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THROUGHOUT THIS APPENDIX, we use K to denote a generic constant that may change
from line to line; we sometimes emphasize the dependence of this constant on some
parameter q by writing Kq. We use 0k×q to denote a k × q matrix of zeros, and when
q= 1, we write 0k for notational simplicity; 0k is understood to be empty when k= 0. For
any sequence of variables (ξn�p)p≥1, the convergence (ξn�p)p≥1 → (ξp)p≥1 is understood as
n→ ∞ under the product topology. We write w.p.a.1 for “with probability approaching
1.”

By a standard localization procedure (see Section 4.4.1 of Jacod and Protter (2012)), we
can strengthen Assumption 1 to the following stronger version without loss of generality.

ASSUMPTION S1: We have Assumption 1. Moreover, the processes Xt , bt , and σt are
bounded.

SUPPLEMENTAL APPENDIX A: PROOF OF PROPOSITION 1

(a) Since the jumps of Z have finite activity, we can assume without loss of generality
that each interval ((i−1)�n� i�n] contains at most one jump; otherwise we can restrict our
calculation to the w.p.a.1 set of sample paths on which this condition holds. We denote
the continuous part of Z by Zc , that is,

(SA.1) Zc
t =Zt −

∑
s≤t
�Zs� t ≥ 0�

Note that In(D) is the union of two disjoint sets I1n(D) and I2n(D) that are defined as

I1n(D)= In(D)∩ {
i(p) : p ∈P

}
�(SA.2)

I2n(D)= In(D)\I1n(D)�

It suffices to show that, w.p.a.1,

(SA.3) I1n(D)= I(D)� I2n(D)= ∅�
First consider I1n(D). Since vn → 0, we have |�ni(p)Z|> vn for all p ∈P , when n is large

enough. Therefore,

(SA.4) I1n(D)= {
i(p) : p ∈P�

((
i(p)− 1

)
�n��

n
i(p)Z

) ∈D
}

w.p.a.1.

Now, observe that

(SA.5) sup
p∈P

∥∥((
i(p)− 1

)
�n��

n
i(p)Z

) − (τp��Zτp)
∥∥ → 0 a.s.
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Indeed, almost surely,

sup
p∈P

∥∥((
i(p)− 1

)
�n��

n
i(p)Z

) − (τp��Zτp)
∥∥(SA.6)

= sup
p∈P

∥∥((
i(p)− 1

)
�n − τp��ni(p)Zc

)∥∥
≤ �n + sup

s�t≤T�|s−t|≤�n

∣∣Zc
t −Zc

s

∣∣ → 0�

By Assumption 2, the marks (τp��Zτp)p∈PD are contained in the interior of D a.s. Then,
by (SA.5), ((i(p)− 1)�n��ni(p)Z)p∈PD ⊆ D w.p.a.1. With the same argument but with Dc

(i.e., the complement of D) replacing D, we deduce ((i(p) − 1)�n��ni(p)Z)p∈P\PD ⊆ Dc

w.p.a.1. Therefore, the set on the right-hand side of (SA.4) coincides with I(D) w.p.a.1.
From here, the first claim of (SA.3) readily follows.

It remains to show that I2n(D) is empty w.p.a.1. Note that for i ∈ I2n(D), �ni Z = �ni Zc .
Hence, for any q > 2/(1 − 2�),

(SA.7) P
(
I2n(D) 
= ∅) ≤

�T/�n�∑
i=1

P
(∣∣�ni Zc

∣∣> vn) ≤Kq�
−1
n

�q/2n

vqn
→ 0�

where the second inequality is by Markov’s inequality and E|�ni Zc|q ≤Kq�
q/2
n ; the conver-

gence is due to (2.12) and our choice of q. The proof of part (a) is now complete.
(b) By part (a), it suffices to show that

(SA.8)
(
(i− 1)�n��ni X

)
i∈I(D) − (τp��Xτp)p∈PD = op(1)�

Observe that ((i− 1)�n��ni X)i∈I(D) is simply ((i(p)− 1)�n��ni(p)X)p∈PD . We deduce the
desired convergence via the same argument as that for (SA.5). Q.E.D.

SUPPLEMENTAL APPENDIX B: PROOF OF THEOREM 1

(a) Let

(SB.9) β̄(D)≡ QZY(D)
QZZ(D)

�

For each p≥ 1, we set

(SB.10) Rn�p = �−1/2
n

(
�ni(p)X −�Xτp

)
and ςn�p = (−β̄(D)�1

)
Rn�p�

With these notations, we have in restriction to Ω0(D),

(SB.11) �ni(p)Y = β0�
n
i(p)Z +�1/2

n ςn�p�

By Proposition 4.4.10 in Jacod and Protter (2012), (Rn�p)p≥1
L-s−→ (Rp)p≥1, where Rp is

defined in (3.2). Consequently (recall the notation (3.12)),

(SB.12) (ςn�p)p≥1
L-s−→ (ςp)p≥1�
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By Proposition 1(a), w.p.a.1,

det
[
Qn(D)

] =
( ∑
p∈PD

�ni(p)Z
2

)( ∑
p∈PD

�ni(p)Y
2

)
(SB.13)

−
( ∑
p∈PD

�ni(p)Z�
n
i(p)Y

)2

�

Plug (SB.11) into (SB.13). After some algebra, we deduce

(SB.14) �−1
n det

[
Qn(D)

] =
( ∑
p∈PD

�ni(p)Z
2

)( ∑
p∈PD

ς2
n�p

)
−

( ∑
p∈PD

�ni(p)Zςn�p

)2

�

Note that for each p ≥ 1, �ni(p)Z → �Zτp . Combining this convergence with (SB.12), we
use the property of stable convergence to derive the joint convergence

(SB.15)
(
ςn�p��

n
i(p)Z

)
p≥1

L-s−→ (ςp��Zτp)p≥1�

Since the set PD is a.s. finite, the assertion of part (a) follows from (SB.14), (SB.15), and
the continuous mapping theorem.

(b) By a standard localization argument (see Section 4.4.1 of Jacod and Protter (2012)),
we assume that Assumption S1 holds without loss of generality. Since PD is a.s. finite,
we can also assume that |PD| ≤M for some constant M > 0 for the purpose of proving
convergence in probability; otherwise, we can fix some large M to make P(|PD| > M)
arbitrarily small and restrict the calculation below on the set {|PD| ≤M}.

By Theorem 9.3.2 in Jacod and Protter (2012), we have

(SB.16) ĉn�i(p)−
P−→ cτp−� ĉn�i(p)+

P−→ cτp all 1 ≤ p≤M�
By Proposition 1(b),

(SB.17) Qn(D)
P−→Q(D)�

which further implies (with β̃n ≡QZY�n(D)/QZZ�n(D))

(SB.18) β̃n
P−→ β̄(D)�

Furthermore, by essentially the same argument as in the proof of Proposition 1(a), we
deduce

(SB.19) I ′
n(D)= I(D) w.p.a.1.

Therefore,

ζ̃n(D)=
( ∑
p∈PD

�ni(p)Z
2

)( ∑
p∈PD

ς̃2
n�i(p)

)
−

( ∑
p∈PD

�ni(p)Zςn�i(p)

)2

w.p.a.1.(SB.20)
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Fix any subsequence N1 ⊆ N. By (SB.16) and (SB.18), we can extract a further subse-
quence N2 ⊆N1, such that along N2,

(SB.21)
(
(ĉn�i(p)−� ĉn�i(p)+)1≤p≤M� β̃n

) → (
(cτp−� cτp)1≤p≤M� β̄(D)

)
on some set Ω̃ with P(Ω̃)= 1. Then, for each ω ∈ Ω̃ fixed, the transition kernel of ζ̃n(D)
given F converges weakly to the F -conditional law of ζ(D). Moreover, observe that the
F -conditional law of the variables (ςp)1≤p≤M does not have atoms and has full support on
R
M . Therefore, the F -conditional distribution function of ζ(D) is continuous and strictly

increasing. By Lemma 21.2 in van der Vaart (1998), we deduce that on each path ω ∈ Ω̃,
along the subsequence N2, cvαn → cvα, where cvα is the F -conditional (1 − α)-quantile of

ζ(D). Since the subsequence N1 is arbitrarily chosen, we further deduce that cvαn
P−→ cvα

by the subsequence characterization of convergence in probability. The proof for part (b)
is now complete.

(c) By part (a) and part (b), as well as the property of stable convergence, we have

(SB.22)
(
�−1
n det

[
Qn(D)

]
� cvαn�1Ω0(D)

) L-s−→ (
ζ(D)� cvα�1Ω0(D)

)
�

In particular,

(SB.23) P
({
�−1
n det

[
Qn(D)

]
> cvαn

} ∩Ω0(D)
) → P

({
ζ(D) > cvα

} ∩Ω0(D)
)
�

Since P(ζ(D) > cvα|F) = α and Ω0(D) ∈ F , the right-hand side of (SB.23) equals to
αP(Ω0(D)). The first assertion of part (c) then follows from (SB.23). To show the second
assertion of part (c), we first observe that (SB.17) implies det[Qn(D)] P−→ det[Q(D)].
In restriction to Ωa(D), det[Q(D)] > 0 and, hence, �−1

n det[Qn(D)] diverges to +∞
in probability. Part (b) implies that cvαn is tight in restriction to Ωa(D). Consequently,
P(�−1

n det[Qn(D)]> cvαn |Ωa(D))→ 1 as asserted. Q.E.D.

SUPPLEMENTAL APPENDIX C: PROOF OF THEOREM 2

(a) Observe that

QZY�n(D�w)−β0QZZ�n(D�w)(SC.24)

=
∑

i∈I′
n(D)

w
(
ĉni−� ĉ

n
i+� β̃n

)
�ni Z

(
�ni Y −β0�

n
i Z

)
�

Recall the notation ςn�p from (SB.10). By (SB.19), we further deduce that, w.p.a.1,

�−1/2
n

(
QZY�n(D�w)−β0QZZ�n(D�w)

)
(SC.25)

=
∑
p∈PD

w(ĉn�i(p)−� ĉn�i(p)+� β̃n)�ni(p)Zςn�p�

By (SB.16), (SB.18), and Assumption 3,

(SC.26) w
(
ĉni(p)−� ĉ

n
i(p)+� β̃n

) P−→w(cτp−� cτp�β0)� p≥ 1�
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Since PD is a.s. finite, we use properties of stable convergence to deduce from (SB.12)
and (SC.26) that

(SC.27) �−1/2
n

(
QZY�n(D�w)−β0QZZ�n(D�w)

) L-s−→
∑
p∈PD

w(cτp−� cτp�β0)�Zτpςp�

Note that

(SC.28) �−1/2
n

(
β̂n(D�w)−β0

) = �−1/2
n

(
QZY�n(D�w)−β0QZZ�n(D�w)

)
QZZ�n(D�w)

�

By (SB.19),

(SC.29) Qn(D�w)=
∑
p∈PD

w
(
ĉni(p)−� ĉ

n
i(p)+� β̃n

)
�ni(p)X�

n
i(p)X

��

By �ni(p)X → �Xτp and (SC.26), we deduce

(SC.30) Qn(D�w)
P−→

∑
p∈PD

w(cτp−� cτp�β0)�Xτp�X
�
τp
�

The first assertion of part (a), that is, �−1/2
n (β̂n(D�w)−β0)

L-s−→ ζβ(D�w), readily follows
from (SC.27), (SC.28), and (SC.30).

Turning to the second assertion of part (a), we first observe that when ct does not jump
at the same time as Zt , each ςp is F -conditionally centered Gaussian; moreover, the vari-
ables (ςp)p≥1 are F -conditionally independent. Therefore, the limiting variable ζβ(D) is
centered Gaussian conditional on F , with conditional variance given by Σ(D�w). This
finishes the proof of the second assertion.

(b) For notational simplicity, we denote

Ap = (−β0�1)(cτp− + cτp)(−β0�1)�

2�Z2
τp

� Bp =w(cτp−� cτp�β0)�Z
2
τp
�

Then we can rewrite Σ(D�w) and Σ(D�w∗) as

Σ(D�w)=

∑
p∈PD

B2
pAp

( ∑
p∈PD

Bp

)2 � Σ
(
D�w∗) =

( ∑
p∈PD

A−1
p

)−1

�

The assertion of part (b) is then proved by observing

√
Σ(D�w)
Σ

(
D�w∗) =

√ ∑
p∈PD

B2
pAp

√ ∑
p∈PD

A−1
p

∑
p∈PD

Bp
≥ 1�

where the inequality is by the Cauchy–Schwarz inequality.
(c) By (SB.19) and (SC.26), as well as �ni(p)Z→ �Zτp , we deduce that the F -conditional

law of ζ̃n�β(D�w) converges in probability to that of ζβ(D�w) under any metric for weak
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convergence. From here, by using an argument similar to that in the proof of Theo-
rem 1(b), we further deduce that

(SC.31) cvα/2n�β

P−→ cvα/2β �

where cvα/2β denotes the (1−α/2)-quantile of the F -conditional law of ζβ(D�w). It is easy
to see that the F -conditional law of ζβ(D�w) is symmetric. The assertion of part (c) then
follows from part (a) and (SC.31). Q.E.D.

SUPPLEMENTAL APPENDIX D: PROOF OF THEOREM 3

(a) Fix S ∈ S and let m= dim(S)− 1. We consider a sequence of subsets Ωn defined by

Ωn=
⎧⎨
⎩

For every 1 ≤ i≤ �T/�n�, if
(
(i− 1)�n� i�n

]
contains

some jump of Z, then this interval is contained in (Sj−1� Sj]
for some 1 ≤ j ≤m and it contains exactly one jump of Z

⎫⎬
⎭�

Under Assumption 1, the process Z has finitely active jumps without any fixed time of
discontinuity. Hence, P(Ωn)→ 1, so we can restrict our calculation below on Ωn without
loss of generality.

Below, we write h= (h0� � � � �hm)
� and denote the log likelihood ratio by

Ln(h)= log
dPn

θ0+�1/2
n h

dPnθ0

�

For each i ≥ 1, we set h(n� i)= hj , where j is the unique integer in {1� � � � �m} such that
i�n ∈ (Sj−1� Sj]. On the set Ωn, with θ= θ0 +�1/2

n h, we have

�ni X =
∫ i�n

(i−1)�n

bs ds+
∫ i�n

(i−1)�n

σs dWs

+
( (

1 +�1/2
n h(n� i)

)
�ni JZ(

β0 +�1/2
n h0

)(
1 +�1/2

n h(n� i)
)
�ni JZ +�ni ε

)
�

To simplify notations, we denote, for each i≥ 1,

xn�i ≡ �−1/2
n

∫ i�n

(i−1)�n

σs dWs�

b̄n�i ≡
∫ i�n

(i−1)�n

bs ds�

c̄n�i ≡ �−1
n

∫ i�n

(i−1)�n

cs ds�

Jn�i ≡
(

�ni JZ
β0�

n
i JZ +�ni ε

)
�

dn�i ≡
(

h(n� i)
h0 +β0h(n� i)+�1/2

n h0h(n� i)

)
�
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Note that under Assumption 4, (xn�i)i≥1 are independent conditional on (bt�σt� JZ�t� εt)t≥0

and each xn�i is distributed as N (0� c̄n�i). With these notations, we can write the log likeli-
hood ratio explicitly as

(SD.32) Ln(h)=
�T/�n�∑
i=1

�ni JZd
�
n�ic̄

−1
n�ixn�i −

1
2

�T/�n�∑
i=1

�ni J
2
Zd

�
n�ic̄

−1
n�idn�i�

Note that on Ωn, �ni JZ 
= 0 only if ((i− 1)�n� i�n] contains one (and only one) jump of Z.
Therefore,

(SD.33) Ln(h)=
∑
p∈P

�Zτpd
�
n�i(p)c̄

−1
n�i(p)xn�i(p) −

1
2

∑
p∈P

�Z2
τp
d�
n�i(p)c̄

−1
n�i(p)dn�i(p)�

By Proposition 4.4.10 in Jacod and Protter (2012), (xn�i(p))p≥1
L-s−→ (Rp)p≥1. Under

Assumption 5, the variables (Rp)p≥1 are F -conditionally independent, where the F -
conditional law of Rp is N (0� cτp); moreover, c̄n�i(p) → cτp a.s. for each p ≥ 1. Further
note that for each p≥ 1,

(SD.34) dn�i(p) −→Dph�

where the matrix Dp is defined as

(SD.35) Dp ≡
(

0 0ᵀ
j−1 1 0ᵀ

m−j
1 0ᵀ

j−1 β0 0ᵀ
m−j

)
for j such that τp ∈ (Sj−1� Sj]�

Since P is a.s. finite, we deduce (4.9) from (SD.33) and (SD.34), that is,

(SD.36) Ln(h)= h��1/2
n ψn − 1

2
h��nh+ op(1)�

where

(SD.37) �n ≡
∑
p∈P

�Z2
τp
D�
p c̄

−1
n�i(p)Dp� ψn = �−1/2

n

∑
p∈P

�ZτpD
�
p c̄

−1
n�i(p)xn�i(p)�

In addition, (4.10) follows with

(SD.38) �≡
∑
p∈P

�Z2
τp
D�
pc

−1
τp
Dp�ψ≡ �−1/2

∑
p∈P

�ZτpD
�
pc

−1
τp
Rp�

It is easy to verify that � defined in (SD.38) equals to �(S) defined by (4.17). To see, we
make the following explicit calculation using (SD.35):

D�
pc

−1
τp
Dp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
vcτp

0�
j−1

β0 −βcτp
vcτp

0�
m−j

0j−1 0(j−1)×(j−1) 0j−1 0(j−1)×(m−j)
β0 −βcτp
vcτp

0�
j−1

(
β0 −βcτp

)2

vcτp
+ 1
cZZ�τp

0�
m−j

0m−j 0(m−j)×(j−1) 0m−j 0(m−j)×(m−j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
�(SD.39)
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Finally, we note that conditional on F , ψ has a standard normal distribution and, hence,
is independent of F . The proof for the LAMN property is now complete.

From the proof of Theorem 3 of Jeganathan (1982), we see that the convolution theo-
rem can be applied in restriction to the setΩ(S)≡ {�(S) is nonsingular}. The information
bound for estimating β, that is, the first diagonal element of �(S)−1, can then be easily
computed by using the inversion formula for partitioned matrices.

(b) Since the jumps of Z have finite activity, on each sample path ω ∈ Ω there exists
some S∗(ω) ∈ S that shatters its jumps. That is, each interval (S∗

j−1(ω)�S
∗
j (ω)] contains

exactly one jump time of Z. We can then evaluate Σ̄β(·) at S∗ on each sample path and
obtain

(SD.40) Σ̄β
(
S∗) =

(∑
s≤T

(
�Z2

s

vcs
− γ2

1s

γ2s

))−1

�

Plugging the definitions of γ1s and γ2s (see (4.16)) into (SD.40), we can verify that

(SD.41) Σ̄β
(
S∗) =

(∑
s≤T

�Z2
s

cYY�s − 2β0cZY�s +β2
0cZZ�s

)−1

�

Recall that we fix D = [0�T ]×R∗ and Σ∗ ≡ Σ(D�w∗), with the latter given by (4.8). Under
Assumption 5, we see Σ̄β(S∗)= Σ∗.

It remains to verify that Σ̄β(S∗)≥ Σ̄β(S) for all S ∈ S. By the Cauchy–Schwarz inequal-
ity,

(SD.42)

( ∑
Sj−1<s≤Sj

γ1s

)2

∑
Sj−1<s≤Sj

γ2s

≤
∑

Sj−1<s≤Sj

γ2
1s

γ2s
�

From (4.19), (SD.40), and (SD.42), Σ̄β(S∗)≥ Σ̄β(S) readily follows. Q.E.D.
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