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APPENDIX A: SIMULATIONS

IN ORDER TO INVESTIGATE THE PROPERTIES OF OUR ESTIMATOR and compare
to traditional quantile regression, we generate data according to the following
model:

yig = zigγ(uig)+ δ(u)+ xgβ(uig)+ εg(uig)�(10)

xg = πwg +ηg + νg�(11)

εg(u)= uηg − u

2
�(12)

where wg, νg, and zig are each distributed exp(0
25∗N[0�1]); uig and ηg are
both distributed U[0�1]; and random variables wg, νg, zig, uig, and ηg are mu-
tually independent. Note that the form εg(u)= uηg − u

2 implies E[εg(u)|wg] =
E[uηg − u/2|wg] = E[uηg − u/2] = u/2 − u/2 = 0. The quantile coefficient
functions are γ(u)= β(u) = u1/2 and δ(u) = u/2. The parameter π = 1.

We employ three variants of the data generating process described in (10)–
(12). The first case is exactly as in (10)–(12), with the group-level treatment of
interest, xg, being endogenous (correlated with εg through ηg). We estimate
β(u) in this case using the grouped IV quantile estimator as well as standard
quantile regression (which ignores the endogeneity as well as the existence
of εg). In the second case, xg is exogenous, where we set xg =wg in (11). We es-
timate β(u) again in this case using the grouped quantile approach as well as
standard quantile regression, where the latter ignores the existence of εg. In
the third case, xg is exogenous and no group-level unobservables are included,
where we set xg = wg and εg = 0. In this latter case, both grouped quantile
regression and standard quantile regression should be consistent.

We perform these exercises with the number of groups (G) and the number
of observations per group (N) given by (N�G)= (25�25)� (200�25)� (25�200)�
(200�200). One thousand Monte Carlo replications were used. The results are
displayed in Table A.I. Each panel displays the bias from the procedure for
each decile (u= 0
1� 
 
 
 �0
9) as well as the average absolute value of that bias,
averaged over the nine deciles.

The top panel of Table A.I demonstrates that, in the endogenous group-level
treatment case, the magnitude of the bias is much smaller in our estimator than
in standard quantile regression, and the bias of our estimator disappears as N
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TABLE A.I

BIAS OF GROUPED IV QUANTILE REGRESSION VERSUS STANDARD QUANTILE REGRESSIONa

(N�G) = (25�25) (N�G) = (200�25) (N�G) = (25�200) (N�G) = (200�200)

Quantile
(u)

True
Coeff.

Grouped IV
Q. Reg.

Grouped IV
Q. Reg.

Grouped IV
Q. Reg.

Grouped IV
Q. Reg.Q. Reg. Q. Reg. Q. Reg. Q. Reg.

I. Mean Bias for Endogenous Group-Level Treatment
0.1 0.316 0
042 −0
055 0
040 −0
007 0
038 0
018 0
039 −0
005
0.2 0.447 0
076 0
015 0
078 −0
003 0
077 0
008 0
077 0
000
0.3 0.548 0
116 −0
024 0
116 −0
044 0
117 0
005 0
116 −0
003
0.4 0.632 0
155 −0
128 0
154 −0
031 0
154 0
007 0
155 −0
002
0.5 0.707 0
194 −0
182 0
193 −0
023 0
192 0
010 0
194 −0
006
0.6 0.775 0
236 −0
192 0
233 −0
039 0
228 0
003 0
232 −0
006
0.7 0.837 0
273 −0
161 0
270 −0
067 0
267 −0
002 0
270 −0
004
0.8 0.894 0
312 −0
106 0
311 −0
056 0
306 −0
010 0
309 −0
003
0.9 0.949 0
365 −0
106 0
361 −0
060 0
360 −0
013 0
362 −0
001

Avg. abs. bias 0.197 0.108 0.195 0.037 0.193 0.008 0.195 0.003

II. Mean Bias for Exogenous Group-Level Treatment
0.1 0.316 0
005 0
010 −0
004 −0
016 0
002 −0
011 0
001 −0
006
0.2 0.447 0
005 0
027 0
001 −0
010 0
002 −0
018 0
003 −0
008
0.3 0.548 0
006 −0
006 0
006 −0
012 0
003 −0
017 0
005 −0
005
0.4 0.632 0
011 −0
021 0
007 −0
010 0
005 −0
017 0
007 0
002
0.5 0.707 0
008 −0
039 0
008 −0
002 0
007 −0
020 0
009 0
003
0.6 0.775 0
004 −0
021 0
009 −0
004 0
009 −0
015 0
011 0
002
0.7 0.837 0
006 −0
011 0
007 −0
003 0
009 −0
014 0
011 0
000
0.8 0.894 −0
010 −0
007 −0
011 −0
001 −0
011 −0
008 −0
011 0
000
0.9 0.949 −0
031 0
008 −0
038 0
003 −0
028 −0
009 −0
031 −0
001

Avg. abs. bias 0.010 0.017 0.010 0.007 0.009 0.014 0.010 0.003

III. Mean Bias for Exogenous Group-Level Treatment and No Group-Level Unobservables
0.1 0.316 0
002 0
019 0
001 −0
006 0
000 −0
009 0
000 −0
004
0.2 0.447 0
008 0
009 0
003 −0
002 0
000 −0
008 −0
001 −0
007
0.3 0.548 0
005 −0
023 0
004 0
000 0
001 −0
010 −0
001 −0
007
0.4 0.632 0
007 −0
015 0
004 −0
003 0
002 −0
001 0
000 −0
005
0.5 0.707 0
005 −0
027 0
000 −0
003 0
001 −0
002 0
000 −0
004
0.6 0.775 0
004 −0
037 0
001 −0
011 0
000 −0
002 0
000 −0
002
0.7 0.837 0
003 −0
027 0
000 −0
005 0
000 −0
002 0
000 0
000
0.8 0.894 0
000 −0
022 0
000 −0
003 0
001 0
000 0
000 0
002
0.9 0.949 −0
003 −0
023 0
000 −0
003 −0
001 −0
005 0
000 0
001

Avg. abs. bias 0.004 0.023 0.002 0.004 0.001 0.004 0.000 0.004

aTable shows mean bias for estimation of β(u) from 1,000 Monte Carlo simulations using standard quantile re-
gression (Q. Reg.) and our estimator (Grouped IV Q. Reg.) for cases where (N�G) = (25�25)� (200�25)� (25�200)�
(200�200). Panel I displays results when the group-level treatment is endogenous, panel II displays results when the
group-level treatment is independent of group-level unobservables, and panel III displays results when there are no
group-level unobservables. Each panel displays results for quantiles u ∈ {0
1� 
 
 
 �0
9} as well as the average absolute
value of the bias, averaged over the nine deciles.
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and G increase, while the bias of quantile regression remains constant (0.196
on average). The middle panel considers the case where xg is exogenous but
group-level unobservables are present (or, equivalently, left-hand-side mea-
surement error exists in the quantile regression). At some quantiles, standard
quantile regression has a bias which is smaller in magnitude than the grouped
approach, in particular in the cases where N = 25. However, as N increases,
the magnitude of the bias of the grouped estimator falls close to zero on av-
erage, while that of standard quantile regression remains about three times as
high at 0.01. Finally, the bottom panel focuses on the case in which no group-
level unobservables exist and hence standard quantile regression is unbiased.
In this case, we find that the bias of standard quantile regression is indeed
lower than that of the grouped quantile approach, but the bias of the grouped
quantile method also diminishes rapidly as N and G grow.

To illustrate the computational burden which our estimator overcomes, we
redid the first stage estimation with γ(·) and group-level fixed effects—αg from
Section 2—estimated jointly in one large quantile regression rather than es-
timating group-by-group quantile regression. We performed 100 replications
due to the computational burden of the joint estimation. We found that in
the (N�G) = (25�25) case, the joint estimation took only slightly longer than
the group-by-group approach; with (N�G)= (200�25) the group-by-group ap-
proach was ten times faster; with (N�G) = (25�200) the group-by-group ap-
proach was over forty times as fast; and in the (N�G) = (200�200) the group-
by-group approach was over 150 times as fast, with estimation on a single repli-
cation sample for the nine deciles taking over three minutes, while the grouped
quantile approach performed the same exercise in 1.22 seconds.24 This exer-
cise illustrates the benefit of the group-by-group approach to estimating αg

and also illustrates that, in general, standard quantile regression can be very
slow when a large number of explanatory variable is included. The grouped
quantile approach can greatly reduce this computational burden by handling
all group-level explanatory variables linearly in the second stage (implying that
the grouped quantile approach can be especially beneficial if the dimension of
xg is large).

APPENDIX B: SUB-GAUSSIAN TAIL BOUND

In this section, we derive the sub-Gaussian tail bound for the quantile regres-
sion estimator. This bound plays an important role in deriving the asymptotic
distribution of our estimator, which is given in Theorem 1.

24With G> 200, the computation time ratio drastically increases further, with standard opti-
mization packages often failing to converge appropriately.
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THEOREM 3—Sub-Gaussian Tail Bound for Quantile Estimator: Let As-
sumptions 1–8 hold. Then there exist constants c̄� c�C > 0 that depend only on
cM , cf , CM , Cf , CL such that for all g = 1� 
 
 
 �G and x ∈ (0� c̄),

P
(

sup
u∈U

∥∥α̂g(u)− αg(u)
∥∥> x
)

≤ Ce−cx2Ng 
(13)

REMARK 3: The bound provided in Theorem 3 is non-asymptotic. In princi-
ple, it is also possible to calculate the exact constants in the inequality (13). We
do not calculate these constants because they are not needed for our results.
Since α̂g�1(u) is the classical Koenker and Bassett’s (1978) quantile regression
estimator of αg(u), Theorem 3 may also be of independent interest. The theo-
rem implies that large deviations of the quantile estimator from the true value
are extremely unlikely under our conditions.

APPENDIX C: UNIFORM CONFIDENCE INTERVALS

In this section, we show how to obtain confidence bands for β(u) that
hold uniformly over U . Observe that β(u) is a dx-vector, that is, β(u) =
(β1(u)� 
 
 
 �βdx(u))

′. Without loss of generality, we focus on β1(u), the first
component of β(u). Let β̂1(u), V (u), and V̂ (u) denote the first component of
β̂(u), the (1�1) component of C(u�u), and the (1�1) component of Ĉ(u�u),
respectively. Define

T = sup
u∈U

√
G
∣∣V̂ (u)−1/2

(
β̂1(u)−β1(u)

)∣∣�(14)

and let c1−α denote the (1 − α) quantile of T . Then uniform confidence bands
of level α for β1(u) could be constructed as

[
β̂1(u)− c1−α

√
V̂ (u)

G
� β̂1(u)+ c1−α

√
V̂ (u)

G

]

(15)

These confidence bands are infeasible, however, because c1−α is unknown. We
suggest estimating c1−α by the multiplier bootstrap method. To describe the
method, let ε1� 
 
 
 � εG be an i.i.d. sequence of N(0�1) random variables that
are independent of the data. Also, let ŵS

g�1 denote the first component of the
vector Ŝwg. Then the multiplier bootstrap statistic is

TMB = sup
u∈U

1√
GV̂ (u)

G∑
g=1

(
εg
(
α̂g�1(u)− x′

gβ̂(u)
)
ŵS

g�1

)



The multiplier bootstrap critical value ĉ1−α is the conditional (1 − α) quantile
of TMB given the data. Then a feasible version of uniform confidence bands is
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given by equation (15) with ĉ1−α replacing c1−α. The validity of the method
is established in the following theorem using the results of Chernozhukov,
Chetverikov, and Kato (2013).

THEOREM 4—Uniform Confidence Bands via Multiplier Bootstrap: Let As-
sumptions 1–8 hold. In addition, suppose that all eigenvalues of J(u�u) are
bounded away from zero uniformly over u ∈ U . Then

P

(
β1(u) ∈

[
β̂1(u)− ĉ1−α

√
V̂ (u)

G
� β̂1(u)+ ĉ1−α

√
V̂ (u)

G

]

for all u ∈ U
)

→ 1 − α

as G→ ∞.

REMARK 4: Uniform confidence bands are typically larger than the point-
wise confidence bands based on the result (8). The reason is that uniform con-
fidence bands are constructed so that the whole function {β(u)�u ∈ U} is con-
tained in the bands with approximately 1 − α probability, whereas point-wise
bands are constructed so that, for any given u ∈ U , β(u) is contained in the
bands with approximately 1 − α probability. Which confidence bands to use
depends on the specific purposes of the researcher.

APPENDIX D: JOINT INFERENCE ON GROUP-SPECIFIC EFFECTS

In this section, we are concerned with inference on group-specific effects
αg�1(u), g = 1� 
 
 
 �G, in the model (2)–(3) defined in Section 2. In particular,
we are interested in constructing the confidence bands [α̂l

g�1� α̂
r
g�1] for αg�1(u)

that are adjusted for multiplicity of the effects, that is, we would like to have
the bands satisfying

P
(
αg�1(u) ∈ [α̂l

g�1� α̂
r
g�1

]
for all g = 1� 
 
 
 �G

)→ 1 − α
(16)

Thus, the confidence bands [α̂l
g�1� α̂

r
g�1] cover the true group-specific effects αg�1

for all g = 1� 
 
 
 �G simultaneously with probability approximately 1 − α.
The main challenge here is that we have G parameters αg�1(u), g =

1� 
 
 
 �G, and only Ng observations to estimate αg�1, where Ng is potentially
smaller than G (recall that we impose Assumption 3, according to which
G2/3(logNG)/NG → 0 as G → ∞ where NG = ming=1�


�G Ng). To decrease
technicalities, in this section we assume that U = {u}, that is, U is a single-
ton.



6 D. CHETVERIKOV, B. LARSEN, AND C. PALMER

It is well known that, as Ng → ∞, N1/2
g (α̂g�1(u)− αg�1(u)) ⇒ N(0� Ig) where

Ig is the (1�1)th element of the matrix u(1 − u)Jg(u)
−1Eg[zigz′

ig]Jg(u)−1; see,
for example, Koenker (2005). Therefore, letting c1−α be the (1 −α) quantile of
|Y | where Y ∼N(0�1), we obtain

P

(
αg�1(u) ∈

[
α̂g�1(u)− c1−α

√
Ig

Ng

� α̂g�1(u)+ c1−α

√
Ig

Ng

])
(17)

→ 1 − α as Ng → ∞


In practice, Ig is typically unknown, however, and has to be estimated from the
data. For example, one can use a method developed in Powell (1984). Letting
Îg denote a suitable estimator of Ig, it is standard to show that (17) continues
to hold if we replace Ig with Îg as long as Îg →p Ig.

The drawback of the confidence bands in (17), however, is that they do not
take into account multiplicity of the effects αg�1(u), g = 1� 
 
 
 �G. This is es-
pecially important given that G is large. To fix this problem, we would like to
adjust the constant c1−α in (17) so that the events under the probability sign
in (17) hold simultaneously for all g = 1� 
 
 
 �G with probability asymptotically
equal to 1 − α. The theorem below shows that this can be achieved by replac-
ing c1−α with cM1−α, the (1 − α) quantile of max1≤g≤G |Yg| where Y1� 
 
 
 �YG are
i.i.d. N(0�1) random variables. To decrease technicalities, we assume in the
theorem that all Ig’s are known.

THEOREM 5—Joint Inference on Group-Specific Effects: Let Assump-
tions 1–8 hold. In addition, suppose that Ig ≥ cM for all g = 1� 
 
 
 �G and
N̄G/NG ≤ CM where NG = min1≤g≤GNg and N̄G = max1≤g≤GNg. Let cM1−α be
the (1 −α) quantile of max1≤g≤G |Yg| where Y1� 
 
 
 �YG are i.i.d. N(0�1) random
variables. Then

P

(
αg�1(u) ∈

[
α̂g�1(u)− cM1−α

√
Ig

Ng

� α̂g�1(u)+ cM1−α

√
Ig

Ng

]

for all g = 1� 
 
 
 �G
)

→ 1 − α

as G→ ∞.

REMARK 5: We note that the size of the bands in this theorem, max1≤g≤G 2 ×
cM1−α(Ig/Ng)

1/2, is shrinking to zero as G gets large. Indeed, under our as-
sumptions, max1≤g≤G Ig ≤ C for some constant C, which is independent of G.
In addition, cM1−α ≤ (C logG)1/2 for some absolute constant C. Therefore,
max1≤g≤G cM1−α(Ig/Ng)

1/2 ≤ (C logG/NG)
1/2 → 0 by our growth condition in As-

sumption 3 (for some possibly different constant C).
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APPENDIX E: CLUSTERED STANDARD ERRORS

In this section, we consider the model from the main text, which is defined
in equations (2)–(3), but we seek to relax the independence across groups con-
dition appearing in Assumption 1(i). In particular, in this section we allow for
cluster sampling and derive the results that are analogous to Theorems 1, 2,
and 4.

Before presenting these results, we first provide several examples of where
this clustering would be useful; referencing the examples in Section 4, a group
is a grade-by-school-by-year cell, and the researcher may be interested in
clustering at the school or school-by-grade level, for example. In Example 2,
a group is a state-by-year combination, and the researcher may be interested
in clustering at the state level. In Example 3, a group is a given MSA, and
the researcher may be interested in clustering at the region level (where a re-
gion contains several MSAs). In Example 4, a group is a market-by-time-period
combination, and the researcher may be interested in clustering at the market
level.

We assume that the data consist of M = MG clusters of groups, and that
there exists a correspondence CG : {1� 
 
 
 �M} ⇒ {1� 
 
 
 �G} such that (i) for
each m = 1� 
 
 
 �M , CG(m) denotes the set of groups corresponding to cluster
m, (ii) for m�m′ = 1� 
 
 
 �M with m �= m′, the set CG(m) ∩ CG(m

′) is empty,
and (iii) for any g = 1� 
 
 
 �G, there exists m = 1� 
 
 
 �M such that g ∈ CG(m).
Thus, the correspondence CG(·) partitions groups into M clusters. Using this
notation, we replace Assumption 1 with the following condition:

ASSUMPTION 1′—Design: (i) Observations are independent across clusters
m = 1� 
 
 
 �M . (ii) For all g = 1� 
 
 
 �G, the pairs (zig� yig) are i.i.d. across
i = 1� 
 
 
 �Ng conditional on (xg�αg). (iii) For each m = 1� 
 
 
 �M , the number
of elements in the set CG(m) is bounded from above by some constant C̄ , which
is independent of G.

Assumption 1′(i) relaxes Assumption 1(i) from the main text by requiring
independence across clusters instead of independence across groups. Assump-
tion 1′(ii) is the same as Assumption 1(ii). Assumption 1′(iii) imposes the con-
dition that the number of groups within each cluster remains small as the num-
ber of groups gets large.

In addition, we replace Assumption 6 with the following condition:

ASSUMPTION 6′—Noise: (i) For all g = 1� 
 
 
 �G, E[supu∈U |εg(u)|4+cM ] ≤
CM . (ii) For some (matrix-valued) function JCS : U ×U → R

dw×dw ,

1
G

M∑
m=1

E

[( ∑
g∈CG(m)

εg(u1)wg

)( ∑
g∈CG(m)

εg(u1)w
′
g

)]
→ JCS(u1�u2)

uniformly over u1�u2 ∈ U . (iii) For all u1�u2 ∈ U , |εg(u2)−εg(u1)| ≤ CL|u2 −u1|.
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Assumptions 6′(i) and 6′(iii) are the same as Assumptions 6(i) and 6(iii). As-
sumption 6′(ii) is a modification of Assumption 6(ii) adjusting the asymptotic
covariance function of G−1/2

∑G

g=1 εg(·)wg to allow for clustering. When CG(m)

contains only one group for each m = 1� 
 
 
 �M , Assumption 6′(ii) reduces to
Assumption 6(ii).

Like in the classical cross-section cluster sampling setup, allowing for clus-
tering in our model does not require adjusting the estimator. Therefore, we
study the properties of the estimator β̂(u) of parameter β(u), u ∈ U , defined
in Section 3. Our first theorem in this section describes the asymptotic distri-
bution of β̂(u).

THEOREM 6—Asymptotic Distribution Under Cluster Sampling: Let As-
sumptions 1′, 2–5, 6′, 7, and 8 hold. Then

√
G
(
β̂(·)−β(·))⇒G

CS(·)� in ∞(U)�

where G
CS(·) is a zero-mean Gaussian process with uniformly continuous sam-

ple paths and covariance function CCS(u1�u2) = SJCS(u1�u2)S
′, where S =

(QxwQ
−1
wwQ

′
xw)

−1QxwQ
−1
ww, Qxw and Qww appear in Assumption 2, and JCS(u1�u2)

in Assumption 6′.

Next, we discuss how to estimate the covariance function CCS(·� ·) of the lim-
iting Gaussian process G

CS(·). We suggest estimating CCS(·� ·) by ĈCS(·� ·) de-
fined for all u1�u2 ∈ U as

ĈCS(u1�u2)= ŜĴCS(u1�u2)Ŝ
′�

where

ĴCS(u1�u2)= 1
G

M∑
m=1

( ∑
g∈CG(m)

(
α̂g�1(u1)− x′

gβ̂(u1)
)
wg

)

×
( ∑

g∈CG(m)

(
α̂g�2(u2)− x′

gβ̂(u2)
)
w′

g

)
�

Ŝ = (Q̂xwQ̂
−1
wwQ̂

′
xw)

−1Q̂xwQ̂
−1
ww, Q̂xw = X ′W/G, Q̂ww = W ′W/G. In the theorem

below, we show that ĈCS(u1�u2) is consistent for CCS(u1�u2) uniformly over
u1�u2 ∈ U .

THEOREM 7—Estimating CCS Under Cluster Sampling: Let Assumptions 1′,
2–5, 6′, 7, and 8 hold. Then ‖ĈCS(u1�u2) − CCS(u1�u2)‖ = op(1) uniformly over
u1�u2 ∈ U .

Finally, we show how to obtain confidence bands for β(u) that hold uni-
formly over U . Observe that β(u) is a dx-vector, that is, β(u) = (β1(u)�
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 �βdx(u))
′. As before, we focus on β1(u), the first component of β(u), and

we suggest constructing uniform confidence bands via a multiplier bootstrap
method. An important difference from the results with no clustering, however,
is that now we should bootstrap on the cluster level.

Specifically, let β̂1(u), V CS(u), and V̂ CS(u) denote the 1st component of
β̂(u), the (1�1)st component of CCS(u�u), and the (1�1)st component of
ĈCS(u�u), respectively. Define

T = sup
u∈U

√
G
∣∣V̂ (u)−1/2

(
β̂1(u)−β1(u)

)∣∣�(18)

and let c1−α denote the (1 − α) quantile of T . As in the main text, we estimate
c1−α by the multiplier bootstrap method. Let ε1� 
 
 
 � εM be an i.i.d. sequence
of N(0�1) random variables that are independent of the data. Also, let ŵS

g�1

denote the first component of the vector Ŝwg. Then the multiplier bootstrap
statistic is

TMB = sup
u∈U

1√
GV̂ (u)

M∑
m=1

εm

( ∑
g∈CG(m)

(
α̂g�1(u)− x′

gβ̂(u)
)
ŵS

g�1

)



The multiplier bootstrap critical value ĉ1−α is the conditional (1−α) quantile of
TMB given the data. Our final theorem in this section explains how to construct
uniform confidence bands using ĉ1−α.

THEOREM 8—Uniform Confidence Bands via Multiplier Bootstrap Under
Cluster Sampling: Let Assumptions 1′, 2–5, 6′, 7, and 8 hold. In addition, sup-
pose that all eigenvalues of JCS(u�u) are bounded away from zero uniformly over
u ∈ U . Then

P

(
β1(u) ∈

[
β̂1(u)− ĉ1−α

√
V̂ (u)

G
� β̂1(u)+ ĉ1−α

√
V̂ (u)

G

]

for all u ∈ U
)

→ 1 − α

as G→ ∞.

APPENDIX F: PROOFS

In this appendix, we first prove some preliminary lemmas. Then we present
the proofs of Theorems 1–5 stated in the main text and in Appendices B–D. In
all proofs, c and C denote strictly positive generic constants that depend only
on cM , cf , CM , Cf , CL whose values can change at each appearance.
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We will use the following notation in addition to that appearing in the main
text. Let

A(u)= (α1�1(u)� 
 
 
 �αG�1(u)
)′
�(19)

β̃(u)= (X ′PWX
)−1(

X ′PWA(u)
)
�

Jg(u) =Eg

[
z1gz

′
1gfg
(
z′

1gαg(u)
)]



For η�α ∈ R
dz , and u ∈ U , consider the function fη�α�u : Rdz × R → R defined

by

fη�α�u(z� y)= (z′η
) · (1{y ≤ z′α

}− u
)

(20)

Let F = {fη�α�u : η�α ∈ R
dz ;u ∈ U}; that is, F is the class of functions fη�α�u as

η, α vary over Rdz and u varies over U . For α ∈ R
dz and u ∈ U , let the function

hα�u : Rdz ×R→ R
dz be defined by

hα�u(z� y)= z
(
1
{
y ≤ z′α

}− u
)
�

and let hk�α�u denote kth component of hα�u. Let Hk = {hk�α�u : α ∈ R
dz ;u ∈ U}.

Note that Hk ⊂F for all k= 1� 
 
 
 � dz .
We will also use the following notation from the empirical process literature:

G
g(f )= 1√

Ng

Ng∑
i=1

(
f (zig� yig)−Eg

[
f (zig� yig)

])

for f ∈F�H, or Hk, k = 1� 
 
 
 � dz .

Preliminary Lemmas

In all lemmas, we implicitly impose Assumptions 1–8.

LEMMA 1: As G → ∞,

Q̂xw = 1
G

G∑
g=1

xgw
′
g →p Qxw�(21)

Q̂ww = 1
G

G∑
g=1

wgw
′
g →p Qww�(22)

where Qxw and Qww appear in Assumption 2.
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PROOF: We only prove (21). The proof of (22) is similar. To prove (21),
observe that G−1

∑G

g=1 E[xgw
′
g] → Qxw by Assumption 2. Therefore, it suffices

to prove that

1
G

G∑
g=1

(
xgw

′
g −E
[
xgw

′
g

])→p 0
(23)

In turn, (23) follows from Assumptions 2(iv) and 4(i) and Chebyshev’s inequal-
ity. Hence, (21) follows. This completes the proof of the lemma. Q.E.D.

LEMMA 2: As G→ ∞,

1
G

G∑
g=1

εg(u1)εg(u2)wgw
′
g →p J(u1�u2)

uniformly over u1�u2 ∈ U .

PROOF: Observe that we cannot apply a uniform law of large numbers with
bracketing directly because the data are not necessarily i.i.d. across g. There-
fore, we provide a complete proof.

Since

1
G

G∑
g=1

E
[
εg(u1)εg(u2)wgw

′
g

]→ J(u1�u2)

uniformly over u1�u2 ∈ U by Assumption 6(ii), it suffices to prove that

1
G

G∑
g=1

(
εg(u1)εg(u2)wg�kwg�l −E

[
εg(u1)εg(u2)wg�kwg�l

])→p 0(24)

uniformly over u1�u2 ∈ U for all k� l = 1� 
 
 
 � dw.
To this end, fix u1�u2 ∈ U and k� l = 1� 
 
 
 � dw. We first show (24) for these

values of u1, u2, k, and l. Note that we cannot use Chebyshev’s inequality here
because E[(εg(u1)εg(u2)wg�kwg�l)

2] is not necessarily finite. Instead, we use a
more delicate method as presented in Theorem 2.1.7 of Tao (2012). Let δ =
cM/4. Then by Hölder’s inequality,

E
[∣∣εg(u1)εg(u2)wg�kwg�l

∣∣1+δ]
≤ (E[∣∣εg(u1)εg(u2)

∣∣2+2δ] ·E[|wg�kwg�l|2+2δ
])1/2
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In turn,

E
[∣∣εg(u1)εg(u2)

∣∣2+2δ]≤ E
[
sup
u∈U

∣∣εg(u)
∣∣4+4δ
]

≤ CM�

E
[|wg�kwg�l|2+2δ

]≤E
[‖wg‖4+4δ

]≤ CM�

by Assumptions 6(i) and 2(iv). Hence,

E
[∣∣εg(u1)εg(u2)wg�kwg�l

∣∣1+δ]≤ CM�

and so denoting Xg = εg(u1)εg(u2)wg�kwg�l − E[εg(u1)εg(u2)wg�kwg�l], we ob-
tain

E
[|Xg|1+δ

]≤ C
(25)

With this notation, (24) is equivalent to G−1
∑G

g=1 Xg →p 0.
Now for N > 0 to be chosen later, denote Xg�≤N = Xg · 1{|Xg| ≤ N} and

Xg�>N =Xg · 1{|Xg|>N}. Then by Fubini’s theorem and Markov’s inequality,

∣∣E[Xg�>N]∣∣ ≤ E
[|Xg�>N |]= ∫ ∞

0
P
(|Xg| · 1

{|Xg| >N
}
> t
)
dt

=
∫ N

0
P
(|Xg|>N

)
dt +
∫ ∞

N

P
(|Xg|> t

)
dt

≤ N · E
[|Xg|1+δ

]
N1+δ

+
∫ ∞

N

E
[|Xg|1+δ

]
t1+δ

dt

= E
[|Xg|1+δ

]
Nδ

+ E
[|Xg|1+δ

]
δNδ

≤ CN−δ�

where in the last inequality we used (25). Hence, by Markov’s inequality, for
any ε > 0,

P

(∣∣∣∣∣ 1G
G∑
g=1

Xg�>N

∣∣∣∣∣> ε

)
≤ 1

εG

G∑
g=1

E
[|Xg�>N |]≤ C

εNδ
�

and since |E[Xg�≤N]| = |E[Xg�>N]| ≤ CN−δ,

P

(∣∣∣∣∣ 1G
G∑
g=1

Xg�≤N

∣∣∣∣∣> ε+CN−δ

)

≤ P

(∣∣∣∣∣ 1G
G∑
g=1

(
Xg�≤N −E[Xg�≤N])

∣∣∣∣∣> ε

)
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≤ 1
ε2G2

G∑
g=1

E
[
X2

g�≤N

]

≤ N2

ε2G



Thus, setting N = G1/3, we obtain G−1
∑G

g=1 Xg →p 0, which is equivalent to
(24) for given u1, u2, k, and l.

Next, to show that (24) holds uniformly over u1�u2 ∈ U , for δ > 0, let Uδ

be a finite subset of U such that, for any u ∈ U , there exists u′ ∈ Uδ satisfying
|εg(u)− εg(u

′)| ≤ δ. Existence of such a set Uδ follows from Assumption 6(iii).
Then

sup
u1�u2∈U

∣∣∣∣∣ 1G
G∑
g=1

(
εg(u1)εg(u2)wg�kwg�l −E

[
εg(u1)εg(u2)wg�kwg�l

])∣∣∣∣∣
≤ max

u1�u2∈Uδ

∣∣∣∣∣ 1G
G∑
g=1

(
εg(u1)εg(u2)wg�kwg�l −E

[
εg(u1)εg(u2)wg�kwg�l

])∣∣∣∣∣
+ 2δ

G

G∑
g=1

(
sup
u∈U

∣∣εg(u)
∣∣ · |wg�kwg�l| +E

[
sup
u∈U

∣∣εg(u)
∣∣ · |wg�kwg�l|

])

= op(1)+ δ ·Op(1)

by the result above and Chebyshev’s inequality. Since δ is arbitrary, this com-
pletes the proof. Q.E.D.

LEMMA 3: As G→ ∞,

1√
G

G∑
g=1

wgεg(·)⇒G
0(·)� in ∞(U)�

where G
0 is a zero-mean Gaussian process with uniformly continuous sample

paths and covariance function J(u1�u2) for all u1�u2 appearing in Assumption 6.

PROOF: For any finite set U ′ ⊂ U , it follows from Assumption 6(ii), Linde-
berg’s Central Limit Theorem, and the Cramér–Wold device (see, e.g., Theo-
rems 11.2.5 and 11.2.3 in Lehmann and Romano (2005)) that(

1√
G

G∑
g=1

wgεg(u)

)
u∈U ′

⇒ (N(u)
)
u∈U ′�

where (N(u))u∈U ′ is a zero-mean Gaussian vector with covariance function
J(u1�u2) for all u1�u2 ∈ U ′. Therefore, to prove the asserted claim, we can
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apply Theorem 14. In particular, it suffices to verify conditions (i)–(iii) of
Theorem 14 with Zg(u) = G−1/2wg�kεg(u), g = 1� 
 
 
 �G and u ∈ U , for all
k = 1� 
 
 
 � dw. In the verification, we will use the Gaussian-dominated semi-
metric ρ : U × U → R+ defined by ρ(u1�u2) = C|u2 − u1| for sufficiently large
constant C > 0; see discussion in front of Theorem 14 for the definition of
Gaussian-dominated semi-metrics.

Condition (i) of Theorem 14 holds because, for any η> 0 and δ= 1 + cM/2,

G∑
g=1

E
[
sup
u∈U

∣∣Zg(u)
∣∣ · 1
{

sup
u∈U

∣∣Zg(u)
∣∣>η
}]

≤ 1
ηδG1/2+δ/2

G∑
g=1

E
[
sup
u∈U

∣∣εg(u)
∣∣1+δ|wg�k|1+δ

]

≤ 1
ηδG1/2+δ/2

G∑
g=1

(
E
[
sup
u∈U

∣∣εg(u)
∣∣2+2δ
]
·E[|wj�k|2+2δ

])1/2 → 0

by Hölder’s inequality and Assumptions 2(iv) and 6(i).
Condition (ii) of Theorem 14 holds because, for any u1�u2 ∈ U ,

G∑
g=1

E
[(
Z(u2)−Z(u1)

)2]= 1
G

G∑
g=1

E
[(
wg�kεg(u2)−wg�kεg(u1)

)2]

≤ C

G

G∑
g=1

E
[
w2

g�k|u2 − u1|2
]

≤ C|u2 − u1|2 ≤ ρ2(u1�u2)

by Assumptions 2(iv) and 6(iii) since the constant C in the definition of
ρ(u1�u2) is large enough.

Finally, condition (iii) of Theorem 14 holds because by Markov’s inequality
for any ε > 0,

sup
t>0

G∑
g=1

t2P
(

sup
ρ(u1�u2)≤2ε

∣∣Zg(u2)−Zg(u1)
∣∣> t
)

≤ 1
G

G∑
g=1

E
[

sup
ρ(u1�u2)≤2ε

∣∣wg�kεg(u2)−wg�kε(u1)
∣∣2]

≤ C sup
ρ(u1�u2)≤2ε

|u2 − u1|2 ≤ ε2
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by Assumptions 2(iv) and 6(iii) since the constant C in the definition of
ρ(u1�u2) is large enough. The asserted claim follows from an application of
Theorem 14. Q.E.D.

LEMMA 4: There exist constants c�C > 0 such that (i) for all u ∈ U and g =
1� 
 
 
 �G, all eigenvalues of Jg(u) are bounded from below by c, and (ii) for all
u1�u2 ∈ U and g = 1� 
 
 
 �G, ‖J−1

g (u2)− J−1
g (u1)‖ ≤ C|u2 − u1|.

PROOF: For any u ∈ U and α ∈ R
dz with ‖α‖ = 1,

α′Jg(u)α≥ cfα
′Eg

[
z1gz

′
1g

]
α ≥ cf cM�(26)

where the first inequality follows from Assumption 7(ii) and the second from
Assumption 4(ii). This gives the first asserted claim.

To prove the second claim, observe that∥∥J−1
g (u2)− J−1

g (u1)
∥∥ ≤ ∥∥J−1

g (u1)
∥∥∥∥J−1

g (u2)
∥∥∥∥Jg(u2)− Jg(u1)

∥∥
≤
∥∥Jg(u2)− Jg(u1)

∥∥
(cf cM)

2 �

where the second inequality follows from (26). Hence, it suffices to show that
‖Jg(u2)− Jg(u1)‖ ≤ C|u2 − u1| for some C > 0. To this end, note that∣∣z′

1gαg(u2)− z′
1gαg(u1)

∣∣≤ ‖z1g‖
∥∥αg(u2)− αg(u1)

∥∥≤ CMCL|u2 − u1|�
where the second inequality follows from Assumptions 4(i) and 5.

Thus, if |u2 − u1| < cf/(CMCL), then z′
1gαg(u2) ∈ Bg(u1� cf ), and so∥∥Jg(u2)− Jg(u1)

∥∥ ≤ ∥∥Eg

[
z1gz

′
1g · ∣∣fg(z′

1gαg(u2)
)− fg
(
z′

1gαg(u1)
)∣∣]∥∥

≤ CfCMCL|u2 − u1| ·
∥∥Eg

[
z1gz

′
1g

]∥∥
≤ CfC

3
MCL|u2 − u1|�

where the second inequality follows from Assumption 7(i) and the derivation
above, and the third from Assumption 4(i). On the other hand, if |u2 − u1| ≥
cf /(CMCL), then∥∥Jg(u2)− Jg(u1)

∥∥ ≤ ∥∥Jg(u1)
∥∥+ ∥∥Jg(u2)

∥∥≤ 2Cf

∥∥Eg

[
z1gz

′
1g

]∥∥
≤ 2CfC

2
M ≤ c−1

f CfC
3
MCL|u2 − u1|�

where the first inequality follows from the triangle inequality, the second from
Assumption 7(ii), and the third from Assumption 4(i). This gives the second
asserted claim and completes the proof of the lemma. Q.E.D.
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LEMMA 5: There exist constants c�C > 0 such that, for all g = 1� 
 
 
 �G,∥∥Eg

[
hα�u(z1g� y1g)

]− Jg(u)
(
α− αg(u)

)∥∥≤ C
∥∥α− αg(u)

∥∥2
�(27)

Eg

[(
α− αg(u)

)′
hα�u(z1g� y1g)

]≥ c
∥∥α− αg(u)

∥∥2
�(28)

for all u ∈ U and α ∈ R
dz satisfying ‖α− αg(u)‖ ≤ c.

PROOF: Second-order Taylor expansion around αg(u) and the law of iter-
ated expectation give

Eg

[
hα�u(z1g� y1g)

]
=Eg

[
z1g

(
1
{
y1g ≤ z′

1gα
}− u
)]=Eg

[
z1g

(
Fg

(
z′

1gα
)− u
)]

=Eg

[
z1g

(
Fg

(
z′

1gαg(u)
)− u
)]+ Jg(u)

(
α− αg(u)

)+ rn(u)�

where rn(u) is the remainder and Fg(·) is the conditional distribution func-
tion of y1g given (z1g� xg�αg). The first claim of the lemma follows from
Eg[z1g(Fg(z

′
1gαg(u)) − u)] = 0, which holds because z′

1gαg(u) is the uth quan-
tile of the conditional distribution of y1g, and from ‖rn(u)‖ ≤ C‖α − αg(u)‖2

for some C > 0, which holds by Assumptions 4(i) and 7(i).
To prove the second claim, note that if ‖α−αg(u)‖ is sufficiently small, then

‖(α−αg(u))
′rn(u)‖ ≤ c‖α−αg(u)‖2 for an arbitrarily small constant c > 0. On

the other hand,(
α− αg(u)

)′
Jg(u)
(
α− αg(u)

)≥ c
∥∥α− αg(u)

∥∥2

by Lemma 4. Combining these inequalities gives the second claim. Q.E.D.

LEMMA 6: The function class F , defined in the beginning of this section, is
a VC subgraph class of functions. Moreover, for all k = 1� 
 
 
 � dz , Hk is a VC
subgraph class of functions as well.

PROOF: A similar proof can be found in Belloni, Chernozhukov, and
Hansen (2006). We present the proof here for the sake of completeness. Con-
sider the class of sets {x ∈ R

dz+1 : a′x ≤ 0} with a varying over R
dz+1. It is well

known that this is a VC subgraph class of sets; see, for example, exercise 14 of
Chapter 2.6 in Van der Vaart and Wellner (1996). Further, note that{

(z� y� t) : fη�α�u(z� y) > t
}= ({y ≤ z′α

}∩ {z′η> t/(1 − u)
})

∪ ({y > z′α
}∩ {z′η< −t/u

})



Therefore, the first result follows from Lemma 2.6.17(ii, iii) in Van der Vaart
and Wellner (1996). The second result follows from the fact that Hk ⊂F .

Q.E.D.
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LEMMA 7: For any ϕ ≥ 1, there exists a constant C > 0 such that, for all g =
1� 
 
 
 �G,

Eg

[
sup
u∈U

∥∥Gg(hαg(u)�u)
∥∥ϕ]≤ C


PROOF: Observe that

Eg

[
sup
u∈U

∥∥Gg(hαg(u)�u)
∥∥ϕ] ≤ C

dz∑
k=1

Eg

[
sup
u∈U

∣∣Gg(hk�αg(u)�u)
∣∣ϕ]

≤ C

dz∑
k=1

Eg

[
sup
f∈Hk

∣∣Gg(f )
∣∣ϕ]


Further, all functions in Hk are bounded by some constant C > 0 by Assump-
tion 4(i) and the set of functions Hk is a VC subgraph class by Lemma 6.
Therefore, combining Theorems 9 and 11 gives Eg[supf∈Hk

|Gg(f )|] ≤ C, and
so Theorem 13 shows that

Eg

[
sup
f∈Hk

∣∣Gg(f )
∣∣ϕ]≤ C


The asserted claim follows. Q.E.D.

LEMMA 8: There exist constants c�C > 0 such that, for all g = 1� 
 
 
 �G,

Eg

[
sup

u2∈U :|u2−u1|≤ε

∥∥Gg(hαg(u2)�u2)−G
g(hαg(u1)�u1)

∥∥4
]

≤ Cε

for all ε ∈ (0� c) and u1 ∈ U .

PROOF: Fix some u1 ∈ U . Observe that

Eg

[
sup

u2∈U :|u2−u1|≤ε

∥∥Gg(hαg(u2)�u2)−G
g(hαg(u1)�u1)

∥∥4
]

≤ C

dz∑
k=1

Eg

[
sup

u2∈U :|u2−u1|≤ε

∣∣Gg(hk�αg(u2)�u2)−G
g(hk�αg(u1)�u1)

∣∣4]

Consider the function F :Rdz ×R → R given by

F(z� y)= C
(
1
{∣∣y − z′αg(u1)

∣∣≤ Cε
}+ ε
)

for some sufficiently large C > 0. By Assumptions 4(i) and 5, |z′
ig(αg(u2) −

αg(u1))| ≤ C|u2 − u1| for some C > 0. Therefore, for all u2 ∈ U satisfying
|u2 − u1| ≤ ε,∣∣hk�αg(u2)�u2(zig� yig)− hk�αg(u1)�u1(zig� yig)

∣∣≤ F(zig� yig)
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by Assumption 4(i). Note that Eg[F 2(zig� yig)] ≤ Cε for some C > 0 by Assump-
tion 7(ii) if ε ≤ 1. Also, for M = max1≤i≤Ng F(zig� yig), we have E[M2] ≤ CNgε.
Further, by Lemma 6, Hk is a VC subgraph class of functions, so that the func-
tion class H̃k = {hk�αg(u2)�u2 −hk�αg(u1)�u1 : u2 ∈ [u1 − ε�u1 + ε]} is a VC type class
by Theorem 9. So, applying Theorem 11 with F as an envelope yields

Eg

[
sup

u2∈U :|u2−u1|≤ε

∣∣Gg(hk�αg(u2)�u2)−G
g(hk�αg(u1)�u1)

∣∣]≤ C
√
ε�

and so Theorem 13 shows that

Eg

[
sup

u2∈U :|u2−u1|≤ε

∣∣Gg(hk�αg(u2)�u2)−G
g(hk�αg(u1)�u1)

∣∣4]≤ Cε�

since

Eg

[
max

1≤i≤Ng

sup
u2∈U :|u2−u1|≤ε

∣∣N−1/2
g

(
hk�αg(u2)�u2(zig� yig)

− hk�αg(u1)�u1(zig� yig)
)∣∣4]

≤N−1
g max

1≤i≤Ng

Eg

[
sup

u2∈U :|u2−u1|≤ε

∣∣(hk�αg(u2)�u2(zig� yig)

− hk�αg(u1)�u1(zig� yig)
)∣∣4]

≤N−1
g Eg

[
F 4(zij� yig)

]≤ Cε


The asserted claim follows. Q.E.D.

LEMMA 9: There exist constants c�C > 0 such that, for all g = 1� 
 
 
 �G,

Eg

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤ε

∥∥Gg(hα�u)−G
g(hαg(u)�u)

∥∥2
]

≤ C
(
ε log(1/ε)+N−1

g log2(1/ε)
)

for all ε ∈ (0� c).

PROOF: Observe that

Eg

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤ε

∥∥Gg(hα�u)−G
g(hαg(u)�u)

∥∥2
]

(29)

≤ C

dz∑
k=1

Eg

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤ε

∣∣Gg(hk�α�u)−G
g(hk�αg(u)�u)

∣∣2]
(30)
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Consider the function class

H̃k = {hk�α�u − hk�αg(u)�u : u ∈ U;α ∈ R
dz ;∥∥α− αg(u)

∥∥≤ ε
}



By Lemma 6 and Theorem 9, F is a VC type class, and so Theorem 10 implies
that H̃k ⊂F −F is also a VC type class. In addition, all functions from H̃k are
bounded in absolute value by some constant C > 0 by Assumption 4(i). More-
over, for any f ∈ H̃k, Eg[f (zig� yig)2] ≤ Cε if ε≤ 1. Thus, applying Theorem 11
with the function class H̃k yields

Eg

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤ε

∣∣Gg(hk�α�u)−G
g(hk�αg(u)�u)

∣∣]

≤ C
(√

ε log(1/ε)+N−1/2
g log(1/ε)

)
�

and so Theorem 13 gives

Eg

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤ε

∣∣Gg(hk�α�u)−G
g(hk�αg(u)�u)

∣∣2]

≤ C
(
ε log(1/ε)+N−1

g log2(1/ε)
)



The asserted claim follows. Q.E.D.

LEMMA 10: Uniformly over u ∈ U ,

1√
G

G∑
g=1

J−1
g (u)Gg(hαg(u)�u)w

′
g =Op(1)


PROOF: To prove this lemma, we use Theorem 14 with the semi-metric
ρ(u1�u2) = C|u2 − u1|1/4 defined for all u1�u2 ∈ U and some sufficiently large
constant C > 0. Clearly, ρ is Gaussian-dominated; see discussion before The-
orem 14 for the definition. Define vg(u)= J−1

g (u)Gg(hαg(u)�u) and

Zg�k�m(u)= vg�k(u)wg�m/
√
G�

where vg�k(u) and wg�m denote kth and mth components of vg(u) and wg, re-
spectively. Then the asserted claim is equivalent to the statement that

G∑
g=1

Zg�k�m(u)=Op(1) uniformly over u ∈ U(31)
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for all k and m. To prove (31), observe first that by Assumptions 1(i) and 2(iii),
zero-mean processes Zg�k�m(·) are independent across g. Also, for any a > 0,

G∑
g=1

E
[
sup
u∈U

∣∣Zg�k�m(u)
∣∣ · 1
{

sup
u∈U

∣∣Zg�k�m(u)
∣∣> a
}]

(32)

≤ a−1
G∑
g=1

E
[
sup
u∈U

Z2
g�k�m(u) · 1

{
sup
u∈U

∣∣Zg�k�m(u)
∣∣> a
}]

≤ 1
aG

G∑
g=1

E
[
sup
u∈U

(
vg�k(u)wg�m

)2 · 1
{

sup
u∈U

∣∣vg�k(u)wg�m

∣∣>√
Ga
}]




Further, pick some 0 <ϕ< 2. The expression under the sum in (32) is bounded
from above by Lemma 4 by

C

aϕGϕ/2E
[
sup
u∈U

∥∥Gg(hαg(u)�u)
∥∥2+ϕ‖wg‖2+ϕ

]

≤ C

aϕGϕ/2

(
E
[
sup
u∈U

∥∥Gg(hαg(u)�u)
∥∥4(2+ϕ)/(2−ϕ)

])(2−ϕ)/4(
E
[‖wg‖4

])(2+ϕ)/4

≤ C

aϕGϕ/2 → 0

uniformly over g = 1� 
 
 
 �G where the second line follows from Hölder’s in-
equality, Assumption 2(iv), and Lemma 7. This gives condition (i) of Theo-
rem 14.

Next, we verify condition (ii) of Theorem 14. For any u1�u2 ∈ U ,

G∑
g=1

E
[(
Zg�k�m(u2)−Zg�k�m(u1)

)2]

= 1
G

G∑
g=1

(
E
[
w4

g�m

])1/2 · (E[(vg�k(u2)− vg�k(u1)
)4])1/2




Further, using an elementary inequality (a+ b)4 ≤ C(a4 + b4) for all a�b ∈ Rp

gives

Eg

[(
vg�k(u2)− vg�k(u1)

)4]
≤ CEg

[∥∥J−1
g (u2)

∥∥4 · ∥∥Gg(hαg(u2)�u2 − hαg(u1)�u1)
∥∥4]

+CEg

[∥∥J−1
g (u2)− J−1

g (u1)
∥∥4 · ∥∥Gg(hαg(u1)�u1)

∥∥4]
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≤ CEg

[∥∥Gg(hαg(u2)�u2 − hαg(u1)�u1)
∥∥4]

+CEg

[∥∥Gg(hαg(u1)�u1)
∥∥4] · |u2 − u1|4�

where the second inequality follows from Lemma 4. In addition,

Eg

[∥∥Gg(hαg(u2)�u2 − hαg(u1)�u1)
∥∥4]≤ C|u2 − u1| and(33)

Eg

[∥∥Gg(hαg(u1)�u1)
∥∥4]≤ C�

where the first inequality follows from Lemma 8 and the second is easy to check
directly. Therefore,

Eg

[(
vg�k(u2)− vg�k(u1)

)4]≤ C|u2 − u1|�

and so

G∑
g=1

E
[(
Zg�k�m(u2)−Zg�k�m(u1)

)2]≤ C|u2 − u1|1/2 ≤ ρ2(u1�u2)

by Assumption 2(iv) since the constant C in the definition of ρ(u1�u2) is suffi-
ciently large. This gives condition (ii) of Theorem 14.

Finally, to verify condition (iii) of Theorem 14, observe that, for any ε > 0
and u1 ∈ U ,

sup
t>0

G∑
g=1

t2P
(

sup
u2∈U :ρ(u1�u2)≤ε

∣∣Zg�k�m(u2)−Zg�k�m(u1)
∣∣> t
)

≤
G∑

g=1

E
[

sup
u2∈U :ρ(u1�u2)≤ε

∣∣Zg�k�m(u2)−Zg�k�m(u1)
∣∣2]

= 1
G

G∑
g=1

E
[

sup
u2∈U :ρ(u1�u2)≤ε

∣∣vg�k(u2)− vg�k(u1)
∣∣2w2

g�m

]
≤ ε2�

where the second line follows from Markov’s inequality, and the last inequal-
ity follows by selecting sufficiently large constant C in the definition of ρ and
using the same argument as that in verification of condition (ii) since the first
inequality in (33) used in the verification of condition (ii) can be replaced by

Eg

[
sup

u2∈U :ρ(u1�u2)≤ε

∥∥Gg(hαg(u2)�u2 − hδg(u1)�u1)
∥∥4
]

≤ cε4
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for arbitrarily small c > 0 by selecting the constant C in the definition of
ρ(u1�u2) large enough and using Lemma 8. Therefore, for any ε > 0 and u ∈ U ,

sup
t>0

G∑
g=1

t2P
(

sup
u1�u2∈U :ρ(u1�u)≤ε�ρ(u2�u)≤ε

∣∣Zg�k�m(u2)−Zg�k�m(u1)
∣∣> t
)

≤ 2 sup
t>0

G∑
g=1

t2P
(

sup
u1∈U :ρ(u1�u)≤ε

∣∣Zg�k�m(u1)−Zg�k�m(u)
∣∣> t/2

)
≤ ε2�

and condition (iii) of Theorem 14 holds. The claim of the lemma now follows
by applying Theorem 14. Q.E.D.

Proofs of Theorems

PROOF OF THEOREM 1: The proof consists of two steps. First, we show that√
G(β̂(u)− β̃(u)) = op(1) uniformly over u ∈ U where β̃(u) is defined in (19).

Second, we show that
√
G(β̃(·) − β(·)) ⇒ G(·) in ∞(U). Combining these

steps gives the result.
Step 1. Denote Q̂xw =X ′W/G and Q̂ww =W ′W/G. Then

√
G
(
β̂(u)− β̃(u)

)
= (Q̂xwQ̂

−1
wwQ̂

′
xw

)−1
Q̂xwQ̂

−1
ww

(
W ′(Â(u)−A(u)

)
/
√
G
)



By Lemma 1, X ′W/G →p Qxw and W ′W/G →p Qww where matrices Qxw and
Qww have singular values bounded in absolute values from above and away
from zero by Assumption 2(ii), and so

Ŝ = (Q̂xwQ̂
−1
wwQ̂

′
xw

)−1
Q̂xwQ̂

−1
ww →p

(
QxwQwwQ

′
xw

)−1
QxwQ

−1
ww = S
(34)

Therefore, to prove the first step, it suffices to show that

S(u)= 1√
G

G∑
g=1

(
α̂g(u)− αg(u)

)
w′

g = op(1)

uniformly over u ∈ U . To this end, write S(u)= S1(u)+ S2(u) where

S1(u)= − 1√
G

G∑
g=1

J−1
g (u)Gg(hαg(u)�u)w

′
g/
√
Ng�

S2(u)= 1√
G

G∑
g=1

(
J−1
g (u)Gg(hαg(u)�u)+

√
Ng

(
α̂g(u)−αg(u)

))
w′

g/
√
Ng
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Since NG = ming=1�


�G Ng → ∞ by Assumption 3, Lemma 10 implies that
S1(u)= op(1) uniformly over u ∈ U .

Consider S2(u). Let

Kg = C
√
N−1

g logNg(35)

for sufficiently large constant C > 0 so that Theorem 3 implies that

P
(

sup
u∈U

∥∥α̂g(u)− αg(u)
∥∥>Kg

)
≤ CN−3

g 


Let DG be the event that

sup
u∈U

∥∥α̂g(u)− αg(u)
∥∥≤Kg� for all g = 1� 
 
 
 �G�

and let Dc
G be the event that DG does not hold. By the union bound, P(Dc

G) ≤
CGN−3

g . By Assumption 3, CGN−3
g → 0. Therefore,

S2(u)= S2(u)1{DG} + S2(u)1
{
Dc

G

}= S2(u)1{DG} + op(1)

uniformly over u ∈ U . Further, ‖S2(u)‖1{DG} ≤ C
∑G

g=1(r1�g+r2�g+r3�g)/
√
GNg

where

r1�g = sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤Kg

∥∥J−1
g (u)
(
G

g(hα�u)−G
g(hαg(u)�u)

)∥∥‖wg‖�

r2�g = sup
u∈U

∥∥∥∥∥J−1
g (u)

1√
Ng

Ng∑
i=1

hα̂g(u)�u(zig� yig)

∥∥∥∥∥‖wg‖�

r3�g = sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤Kg

∥∥Eg

[√
Ng

(
J−1
g (u)hα�u(zig� yig)

− (α− αg(u)
))]∥∥‖wg‖


We bound the three terms r1�g, r2�g, and r3�g in turn. By Lemma 4 and Hölder’s
inequality,

E[r1�g] ≤ (E[‖wg‖2
])1/2

×
(
E
[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤Kg

∥∥Gg(hα�u)−G
g(hαg(u)�u)

∥∥2
])1/2

≤ C

(√
logNg

Ng

logNg

)1/2

= (logNg)
3/4

N1/4
g

�
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where the second line follows from the definition of Kg, Assumption 2(iv), and
Lemma 9. Further, using Lemma 4 again gives

sup
u∈U

∥∥∥∥∥J−1
g (u)

1√
Ng

Ng∑
i=1

hα̂g(u)�u(zig� yig)

∥∥∥∥∥
≤ C sup

u∈U

∥∥∥∥∥ 1√
Ng

Ng∑
i=1

hα̂g(u)�u(zig� yig)

∥∥∥∥∥≤ C√
Ng

by the optimality of α̂g(u) and since yig has a continuous conditional distribu-
tion. Hence, E[r2�g] ≤ C/

√
Ng. Finally, by Lemmas 4 and 5,

E[r3�g] ≤ C
√
NgK

2
g ≤ C logNg√

Ng




Hence, by Assumption 3,

E
[
sup
u∈U

∥∥S2(u)
∥∥1{DG}

]
≤ C

√
G(logNG)

3/4

N3/4
G

= o(1)�

implying that
√
G(β̂(u)− β̃(u))= op(1) uniformly over u ∈ U and completing

the first step.
Step 2. To prove that

√
G(β̃(·)−β(·))⇒ G(·) in ∞(U), observe that

√
G
(
β̃(·)−β(·))= Ŝ · 1√

G

G∑
g=1

wgεg(·)


As explained in Step 1, Ŝ →p S. Also, by Lemma 3,

1√
G

G∑
g=1

wgεg(·)⇒G
0(·)� in ∞(U)�

where G
0 is a zero-mean Gaussian process with uniformly continuous sample

paths and covariance function J(u1�u2). Therefore, by Slutsky’s theorem,
√
G
(
β̃(·)−β(·))⇒G(·)� in ∞(U)�(36)

where G is a zero-mean Gaussian process with uniformly continuous sam-
ple paths and covariance function C(u1�u2) = SJ(u1�u2)S

′. Combining (36)
with Step 1 gives the asserted claim and completes the proof of the theorem.

Q.E.D.
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PROOF OF THEOREM 2: Equation (34) in the proof of Theorem 1 gives
Ŝ →p S. Therefore, it suffices to prove that ‖Ĵ(u1�u2) − J(u1�u2)‖ = op(1)
uniformly over u1�u2 ∈ U . Note that αg�1(u)− x′

gβ(u) = εg(u). Hence,

α̂g�1(u)− x′
gβ̂(u) = (α̂g�1(u)− αg�1(u)

)− x′
g

(
β̂(u)−β(u)

)+ εg(u)

= I1�g(u)− I2�g(u)+ εg(u)�

where I1�g(u) = α̂g�1(u) − αg�1(u) and I2�g(u) = x′
g(β̂(u) − β(u)). Further, we

have

1
G

G∑
g=1

εg(u1)εg(u2)wgw
′
g →p J(u1�u2)

uniformly over u1�u2 ∈ U by Lemma 2. In addition, it was demonstrated in the
proof of Theorem 1 that

P
(

max
g=1�


�G

sup
u∈U

∥∥α̂g(u)− αg(u)
∥∥>Kg

)
≤ CGN−3

g = o(1)

by Assumption 3 where Kg = C(N−1
g logNg)

1/2 for sufficiently large constant C.
Thus, setting KG = maxg=1�


�G Kg, we obtain∥∥∥∥∥ 1

G

G∑
g=1

I1�g(u1)I1�g(u2)wgw
′
g

∥∥∥∥∥ ≤ K2
G

G

G∑
g=1

‖wg‖2 + op(1)

≤ Op

(
K2

G

)+ op(1)= op(1)

uniformly over u1�u2 ∈ U by Assumption 2(iv) and Chebyshev’s inequality.
Further, ∥∥∥∥∥ 1

G

G∑
g=1

I1�g(u1)εg(u2)wgw
′
g

∥∥∥∥∥ ≤ KG

G

G∑
g=1

∣∣εg(u2)
∣∣‖wg‖2 + op(1)

≤ KG

G

G∑
g=1

sup
u∈U

∣∣εg(u)
∣∣‖wg‖2 + op(1)

= op(1)

uniformly over u1�u2 ∈ U by same argument as that used in the proof of
Lemma 2 since Hölder’s inequality implies that

E
[
sup
u∈U

∣∣εg(u)
∣∣‖wg‖2

]
≤
(
E
[
sup
u∈U

∣∣εg(u)
∣∣2])1/2(

E
[‖wg‖4

])1/2 ≤ C
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by Assumptions 2(iv) and 6(i). Similarly,∥∥∥∥∥ 1
G

G∑
g=1

I2(u1)I2�g(u2)wgw
′
g

∥∥∥∥∥
≤ C

G

G∑
g=1

‖wg‖2 sup
u∈U

∥∥β̂(u)−β(u)
∥∥2 = op(1)�

∥∥∥∥∥ 1
G

G∑
g=1

I2�g(u1)εg(u2)wgw
′
g

∥∥∥∥∥
≤ C

G

G∑
g=1

∣∣εg(u2)
∣∣‖wg‖2 sup

u∈U

∥∥β̂(u)−β(u)
∥∥= op(1)�

uniformly over u1�u2 ∈ U by Assumption 4(i). Finally,∥∥∥∥∥ 1
G

G∑
g=1

I1�g(u1)I2�g(u2)wgw
′
g

∥∥∥∥∥
≤ CKG

G

G∑
g=1

‖wg‖2 sup
u∈U

∥∥β̂(u)−β(u)
∥∥+ op(1)= op(1)

uniformly over u1�u2 ∈ U . Combining these inequalities gives the asserted
claim. Q.E.D.

PROOF OF THEOREM 3: Recall the definition of the function fη�α�u in (20).
Since x �→ ρu(x) = (u − I{x < 0})x is convex, for x > 0, ‖α̂g(u) − αg(u)‖ ≤ x
for all u ∈ U if

inf
u∈U

inf
η∈Rdz ;‖η‖=1

Ng∑
i=1

fη�αg(u)+xη�u(zig� yig)/Ng > 0
(37)

Now, since fη�α�u = η′hα�u, Lemma 5 implies that

inf
u∈U

inf
η∈Rdz ;‖η‖=1

Eg

[
fη�αg(u)+xη�u(zig� yig)

]
> cx

if the constant c̄ in the statement of the theorem is sufficiently small. Therefore,
it follows that (37) holds if

inf
u∈U

inf
η∈Rdz ;‖η‖=1

Ng∑
i=1

(
fη�αg(u)+xη�u(zig� yig)−Eg

[
fη�αg(u)+xη�u(zig� yig)

])/
Ng

≥ −cx�
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which in turn follows if

inf
u∈U

inf
η�α∈Rdz ;‖η‖=1

G
g(fη�α�u) ≥ −cx

√
Ng
(38)

Note that for any η ∈ R
dz satisfying ‖η‖ = 1, |fη�α�u| ≤ 2‖zig‖ ≤ C for some

C > 0 by Assumption 4(i). In addition, it follows from Lemma 6 and Theo-
rem 9 that the conditions of Theorem 12 hold for the function class {fη�α�u ∈F :
u ∈ U;η�α ∈R

dz ; ‖η‖ = 1}. Therefore, Theorem 12 shows that (38) holds with
probability not smaller than

1 −C exp
(−cx2Ng

)
for some c�C > 0. The asserted claim follows. Q.E.D.

PROOF OF THEOREM 4: Observe that the statement

β1(u) /∈
[
β̂1(u)− ĉ1−α

√
V̂ (u)

G
� β̂1(u)+ ĉ1−α

√
V̂ (u)

G

]
for some u ∈ U

is equivalent to the statement that T > ĉ1−α. Therefore, it suffices to prove that

P(T > ĉ1−α)→ α
(39)

To prove (39), recall the process G(·)= (G1(u)� 
 
 
 �Gdx(u))
′ appearing in The-

orem 1. Define a Gaussian process G̃(·) on U with values in R by

G̃(u)= V (u)−1/2
G1(u)� u ∈ U�

where V (u) = C1�1(u�u), the (1�1)st component of C(u�u) = SJ(u�u)S′. It
follows from conditions of the theorem that V (u) is bounded away from zero
uniformly over u ∈ U . Therefore, since G(·) has uniformly continuous sam-
ple paths, the process G̃(·) also has uniformly continuous sample paths. The
covariance function of the process G̃(·) is

C̃(u1�u2)= V (u1)
−1/2C1�1(u1�u2)V (u2)

−1/2


Further, for G≥ 1, define processes ĜG(·) and G̃G(·) on U with values in R by

ĜG(u)= 1√
GV̂ (u)

G∑
g=1

(
εg
(
α̂g�1(u)− x′

gβ̂(u)
)
ŵS

g�1

)
� u ∈ U�

G̃G(u)= 1√
GV (u)

G∑
g=1

εgεg(u)w
S
g�1� u ∈ U�
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where wS
g�1 and ŵS

g�1 are the first component of the vectors Swg and Ŝwg, re-
spectively, and V̂ (u) = Ĉ1�1(u�u).

Observe that ĉ1−α is the (1 −α) conditional quantile of supu∈U |ĜG(u)| given
the data. Also, for β ∈ (0�1) and V ⊂ U , let c0

β�V be the βth quantile of
supu∈V |G̃(u)|, and let cβ�V�G be the βth quantile of supu∈V |G̃G(u)| given the
data.

Now, since the process G̃(·) has uniformly continuous sample paths, it
follows that supu∈U |G̃(u)| < ∞, and so Theorem 2.1 of Chernozhukov,
Chetverikov, and Kato (2014b) implies that supu∈U |G̃(u)| has continuous dis-
tribution. Therefore, for any δ > 0, there exists η> 0 such that

P
(

sup
u∈U

∣∣G̃(u)
∣∣> c0

1−α−η�U −η
)

≤ α+ δ�

P
(

sup
u∈U

∣∣G̃(u)
∣∣> c0

1−α+η�U +η
)

≥ α− δ


In addition, Theorem 1 combined with the continuous mapping theorem im-
plies T ⇒ supu∈U |G̃(u)|, and so

P
(
T > c0

1−α−η�U −η
)≤ α+ δ+ o(1)�

P
(
T > c0

1−α+η�U +η
)≥ α− δ+ o(1)


Hence, to prove (39), it suffices to show that for any η> 0,

P
(
c0

1−α−η�U −η ≤ ĉ1−α ≤ c0
1−α+η�U +η

)→ 1
(40)

To prove (40), fix some η > 0. Since G̃(·) has uniformly continuous sample
paths, there exists a finite U(η�1)⊂ U such that

c0
1−α−η�U −η≤ c0

1−α−η/2�U(η�1) −η/2�(41)

c0
1−α+η�U +η≥ c0

1−α+η/2�U(η�1) +η/2
(42)

Further, let AG be the event that G−1
∑G

g=1(w
S
g�1)

2 ≤ C for some sufficiently
large C > 0. Note that P(AG)→ 1 as G→ ∞. Also, on AG, for any u1�u2 ∈ U ,

Eε

[(
1√
G

G∑
g=1

εg
(
εg(u2)− εg(u1)

)
wS

g�1

)2]

= 1
G

G∑
g=1

(
εg(u2)− εg(u1)

)2(
wS

g�1

)2 ≤ C|u2 − u1|2
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by Assumption 6(iii) where Eε[·] denotes expectation with respect to the distri-
bution of ε1� 
 
 
 � εG (and keeping everything else fixed). Therefore, combining
Borell’s inequality (see Proposition A.2.1 of Van der Vaart and Wellner (1996))
and Corollary 2.2.8 of Van der Vaart and Wellner (1996) shows that one can
find finite U(η�2)⊂ U such that, on AG,

c1−α+η/2�U(η�2)�G +η/3 ≥ c1−α+η/3�U�G +η/4�(43)

c1−α−η/2�U(η�2)�G −η/3 ≤ c1−α−η/3�U�G −η/4
(44)

Now, observe that whenever the inequalities (41)–(44) are satisfied, the same
inequalities are also satisfied with U(η�1) and U(η�2) replaced by U(η) =
U(η�1)∪U(η�2).

Next, conditional on the data, (G̃G(u))u∈U(η) is a zero-mean Gaussian vector
with covariance function

C̃G(u1�u2)= V (u1)
−1/2

(
1
G

G∑
g=1

εg(u1)εg(u2)
(
wS

g�1

)2)
V (u2)

−1/2


By Lemma 2, C̃G(u1�u2) →P C̃(u1�u2) uniformly over u1�u2 ∈ U(η) where
C̃(u1�u2) is the covariance function of a zero-mean Gaussian vector
(G̃(u))u∈U(η). Hence, by Lemma 3.1 of Chernozhukov, Chetverikov, and Kato
(2013),

P
(
c0

1−α+η/2�U(η) +η/2 > c1−α+η/2�U(η)�G +η/3
)→ 1�

P
(
c0

1−α−η/2�U(η) −η/2 < c1−α−η/2�U(η)�G −η/3
)→ 1


Combining this with inequalities (41)–(44) where we replace U(η�1) and
U(η�2) by U(η) gives

P
(
c0

1−α+η�U +η> c1−α+η/3�U�G +η/4
)→ 1�

P
(
c0

1−α−η�U −η< c1−α−η/3�U�G −η/4
)→ 1


To complete the proof, it suffices to show that

P(c1−α−η/3�U�G −η/4 ≤ ĉ1−α ≤ c1−α+η/3�U +η/4)→ 1
(45)

To prove (45), observe that

sup
u∈U

∣∣∣∣∣ 1√
G

G∑
g=1

εgx
′
g

(
β̂(u)−β(u)

)
wS

g�1

∣∣∣∣∣
≤ sup

u∈U

∥∥β̂(u)−β(u)
∥∥ ·
∥∥∥∥∥ 1√

G

G∑
g=1

εgw
S
g�1xg

∥∥∥∥∥→P 0
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since supu∈U ‖β̂(u) − β(u)‖ →P 0 by Theorem 1 and ‖G−1/2
∑G

g=1 εgw
S
g�1xg‖ =

OP(1) by Assumptions 2(iv) and 4(i). Also,

sup
u∈U

∣∣∣∣∣ 1√
G

G∑
g=1

εg
(
α̂g�1(u)− αg�1(u)

)
wS

g�1

∣∣∣∣∣→P 0

by the same argument as that used in Step 1 of the proof of Theorem 1. There-
fore, since εg(u)= αg�1(u)−x′

gβ(u), supu∈U |V̂ (u)−V (u)| →P 0 by Theorem 2,
V (u) is bounded away from zero uniformly over u ∈ U , and Ŝ →P S as in the
proof of Theorem 1, we obtain

sup
u∈U

∥∥G̃G(u)− ĜG(u)
∥∥→p 0


Since ĉ1−α is the (1 − α) conditional quantile of supu∈U |Ĝ(u)| given the data
and cβ�U�G is the βth conditional quantile of supu∈U |G̃(u)| given the data, (45)
follows. This completes the proof of the theorem. Q.E.D.

PROOF OF THEOREM 5: We split the proof into two steps.
Step 1. Here we wish to show that for sufficiently large C > 0,

P

(
max

1≤g≤G

∥∥J−1
g (u)Gg(hαg(u)�u)+

√
Ng(α̂g − αg)

∥∥> C(logNG)
3/4

N1/4
G

)
→ 0
(46)

Set Kg = C(N−1
g logNg)

1/2 for sufficiently large C > 0 so that Theorem 3 im-
plies that

P
(∥∥α̂g(u)− αg(u)

∥∥>Kg

)≤ CN−3
g 


Let DG be the event that∥∥α̂g(u)− αg(u)
∥∥≤Kg� for all g = 1� 
 
 
 �G�

and let Dc
G be the event that DG does not hold. By the union bound, P(Dc

G) ≤
CGN−3

g → 0.
Now, on the event DG,

∥∥J−1
g (u)Gg(hαg(u)�u)+

√
Ng(α̂g − αg)

∥∥≤ r1�g + r2�g + r3�g�

where

r1�g = sup
α∈Rdz :‖α−αg(u)‖≤Kg

∥∥J−1
g (u)
(
G

g(hα�u)−G
g(hαg(u)�u)

)∥∥�
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r2�g =
∥∥∥∥∥J−1

g (u)
1√
Ng

Ng∑
i=1

hα̂g(u)�u(zig� yig)

∥∥∥∥∥�
r3�g = sup

α∈Rdz :‖α−αg(u)‖≤Kg

∥∥Eg

[√
Ng

(
J−1
g (u)hα�u(zig� yig)− (α− αg(u)

))]∥∥

By Lemma 4 and optimality of α̂g(u),

r2�g ≤
∥∥∥∥∥ C√

Ng

Ng∑
i=1

hα̂g(u)�u(zig� yig)

∥∥∥∥∥≤ C√
Ng




Also, by Lemmas 4 and 5,

r3�g ≤ C
√
NgK

2
g ≤ C logNg√

Ng




Finally, by Lemma 4 and Talagrand’s inequality (see, e.g., Theorem B.1 in
Chernozhukov, Chetverikov, and Kato (2014b)),

r1�g ≤ C sup sup
α∈Rdz :‖α−αg(u)‖≤Kg

∥∥Gg(hα�u)−G
g(hαg(u)�u)

∥∥

≤ C
√
Kg logG= C log3/4 Ng

N1/4
g

with probability at least 1 −G−2. Combining these bounds gives (46) and com-
pletes this step.

Step 2. Here we complete the proof. For g = 1� 
 
 
 �G and i = 1� 
 
 
 � N̄G,
define qig as follows. If i > Ng, set qig = 0. If i ≤Ng, set

qig = (N̄G/Ng)
1/2I−1/2

g z̄ig
(
1
{
yig ≤ z′

igαg(u)
}− u
)
�

where z̄ig denotes the first component of the vector J−1
g (u)zig. By Step 1 and

assumptions that Ig ≥ cM and N̄G/NG ≤ CM , it follows that

P
(

max
1≤g≤G

√
Ng/Ig
∣∣α̂g�1(u)− αg�1(u)

∣∣≤ cM1−α

)
(47)

≤ P

(
max

1≤g≤G

∣∣∣∣∣ 1√
N̄G

N̄G∑
g=1

(
qig −Eg[qig]

)∣∣∣∣∣≤ cM1−α + C log3/4 Ng

N1/4
g

)
+ o(1)
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In turn, since, under our assumptions, |qig| ≤ C, by Corollary 2.1 in
Chernozhukov, Chetverikov, and Kato (2014c), the probability in (47) is
bounded from above by

P

(
max

1≤g≤G
|Yg| ≤ cM1−α + C log3/4 NG

N1/4
G

)
+ o(1)

≤ P
(

max
1≤g≤G

|Yg| ≤ cM1−α

)
+ C
(
log3/4 NG

) · (log1/2 G
)

N1/4
G

+ o(1)

= 1 − α+ o(1)�

where in the second line we used Theorem 3 in Chernozhukov, Chetverikov,
and Kato (2015). Thus,

P
(

max
1≤g≤G

√
Ng/Ig
∣∣α̂g�1(u)− αg�1(u)

∣∣≤ cM1−α

)
(48)

≤ 1 − α+ o(1)


Similar arguments also give

P
(

max
1≤g≤G

√
Ng/Ig
∣∣α̂g�1(u)− αg�1(u)

∣∣≤ cM1−α

)
(49)

≥ 1 − α− o(1)


Rearranging the terms under the probability signs in (48) and (49) completes
the proof of the theorem. Q.E.D.

APPENDIX G: PROOFS OF THEOREMS 6–8

The proofs are analogous to those of Theorems 1, 2, and 4. Therefore, we
only discuss important differences. First, the constants c�C > 0 in the proofs
now depend on cM , cf , CM , Cf , CL, and C̄. Second, among Lemmas 1–10, Lem-
mas 4–9 deal with within group variation, and so apply under our conditions
without changes. The statement of Lemma 1 holds without changes, but in the
proof, Chebyshev’s inequality applies on cluster level, that is, for k = 1� 
 
 
 � dx

and l = 1� 
 
 
 � dw,

E

[(
1
G

G∑
g=1

(
xg�kwg�l −E[xg�kwg�l]

))2]

= 1
G2

M∑
m=1

E

[( ∑
g∈CG(m)

(
xg�kwg�l −E[xg�kwg�l]

))2]
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≤ C

G2

M∑
m=1

E

[ ∑
g∈CG(m)

(
xg�kwg�l −E[xg�kwg�l]

)2]

= C

G2

G∑
g=1

E
[(
xg�kwg�l −E[xg�kwg�l]

)2]→ 0�

where in the second line we used Assumption 1′(iii) that the number of groups
in each cluster is bounded from above by C̄ .

Lemma 2 should be replaced with the statement that G→ ∞,

1
G

M∑
m=1

( ∑
g∈CG(m)

εg(u1)wg

)( ∑
g∈CG(m)

εg(u1)w
′
g

)
→P J

CS(u1�u2)(50)

uniformly over u1�u2 ∈ U . To prove this statement, observe that by Assump-
tion 6′(ii),

1
G

M∑
m=1

E

[( ∑
g∈CG(m)

εg(u1)wg

)( ∑
g∈CG(m)

εg(u1)w
′
g

)]
→ JCS(u1�u2)

uniformly over u1�u2 ∈ U . Further, for δ= cM/4 and k� l = 1� 
 
 
 � dw,

E

[∣∣∣∣
( ∑

g∈CG(m)

εg(u1)wg�k

)( ∑
g∈CG(m)

εg(u2)wg�l

)∣∣∣∣
1+δ]

≤ CE

[ ∑
g�g′∈CG(m)

∣∣εg(u1)wg�kεg′(u2)wg′�l
∣∣1+δ

]

≤ CE

[ ∑
g�g′∈CG(m)

(∣∣εg(u1)wg�k

∣∣2+2δ + ∣∣εg′(u2)wg′�l
∣∣2+2δ)]≤ C�

where the last inequality can be proven by the same argument as that used in
the proof of Lemma 2. From this point, the proof of (50) is analogous to the
proof used in Lemma 2.

The statement of Lemma 3 holds with J(u1�u2) replaced by JCS(u1�u2). To
prove the new statement, first observe that for any finite U ′ ⊂ U ,(

1√
G

G∑
g=1

wgεg(u)

)
u∈U ′

⇒ (N(u)
)
u∈U ′�

where (N(u))u∈U ′ is a zero-mean Gaussian vector with covariance func-
tion JCS(u1�u2) for all u1�u2 ∈ U ′. The rest of the proof follows from The-
orem 14 by the same arguments as those used in Lemma 3 and those
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explained above where we replace Zg(u) = G−1/2wg�kεg(u) by Zm(u) =
G−1/2
∑

g∈CG(m) wg�kεg(u), and we replace sums over g = 1� 
 
 
 �G by sums over
m= 1� 
 
 
 �M where appropriate.

The statement of Lemma 10 holds without changes, but in the proof, we re-
place Zg�k�l(u) = vg�k(u)wg�l/

√
G by Zm�k�l(u) =∑g∈CG(m) vg�k(u)wg�l/

√
G and

we replace sums over g = 1� 
 
 
 �G by sums over m = 1� 
 
 
 �M where appro-
priate, and employ the arguments explained above.

With the new versions of Lemmas 1–10, the proof of Theorem 6 is the same
as the proof of Theorem 1. The proof of Theorem 7 is analogous to that of
Theorem 2 where, using the same notation as that in the proof of Theorem 2,
we employ the bound∥∥∥∥∥ 1

G

M∑
m=1

( ∑
g∈CG(m)

I1�g(u1)wg

)( ∑
g∈CG(m)

I1�g(u2)w
′
g

)∥∥∥∥∥
≤ 1

G

M∑
m=1

∑
g�g′∈CG(m)

∥∥I1�g(u1)I1�g′(u2)wgw
′
g

∥∥

≤ K2
g

G

G∑
g=1

‖wg‖2 + oP(1)= oP(1)�

and we bound all other terms in the proof similarly. The proof of Theorem 8 is
analogous to that of Theorem 4.

APPENDIX H: TOOLS

In Appendix F, we used several results from the empirical process theory.
For ease of reference, we describe these results in this section.

Let (T�ρ) be a semi-metric space. For ε > 0, an ε-net of (T�ρ) is a subset Tε

of T such that for every t ∈ T , there exists a point tε ∈ Tε with ρ(t� tε) < ε. The
ε-covering number N(ε�T�ρ) of T is the infimum of the cardinality of ε-nets
of T , that is, N(ε�T�ρ) = inf{Card(Tε) : Tε is an ε net of T }.

Let F be a class of measurable functions defined on some measurable space
(S�S). For any probability measure Q on (S�S) and p ≥ 1, let Lp(Q) denote
the space of functions f on S with the norm ‖f‖Q�p = (

∫ |f (s)|p dQ(s))1/p <
∞. The function class F is called VC subgraph class if the collection of all
subgraphs of the functions in F forms a VC class of sets; see Section 2.6.2 of
Van der Vaart and Wellner (1996) for the definitions. In addition, we say that
the function class F is VC type class of functions with an envelope F : S → R+
and constants A ≥ e, and v ≥ 1 if all functions in F are bounded in absolute
value by F and the following condition holds:

sup
Q

N
(
ε‖F‖Q�2�F�L2(Q)

)≤ (A/ε)v
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for all ε ∈ (0�1) where the supremum is taken over all finitely discrete proba-
bility measures Q on (S�S).

Finally, let X1� 
 
 
 �Xn be an i.i.d. sequence of random variables taking values
in (S�S) with a common distribution P . Define the empirical process:

Gn(f ) = 1√
n

n∑
i=1

(
f (Xi)−E

[
f (Xi)
])
� f ∈F 


The following theorems are used in Appendix F:

THEOREM 9: There exists a universal constant K such that, for any VC sub-
graph class F of functions with an envelope F , any p≥ 1, and 0 < ε< 1,

sup
Q

N
(
ε‖F‖Q�p�F�Lp(Q)

)≤KV (F)(16e)V (F)

(
1
ε

)r(V (F)−1)

�

where V (F) is a finite constant that depends only on the function class F (and
called VC dimension of the class F). Thus, any VC subgraph class of functions
F is also a VC type class of functions with some constants A ≥ e and v ≥ 1
depending only on F .

PROOF: See Lemma 19.15 in Van der Vaart (1998). Q.E.D.

THEOREM 10: Let F1� 
 
 
 �Fk be classes of measurable functions S → R to
which measurable envelopes F1� 
 
 
 �Fk are attached, respectively, and let φ :
R

k → R be a map that is Lipschitz in the sense that

∣∣φ ◦ f (s)−φ ◦ g(s)∣∣2 ≤
k∑

j=1

L2
j (s)
∣∣fj(s)− gj(s)

∣∣2�
for every f = (f1� 
 
 
 � fk), g = (g1� 
 
 
 � gk) ∈ F1 × · · · ×Fk =F and every s ∈ S,
where L1� 
 
 
 �Lk are nonnegative measurable functions on S. Consider the class
of functions φ(F) = {φ ◦ f : f ∈ F}. Denote (

∑k

j=1 L
2
j F

2
j )

1/2 by L · F . Then we
have

sup
Q

N
(
ε‖L · F‖Q�2�φ(F)�L2(Q)

)≤ k∏
j=1

sup
Qj

N
(
ε‖Fj‖Qj�2�Fj�L2(Qj)

)

for every 0 < ε< 1.

PROOF: See Lemma A.6 in Chernozhukov, Chetverikov, and Kato (2014a).
Q.E.D.
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THEOREM 11: Let F be a VC type class of functions with an envelope F
and constants A ≥ e and v ≥ 1. Denote σ2 = supf∈F E[f (X1)

2] and M =
max1≤i≤n F(Xi). Then

E
[
sup
f∈F

∣∣Gn(f )
∣∣]

≤K

(√
vσ2 log

(
A‖F‖P�2

σ

)
+ v‖M‖2√

n
log
(
A‖F‖P�2

σ

))

for some absolute constant K where ‖M‖2 = (E[M2])1/2.

PROOF: See Corollary 5.1 of Chernozhukov, Chetverikov, and Kato (2014a).
Q.E.D.

THEOREM 12: Let F be a class of functions f :X → [0�1] that satisfies

sup
Q

N
(
ε�C�L2(Q)

)≤ (K
ε

)V
� for every 0 < ε<K�

where supremum is taken over all probability measures Q. Then for every t > 0,

P
(

sup
f∈F

∣∣Gn(f )
∣∣> t
)

≤
(

Dt√
V

)V
e−2t2

for a constant D that depends on K only.

PROOF: See Theorem 2.14.9 in Van der Vaart and Wellner (1996). Q.E.D.

THEOREM 13: Let X1� 
 
 
 �Xn be independent, zero-mean stochastic processes
indexed by an arbitrary index set T with joint probability measure P . Then

∥∥‖Sn‖
∥∥
P�p

≤ K
p

logp

(∥∥‖Sn‖
∥∥
P�1

+
∥∥∥max

1≤i≤n
‖Xi‖
∥∥∥
P�p

)
for any p > 1 where Sn = X1 + · · · + Xn, ‖Sn‖ = supt∈T |Sn(t)|, ‖Xi‖ =
supt∈T |Xi(t)|, and K is a universal constant.

PROOF: See Proposition A.1.6 in Van der Vaart and Wellner (1996).
Q.E.D.

Finally, we provide a reference for Central Limit Theorem with bracketing
by Gaussian hypotheses, which we use several times in Appendix F. A semi-
metric ρ :F ×F → R+ is called Gaussian if it can be defined as

ρ(f�g) = (E[(G(f)−G(g)
)2])1/2

�
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where G is a tight, zero-mean, Gaussian random element in l∞(F). A semi-
metric ρ is called Gaussian-dominated if it is bounded from above by Gaussian
metric. In particular, it is known that any semi-metric ρ satisfying∫ ∞

0

√
logN(ε�F�ρ)dε < ∞

is Gaussian-dominated; see discussion on p. 212 in Van der Vaart and Wellner
(1996).

THEOREM 14—Bracketing by Gaussian Hypotheses: For each n, let Zn1� 
 
 
 �
Znmn be independent stochastic processes indexed by an arbitrary index set F . Sup-
pose that there exists a Gaussian-dominated semi-metric ρ on F such that

(i)
mn∑
i=1

E
[‖Zni‖F · 1

{‖Zni‖F >η
}]→ 0� for every η> 0�

(ii)
mn∑
i=1

E
[(
Zni(f )−Zni(g)

)2]≤ ρ2(f�g)� for every f�g�

(iii) sup
t>0

mn∑
i=1

t2P
(

sup
f�g∈B(ε)

∣∣Zni(f )−Zni(g)
∣∣> t
)

≤ ε2�

for every ρ-ball B(ε)⊂F of radius less than ε and for every n. Then the sequence∑mn

i=1(Zni − E[Zni]) is asymptotically tight in l∞(F). It converges in distribution
provided it converges marginally.

PROOF: See Theorem 2.11.11 in Van der Vaart and Wellner (1996).
Q.E.D.
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