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APPENDIX B: PROOFS AND DERIVATIONS

IN THIS SUPPLEMENT, we provide proofs for Lemma 1 and Proposition 1, the
second part of Proposition 5, and Propositions 7, 8, and 9.

B.1. Proof of Lemma 1 and Proposition 1

We construct the proof in steps. In particular, we separate Proposition 1 into
the following four lemmas. These four lemmas are sufficient to prove Proposi-
tion 1.

LEMMA B.1: If the equation system (12)–(13), (7)–(9) has a solution where
c∗
h < RK , and both v(c) and q(c) are increasing in the range c ∈ [c∗

l � c
∗
h], then

Proposition 1 holds.

LEMMA B.2: The system (12)–(13), (7)–(9) always has at least one solution.

LEMMA B.3: If h− l is sufficiently small, then c∗
h < RK .

LEMMA B.4: q(c) is decreasing in c. If h− l is sufficiently small, then v(c) is
increasing for c ∈ [c∗

l � c
∗
h].

B.1.1. Step 1: Proof of Lemma 1 and Lemma B.1

Denote the dollar share of capital in the firm’s asset holdings by ψit , so that
ψit =Ki

tpt/w
i
t . According to our conjecture, the value function can be written

as (recall the aggregate cash-to-capital ratio c = C/K)

J
(
Kt�Ct�K

i
t �C

i
t

) =wi
t

[(
1 −ψit

)
q(ct)+ ψit

pt
v(c)

]
= J(Kt�Ct�w

i
t

)
�

That is, the value function is linear inwt . This is equivalent to J(C�K�Ki
t �C

i
t )=

Ki
tv(c)+ Ci

tq(c) stated in the lemma. Also, we have the wealth dynamics, ex-
pressed in terms of capital share ψit , as

dwi
t = −dαit − θdKi

t +ψitwi
t

1
pt
(dpt + σ dZt)�

And, q(c) ≥ 1 has to hold as firms can consume cash at the final date (and
there is no discounting), which implies dαit = 0, that is, firms do not consume
in the aggregate stage.
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As the firm is choosing capital share ψit , and the capital to build or dismantle
dKi

t , the Hamiltonian–Jacobi–Bellman (HJB) of problem (3) can be written as

0 = max
dψit �dK

i
t

dαit + JCEt[dCt] + 1
2
JCCEt

[
dC2

t

]
+ JwEt(dwt)+ J ′

K dK
i
t + Jw�CEt[dwt dCt]�

The endogenous price dynamics (using Ito’s lemma) is

dpt = 1
2
σ2p′′(c)dt + σp′(c)dZt + dBpt − dUp

t �

where dBpt (dUp
t ) reflects p at p(c∗

l ) = l (p(c∗
h) = h). This is because, in any

market equilibrium, firms will create (dismantle) capital if pt = h (pt = l), and
keep doing it until the price adjusts. We derived the boundary conditions in the
main text. Also, by risk neutrality and the initial homogeneity of firms, before
the final date the price of the capital has to make firms indifferent whether
to hold capital or cash. Otherwise, markets could not clear. We also explained
that p̂τ = cτ.

Thus, inside the reflection boundary (c∗
l � c

∗
h), the above HJB equation is (we

drop i from now on)

0 = max
ψt

{
σ2

2
wtq

′′
c (ct)+ q(ct)ψtwt

1
2
σ2p′′(ct)

pt

+ q′(ct)
((
ψtwt

σ

pt

(
σ +p′(ct)σ

)))

+ ξwt
[

1
2

(
ψtRK

pt
+ (1 −ψt)RK

ct

)

+ 1
2

(
ψt

pt
RCct + (1 −ψt)RC

)
− q(ct)

]}
�

Since the problem is linear in ψt , in equilibrium firms must be indifferent in
their choice of ψt . Thus, we can calculate the dynamics of the cash (capital)
value by choosingψt = 0 (ψ= 1). Settingψt = 0 directly implies (10). Choosing
ψt = 1 gives

0 = σ2

2
q′′(c)+ q(c)

1
2
σ2p′′(c)

p
+ q′(c)

(
1
p

(
σ +p′σ

)
σ

)

+ 1
p

(
ξ

2
(RK +RCc)− q(c)p

)
�



INEFFICIENT INVESTMENT WAVES 3

Since v(c) = p(c)q(c), v′ = q′p + p′q, and v′′ = q′′p + 2p′q′ + p′′q, we can
rewrite the above equation as (11). Given that the ODEs for v(c) and q(c)
were derived by substituting in ψt = 1 and ψt = 0, it is easy to see that these
functions can be interpreted as the value of a capital and that of a unit of cash.
This implies that

J
(
C�K�wi

t

) =
(
wi
t

(
1 −ψit

)
q(c)+ ψit

pt
wi
tv(c)

)
= q(c)wt�

verifying both Lemma 1 and our conjecture on the form of J(C�K�wi
t).

B.1.2. Step 2: Proof of Lemma B.2

First, note that for any arbitrary ch and cl from (9), we can express A1–A4

in (12)–(13) as functions of ch and cl only. Substituting back to (12)–(13), we
get our functions parameterized by ch and cl which we denote as v(c; cl� ch) and
q(c; cl� ch). Evaluating these functions at c = cl and c = ch, we get the following
expressions. Define

fl(cl� ch)≡ e−γch(Ei[chγ] − Ei[clγ]) + eγch(Ei[−chγ] − Ei[−clγ])
eγ(ch−cl) − e−γ(ch−cl) �

gl(cl� ch)≡ e−γch(Ei[chγ] − Ei[clγ]) + eγch(Ei[−γcl] − Ei[−γch]
)

eγ(ch−cl) − e−γ(ch−cl) �

fh(cl� ch)≡ e−γcl(Ei[chγ] − Ei[clγ]) + eγcl(Ei[−γch] − Ei[−γcl]
)

eγ(ch−cl) − e−γ(ch−cl) �

gh(cl� ch)≡ e−γcl(Ei[chγ] − Ei[clγ]) + eγcl(Ei[−γcl] − Ei[−γch]
)

eγ(ch−cl) − e−γ(ch−cl) �

and

m(cl� ch)≡ eγ(ch−cl) − 1
1 + eγ(ch−cl) ∈ (0�1)�

Then the cash and capital values can be rewritten as

q(cl; cl� ch)= RC

2
+ RKγ

2
fl(cl� ch)�q(ch; cl� ch)

= RC

2
+ RKγ

2
fh(cl� ch)�

v(cl; cl� ch)=RK + clRC

2
+ RC

2γ
m(cl� ch)

+ RKγ

2

(
gl(cl� ch)

γ
− clfl(cl� ch)

)
�
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and

v(ch; cl� ch)= RK + chRC

2
− RC

2γ
m(cl� ch)

+ RKγ

2

(
gh(cl� ch)

γ
− chfh(cl� ch)

)
�

For any ch, define the function H(ch) implicitly as the corresponding lower
threshold cl so that, at c = ch, the market price is just h, that is,

p
(
ch; cl =H(ch)� ch

) = v
(
ch; cl =H(ch)� ch

)
q
(
ch; cl =H(ch)� ch

) = h�

Similarly, define L(ch) is defined implicitly by

p
(
cl; cl =L(ch)� ch

) ≡ v
(
cl; cl =L(ch)� ch

)
q
(
cl; cl =L(ch)� ch

) = l�

which makes the market price to be l at c = cl. Obviously, once we find such ch
thatH(ch)=L(ch), then this particular ch and the corresponding cl =H(ch)=
L(ch) is a solution of (7)–(9), (12)–(13). To show that this solution exists, we
first establish properties of L(ch); then we proceed to the properties of H(ch).

Properties of L(ch). It is useful to observe that

∂fl

∂cl
=

(
e2γch + e2γcl

)
(
e2γch − e2γcl

)(
γfl − 1

cl

)
�

∂fl

∂ch
= 2

1
ch

− γfh
eγ(ch−cl) − eγ(cl−ch) �

∂gl

∂cl
= 1
cl

+
(
e2γch + e2γcl

)
(
e2γch − e2γcl

)γgl� ∂gl

∂ch
= − 2γgh

eγ(ch−cl) − eγ(cl−ch) �

lim
cl→ch

fl = 1
γch

� lim
cl→ch

gl = 0� lim
cl→ch

m= 0�

1. We show that fl(ch� cl) is monotonically decreasing in cl. Its slope in cl is

∂fl

∂cl
=

(
e2γch + e2γcl

)
(
e2γch − e2γcl

)(
γfl(ch� cl)− 1

cl

)
�(B.1)

and the second derivative is

∂2fl

∂2cl
= −

(
4γe2γch

e2γcl(
e2γch − e2γcl

)2 −
(
e2γch + e2γcl

)2

(
e2γch − e2γcl

)2γ

)

×
(

1
cl

− γfl(ch� cl)
)
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−

(
− 1
c2
l

)(
e2γch + e2γcl

)
(
e2γch − e2γcl

)
= γ

(
1
cl

− γfl(ch� cl)
)

+
(
e2γch + e2γcl

)
(
e2γch − e2γcl

) 1
c2
l

�

Note that if the first derivative is zero, then the second derivative is positive,
implying that fl(ch� cl) can have only local minima, but no local maxima in cl.
At the limit, one can check that

lim
cl→ch

∂fl

∂cl
= lim

cl→ch

(
1
cl

(
e2γch + e2γcl

)
(
e2γch − e2γcl

)(
γclfl(ch� cl)− 1

))

= 1
ch

(
− 1

2γch

)
< 0�

Thus, fl(ch� cl) is decreasing at ch = cl. Suppose that it is not monotonic over
the range of cl < ch in cl. Then the largest ĉl where the first derivative is 0
would be a local maximum. But we have just ruled out the existence of a local
maximum. Thus fl(ch� cl) is monotonically decreasing over the whole range of
cl < ch in cl. This statement is equivalent to γfl(ch� cl)− 1

cl
< 0 for cl < ch, for

any fixed ch.
2. We show that X(cl)≡ fl(ch� cl)− 1

γcl
is increasing in cl. We would like to

show that

X ′(cl)= γ
(
e2γch + e2γcl

)
(
e2γch − e2γcl

)X(cl)+ 1
γc2

l

> 0�(B.2)

Clearly, we have

X(cl = ch)= 0� X ′(cl = ch)= f ′
l (ch� ch)+ 1

γc2
h

= 1
2γc2

h

> 0�

We know that when cl → 0, f (ch� cl) has the order of Ei(γcl) which is O(ln cl);
this implies that X(cl)→ −∞ when cl → 0. Then, if X(cl) is not monotone,
we must have two points x1 < x2 closest to (but below) ch so that

0>X(x1) >X(x2)� X ′(x1)=X ′(x2)= 0�

Setting (B.2) to be zero, we have (because 0< x1 < x2)

X(x1)= −
(
e2γch − e2γx1

)
γ2x2

1

(
e2γch + e2γx1

) <−
(
e2γch − e2γx2

)
γ2x2

2

(
e2γch + e2γx2

) =X(x2)�

in contradiction with X(x1) >X(x2). Thus (B.2) holds always.
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3. We show that the function gl(ch�cl)

γ
− clfl(ch� cl) is monotonically increas-

ing in cl. Its first derivative is (all the derivatives in this part are with respect
to cl)

(
gl

γ
− clfl

)′
= 1
γcl

+
(
e2γch + e2γcl

)
(
e2γch − e2γcl

)gl(cl� ch)
−

((
e2γch + e2γcl

)
(
e2γch − e2γcl

)(
clγfl(cl� ch)− 1

) + fl(cl� ch)
)

= 1
γcl

+ γ
(
e2γch + e2γcl

)
(
e2γch − e2γcl

)(
gl

γ
− clfl

)

+
(
e2γch + e2γcl

)
(
e2γch − e2γcl

) − fl�

Whenever the first derivative is zero, at that point we have

gl

γ
− clfl =

fl − 1
γcl

γ

(
e2γch + e2γcl

)
(
e2γch − e2γcl

) − 1
γ
�(B.3)

We also know that

lim
cl→ch

(
gl

γ
− clfl

)′
= 0

and

lim
cl→ch

(
gl

γ
− clfl

)′′
= − 1

3γc2
h

< 0;

so for any fixed ch, cl = ch is a local maximum. Thus, to show that gl
γ

− clfl is
monotone, it suffices to rule out the case of a local minimum ĉl < ch so that
( gl
γ

− clfl)′ = 0 and ( gl
γ

− clfl)′′ > 0. In general,

(
gl

γ
− clfl

)′′
= − 1

γc2
l

+ γ
(
e2γch + e2γcl

)
(
e2γch − e2γcl

)(
gl

γ
− clfl

)′
− f ′

l

+ 4e2γche2γcl(
e2γch − e2γcl

)2γ
2

((
gl

γ
− clfl

)
+ 1
γ

)
�
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Thus, if there were a ĉl such that ( gl
γ

− clfl)′ = 0, using (B.1) and (B.3) we have
( gl
γ

− clfl)′′ to be equal to

− 1
γĉ2

l

− f ′
l + 4γ2e2γche2γĉl(

e2γch − e2γĉl
)2

⎛
⎜⎜⎜⎜⎝

fl − 1
γĉl

γ

(
e2γch + e2γĉl

)
(
e2γch − e2γĉl

)
− 1
γ

+ 1
γ

⎞
⎟⎟⎟⎟⎠

= − 1
γĉ2

l

− γ
(
e2γch − e2γĉl

)
e2γch + e2γĉl

(
fl − 1

γĉl

)
�

But from (B.2) we know the above term is strictly negative, which proves the
contradiction.

4. We show that q(cl; cl� ch) is also decreasing in cl for any cl < ch. Given
that ( gl

γ
− clfl)′ > 0 and ∂( clRC2 + RC(e

−γ(ch−cl)+eγ(ch−cl)−2)
2γ(eγ(ch−cl)−e−γ(ch−cl)) )/∂cl = 1

2RC
e−2γch+2γcl+1
(e−γch+γcl+1)2

>

0, v(cl; cl� ch) is increasing in cl. Thus, p(cl; cl� ch) is increasing in cl for
any cl < ch. Also one can show that limcl↓0 = p(cl; cl� ch) = − tanh(γch)

γ
< 0,

and

lim
cl→ch

p(cl; cl� ch)=
RK + chRC2 + RKγ

2

(
−ch 1

γch

)
RC

2
+ RKξ

γσ2

1
γch

=
RK + chRC2 − RK

2
RC

2
+ RK

2ch

�

which is larger than l as long as ch > l. Thus, as long as ch > l, limcl→ch p(cl;
cl� ch)≥ l and there is a unique solution cl for any ch of p(cl; cl� ch)= l. There-
fore L(ch) exist. From the monotonicity in cl, and continuity of p(cl; cl� ch), we
also know that L(ch) is continuous.

Properties of H(ch). First, we show that for any ch ∈ [l�RK], H(ch) is a con-
tinuous function andH(ch) ∈ [0� ch]. Again, the notation ′ means we are taking
the derivative with respect to cl. We use the following facts:

∂fh

∂cl
=

2
(
γfl(ch� cl)− 1

cl

)
(
eγ(ch−cl) − e−γ(ch−cl)) � ∂gh

∂cl
= 2γgl(ch� cl)(

eγ(ch−cl) − e−γ(ch−cl)) �
∂fh

∂ch
=

(
e2γch + e2γcl

)
(
e2γch − e2γcl

)(
1
ch

− γfh(ch� cl)
)
�
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∂gh

∂ch
= 1
ch

−
(
e2γch + e2γcl

)
(
e2γch − e2γcl

)γgh(cl� ch)�
lim
cl→ch

fh = 1
γch

� lim
cl→ch

gh = 0�

1. The result of ∂fh
∂cl

= 2(γfl(ch� cl)− 1
cl
)/(eγ(ch−cl) − e−γ(ch−cl)) < 0 follows

from step 1 in the previous subsection.
2. We show ( gh

γ
− fhch)′ > 0 for cl < ch. We have

(
gh

γ
− fhch

)′
= 2

gl − chγfl + ch 1
cl

eγ(ch−cl) − e−γ(ch−cl)

and

∂2

(
gh

γ
− fhch

)
∂2cl

=
2g′

l − ch2γf ′
h − 2

ch

c2
l

eγ(ch−cl) − e−γ(ch−cl)

+ γe−γ(ch−cl) e
2(−γ(ch−cl)) + 1(
e−2γ(ch−cl) − 1

)2

(
2gl − ch2γfl + 2ch

cl

)
�

If the first derivative is zero at a point ch > cl, then the second derivative is

2
1
cl

+ 2γ

(
e2γch + e2γcl

)
(
e2γch − e2γcl

)(
gl(cl� ch)− chγfl(ch� cl)+ ch

cl

)
− ch2 1

c2
l(

eγ(ch−cl) − e−γ(ch−cl))

=
−2
ch − cl
c2
l(

eγ(ch−cl) − e−γ(ch−cl)) < 0�

for any ch > cl, which implies that it can have no minimum in that range. Also

lim
cl→ch

∂

(
gh

γ
− fhch

)
∂cl

= 0� lim
cl→ch

∂2

(
gh

γ
− fhch

)
∂2cl

= − 1
3γc2

h

�

so cl = ch must be the unique maximum in the range ch ≥ cl, and the result
follows.

3. Consequently, q(ch; ch� cl) is monotonically decreasing and v(ch; ch� cl) is
monotonically increasing in cl. Thus, p(ch; ch� cl) is monotonically increasing
in cl.
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4. Observe that the following hold:

lim
cl→ch

p(ch; cl� ch)= lim
cl→ch

v(ch; cl� ch)
q(ch; cl� ch) =

RKch + c2
h

RC

2
− RK

2
ch

RC

2
ch + RK

2

= c2
hRC +RKch
RCch +RK = ch�

Because limcl→0p(ch; cl� ch)= −ch, hence we know that, for any ch > h, there
is a unique cl ∈ [0� ch] which solves p(ch; cl� ch) = h. From the monotonicity
of p(ch; ch� cl) in cl and the continuity in ch, the resulting function H(ch) is
continuous in ch.

Intercept of H(ch) and L(ch).
1. Here we show that H(h) > L(h). We know that H(h)= h because

lim
cl→h

= v(ch; cl� ch)
q(ch; cl� ch) =

RK + hRC
2

+ RKξ

γσ2

(
−h 1

γh

)
RC

2
+ RKξ

γσ2

1
γh

=
RK + hRC

2
+ RK

2
γ

(
−h 1

γh

)
RC

2
+ RK

2
γ

1
γh

= h�

However, note that

lim
cl→h

v(cl; cl� ch)
q(cl; cl� ch) =

RK + hRC
2

+ RKγ

2

(
−h 1

γh

)
RC

2
+ RK

2h

= h�

and v(cl;cl�ch)
q(cl;cl�ch) is increasing in cl. Since L(h) is defined by v(cl;L(h)�h)

q(cl;L(h)�h) = l < h,
L(h) < h=H(h) must hold.

2. Now we show that limch→∞H(ch)= 0< limch→∞L(ch). It is easy to check
that

lim
ch→∞

fl = −Ei[−clγ]
eγ(−cl)

� lim
ch→∞

gl = Ei[−γcl]
eγ(−cl)

�

lim
ch→∞

fh = 0� lim
ch→∞

gh = 0�
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Thus, limch→∞
v(cl;cl�ch)
q(cl;cl�ch) takes the value of

lim
ch→∞

RK + clRC

2
+ RCm(cl� ch)

2γ
+ RKγ

2

(
gl(cl� ch)

γ
− clfl(cl� ch)

)
RC

2
+ RKγ

2
fl(cl� ch)

=
RK + clRC

2
+ RC

2γ
+ RKγ

2

(
Ei[−γcl]
γeγ(−cl)

− cl−Ei[−clγ]
eγ(−cl)

)
RC

2
− Ei[−clγ]

eγ(−cl)

�

Thus, limch→∞L(ch) is the finite positive solution of

RK + clRC

2
+ RC

2γ
+ RKγ

2

(
Ei[−γcl]
γeγ(−cl)

− cl−Ei[−clγ]
eγ(−cl)

)
RC

2
− Ei[−clγ]

eγ(−cl)

= l�

In contrast, limch→∞
v(ch;cl�ch)
q(ch;cl�ch) takes the value of

lim
ch→∞

RK + chRC

2
− RC

2γ
m(cl� ch)+ RKγ

2

(
gh(cl� ch)

γ
− chfh(cl� ch)

)
RC

2
+ RKγ

2
fh(cl� ch)

= lim
ch→∞

RK

ch
+ RC

2
− RC

ch2γ
+ RKγ

2

(
gh(cl� ch)

chγ
− fh(cl� ch)

)
RC

2ch
+ RKγ

2
fh(cl� ch)

ch

= lim
ch→∞

RC

2
+ RKγ

2

(
gh(cl� ch)

chγ

)
RKγ

2
fh(cl� ch)

ch

= ∞�

Hence, v(ch;cl�ch)
q(ch;cl�ch) grows without bound for any fixed cl, and v(ch;cl�ch)

q(ch;cl�ch) is
monotonically increasing in cl. As a result, in order to have a solution of
limch→∞

v(ch;cl�ch)
q(ch;cl�ch) = l, cl has to go to zero, implying limch→∞H(ch)= 0.

The two results imply that there is always an intercept ch ∈ (h�∞) such that
H(ch) = L(ch). This concludes the step proving that (7)–(9), (12)–(13) has a
solution.
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B.1.3. Step 3: Proof of Lemma B.3

We have shown that H(h)= h. Note also that if ch = cl, then vh
qh

= vl
ql

. This,
and the continuity ofH(·) and L(·) in l, implies that at the limit l→ h, there is
a solution of the system (7)–(9), (12)–(13) such that c∗

l −c∗
h → 0 and c∗

h� c
∗
l → h.

Then, the statement comes from h< hRC <RK (as RC > 1).

B.1.4. Step 4: Proof of Lemma B.4

First we show that q(c) is always decreasing, and there exists a critical value
ĉ ∈ (cl� ch) so that q′′(c) < 0 for c ∈ (cl� ĉ) and q′′(c) > 0 for c ∈ (ĉ� ch). More-
over, for c ∈ (cl� ĉ) where q′′(c) < 0, we have that q′′′(c) > 0.

1. To show that q′ < 0, we differentiate the ODE 0 = σ2

2 q
′′ + ξ

2 (RC+ RK
c
)−ξq

again to reach

0 = σ2

2
q′′′ − ξ

2
RK

c2 − ξq′�(B.4)

Due to boundary conditions, we have at both ends c∗
l and c∗

h, the function q′(c)
equals zero and its second derivative σ2

2 q
′′′ = ξ

2
RK
c2 > 0. Suppose to the contrary

that q′(c̃) > 0 for some point c̃ ∈ (cl� ch); then we can pick c̃ so that q′(c̃) >
0 and q′′′(c̃) = 0 (otherwise the function q′(·) is zero at one end, is convex
globally, and thus never comes back to zero at the other end). But because
σ2

2 q
′′′(c̃)= ξ

2
RK
ĉ2 + ξq′(c̃) > 0, contradiction. This proves that q′ < 0.

2. We know that q′′(cl) < 0 and q′′(ch) > 0, and therefore there exists ĉ so
that q′′(ĉ)= 0. We show this point is unique. Because 0 = σ2

2 q
′′ + ξ

2 (RC + RK
c
)−

ξq, we have 0 = σ2

2 q
′′′ − ξ

2
RK
c2 − ξq′, and

0 = σ2

2
q′′′′ + ξRK

c3 − ξq′′�(B.5)

Suppose we have multiple solutions for q′′(ĉ) = 0. Clearly, it is impossible to
have q′′(ĉ) = 0 but q′′(ĉ−) > 0 and q′′(ĉ+) > 0; otherwise q′′′′(ĉ) > 0 which
contradicts (B.5). Then there must exist two points c1 > ĉ and c2 > c1 > ĉ such
that q′′(c1) = 0, q′′(c2) < 0 and q′′′′(c2) > 0, but q′′(c) < 0 for c ∈ (c1� c2). This
implies that σ2

2 q
′′′′(c1) = − ξRK

c3
1

+ ξq′′(c1) < 0. As a result, there exists another

point c3 ∈ (c1� c2) so that q′′′′(c3)= 0 with q′′(c3) < 0. But this contradicts (B.5).
3. Now we show that for c ∈ (cl� ĉ) with q′′(c) < 0, we have q′′′(c) > 0, that

is, q′′(c) is increasing. Suppose not. Since q′′′(cl) > 0 so that q′′(c) is increasing
at the beginning, there must exist some reflecting point c4 for the function q′′

so that q′′′′(c4)= 0. But because q′′(c4) < 0, it contradicts (B.5).
Second, we show that v(c) is increasing if h− l is sufficiently small.
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1. We show that if v′′(cl) > 0, then v(c) is increasing in c. Let F(c)≡ v′(c),
so that

0 = q′′σ2 + σ2

2
F ′′ + ξ

2
RC − ξF

with boundary conditions that F(cl) = F(ch) = 0. The assumption v′′(cl) > 0
implies that F ′(cl) > 0. Thus, if there are some points with F(c) < 0 in the
range of (cl� ch), then we can find two points c1 and c2 (a maximum and a
minimum) so that c1 < c2 but F ′′(c1) < 0, F ′′(c2) > 0, F ′(c1) = F ′(c2) = 0 and
F(c1) > 0> F(c2). We can apply the ODE to these two points:

0 = q′′(c1)σ
2 + σ2

2
F ′′(c1)+ ξ

2
RC − ξF(c1)�

0 = q′′(c2)σ
2 + σ2

2
F ′′(c2)+ ξ

2
RC − ξF(c2)�

The second equation implies that q′′(c2) < 0, which implies that c1 < c2 < ĉ.
However, the above two equations also imply that

q′′(c1)σ
2 >

ξ

2
RC > q

′′(c2)σ
2�

in contradiction with the previous lemma which shows that q′′ is increasing over
[cl� ĉ].

2. Now we show that if h− l is sufficiently small, then v′′(cl) > 0; with the
first result, we obtain our claim. From our ODE,

v′′(cl)= − ξ

σ2 2
(
(RCcl +RK)

2
− v(cl)

)

= ξ

σ2 2
(
RK

2
+ RC

2γ
h(cl� ch)+ RKξ

γσ2

(
gl(cl� ch)

γ
− clfl(cl� ch)

))
�

We know that as h− l→ 0, ch − cl → 0. We will prove the statement by show-
ing that (1) limcl→ch(

(RCcl+RK)
2 − v(cl)) = 0, because limcl→ch(

(RCcl+RK)
2 − v(cl))

equals

lim
cl→ch

(
RK

2
+ RC

2γ
h(cl� ch)+ RKγ

2

(
gl(cl� ch)

γ
− clfl(cl� ch)

))

= RK

2
+ 0 + RKξ

γσ2

(
0 − 1

γ

)
= 0
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and (2) limcl→ch ∂(
(RCcl+RK)

2 − v(cl))/∂cl = limcl→ch ∂(
RC
2γ h(cl� ch)+ RKγ

2 (
gl(cl�ch)

γ
−

clfl(cl� ch)))/∂cl < 0, because it equals

lim
cl→ch

(
− RCe

γ(ch−cl)(
eγ(ch−cl) + 1

)2

+ RKγ

2

(
1
γcl

+
(
e2γch + e2γcl

)
(
e2γch − e2γcl

)gl −
(
e2γch + e2γcl

)
(
e2γch − e2γcl

)(clγfl − 1)
))

= −RC 1
(1 + 1)2 + RKγ

2

(
1
γch

− 1
2γch

− 1
2γch

)
= −RC

4
< 0�

These two statements imply that if ch − cl is small enough, then v′′(cl) >
limcl→ch v

′′(cl)= 0.

B.2. Proof of the Second Part of Proposition 5

The result c∗
h > h is a consequence of the fact that we defined H(ch) as the

unique cl solving vh(cl�ch)

qh(cl�ch)
= h when ch > h (see part 4 in Section B.1.2).

For the result c∗
l ≤ l, consider the possibility that c∗

l > l. The following lemma
states that, in this case, p′′(c∗

l ) < 0. This implies that this is not an equilibrium.
To see this, we have p′(c∗

l )= 0 by the boundary conditions v′(c∗
l )= q′(c∗

l )= 0.
Thus p′′(c∗

l ) < 0, combined with p(c∗
l ) = l and p′(c∗

l ) = 0, would imply that
p(c) < l for c sufficiently close to c∗

l .

LEMMA B.5: The sign of p′′(c∗
l ) is the same as that of l− c∗

l .

PROOF: Simple algebra implies that

p′′(c∗
l

) =
(
v′q− q′v

q2

)′

=
(
v′′q+ v′q′ − (

q′′v+ v′q′))
q2 − 2q−3

(
v′q− q′v

)

= v′′q− q′′v

q2

=
((

−ξ
2
(
RCc

∗
l +RK

) + ξlq(c∗
l

)) 2
σ2q

−
(

−ξ
2
(
RCc

∗
l +RK

) + ξc∗
l q

(
c∗
l

)) 2
σ2c∗

l

v

)/
q2
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=
((

−ξ
2
(
RCc

∗
l +RK

) + ξlq(c∗
l

) + ξc∗
l q

(
c∗
l

) − ξc∗
l q

(
c∗
l

)) 2
σ2q

−
(

−ξ
2
(
RCc

∗
l +RK

) + ξc∗
l q

(
c∗
l

)) 2
σ2c∗

l

v

)/
q2

=
((

−ξ
2
(
RCc

∗
l +RK

) + ξc∗
l q

(
c∗
l

)) 2
σ2

(
q− v

c∗
l

)

+ (
l− c∗

l

)
ξq

(
c∗
l

) 2
σ2q

)/
q2

= (
l− c∗

l

) 1
c∗
l

(
ξ

2
(
RCc

∗
l +RK

) − ξc∗
l q

(
c∗
l

)) 2
σ2 + ξq(c∗

l

) 2
σ2

q
�

which gives the lemma by noticing that q is decreasing in c and the boundary
q′(c∗

l )= 0 implies that

−ξ
2
(
RCc

∗
l +RK

) + ξc∗
l q

(
c∗
l

) ∝ q′′(c∗
l

)
< 0� Q.E.D.

The third statement is a consequence of the following lemma.

LEMMA B.6: We have the following limiting results:

lim
γ→∞

γfl = 1
cl
� lim

γ→∞
γfh = 1

ch
�

lim
γ→∞

gh = 0� lim
γ→∞

gl = 0�

and

lim
γ→∞

c∗
h = h� lim

γ→∞
c∗
l = l�

PROOF: The first four results are based on L’Hôpital’s rule. Take the first
result for illustration:

lim
γ→∞

γfl = lim
γ→∞

γ
(
Ei[−chγ] − Ei[−clγ])

eγ(−cl)
= lim

γ→∞
Ei[−chγ] − Ei[−clγ]

1
γ
eγ(−cl)

= lim
γ→∞

e−chγ

γ
− e−clγ

γ

− 1
γ2 e

γ(−cl) + (−cl)
γ

eγ(−cl)
= lim

γ→∞
−e−clγ/γ
(−cl)
γ

eγ(−cl)
= 1
cl
�
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These four results imply that

lim
γ→∞

vh

qh
= lim

γ→∞

(
RK + chRC

2
− RC

2γ
m(cl� ch)

+RK γ2
(
gh(cl� ch)

γ
− chfh(cl� ch)

))
/(

RC

2
+RK γ2 fh(cl� ch)

)

=
RK + chRC

2
−RK 1

2
RC

2
+RK 1

2ch

�

Thus, in the limit, the solution of vh
qh

= h is the solution for the equation of

RK + chRC

2
−RK 1

2
RC

2
+RK 1

2ch

= h�

which gives limγ→∞ c∗
h = h. Similarly, the following calculation implies that

limγ→∞ c∗
l = l:

lim
γ→∞

vl

ql
= lim

γ→∞

(
RK + clRC

2
+ RC

2γ
m(cl� ch)

+RK γ2
(
gl(cl� ch)

γ
− clfl(cl� ch)

))
/(

RC

2
+RK γ2 fl(cl� ch)

)

=
RK + clRC

2
+RK 1

2
RC

2
+RK 1

2cl

�

Q.E.D.

B.3. Proof of Proposition 7

The proofs of the two statements follow the same logic. Thus, we prove the
first statement in detail and explain the necessary modifications for the second
statement at the end of the proof.
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Consider the functions q̃(c;q0� v0� ch) and ṽ(c;q0� v0� ch) of c parameterized
by q0� v0, and ch:

0 = σ2

2
q̃′′(c)+ ξ

2
(
RC − q̃(c)) + ξ

2

(
RK

c
− q̃(c)

)
�(B.6)

0 = q̃′(c)σ2 + σ2

2
ṽ′′(c)+ ξ

2
(
RCc− ṽ(c)) + ξ

2
(
RK − ṽ(c))�(B.7)

and the boundary conditions

ṽ′(ch)= q̃′(ch)= 0�(B.8)

q̃(c0)= q0� ṽ(c0)= v0�(B.9)

The general solution is

q̃(c)= RC

2
+ e−cγA1 + ecγA2(B.10)

+ RKγ

2
−ecγ Ei(−γc)+ e−cγ Ei(cγ)

2
�

ṽ(c)=RK + cRC

2
+ ecγ(A3 − cA2)− e−cγ(A4 + cA1)(B.11)

+ cRKγ

2
eγc Ei(−γc)− e−cγ Ei(γc)

2
=RK +RCc+ ecγA3 − e−cγA4 − cq̃(c)�(B.12)

where A1–A4 (may differ from those in (12) and (13)) are pinned down by
(B.8)–(B.9). We have

q̃′(c)= −γe−cγA1 + γecγA2 − RKγ
2
(
e−cγ Ei[cγ] + ecγ Ei[−cγ])

2
�

ṽ′(c)= RC

2
+ RKγ

(−e−cγ Ei[cγ] + ecγ Ei[−cγ])
2

+ RKcγ
2
(
e−cγ Ei[cγ] + ecγ Ei[−cγ])

2
+ ecγ((−γc− 1)A2 + γA3

) + e−cγ((γc− 1)A1 + γA4

)
�

Define the function ch(q0� v0) implicitly by ṽ(ch;q0� v0� ch) = hq̃(ch;
q0� v0� ch), and we are interested in the derivatives

∂ch

∂q0
= − ṽ

′
q0

− hq̃′
q0

ṽ′
ch

− hq̃′
ch

�
∂ch

∂v0
= − ṽ

′
v0

− hq̃′
v0

ṽ′
ch

− hq̃′
ch

�
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We proceed as follows. First we show that ∂ch
∂q0
> 0 and ∂ch

∂v0
< 0. This proves

that if qπ(c0) ≤ q(c0) and vπ(c0) ≥ v(c0), then cπh < c
∗
h, that is, such policies

make the overinvestment problem worse. Then we show that this is true even
if qπ(c0)≤ q(c0) and vπ(c0)≤ v(c0), as long as the policy increases the price at
c0, that is, vπ(c0)

qπ(c0)
> v(c0)

q(c0)
.

We start with the following lemmas.

LEMMA B.7: We have

∂q̃(ch;q0� v0� ch)

∂q0
= 2
echγe−c0γ + e−chγeγc0

> 0�(B.13)

∂ṽ(ch;q0� v0� ch)

∂v0
= 2
e−γ(ch−c0) + eγ(ch−c0) > 0�

∂q̃(ch;q0� v0� ch)

∂v0
= 0�(B.14)

PROOF: We show (B.13) first. We know that q̃(c0) = q0, which, based on
(B.10), can be written as e−c0γA1 + eγc0A2 + lq = q0 (where lq is independent of
q0), which implies

A1 = −lq − eγc0A2 + q0

e−c0γ �(B.15)

and q̃′(ch)= 0, which can be rewritten as −e−chγγA1 +echγγA2 + sq = 0 (where
sq is independent of q0), which implies

A2 = e−chγγA1 − sq
echγγ

=
e−chγγ

−lq − eγc0A2 + q0

e−c0γ − sq
echγγ

(B.16)

⇒ A2 =
e−chγγ

−lq + q0

e−c0γ − sq(
1 + e−2chγeγ2c0

)
echγγ

�

Thus, (B.16) and (B.15) imply that

∂A2

∂q0
= e−chγ

echγe−c0γ + e−chγeγc0
�(B.17)

∂A1

∂q0
= 1
e−c0γ − eγ2c0

e−chγ

echγe−c0γ + e−chγeγc0
= echγ

echγe−c0γ + e−chγeγc0
�(B.18)

Using (B.10), we obtain our result.
The first result in (B.14) follows similarly. The second result ∂q̃(ch;q0�v0�ch)

∂v0
= 0

comes from the fact that (B.6) and the boundary conditions q̃′(ch) = 0 and
q̃(c0)= q0 are independent of v0. Q.E.D.
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LEMMA B.8: We have

∂ṽ(ch;q0� v0� ch)

∂q0

= 2
eγ(ch−c0) − e−γ(ch−c0) − γ(ch − c0)

(
e−γ(ch−c0) + eγ(ch−c0))

γ
(
eγc0e−γch + e−γc0eγch

)2 < 0�

∂ṽ(ch;q0� v0� ch)

∂q0
− h∂q̃(ch;q0� v0� ch)

∂q0

= 2
eγ(ch−c0) − e−γ(ch−c0) − γ(ch + h− c0)

(
e−γ(ch−c0) + eγ(ch−c0))

γ
(
eγc0e−γch + e−γc0eγch

)2 < 0�

PROOF: We show the first result. We rewrite ṽ(c0) and ṽ′(ch) as (as before,
here lvq and svq are independent of q0)

ṽ(c0)= ec0γ(A3 − c0A2)− e−c0γ(A4 + c0A1)+ lvq�
ṽ′(ch)= svq + echγ((−γch − 1)A2 + γA3

)
+ e−chγ((γch − 1)A1 + γA4

)
�

Thus, the boundary conditions ṽ(c0)= v0 and ṽ′(ch)= 0 imply that

A3 = c0A2 + e−c0γv0 − e−c0γlvq + e−2c0γ(A4 + c0A1)�

A4 = −
((−eγch(γch − γc0 + 1)

)
A2

+ (
e−γch(γch − 1)+ γc0e

−2γc0eγch
)
A1

+ (
γe−γc0eγch

)
v0 + (

sqv − γe−γc0eγchlqv
))

/(
γe−γch + γe−2γc0eγch

)
�

Thus, using the result in (B.17) and (B.18), one can derive that

∂A4

∂q0
= eγch 2eγc0e−γch − γc0

(
eγc0e−γch + e−γc0eγch

)
γ
(
eγc0e−γch + e−γc0eγch

)2 �

Similarly, it implies that

∂A3

q0
= ∂A1

q0
e−2c0γc0 + ∂A2

q0
c0 + ∂A4

q0
e−2c0γ

= 2e−γc0 + γc0

(
eγc0e−2γch + e−γc0)

γ
(
eγc0e−γch + e−γc0eγch

)2 �
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Consequently, using (B.12), we have (where we have used (B.13))

∂ṽ(ch)

∂q0
= echγ

∂A3

q0
− e−chγ ∂A4

q0
− ch ∂q̃(ch)

∂q0

= 2
eγ(ch−c0) − e−γ(ch−c0) − γ(ch − c0)

(
e−γ(ch−c0) + eγ(ch−c0))

γ
(
eγc0e−γch + e−γc0eγch

)2 < 0�

The last inequality comes from the fact that the function ex−e−x−x(e−x+ex)
is negative and monotonically decreasing for all x > 0. The second statement
comes directly from the expression for ∂q̃(ch)

∂q0
. Q.E.D.

LEMMA B.9: If v0
q0
< h, then ṽ(y;q0� v0� y)− hq̃(y;q0� v0� y) > 0.

PROOF: We parameterize ch by y . The idea is that if the function ṽ(y;
q0� v0� y) − hq̃(y;q0� v0� y) is negative at y = c0 and positive as y → ∞, then
there is a y = ch so that this function is zero (satisfying the definition of ch) and
where the slope of this function is positive, which is the claim of our lemma.

The function ṽ(y;q0� v0� y)− hq̃(y;q0� v0� y) can be solved by imposing the
boundary conditions

ṽ′(y)= q̃′(y)= 0� q̃(c0)= q0� ṽ(c0)= v0�(B.19)

for all y ≥ c0. Thus, by setting y = c0, we must have

ṽ(c0;q0� v0� c0)− hq̃(c0;q0� v0� c0)= v0 − hq0 < 0�

by the condition of the proposition.
Now we show that ṽ(y;q0� v0� y)− hq̃(y;q0� v0� y)→ ∞ as y → ∞. We first

calculate limy→∞ q̃(y;q0� v0� y) in (B.10). For this, we solve for e−yγA1 and
eyγA2 from (B.10)–(B.11) and (B.19):

e−yγA1 =
q0 − RC

2
+ e(c0−y)γ RKM

′(y)
2

− RKγ

2
M(c0)

e(y−c0)γ + eγ(c0−y) �

eyγA2 =
q0 − RC

2
− e(y−c0)γ RKγM

′(y)
2

− RKγ

2
M(c0)

e(y−c0)γ + eγ(c0−y) �

where M(y) ≡ −eγy Ei[−γy] + e−γy Ei[yγ]. Using limy→∞M ′(y) = 0, it is
easy to show that limy→∞ eyγA2 = limy→∞ e−yγA1 = 0, which implies that
limy→∞ q̃(y;q0� v0� y) = RC

2 in (B.10). A similar argument implies that
limc→∞ ṽ(c;q0� v0� c) = ∞. Thus, ṽ(c;q0� v0� c) − hq̃(c;q0� v0� c) = ∞. This
proves the statement. Q.E.D.
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Putting together the above three lemmas, we have

∂ch

∂q0
= − ṽ

′
q0

− hq̃′
q0

ṽ′
ch

− hq̃′
ch

> 0 and
∂ch

∂v0
= − ṽ

′
v0

− hq̃′
v0

ṽ′
ch

− hq̃′
ch

< 0�

This implies that cπh < c
∗
h whenever qπ(c0)≤ q(c0) and vπ(c0)≥ v(c0).

For the last step, as ∂ch
∂v0

= − ṽ′v0 −hq̃′
v0

ṽ′ch−hq̃′
ch

< 0, it suffices to show that this result
holds for the worst v0 drop to maintain p0, that is, v0 and q0 decrease propor-
tionally so v0/q0 remains at constant.

To this end, we consider decreasing q0 to q̄0 = q0 − ε where ε is very small.
To make sure that v̄0

q̄0
= v0

q0
, we need that v̄0 = v0 − aε where a = v0

q0
. Let us

refer to all the objects after the change with the bar. Our goal is to show that
v̄(ch)/q̄(ch) would increase; then ṽ′

ch
−hq̃′

ch
> 0 implies that cπh < c

∗
h. Using the

first two lemmas above, we have (denoting x≡ (ch − c0)γ)

q̄(ch)= q̃(ch)− ε 2
ex + e−x �

v̄(ch)= ṽ(ch)− 2ε
ex − e−x − x(e−x + ex)

γ
(
ex + e−x)2 − v0

q0

2ε
ex + e−x �

Hence, for sufficiently small ε, we have (up to the first order)

v̄(ch)

q̄(ch)
= ṽ(ch)

q̃(ch)
− 2ε
q̃(ch)

(
ex − e−x − x(e−x + ex)

γ
(
ex + e−x)2 + v0

q0

1
ex + e−x

)
(B.20)

+ ṽ(ch)

q̃2(ch)

2ε
ex + e−x

= ṽ(ch)

q̃(ch)
− 2ε
q̃(ch)

(
ex − e−x − x(e−x + ex)

γ
(
ex + e−x)2 +

(
v0

q0
− ṽ(ch)

q̃(ch)

)
ex + e−x

)

>
ṽ(ch)

q̃(ch)
�

Here, the third inequality in (B.20) is because the term ex−e−x−x(e−x+ex) <
0 for all x > 0 and v0

q0
− ṽ(ch)

q̃(ch)
is strictly negative because v0

q0
< ṽ(ch)

q̃(ch)
= h; hence,

the first-order impact of decreasing q0 is an increase in v̄(ch)/q̄(ch). Because
the above argument holds for any v0 and q0, tracing out the first-order effect
implies that any intervention which lowers cash value but keeps capital price
unchanged will lower v̄(ch)

q̄(ch)
. Compared to that change, an increase in v0 just

decreases cπh further. That concludes our proof.
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The second statement follows the same steps with the following modifica-
tions. Each ch has to be changed to cl and each h has to be changed to l at
every point of the proof� Then the first lemma remains the same, the first
statement in the second lemma changes to ∂ṽ(cl;q0�v0�cl)

∂q0
> 0, while the second

statement does not change. Also, in the proof of the first statement, we use
that ex − e−x − x(e−x + ex) > 0 for all x < 0, and in the proof of the second
statement, we use that ex − e−x − (x+ y)(e−x + ex) < 0 for all x < 0 and y > 0.
In the last part, we follow the same steps, but the inequality (B.20) in the mod-
ified version is switched. This gives that cπl > c

∗
l under the conditions of the

statement.

B.4. Solution for Price-Floor Policy and Proof of Proposition 8

B.4.1. Characterizing the Equilibrium With Price-Floor Policy

We first derive the solutions for price-floor policy. A price-floor policy π(c)
is defined as

0 = q′(c)σ2 + σ2

2
v′′(c)− v(c)+ ξ

2
(RCc+RK)+ cπ(c)�(B.21)

0 = σ2

2
q′′ − q(c)+ ξ

2

(
RC + RK

c

)
−π(c)�(B.22)

so that (1) for c ∈ (c0� c
g
h], π(c) = 0, and at the upper investment threshold

p(c
g
h)= h; and (2) for c ∈ [cgl � c0], v(c)= (l+ δ)q(c) always. Here, v(c), q(c),

π(c), c0, and cgh are endogenous. We have the following lemma.

LEMMA B.10: Given the lower disinvestment threshold cgl , the solution to the
price-floor policy can be calculated as follows.

1. Given the upper investment threshold cgh, first calculate the welfare function
jg(c)=RK +RCc+D1e

−γc +D2e
γc , where the constants D1–D2 are given by the

boundary conditions

jg
(
c
g
l ; cgh

) = (
c
g
l + l)j′g(cgl ) and j

(
c
g
h; cgh

) = (
c
g
h + h)

j′g
(
c
g
h

)
�

2. For c ∈ (c0� c
g
h], the capital price and cash price are given by

v(c)=RK + RCc

2
+ ecγ(A3 − cA2)− e−cγ(A4 + cA1)

+ cRK γ2
(
eγc Ei(−γc)− e−cγ Ei(γc)

)
2

�

q(c)= RC

2
+ e−cγA1 + ecγA2 +RK γ2

−ecγ Ei(−γc)+ e−cγ Ei(cγ)
2

�
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Here, A4 = −D1 and A3 =D2. The other four constants, that is, A1–A2, c0, and
c
g
h, are determined by the following four boundary conditions:

v′(cgh) = 0� q′(cgh) = 0�

v(c0)= (l+ δ)q(c0)� v′(c0)= (l+ δ)q′(c0)�

3. For c ∈ [cgl � c0], we have

q(c)= jg(c)

l+ c and v(c)= l+ δ
l+ c jg(c)(B.23)

and the taxation is given by

π(c)= σ2

2
q′′ − ξq(c)+ ξ

2

(
RC + RK

c

)
> 0�

PROOF: The total welfare function j(c) = v(c) + cq(c) given in step 1 of
Lemma B.10 only depends on the investment/disinvestment policies cgl and cgh
(see explanations around equations (18) and (19)). For c ∈ (c0� c

g
h], there is not

taxation and the derivation is the same as before, except that at the endoge-
nous intervention point c0, we are value-matching and smooth-pasting so that
the price is the implemented floor price l + δ. Note that, by construction, we
have v(cgh)= hq(cgh) (due to j(cgh)= (cgh +h)j′(cgh)). For c ∈ [cgl � c0], notice that
v(c) = (l + δ)q(c) always; (B.23) follows because of jg(c) = v(c) + cq(c) =
(l+ c)q(c). The endogenous taxation π(c) follows from (B.22). Q.E.D.

B.4.2. Proof of Proposition 8

Now we set δ= 0 and prove Proposition 8. There are three steps.

Step 1. Rewrite the problem. Clearly, for c ∈ (c0� c
g
h], the same structure solu-

tion applies without policy, with the only difference at the lower end c0 so that
v′(c0)= lq′(c0)might not be zero. This allows us to draw a connection between
the equilibrium with policy and the one without. We first show that for cgl < c

∗
l ,

the resulting slope at c0 has to be negative, that is,

v′(c0)= lq′(c0) < 0�(B.24)

To show this, focus on c ∈ [cgl � c0]. By v(c) = l
l+c jg(c) and boundary condition

of jg(c), we have

v′(cgl ) = l
[
j′g

(
c
g
l

)(
l+ cgl

) − jg
(
c
g
l

)]
(
l+ cgl

)2 = 0�
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Moreover, since j′′g(c) < 0 (see Proposition 2 and its proof), we have [j′g(c)×
(l+ c)− jg(c)]′ = j′′g(c)(l+ c) < 0. As a result, since c0 > c

g
l , we have

sign
[
v′(c0)

] = sign
[
j′g(c0)(l+ c0)− jg(c0)

]
< 0�

This proves (B.24).
This suggests us to introduce {v(·)�q(·)� c0� c

g
h;x} indexed by x as the solu-

tion to the ODE system (10) and (11), with modified boundary conditions

v′(cgh) = q′(cgh) = 0� v
(
c
g
h

) = hq(cgh)�
v′(c0)= −xl� q′(c0)= −x� v(c0)= lq(c0)�

Here, the parameter x > 0 captures the negative slope of v′(c0)= lq′(c0) < 0.
As shown shortly, our key result does not depend on the exact value of x, which
will be determined by predetermined lower disinvestment threshold cgl .

It is easy to show that if cgl = c∗
l , that is, the policy sets the lower disinvest-

ment threshold as the one in the market solution, then x = 0 and we have
c0 = c∗

l = cgl and cgh = c∗
h. Given this result, the claim in Proposition 8 is equiva-

lent to showing that

lim
γ→∞

∂ch

∂x
> 0�

Step 2. Solve the new ODE system. For simplicity, we denote cgh by ch.
Given c0 and ch, the boundary conditions v′(ch) = q′(ch) = 0 and v′(c0) =
−xl�q′(c0)= −x imply that

q(c0; c0�x� ch)= q(cl; cl� ch)|cl=c0 + x
(
e2γc0 + e2γch

)
γ
(
e2γch − e2γc0

) �
q(ch; c0�x� ch)= q(ch; cl� ch)|cl=c0 + 2xeγ(c0+ch)

γ
(
e2γch − e2γc0

) �
v(c0; c0�x� ch)= v(cl; cl� ch)|cl=c0 + x

(
e2γc0(γl+ 1)+ e2γch(γl− 1)

)
γ2

(
e2γch − e2γc0

) �

v(ch; c0�x� ch)= v(ch; cl� ch)|cl=c0 + 2xeγ(c0+ch)(c0 − ch + l)
γ
(
e2γch − e2γc0

) �

where q(cl; cl� ch)�q(ch; cl� ch)� v(cl; cl� ch)� v(ch; cl� ch) have been defined
above. Then, c0 and ch solve Fh(c0�x� ch)= Fl(c0�x� ch)= 0 where we define

Fh(c0�x� ch)

≡ v(ch; c0�x� ch)− hq(ch; c0�x� ch)
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=RK + (ch − h)RC
2

− RC

2γ
m(c0� ch)

+ RKγ

2

(
gh(c0� ch)

γ
− (ch + h)fh(c0� ch)

)

+ 2xeγ(c0+ch)(c0 − ch + l)
γ
(
e2γch − e2γc0

) − h 2xeγ(c0+ch)

γ
(
e2γch − e2γc0

) � and

Fl(c0�x� ch)

≡ v(c0; c0�x� ch)− lq(c0; c0�x� ch)

=RK + (c0 − l)RC
2

+ RC

2γ
m(c0� ch)

+ RKγ

2

(
gl(c0� ch)

γ
− (c0 + l)fl(c0� ch)

)

+
(
x
(
e2γc0(γl+ 1)+ e2γch(γl− 1)

)
γ2

(
e2γch − e2γc0

) − l x
(
e2γc0 + e2γch

)
γ
(
e2γch − e2γc0

))
�

Simple derivation reveals

∂Fl

∂c0
= RC

2
− RC

2
2e(c0+ch)γ(
ec0γ + echγ)2 + RKγ

2

(
1
γc0

+
(
e2γch + e2γc0

)
(
e2γch − e2γc0

)gl
− fl − (c0 + l)

(
e2γch + e2γc0

)
(
e2γch − e2γc0

)(
γfl − 1

c0

))
�

∂Fh

∂c0
= RC

2
2e(c0+ch)γ(
ec0γ + echγ)2 + RKγ

2

(
2gl(ch� c0)(

eγ(ch−c0) − e−γ(ch−c0))

− (ch + h)
2
(
γfl − 1

c0

)
(
eγ(ch−c0) − e−γ(ch−c0))

)

+ 2xeγ(c0+ch)

γ
(
e2γch − e2γc0

)(
γ(c0 − ch + l− h)(e2γc0 + e2γch

)
(
e2γch − e2γc0

) + 1
)
�

∂Fl

∂ch
= RC

2
2e(c0+ch)γ(
ec0γ + echγ)2 + RKγ

2

(
− 2gh
eγ(ch−c0) − eγ(c0−ch)

− 2(c0 + l)
1
ch

− γfh
eγ(ch−c0) − eγ(c0−ch)

)
�
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∂Fh

∂ch
= RC

2
− RC

2
2e(c0+ch)γ(
ec0γ + echγ)2

+ RKγ

2

(
1
γch

−
(
e2γch + e2γc0

)
(
e2γch − e2γc0

)gh(c0� ch)

− (ch + h)
(
e2γch + e2γc0

)
(
e2γch − e2γc0

)(
1
ch

− γfh(ch� c0)

)
− fh(c0� ch)

)

− 2xeγ(c0+ch)

γ
(
e2γch − e2γc0

)(
γ(c0 − ch + l− h)(e2γc0 + e2γch

)
(
e2γch − e2γc0

) + 1
)
�

Step 3. Prove the claim. Now we are ready to show our desired result
limγ→∞

∂ch
∂x
> 0. First of all, it is easy to show that when γ → ∞, ch → h and

c0 → l are bounded. Cramer’s rule (or implicit function theorem) implies

lim
γ→∞

∂ch

∂x
= − lim

γ→∞

∣∣∣∣∣∣∣
∂Fh

∂x

∂Fh

∂c0

∂Fl

∂x

∂Fl

∂c0

∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣

∂Fh

∂ch

∂Fh

∂c0

∂Fl

∂ch

∂Fl

∂c0

∣∣∣∣∣∣∣

= lim
γ→∞

−∂Fh
∂x

∂Fl

∂c0
+ ∂Fh

∂c0

∂Fl

∂x
∂Fh

∂ch

∂Fl

∂c0
− ∂Fl

∂ch

∂Fh

∂c0

�

Focus on the denominator first. It is easy to show that

lim
γ→∞

∂Fl

∂c0
= RC

2
+ RK

2
l

c2
0

� lim
γ→∞

∂Fh

∂ch
= RC

2
+ RKh

2c2
h

�

and

lim
γ→∞

∂Fh

∂c0
= lim

γ→∞
∂Fl

∂ch
= 0�

implying

lim
γ→∞

∂ch

∂x
=

lim
γ→∞

(
∂Fh

∂c0

∂Fl

∂x
− ∂Fh

∂x

∂Fl

∂c0

)
(
RC

2
+ RKh

2c2
h

)(
RC

2
+ RK

2
l

c2
0

) �(B.25)
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For the numerator, since ∂Fl
∂x

= − 1
γ2 and ∂Fh

∂x
= − 2e(c0+ch)γ(h−l+(ch−c0))

(eγ2ch−eγ2c0 )γ
, we can show

the following two limiting results:

lim
γ→∞

γ
(
eγ(ch−c0) − e−γ(ch−c0))∂Fh

∂x

∂Fl

∂c0
(B.26)

= −2
(
h− l+ (ch − c0)

)(RC
2

+ RK

2
l

c2
0

)

and

lim
γ→∞

γ
(
eγ(ch−c0) − e−γ(ch−c0))∂Fh

∂c0

∂Fl

∂x
(B.27)

= lim
γ→∞

1
γ

(
RC

2
2
(
eγch − eγc0)(
ec0γ + echγ)

+ RKγ

2

(
2gl(ch� c0)− (ch + h)2

(
γfl − 1

c0

))

+ 2x
γ

(
γ(c0 − ch + l− h)(e2γc0 + e2γch

)
(
e2γch − e2γc0

) + 1
))

= 0�

Hence, applying (B.26) and (B.27) to (B.25), we have

lim
γ→∞

γ
(
eγ(ch−c0) − e−γ(ch−c0))∂ch

∂x

=
2
(
h− l+ (ch − c0)

)(RC
2

+ RK

2
l

c2
0

)
(
RC

2
+ RKh

2c2
h

)(
RC

2
+ RK

2
l

c2
0

) > 0�
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