differentiable in [L	U] ×
[L	U]×(0	∞). This implies that h(y	 t)= ∫

ey
′
p(y	 y ′	 t)dy ′ is infinitely many

times differentiable in [L	U] × (0	∞). The density of the first hitting time ζy
can also be expressed in closed form as an infinite sum (Darling and Siegert
(1953)), and is infinitely many times differentiable in y and t over [L	U] ×
(0	∞). This, combined with (18), implies that F∗

y (t) is C∞ in [L	U] × (0	∞).
Combining these observations with (17) shows that h(y	 t) is also C∞ in the
[L	U] × (0	∞) domain.1

We next show that h is also smooth when driven by any Brownian mo-
tion with drift and variance, and that it is smooth in the other parameters.
Changing the clock of yt scales both the mean and the variance, and is obvi-
ously a smooth transformation of h(y	 t) as it just scales the time argument.
Shifting and rescaling the vertical axis are smooth operations that shift and
rescale the triple [L	M	U]. Thus we only need to show smoothness in the
drift and in M . The drift can be dealt with using the Girsanov theorem, which
implies that the density of the killed diffusion under drift can be obtained
as pμw(y	 y ′	 t) = p(y	 y ′	 t) · exp[μw(y ′ − y) − μ2

wt/2], which is clearly C∞ in
μw, and hence so is h(y	 t). Next, the distribution of the first hitting time is
1 − F

μy
y (t) = ∫

pμy (y	 y ′	 t)dy ′ which is also smooth. The smoothness of h in
μy now follows from (17). Smoothness in M follows easily from (17). Q.E.D.

1Grigorescu and Kang (2002) computed the transition density of y explicitly.
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PROOF OF LEMMA 2: We have

Es[Xt] =As ·ERs [Xt/At] =As ·EQRs [xt/at]

=As ·
∫ U

L

h(t − s	 y)f (y	 s)dy	

which is a martingale in s. Computing the Ito differential

dsEs[Xt] = dAs ·EQRs [xt/at] +As ·
∫ U

L

h(t − s	 y)fy(y	 s)σA dzs · dy	

where we used (7) for the evolution of f (y	 s) and collected only the dz terms,
since the ds terms must cancel by the martingale property. Equivalently,

dsEs[Xt] = dAs ·
(
EQRs [xt/at] +

∫ U

L

h(t − s	 y)fy(y	 s)dy
)

= dAs ·
∫ U

L

(
h(u	 y)− hy(u	 y)

)
f (y	 s)dy	

where we integrated by parts. This equation shows the existence of ξ as well as
the desired representation. Q.E.D.

PROOF OF LEMMA 3: Ben-Ari and Pinsky (2009) showed that yt = log[xt/at]
converges exponentially fast to a unique invariant distribution. It follows from
Ben-Ari and Pinsky (2007) that the rate of convergence is uniformly bounded
if the drift is from a bounded interval. This implies uniform convergence for
all σA ∈ [0	σA] through a clock-change argument. Since

E0[Xt] =ER0 [Xt/At] =EQR0 [xt/at]	
it follows that E0[Xt] converges exponentially fast to the mean x of x/a un-
der the invariant distribution, and that this is uniform in σA. Recalling that
h(u	 y) = EQR[xu/au|x0/a0 = ey], we also have h(u	 y) converge at the same
rate to x as u→ ∞, uniformly in y and σA. Letting FQRt [y|y0] denote the cross-
sectional distribution of yt given initial value y0, fixing some s < u, we can write

hy0(u	 y0)= ∂

∂y0

∫ U

L

h(u− s	 y)dFQRt [y|y0]

=
∫ U

L

h(u− s	 y)∂
2FQRt [y|y0]
∂y0 ∂y

dy

=
∫ U

L

(
h(u− s	 y)− x)∂2FQRt [y|y0]

∂y0 ∂y
dy	
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where at the last step we used that ∂2FQRt [y|y0]/∂y0 ∂y integrates to zero in y . By
the arguments of Lemma 1, ∂2FQRt [y|y0]/∂y0 ∂y is bounded, while h(u−s	 y)−x
converges exponentially fast to zero; hence so does the integral. Q.E.D.

PROOF OF PROPOSITION 4: We show that ξ(u	 f ) equals the impulse re-
sponse of Definition 1. Let A

∗
0 be the point at which we want to differentiate

E0[Xt(A0	F
x(x0|A∗

0))]. We can write

E0

[
Xt

(
A0	F

x
(
x0|A∗

0

))]
=A0 ·ER0

[
Xt

(
A0	F

x
(
x0|A∗

0

))
t
/At

]
=A0 ·

∫ U

L

h
(
t	 y − (

logA0 − logA∗
0

))
dF0(y)�

This is because when A0 =A
∗
0, the mass of people at any point y is given by

dF0(y), and the conditional expectation given y is summarized by h. When
A0 changes, the mass of these people is unaffected, and hence dF0(y) is un-
changed; but—because commitments are held fixed whileA0 changes—their y
shifts. Hence we must evaluate h at a point which recognizes this change.

Differentiating this expression in A0 gives

E0

[
Xt

(
A0	F

x
(
x0|A∗

0

))]
∂A0

=
∫ U

L

h(t	 y)dF0(y)−
∫ U

L

hy(t	 y)dF0(y)

=
∫ U

L

[
h(t	 y)− hy(t	 y)

]
dF0(y)	

which is exactly the definition of ξ given above when F0(y) has a density. This
confirms that the impulse response is well defined, that it is independent ofA∗

0,
and that the MA representation claimed in the proposition holds. Q.E.D.

PROOF OF LEMMA 4: We know that EF converges to F∗ uniformly in y . Fix
ε > 0 and pick s so that, for all t > s, |EFt − F∗|< ε/8 for all initial conditions
and for all σ small enough. Consider the rectangular set [−κ	κ] × [t − s	 t],
and let Gκ denote the event when the realization of logAu − logAt−s for
u ∈ [t − s	 t] is in this set. Let F(y	 t	A[t−s	t]	 ys) denote the distribution of
yt under Q when started at ys in s, and when the realization of aggregate
shocks is given by A[t−s	t]. We then have that {supyt 	ys |F(y	 t	A[t−s	t]	 ys) −
F(y	 t	A

′
[t−s	t]	 ys)|A[t−s	t]	A

′
[t−s	t] ∈Gκ} goes to zero as κ→ 0: two sufficiently

close paths of aggregate consumption generate cross-sectional distributions
that are themselves close. This is because the share of people for whom the
two aggregate paths result in sufficiently different behavior goes to zero. Take
κ small enough so that this quantity is less than ε/8. For any fixed κ, we
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can pick σ small enough so that Pr[A[t−s	t] ∈Gκ] > 1 − ε/8. This implies that
|EsFt − E[Ft|f (s)	Gκ]| < ε/4. Combining these bounds, for A[t−s	t] ∈ Gκ we
have ∣∣F(

y	 t	A[t−s	t]	 f (s)
) − F∗(y)

∣∣
≤ ∣∣F(

y	 t	A[t−s	t]	 f (s)
) −E[

Ft |f (s)	Gκ

]∣∣
+ ∣∣E[

Ft |f (s)	Gκ

] −EsFt
∣∣ + ∣∣EsFt − F∗(y)

∣∣
<
ε

8
+ ε

4
+ ε

8
= ε

2
�

Using this, we have∥∥∥sup
y

∣∣F(y	 t)− F∗(y)
∣∣∥∥∥p
p

= Pr[Gκ] ·E
[
sup
y

(
F(y	 t)− F∗(y)

)p∣∣Gκ

]

+ (
1 − Pr[Gκ]

) ·E
[
sup
y

(
F(y	 t)− F∗(y)

)p∣∣not Gκ

]

≤
[(
ε

2

)p

+ 2p
ε

8

]
< 2pε�

Since this is true for all t > s, it is also true for the lim sup. But ε was arbitrary,
and the bound applies for all σ small enough given ε; hence the desired result
follows. Q.E.D.

S.2.2. Proofs of Auxiliary Results About the Habit Model

PROOF OF LEMMA 5: Starting with the A-weighted habit model, consider
the unique solution of the integral equations for ζ and o (see Lew (1972) for
existence and uniqueness) and define

X̃t = o(t)X0 +
∫ t

0
ζ(t − s)Cs ds�

We will show that X̃t =Xt for all t ≥ 0. First note that

X̃t = o(t)X0 +
∫ t

0
ζ(t − s)[As +Xs]ds

= o(t)X0

+
∫ t

0
ζ(t − s)As + ζ(t − s)

[∫ s

0
j(s− u)Au du+ k(s)X0

]
ds
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= o(t)X0 +
∫ t

0
As

[
ζ(t − s)+

∫ t−s

0
j(u)ζ(t − s− u)du

]
ds

+X0

∫ t

0
ζ(t − s)k(s)ds�

Equating coefficients, Xt = X̃t holds if

j(t − s)= ζ(t − s)+
∫ t−s

0
j(u)ζ(t − s− u)du

or, with t − s= u,

ζ(u)= j(u)−
∫ u

0
ζ(v)j(u− v)dv

and

o(u)= k(u)−
∫ u

0
ζ(u− v)k(v)dv�

Substituting in u= 0 gives ζ(0)= j(0) and o(0)= k(0). The integral equation
for ζ(u) then yields a unique solution, which can be used to determine o(·).
By the above argument, a pair of functions that solve these equations also give
Xt = X̃t , which is the desired representation. Q.E.D.

PROOF OF LEMMA 6: Detrending both sides and integrating by parts (using
that ξ∗ is smooth):

X
h

t =
∫ t

0
ξ∗′(t − s)As ds+ [

x− ξ∗(t)
]
A0

= [−ξ∗(t − u)Au

]t
0
+

∫ t

0
ξ∗(t − s)dAs +

[
x− ξ∗(t)

]
A0

=
∫ t

0
ξ∗(t − s)dAs + xA0� Q.E.D.

S.2.3. Proofs of Results Used in Establishing Theorem 1

PROOF OF LEMMA 7: We proceed by induction on t. Fix some k > 0. We
show that (i) the desired bound holds when t ≤ k, and (ii) if the bound holds
for some t, it also holds for t + k. We begin by showing (ii), which is the more
difficult part.
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We can write

‖Gt‖p ≤
∥∥∥∥At−k
At

∫ t

t−k
g(t − s) As

Au−k
dzs

∥∥∥∥
p

+
∥∥∥∥At−k
At

∥∥∥∥
p

·
∥∥∥∥ 1

At−k

∫ t−k

0
g(t − s)As dzs

∥∥∥∥
p

	

where we used independence of the Brownian increments. Denoting g(u	 s)=
eK2kg(u+ k	 s), we can rewrite the final term in brackets as

e−K2k · 1

At−k

∫ t−k

0
g(t − k− s	 s)As dzs	

where |g(u	 s)| ≤ K1e
−K2u by construction. By our induction assumption, this

term has p-norm bounded by e−K2k ·M(p). To bound the remaining terms,
first observe that by lognormality,∥∥∥∥At−k

At

∥∥∥∥
p

≤Kp(σA	k)

for some Kp(σA	k) that goes to 1 in σA for all k. Next note that

∥∥∥∥At−k
At

∫ t

t−k
g(t − s	 s) As

At−k
dzs

∥∥∥∥
p

≤
∥∥∥∥At−k
At

∥∥∥∥
2p

·
∥∥∥∥
∫ t

t−k
g(t − s	 s) As

At−k
dzs

∥∥∥∥
2p

by the Cauchy–Schwarz inequality. Here∥∥∥∥At−k
At

∥∥∥∥
2p

≤K2p(σA	k)	

where K2p(σA	k) also goes to 1 in σA for all k. Finally, using standard bounds
(e.g., Karatzas and Shreve (1988)) for moments of the Ito integral, we obtain

∥∥∥∥
∫ t

t−k
g(t − s	 s) As

At−k
dzs

∥∥∥∥
2p

≤K2p

(∫ t

t−k
K2

1

∥∥∥∥
(
As

Au−k

)2∥∥∥∥
p

ds

)1/2

	

which is bounded by K2pK1k ·K2p(σA	k). Combining terms, we obtain

‖Gt‖p ≤K2
2p(σA	k) ·K2pK1k+Kp(σA	k) · e−K2k ·M(p)�
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It is easy to see that if

M(p)= K2
2p(σA	k) ·K2pK1k

1 −Kp(σA	k) · e−K2k

is positive, then the induction step follows. We can make sure that this is the
case by first choosing some k > 0, and then picking σA small enough so that,
for all σA ≤ σA, we have Kp(σA	k) < e

K2k/2. With this choice of M(p), the
induction step follows; and (i) can be verified easily from the argument of the
induction step. Q.E.D.

PROOF OF LEMMA 8: We verify directly that changing the clock is equivalent
to rescaling the relevant parameters in the setup of the problem. Maximizing
the consumer’s problem in the original model is equivalent to maximizing

E

∫ ∞

0
e−ρtτ

(
a1−γ
τt

1 − γ +μ x
1−γ
τt

1 − γ
)
dt	

which is proportional to the objective function in the model with new parame-
ters. Similarly, the budget constraint of the original model implies

dwτt =
[(
τr + ατtτπ + αiτtτπI

)
wt − τct

]
dt

+ ατtwτtστ1/2 dzτt + αiτtwτtσiτ1/2 dziτt

on all non-adjustment dates due to the scaling invariance of Brownian motion.
Finally, on adjustment dates, dw = λ1xt−/r + λ2xt/r = λ1 · τxt−/(τr) + λ2 ·
τxt/(τr). Since the optimal policy is unique, the claim follows. Q.E.D.

S.3. PROOFS FOR SECTION 4.1

S.3.1. Proof of Proposition 5

(1) Excess smoothness. Using a Taylor expression, we can write

logCt1 − logCt0 = At0

Ct0
(logAt1 − logAt0)+ εt1	(19)

where, because Xt has bounded variation, there exists Kε such that Eε2
t1
<

Ke(t1 − t0)2. Thus

β1(t1)= cov
(
log(Ct1/Ct0)	 log(At1/At0)

)
var

(
log(At1/At0)

)
≤ At0

Ct0
+ σA(t1 − t0)1/2Kε(t1 − t0)

σ2
A(t1 − t0) = At0

Ct0
+ (t1 − t0)1/2Kε

σA
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and the right-hand side approaches At0/Ct0 as t1 → t0.
(2) Excess sensitivity. Let t1 = t2. From the proof of Lemma 3, we know

that log[At3/Ct3] converges exponentially fast to an invariant distribution. In
particular, Et1[log[At3/Ct3]] converges exponentially fast to the mean of this
invariant distribution, which we denote by ξ, so that we can write logCt3 =
logAt3 +ξ+εt3 , where Et1[εt3] converges to zero at a given exponential rate as
t3 → ∞. Using (19), we can write

logCt3 − logCt1 = logAt3 + ξ+ εt3 − logCt0

− At0

Ct0
(logAt1 − logAt0)− εt1

= Xt0

Ct0
(logAt1 − logAt0)+ (logAt3 − logAt1)

+ (logAt0 + ξ)+ (εt3 − εt1)�
To compute β2, we evaluate the covariance of logAt1 − logAt0 with each of
the terms in this expression. Because logAt is a Brownian motion with drift,
the covariance with the term in the second parentheses is zero. Conditional
on the history up to t0, the terms in the third parentheses are constants, hence
their covariance is also zero. The terms in the fourth parentheses are error
terms: just like in the proof of (1), ε1 can be made arbitrarily small by choosing
t1 small; and εt3 is approximately orthogonal to events before t1 for t3 large.
Thus, for t1 small and t3 large, the regression coefficient is determined by the
first term, implying that β2 is approximately Xt0/Ct0 > 0.

S.3.2. Modeling Large Shocks

Our approach is to construct, on a single probability space, a set of “shock”
processes for each t1 > t0, such that the distribution of the process for a given
t1 is identical to the distribution of At conditional on the shock event S(t1	Δ).
This construct will allow us to take limits while holding fixed the probability
space.

Formally, we introduce the auxiliary process Ãt , which agrees with At for
t ≤ t0, and has the same distribution as At for t > t0. The idea is that innova-
tions in Ãt will be drivingAt after the shock. We also introduce an independent
standard Brownian motion Bs defined for s ≥ 0, which will drive the innova-
tions during the shock. We then model the positive shock as a Brownian bridge
for logAt conditioned to start at logAt0 at time t0, and to reach logAt0 +Δ at
time t1. We denote this process by At(+	 t1	Δ), and construct it as follows:
for t0 ≤ t ≤ t1, we let logAt(+	 t1	Δ) = σA(Bt−t0 − (t − t0)Bt1) + (t − t0)Δ,
and for t ≥ t1, we let d logAt(+	 t1	Δ)= d log Ãt . Although the expression for
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t0 ≤ t ≤ t1 does not make this clear, it is well known that this Brownian bridge
is an Ito processes. We construct At(−	 t1	Δ) analogously. Given that it is a
Brownian bridge between t0 ≤ t ≤ t1, it follows that logAt(+	 t1	Δ) has the
same distribution as our original process logAt conditional on S(+	 t1	Δ).

The formulas for the dynamics of Xt , Ct , Xh
t , and Ch

t , once we replace At

by At(+	 t1	Δ) respectively At(−	 t1	Δ), directly extend, and generate the dis-
tributions of commitments, habit, and consumption conditional on the shock
event. To clarify which process we have in mind, we sometimes use notation
such as Xt(+	 t1	Δ) to refer to aggregate commitments (during or after a pos-
itive shock) on the probability space just constructed. However, when it does
not cause confusion we often just write X

h

t and say in words that we work with
the “shock” processes.

One key feature of this construction is that instead of considering a sequence
of non-overlapping events S(t1	Δ), we consider a single probability space and
a sequence of processes. The advantage is that we can use the Lp norm on this
common probability space when we take various limits over t. In particular,
throughout the analysis below, we use Lp (conditional on the history up to t0)
for all p≥ 1 as we take the limits t1 → t0 and t2 → t0.

S.3.3. Continuity After Large Shocks

We show thatX
h

t andC
h

t change continuously around t0 in the limit as t1 → t0
and as t2 → t0.

LEMMA 9: We have

lim
t1→t0

X
h

t1
(+	 t1	Δ)=Xh

t0
and lim

t1→t0
X
h

t1
(−	 t1	Δ)=Xh

t0
�

Moreover, even after taking the limit t1 → t0, the dynamics of X
h

t are continuous
at t0:

lim
t2→t0

lim
t1→t0

X
h

t2
(+	 t1	Δ)=Xh

t0
and lim

t2→t0
lim
t1→t0

X
h

t2
(−	 t1	Δ)=Xh

t0
�

PROOF: Consider the case when the shock is positive. Suppressing in no-
tation that we work with the “shock” processes, according to the representa-
tion in Lemma 7, X

h

t2
= ∫ t2

0 ξ
∗′(t2 − s)As(+	 t1	Δ)ds + [x − ξ∗(t2)]A0. When

t2 = t1 goes to t0, this expression converges to
∫ t0

0 ξ
∗′(t2 − s)As(+	 t1	Δ)ds +

[x− ξ∗(t2)]A0 =Xh

t0
, proving, for a positive shock, the first claim. For the sec-

ond claim, note that as t1 → t0, the last term is constant while the first term
converges to

∫ t2
t0
ξ∗′(t2 − s)Ãs ·eΔ ds+

∫ t0
0 ξ

∗′(t2 − s)As ds. Here only the first in-
tegral depends on t2, and as t2 → t0, it converges to zero. The same logic works
when the shock is negative. Q.E.D.
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LEMMA 10: We have

lim
t1→t0

log
[
C
h

t1
(+	 t1	Δ)

] = log
[
eΔAt0 +Xh

t0

]
and

lim
t1→t0

log
[
C
h

t1
(−	 t1	Δ)

] = log
[
e−ΔAt0 +Xh

t0

]
�

And analogously we have

lim
t2→t0

lim
t1→t0

log
[
C
h

t2
(+	 t1	Δ)

] = log
[
eΔAt0 +Xh

t0

]
and

lim
t2→t0

lim
t1→t0

log
[
C
h

t2
(−	 t1	Δ)

] = log
[
e−ΔAt0 +Xh

t0

]
�

PROOF: Suppose the shock is positive. Then, suppressing in notation that
we work with the “shock” processes, using the fact that log(1 + z)≤ z,

∣∣log
[
C
h

t2

] − log
[
eΔAt0 +Xh

t0

]∣∣
=

∣∣∣∣log
[
At2 +Xh

t2

eΔAt0 +Xh

t0

]∣∣∣∣ ≤ max
[
At2 +Xh

t2

eΔAt0 +Xh

t0

− 1	
eΔAt0 +Xh

t0

At2 +Xh

t2

− 1
]

≤ max
[(
At2 − eΔAt0

) + (
X
h

t2
−Xh

t0

)
eΔAt0 +Xh

t0

	

(
eΔAt0 −At2

) + (
X
h

t0
−Xh

t2

)
At2 +Xh

t2

]

≤ max
[∣∣At2 − eΔAt0

∣∣ + ∣∣Xh

t2
−Xh

t0

∣∣
eΔAt0

	

∣∣eΔAt0 −At2

∣∣ + ∣∣Xh

t0
−Xh

t2

∣∣
At2

]
�

For the first set of limits, we assume t1 = t2 and take them to t0 simultaneously;
for the second set of limits, we first take t1 → t0 and then take t2 → t0. In ei-
ther case, in both terms of the maximum, the numerator converges to zero in
L2p while the inverse of the denominator is bounded in L2p. By the Cauchy–
Schwarz inequality, the terms themselves converge to zero inLp, hence so does
their maximum. The argument for a negative shock is analogous. Q.E.D.

S.3.4. Notation and Proof Structure

Bounds

We use the notation thatK(t	Δ) refers to a family of random variables which
are uniformly bounded independently of Δ, in the limit as t1 → t0, when t2 and
t3 are appropriately chosen. Formally, we require that there exists a family of
constantsK(p), such that given p, for any Δ, we can find t2(Δ	p) small enough
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and t3(Δ	p) large enough so that limt1→t0 sup‖K(t1	 t2(Δ	p)	 t3(Δ	p))‖p ≤
K(p). Different occurrences of K(t	Δ) may refer to different families of
random variables and may have different K(p) values associated with them.
For example, Lemma 10 implies that log[Ch

t2
(+	 t1	Δ)] = log[eΔAt0 + X

h

t0
] +

K(t	Δ).

Order of Limits

The statement of Proposition 7 assumes that n is large enough; this means
that σA/σI is small enough, while other parameters of the model, as described
in Section 3.4, remain bounded. We first analyze the case in which σA becomes
small, and then establish the result when σI becomes sufficiently large using a
clock change.

S.3.5. Long-Term Behavior

LEMMA 11: Suppose that n is large enough and σA is small enough. Then

lim
t3→∞

lim
t1→t0

[
X
h

t3
(−	 t1	Δ)

At3(−	 t1	Δ)
− X̃h

t3

Ãt3

]
= 0�

The intuition for the lemma is that Xt3 is just a weighted sum of past As

values, with the weights for the distant past going to zero exponentially fast.
Thus, if As is multiplied by a constant after date t0, then for t3 large enough,
most of the terms determining Xt3 in this weighted sum will also be multiplied
by that constant, and henceXt3/At3 will be approximately the same as it would
be on the no-shock path. The caveat is that the terms in the weighted average
corresponding to the distant past, divided by current At3 , must not blow up.
For this we need that 1/At3 does not become big too quickly relative to the
rate with which the weights on the past converge to zero. These weights go to
zero at a given exponential rate, so if the variance of the At process is not too
big, we are fine.

PROOF OF LEMMA 11: Suppressing in notation that we work with the “neg-
ative shock” processes, we have

lim
t1→t0

X
h

t3

At3

= lim
t1→t0

1

At3

∫ t3

0
ξ∗′(t3 − s)As ds+ [

x− ξ∗(t3)
]A0

At3

= 1

At3

∫ t3

t0

ξ∗′(t3 − s)Ãse
−Δ ds
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+ 1

At3

∫ t0

0
ξ∗′(t3 − s)As ds+ [

x− ξ∗(t3)
]A0

At3

= e−Δ X̃
h
t3

At3

+ (
1 − e−Δ) 1

At3

(∫ t0

0
ξ∗′(t3 − s)As ds+ [

x− ξ∗(t3)
]
A0

)

= X̃h
t3

Ãt3

+ (
1 − e−Δ) 1

Ãt3e
−Δ

([−ξ∗(t3 − s)As

]t0
0

+
∫ t0

0
ξ∗(t3 − s)dAs +

[
x− ξ∗(t3)

]
A0

)

= X̃h
t3

Ãt3

+ (
eΔ − 1

) 1
Ãt3

(
−ξ∗(t3 − t0)At0 + ξ∗(t3)A0

+
∫ t0

0
ξ∗(t3 − s)dAs +

[
x− ξ∗(t3)

]
A0

)

= X̃h
t3

Ãt3

+ (
eΔ − 1

) 1
Ãt3

(∫ t0

0
ξ∗(t3 − s)dAs + xA0 − ξ∗(t3 − t0)At0

)
�

Here the last term can be written as

(
eΔ − 1

) 1
Ãt3

(∫ t0

0

(
ξ∗(t3 − s)− x)dAs +At0

[
x− ξ∗(t3 − t0)

])
�

Because, by Lemma 3, |ξ∗(t3 − s)− x| ≤K1e
−K2(t3−s) for some constants K1	K2

independent of n, it follows from Lemma 7 that, for n large enough, the first
term here converges to zero as t3 → ∞. Also by Lemma 3, the second term
converges to zero as t3 → ∞. Q.E.D.

LEMMA 12: Suppose that n is large enough and σA is small enough. There
exists a constant K2 such that the following holds. For any Δ, we can find t2 and t3
such that, for all t1 close enough to t0,

E
[
logC

h

t3
− logC

h

t2
|S(+	 t1	Δ)

] −E[
logC

h

t3
− logC

h

t2
|S(−	 t1	Δ)

]
≥ Δ−K2�

PROOF: A key element of the proof is that we bound the left-hand side for
each realization, that is, without the expectations operator. However, because
S(+	 t1	Δ) and S(−	 t1	Δ) are disjoint events, we can only do this using the
“shock processes,” which have the same distribution as the original processes
conditioned on the shock events, but are defined on a common probability
space.
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Suppose first that the shock is positive. Suppressing in notation that we work
with the shock process, we have logC

h

t3
≥ logAt3 = log Ãt3 + Δ. Moreover, by

Lemma 10, for t2 close to t0, we have

logC
h

t2
= log

[
eΔAt0 +Xt0

] +K(t	Δ)= logAt0 +Δ+K(t	Δ)	
where the second equality follows because, given that we condition on the his-
tory up to t0, X

h

t0
/At0 is a constant. We can now write, for a positive shock,

that

logC
h

t3
− logC

h

t2
≥ (log Ãt3 +Δ)− (

logAt0 +Δ+K(t	Δ))
= log Ãt3 − logAt0 +K(t	Δ)�

Now suppose that the shock is negative. Then, using Lemma 10,

logC
h

t2
= log

[
e−ΔAt0 +Xt0

] +K(t	Δ)
= logAt0 + log

[
e−Δ +Xt0/At0

] +K(t	Δ)≥ logAt0 +K(t	Δ)
because Xt0/At0 is a constant. Moreover, using the fact that log(1 + z)≤ z,

logC
h

t3
= log

[
At3 +Xh

t3

] = logAt3 + log
[
1 +Xh

t3
/At3

]
≤ log Ãt3 −Δ+Xh

t3
/At3 = log Ãt3 −Δ+ X̃h

t3
/Ãt3 +K(t	Δ)	

where at the last step we used Lemma 11. It follows that for a negative shock,

logC
h

t3
− logC

h

t2
≤ log Ãt3 −Δ+ X̃h

t3
/Ãt3 − logAt0 +K(t	Δ)�

Combining the inequalities for the positive and the negative shocks yields,
for the shock processes, the bound

[
logC

h

t3
(+	 t1	Δ)− logC

h

t2
(+	 t1	Δ)

]
− [

logC
h

t3
(−	 t1	Δ)− logC

h

t2
(−	 t1	Δ)

]
≥ log Ãt3 − logAt0 − (

log Ãt3 −Δ+ X̃h
t3
/Ãt3 − logAt0

) +K(t	Δ)
= Δ− X̃h

t3
/Ãt3 +K(t	Δ)�

Finally,

X̃t3

Ãt3

= 1
Ãt3

∫ t3

0
ξ∗(t3 − s)dÃs + x Ã0

Ãt3
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= x+ 1
Ãt3

∫ t3

0

[
ξ∗(t3 − s)− x]dÃs	

and by Lemma 7, the last term is bounded in Lp for all t3. Thus the above
difference is Δ plus a term bounded in Lp, and the claim of the lemma fol-
lows. Q.E.D.

S.3.6. Proofs of Propositions 6 and 7

PROOF OF PROPOSITION 6: (i) Taking expectations in the regression equa-
tion (12) conditional on the shock being positive, respectively negative, and
differencing, we obtain

E
[
logCt1 − logCt0 |S(+	 t1	Δ)

] −E[
logCt1 − logCt0 |S(−	 t1	Δ)

]
(20)

= 2β1(t1	Δ) ·Δ	
which gives an expression for β1(t1	Δ). An analogous formula expresses
βh1(t1	Δ). Because Xt/At is bounded from below by L and from above by U ,
we have | log(Ct1/Ct0) − log(At1/At0)| ≤ log(1 + U) − log(1 + L) = K1, and
therefore,

E
[
logCt1 − logCt0 |S(+	 t1	Δ)

] −E[
logCt1 − logCt0 |S(−	 t1	Δ)

]
≥E[

log(At1/At0)|S(+	 t1	Δ)
]

−E[
log(At1/At0)|S(−	 t1	Δ)

] − 2K1

= 2(Δ−K1)�

Hence β1(t1	Δ)≥ 1 −K1/Δ.
(ii) Lemma 10 implies that for any positiveK2, we can choose t1 close enough

to t0 such that

E
[
logCt1 |S(+	 t1	Δ)

] −E[
logCt1 |S(−	 t1	Δ)

]
≤ log

[
eΔAt0 +Xh

t0

] − log
[
e−ΔAt0 +Xh

t0

] +K2�

The right-hand side can be bounded as

log
[
eΔAt0 +Xh

t0

e−ΔAt0 +Xh

t0

]
= log

[
eΔ +Xh

t0
/At0

e−Δ +Xh

t0
/At0

]
≤ log

[
eΔ +Xh

t0
/At0

X
h

t0
/At0

]

≤ Δ+ log
[1 +Xh

t0
/At0

X
h

t0
/At0

]
= Δ+K3	
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where—given that we condition on the history up to t0—K3 is a constant. It
then follows from (20) that, for a given Δ, we can choose t1 close enough to t0
such that βh1(t1	Δ) < 1/2 + (K2 +K3)/Δ. Q.E.D.

PROOF OF PROPOSITION 7: (i) Taking expectations in (13) and differencing,
we obtain

E
[
logCt3 − logCt2 |S(+	 t1	Δ)

] −E[
logCt3 − logCt2 |S(−	 t1	Δ)

]
(21)

= 2β2(t	Δ) ·Δ	

which gives an expression for β2(t	Δ). An analogous formula expresses
βh2(t	Δ). Because Xt/At is bounded from below by L and from above by U ,
we have | log(Ct3/Ct2) − log(At3/At2)| ≤ log(1 + U) − log(1 + L) = K1, and
therefore,

E
[
logCt3 − logCt2 |S(+	 t1	Δ)

] −E[
logCt3 − logCt2 |S(−	 t1	Δ)

]
≤E[

log(At3/At2)|S(+	 t1	Δ)
]

−E[
log(At3/At2)|S(−	 t1	Δ)

] + 2K1

= 2K1�

Using (21), we obtain β2(t1	 t2	 t3	Δ)≤K1/Δ.
(ii) Using Lemma 12, we can find t2 and t3, and t1 close enough to t0, such that

βh2(t1	 t2	 t3	Δ)≥ 1 −K2/Δ. This gives the proof along a sequence Θn in which
σA → 0. Finally, we discuss the case when, as n→ ∞, we have σI → ∞. The
only step we need to verify is that Lemma 12 also holds for n large enough. To
show this, just like in the proof of our main result, we change the clock. Using
the transformation introduced in Lemma 8, we let τ = 1/σ2

I and slow down
the model by rescaling deep parameters with τ. In the habit representation
of that “rescaled” model, for n large enough, Lemma 12 holds, because all
the assumptions, in particular, the requirement that σA is small enough, are
satisfied. And because the habit representation of the model after the clock
change is the same as changing the clock in the habit representation of the
original model, it follows that—with appropriately unscaled values for t2 and
t3—Lemma 12 also holds in the original model. Q.E.D.

S.4. PROOFS FOR SECTIONS 4.2 AND 4.3

PROOF OF PROPOSITION 8: In Θ
∗
, agents in the interior of the band

never adjust, hence T∗(p̃|x0) = ∞. For n finite, agents do adjust eventu-
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ally, but since the drift and variance of y go to zero, the expected time to
adjustment approaches infinity. In the habit model, x never changes, hence
Th	n(p̃|x0)= ∞. Q.E.D.

PROOF OF PROPOSITION 9: (i) Our first goal is to compute the value func-
tion of the habit agent. Let ψ be defined so that the value function of the
Merton consumption problem in the environment of the representative habit
consumer, but without habit, is ψW 1−γ/(1 − γ). By the envelope theorem, this
Merton agent has consumption policy c = ψ−1/γW . The surplus consumption
of our habit agent is identical to the consumption of a Merton agent, because
they solve the same maximization problem. Hence, if the habit consumer sets
his initial surplus consumption to be A0, the dollar cost of his lifetime surplus
consumption expenditure is A0ψ

1/γ .
To proceed, we now evaluate the lifetime budget constraint of the habit con-

sumer. Each dollar of consumption spending in a period also creates future ex-
penditure in the form of increased habit. Suppose 1 + B dollars is the present
value of these future expenditures for a dollar of consumption spending today,
where B= 0 with no habits. Then B must satisfy

B=
∫ ∞

u=0
θ(u)e−ru du · (1 +B)

because each dollar of consumption creates θ(u) habit spending u periods
ahead, which has a total cost of θ(u)(1 +B) in period u dollars, which we must
then discount back at the risk-free rate because these payments are certain.
Solving yields

B= 1

1 −
∫ ∞

u=0
θ(u)e−ru du

�

At any time t, our habit consumer also has pre-existing habit created by his
past consumption. The dollar value of the expenditures generated is

Zt = (1 +B)

·
[∫ t

s=0
Ct−s

∫ ∞

s

θ(u)e−r(u−s) duds+
∫ ∞

s=t
θ0(u)X0e

−ru du
]
	

where the term in parentheses measures future consumption expenditures cre-
ated by habits established before t, discounted back at the risk-free rate be-
cause these are certain; and the factor 1 +B is included because each dollar of
consumption spending has this total expenditure cost.
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The consumer’s lifetime budget constraint must then satisfy

Wt =At ·ψ1/γ(1 +B)+Zt
and his lifetime utility from surplus consumption, by the Merton value func-
tion, is simply ψ1/γA1−γ

t /(1 − γ). Combining these equations yields

V habit
t (Wt	Xt)= ψ

1 − γ
(
Wt −Zt
1 +B

)1−γ
�

The welfare of an individual commitment agent for a move-inducing nega-
tive wealth shock is proportional to (w− λ1x)

1−γ/(1 − γ).
Now compare the welfare cost of shocks in the commitment and the habit

economies. As wealth falls to zero, if Zt > 0, then the marginal utility of the
habit agent will be driven to infinity even with a finite shock. In contrast, when
λ1 = 0, the marginal utility of the commitment agent only blows up when all
his wealth is taken. It follows that for large finite shocks, Π(q	b) is higher for
the habit agent than in the commitment economy.

(ii) Begin with the commitment model. The agent in the limit economy never
moves, and hence his value function is proportional to (W − x/r)1−γ/(1 − γ).
It follows that the coefficient of relative risk aversion CRRA∗(W0	x0)= γW0/
(W0 − x0/r). Now consider an agent in economy n. Let p0 denote the total
dollar value at date zero of his total commitment expenditures on his current
home. Given positive risk and growth, this agent does move eventually, im-
plying p0 < x0/r. One policy available to this consumer at any wealth W is
to maintain his spending and moving patterns on current commitments, and
adjust spending proportionally on all other goods relative to the optimal pol-
icy with initial wealth W0. Given that λ1 = 0, this policy yields lifetime utility
Vn(W0	x0)(W −p0)

1−γ/(W0 −p0)
1−γ . This is a lower bound for the agent’s true

value function, and both equal Vn(W0	x0) atW0. It follows that the lower bound
has higher curvature at W0. As a result, CRRAn(W0	x0) ≤ γW0/(W0 − p0).
Since p0 < x0/r, we have CRRAn(W0	x0) < CRRA∗(W0	x0). Hence, for b
small, the Arrow–Pratt approximation implies Πn(q	b) < Π∗(q	b) uniformly
in n.

In the habit model, the value function in every economy is proportional to
(W − x/r)1−γ/(1 − γ), and hence Πh	n(q	b)=Πh∗(q	b). Q.E.D.

S.5. SIMULATIONS

Solving the Commitments Model

In the simulations, we use an ODE characterization of the optimal policy
that builds on a similar characterization for the one-good model by Grossman
and Laroque. To develop this ODE, we must study the Bellman equation of
the commitment agent. By the mutual fund theorem, the agent will combine
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the risky assets available to him in fixed proportions, effectively sharing his
wealth between the mutual fund and the risk-free asset. Let πr and σr denote
the mean and standard deviation of the mutual fund’s excess return.2 Denote
the value function by V (W 	x); then the Bellman equation between adjustment
dates is

ρV (W 	x)= max
α	α

[
κ
a1−γ

1 − γ + x1−γ

1 − γ

+ V1(W 	x)E dW + 1
2
V11(W 	x)Var(dW )

]
�

Following Grossman and Laroque, let y = W/X − λ1 and define h(y) =
x−1+γV (W 	x) = V (W /x	1). Dividing through by x1−γ in the Bellman equa-
tion, we obtain

ρh(y)= max
a	α

[
κ
(a/x)1−γ

1 − γ + 1
1 − γ + h′(y)E dy + 1

2
h′′(y)Var(dy)

]
	

and the budget constraint yields

dy = (
(y + λ1)(r + απr)− 1 − a/x)dt + (y + λ1)ασr dz�

Maximizing in α, the optimal portfolio satisfies

α(y + λ1)= −h′(y)
h′′(y)

πr

σ2
r

and adjustable consumption is

a

x
=

[
h′(y)
κ

]−1/γ

�

Substituting back into the Bellman equation, we obtain

ρh(y)= h′(y)1−1/γκ1/γ γ

1 − γ + 1
1 − γ + h′(y)

[
(y + λ1)r − 1

]

− 1
2
h′(y)2

h′′(y)
π2
r

σ2
r

�

2In our setting we can use πr = [(πM/σM)2 + (πM/σM)
2]/[πM/σ2

M + πM/σ
2
M ] and σ2

r =
πr/[πM/σ2

M +πM/σ2
M ].
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This is an ordinary differential equation for h(y). To obtain boundary condi-
tions, note that, on an adjustment date, the value function equals

V (W 	x)

x1−γ

= 1
x1−γ max

x′ V
(
W − λ1x− λ2x

′	x′)

=
(
W − λ1x

x

)1−γ
· max

x′

(
x′

W − λ1x

)1−γ
· V

(
W − λ1x

x′ − λ2	1
)

=
(
W − λ1x

x

)1−γ
· max

y
(y + λ1 + λ2)

−1+γh(y)�

Define

M = max
y
(y + λ1 + λ2)

−1+γh(y);

then by the above reasoning, at the edges of the inaction band, denoted y1 and
y2, we have

h(yi)=My1−γ
i �

Moreover, smooth pasting implies

h′(yi)=M(1 − γ)y−γ
i �

Finally, the target value of y satisfies

y∗ = arg max(y + λ1 + λ2)
−1+γh(y)�

To numerically solve the ODE subject to these conditions, we follow the ap-
proach outlined by Grossman and Laroque. We first pick some M , pick y1,
solve the ODE with initial conditions as given above. If there is no y2 for which
the boundary conditions are satisfied, then we start with a different y1. If the
boundary conditions do hold for some y2, then we check ifM satisfies the equa-
tion above; if not, we start with a different M .

Simulating Dynamics

We simulate the dynamics of an economy populated by a continuum of com-
mitment agents using the partial differential equation of Proposition 3. We
discretize the differential equation following the approach presented in Ca-
ballero (1993). We use this methodology to compute the steady-state density
f ∗, to compute the impulse response (Definition 1), and to simulate dynamics
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along a sequence of aggregate shocks. We compute the matching consumption
habit weights using Lemma 5 of Appendix A, and simulate the dynamics of the
habit model using equation (10) of the main text.
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