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A. PROOFS FOR SECTION 3

WE FIRST RECALL SOME RESULTS about semimartingale topology originally introduced by
Émery (1979) (see Czichowsky and Schweizer (2006), Kardaras (2013), and Cuchiero and
Teichmann (2015) for recent applications in mathematical finance). The semimartingale
topology is stronger than the topology of uniform convergence in probability on compacts
(ucp). In the latter case, the supremum in Eq. (2.1) is only taken over integrands in the
form ηt = 1[0�s](t) for every s > 0:

ducp(X�Y) =
∑
n≥1

2−nEP

[
1 ∧ sup

s≤n

|Xs −Ys|
]
�

The following inequality due to Burkholder is useful for proving convergence in the
semimartingale topology in Theorem 3.1 (see Meyer (1972, Theorem 47, p. 50) for dis-
crete martingales and Cuchiero and Teichmann (2015) for continuous martingales, where
a proof is provided inside the proof of their Lemma 4.7).

LEMMA A.1: For every martingale X and every predictable process η bounded by 1,
|ηt | ≤ 1, it holds that

aP

(
sup
s∈[0�t]

∣∣∣∣
∫ s

0
ηu dXu

∣∣∣∣> a

)
≤ 18EP

[|Xt |
]

for all a≥ 0 and t > 0.

We will also use the following result (see Kardaras (2013, Proposition 2.10)).

LEMMA A.2: If Xn S−→X and Yn S−→ Y , then XnYn S−→XY .

We will also make use of the following lemma.

LEMMA A.3: Let (Xn
t )t≥0 be a sequence of martingales such that Xn

t

L1−→ X∞
t for each

t ≥ 0. Then (X∞
t )t≥0 is a martingale.

PROOF: It is immediate that E[|X∞
t |] < ∞ for all t. We need to verify that Es[X∞

t ] =
X∞

s for t > s ≥ 0. First we show that, from Xn
t

L1−→X∞
t , it follows that

(A.1) Es

[
Xn

t

] L1−→ Es

[
X∞

t

]
for each s < t. By Jensen’s inequality, for each 0 ≤ s < t, we have |Es[Xn

t − X∞
t ]| ≤

Es[|Xn
t −X∞

t |]. Taking expectations on both sides, we have

E
∣∣Es

[
Xn

t

] −Es

[
X∞

t

]∣∣ ≤ Es

[∣∣Xn
t −X∞

t

∣∣]�
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Thus, Xn
t

L1−→ X∞
t implies Es[Xn

t ] L1−→ Es[X∞
t ] for each s < t.

Since Xn
t are martingale, Es[Xn

t ] = Xn
s . By (A.1) for t ≥ s, Xn

s

L1−→ Es[X∞
t ]. On the other

hand, Xn
s

L1−→ X∞
s . Thus, Es[X∞

t ] = X∞
s for t > s, hence X∞

t is a martingale. Q.E.D.

PROOF OF THEOREM 3.1: (i) It is easy to see that Eq. (3.1) implies MT
t converges to

M∞
t in L1 under P. Since (MT

t )t≥0 are positive P-martingales with MT
0 = 1, and for each

t ≥ 0 random variables MT
t converge to M∞

t > 0 in L1, by Lemma A.3 (M∞
t )t≥0 is also

a positive P-martingale with M∞
0 = 1. Emery’s distance between the martingale MT for

some T > 0 and M∞ is

dS
(
MT�M∞) =

∑
n≥1

2−n sup
|η|≤1

EP

[
1 ∧

∣∣∣∣
∫ n

0
ηs d

(
MT −M∞)

s

∣∣∣∣
]
�

To prove MT S−→M∞, it suffices to prove that for all n,

(A.2) lim
T→∞

sup
|η|≤1

EP

[
1 ∧

∣∣∣∣
∫ n

0
ηs d

(
MT −M∞)

s

∣∣∣∣
]

= 0�

We can write for an arbitrary ε > 0 (for any random variable X , it holds that E[1 ∧ |X|] ≤
P(|X|> ε)+ ε):

EP

[
1 ∧

∣∣∣∣
∫ n

0
ηs d

(
MT −M∞)

s

∣∣∣∣
]

≤ P

(∣∣∣∣
∫ n

0
ηs d

(
MT −M∞)

s

∣∣∣∣> ε

)
+ ε�

By Lemma A.1,

sup
|η|≤1

EP

[
1 ∧

∣∣∣∣
∫ n

0
ηs d

(
MT −M∞)

s

∣∣∣∣
]

≤ 18
ε
EP

[∣∣MT
n −M∞

n

∣∣] + ε�

Since limT→∞ EP[|MT
n −M∞

n |] = 0, and ε can be taken arbitrarily small, Eq. (A.2) is veri-
fied and, hence, MT S−→ M∞.

(ii) We have shown that StB
T
t =MT

t

S−→ M∞
t := StB

∞
t . By Lemma A.2, BT

t

S−→ B∞
t , and B∞

t

is the long bond according to Definition 3.1 (the semimartingale convergence is stronger
than the ucp convergence).

Part (iii) is a direct consequence of (i) and (ii).
(iv) Define a new probability measure Q∞ by Q∞|Ft = M∞

t P|Ft for each t ≥ 0. The dis-
tance in total variation between the measure QT for some T > 0 and Q∞ on Ft is

2 sup
A∈Ft

∣∣QT (A)−Q∞(A)
∣∣�

For each t ≥ 0, we can write

0 = lim
T→∞

EP
[∣∣MT

t −M∞
t

∣∣] = lim
T→∞

EP
[
M∞

t

∣∣BT
t /B

∞
t − 1

∣∣] = lim
T→∞

EQ∞[∣∣BT
t /B

∞
t − 1

∣∣]�
Thus,

lim
T→∞

sup
A∈Ft

∣∣EQ∞[(
BT

t /B
∞
t

)
1A

] −EQ∞[1A]∣∣ = 0�



LONG-TERM RISK: A MARTINGALE APPROACH 3

Since dQT

dQ∞ |Ft = BT
t

B∞
t

, it follows that

lim
T→∞

sup
A∈Ft

∣∣EQT [1A] −EQ∞[1A]∣∣ = 0�

Thus, QT converge to Q∞ in total variation on Ft for each t. Since convergence in total
variation implies strong convergence of measures, this shows that Q∞ is the long forward
measure according to Definition 3.2, Q∞ = L. Q.E.D.

PROOF OF THEOREM 3.2: (i) Define functions h(t) := P
log t
0 and g(t) := limT→∞ PT−t

0 /
sPT

0 (the latter is defined for each t due to our assumption). Then, for all 0 < a< 1,

lim
t→∞

h(at)

h(t)
= lim

t→∞
P

logat
0

P
log t
0

= lim
t→∞

P
log t+loga
0

P
log t
0

= g(− loga)�

Thus, h(t) is a regularly varying function (see Bingham, Goldie, and Teugels (1989)). By
Karamata’s characterization theorem (see Bingham, Goldie, and Teugels (1989, Theo-
rem 1.4.1)), there exists a real number λ such that limt→∞

h(at)

h(t)
= g(− loga) = a−λ and a

slowly varying function L(t) such that h(t) = t−λL(t). Rewriting it gives g(t) = eλt and
Pt

0 = e−λtL(et).
(ii) By Eq. (3.1), StP

T
t /P

T
0 converges to M∞

t in L1 under P as T → ∞. Thus, it also
converges in probability under P, as well as under any measure locally equivalent to P.
Hence, PT

t /P
T
0 , as well as log(PT

t /P
T
0 ), converge in probability (from now on, as well

as in the proofs of Theorems 3.3–3.5, we omit explicit dependency on the probabil-
ity measure when we talk about convergence in probability, since it holds under all lo-
cally equivalent measures). Thus, log(PT

t /P
T
0 )/(T − t) converges to zero in probability.

Since PT
0 = e−λTL(eT ) and for any slowly varying function limT→∞ 1

T−t
log(L(eT ))= 0 (see

Proposition 1.3.6 of Bingham, Goldie, and Teugels (1989)), we have

lim
T→∞

logPT
0 /(T − t) = −λ�

Combining these two properties yields (ii).
(iii) and (iv) By Bingham, Goldie, and Teugels (1989, Theorem 1.2.1), PT

0 /P
T−t
0 con-

verges to 1/g(t) as T → ∞ uniformly on compacts, and thus also in semimartingale topol-
ogy. By Theorem 3.1, BT

t (and thus PT
t /P

T
0 ) converges to B∞

t in semimartingale toplogy.
Thus, by Lemma A.2, the ratio PT

t /P
T−t
0 converges in semimartingale topology as T → ∞,

and we denote the limit πt . The decomposition of B∞
t is then immediate.

(v) Since M∞
t = StB

∞
t = Stπte

λt is a martingale, we have EP
t [STπTe

λT ] = Stπte
λt . Rewrit-

ing it yields Eq. (3.5). Combining the fact that PT
t = EL

t [B∞
t /B

∞
T ] = e−λ(T−t)EL

t [πt/πT ] and
Eq. (3.3) yields Eq. (3.6). Q.E.D.

PROOF OF THEOREM 3.3: (i) By assumption, we have, for T > T ′,

c

CEL
t [1/πT ] <

EL
t [CT ]

EL
t [CT/πT ] <

C

cEL
t [1/πT ] �

Combining it with Eq. (3.6) yields that log( EL
t [CT ]

EL
t [CT /πT ])/(T − t) converges to zero in prob-

ability. Substituting it into Eq. (3.7), we arrive at part (i). Part (ii) is proved similarly.
Q.E.D.
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PROOF OF THEOREM 3.4: (i) Since PT
0 = O(t−γ), λ = 0 and B∞

t = πt . Similarly to the
proof of Theorem 3.2, (− logPT

t )/ log(T − t) converges to γ in probability as T → ∞.
Since PT

t = EL
t [B∞

t /B
∞
T ] = EL

t [πt/πT ], we have (− logEL
t [1/πT ])/ log(T − t) converges to

γ in probability. By assumption, we have, for T > T ′,

c

CEL
t [1/πT ] <

EL
t [CT ]

EL
t [CT/πT ] <

C

cEL
t [1/πT ] �

Thus, log( EL
t [CT ]

EL
t [CT /πT ])/ log(T − t) converges to γ in probability. Part (ii) can be proved sim-

ilarly. Q.E.D.

PROOF OF THEOREM 3.5: By assumptions and Eq. (3.8), we can write, by changing the
probability measure to G,

ρL
t�T (GT)= λ+ 1

T − t
log

(
EG

t

[
πT/π

G
T

]
πtE

G
t

[
1/πG

T

]
)
�

By assumption, we immediately have Eq. (3.9). Q.E.D.

B. DISCRETE-TIME ENVIRONMENT

We will show how the results of Alvarez and Jermann (2005) in discrete-time environ-
ments are naturally nested in our Theorems 3.1 and 3.2. Alvarez and Jermann (2005)
worked in discrete time with the pricing kernel St , t = 0�1� � � � , and made the following
assumptions (below, Pt+τ

t is the time-t price of a pure discount bond with maturity at time
t + τ and unit face value, where t� τ = 0�1� � � �).

ASSUMPTION B.1—Alvarez and Jermann (2005, Assumptions 1 and 2): (i) There exists
a constant λ such that 0 < limτ→∞ eλτPt+τ

t <∞ almost surely for all t = 0�1� � � � .
(ii) For each t = 1�2� � � � , there exists a random variable xt with EP

t−1[xt] < ∞ such that
eλ(t+τ)StP

t+τ
t ≤ xt almost surely for all τ = 0�1� � � � .

Any discrete-time adapted process can be embedded into a continuous-time semi-
martingale as follows. For a discrete-time process (Xt� t = 0�1� � � �), define a continuous-
time process (X̃t)t≥0 such that, at integer times, it takes the same values as the discrete-
time process X , and is piece-wise constant between integer times, that is, X̃t =X[t], where
[t] denotes the integer part (floor) of t. This process has RCLL paths and is a semimartin-
gale (it is of finite variation). The following result shows that Proposition 1 in Alvarez and
Jermann (2005) is nested in Theorems 3.1 and 3.2.

PROPOSITION B.1: Consider a discrete-time positive pricing kernel (St� t = 0�1� � � �) with
EP[St+τ/St] < ∞ for all t, τ. Suppose pure discount bonds Pt+τ

t = EP
t [St+τ/St] satisfy As-

sumption B.1. Then the corresponding continuous-time positive semimartingale pricing ker-
nel (S̃t)t≥0 satisfies the conditions in Theorem 3.1 and Theorem 3.2; hence, all results in
Theorem 3.1 and Theorem 3.2 hold.

PROOF: We first prove Eq. (3.1) is satisfied. We first consider integer values of t and τ.
By assumption (ii), we have

St

Pt+τ
t

Pt+τ
0

eλ(t+τ)Pt+τ
0 ≤ xt�
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Recall that

Mt+τ
t = EP

t [St+τ]
EP[St+τ] = St

Pt+τ
t

Pt+τ
0

for t� τ ≥ 0. Thus, we have that

Mt+τ
t eλ(t+τ)Pt+τ

0 ≤ xt

for t� τ ≥ 0. By assumption (i), eλTPT
0 has a positive finite limit as T → ∞. Thus, there

exists a constant c > 0 such that eλTPT
0 > c for all T . Hence, Mt+τ

t ≤ c−1xt for t� τ ≥ 0.
Furthermore, for all t� τ ≥ 0, we can write

Mt+τ
t = St

Pt+τ
t

Pt+τ
0

= eλtSt

eλτPt+τ
t

eλ(t+τ)Pt+τ
0

�

By assumption (i), limτ→∞ Mt+τ
t exists almost surely and is positive. We denote it M∞

t .
Since Mt+τ

t ≤ c−1xt and xt is integrable, by the dominated convergence theorem we have
that Mt+τ

t →M∞
t in L1 as τ → ∞ for each fixed integer t = 0�1� � � � .

We now consider real values of t and τ and recall our embedding of discrete-time
adapted processes into continuous semimartingales with piece-wise constant paths. For
each real t and τ, we have Mt+τ

t =MN
n , where n, N are two integers such that t ∈ [n�n+1)

and t + τ ∈ [N�N + 1). Thus, Mt+τ
t → M∞

t in L1 as τ → ∞ for each fixed real t ≥ 0. This
prove Eq. (3.1).
PT−t

0 /PT
0 converges for all t > 0 is a simple consequence of the fact that eλtPt

0 converges
for all t > 0. Q.E.D.

C. PROOFS FOR SECTION 4

We start with proving the following measurability property of the bond pricing function
P(t�x) under Assumption 4.1.

LEMMA C.1: If the pricing kernel St satisfies Assumption 4.1, then the bond pricing func-
tion P(t�x) = EP

x[St] is jointly measurable with respect to B(R+) ⊗ E∗, where B(R+) is the
Borel σ-algebra on R+, E∗ is the σ-algebra of universally measurable sets on E (see Sharpe
(1988, p. 1)).

PROOF: Let Pn(t�x) = EP
x[St ∧ n]. By Chen and Fukushima (2011, Exercise A.1.20),

for fixed t, Pn(t�x) is E∗-measurable. Since St is right-continuous, by the bounded con-
vergence theorem for fixed x the function Pn(t�x) is right-continuous in t. Thus, on
[0�1)×E, we can write

Pn(t�x) = lim
m→∞

Pn
m(t�x)�

where

(C.1) Pn
m(t�x) :=

m∑
i=1

1[(i−1)/m�i/m)(t)P
n
(
(i− 1)/m�x

)
�

Thus, on [0�1)×E, the function Pn
m(t�x) is jointly measurable with respect to B([0�1))⊗

E∗. Similarly, we can prove that Pn
m(t�x) is jointly measurable with respect to B(R+)⊗E∗.
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By Eq. (C.1), Pn(t�x) is then also jointly measurable with respect to B(R+) ⊗ E∗. Since
St is integrable, by the dominated convergence theorem limn→∞ Pn(t�x) = P(t�x). Thus,
P(t�x) is also jointly measurable with respect to B(R+)⊗ E∗. Q.E.D.

Next, we prove the following result.

LEMMA C.2: Suppose the PK S satisfies Assumption 4.1 and Eq. (3.1) holds under Px for
each x ∈ E. Then, for each t > 0 and x ∈ E, we can write for the long bond

(C.2) B∞
t (x)= b∞(t�x�Xt) > 0

Px-almost surely, where b∞(t�x� y) is a universally measurable function of y for each fixed
t > 0 and x ∈E.

PROOF: The long bond B∞
t (x) is the ucp limit of the processes BT

t (x) defined in Sec-
tion 3. Dependence on the initial state X0 = x comes from dividing by the initial bond
price P(0�x) at time zero in the definition of BT

t . For each t > 0 and x ∈ E, the random
variables BT

t (x) = PT
t (x)/P

T
0 (x) = P(T − t�Xt)/P(T�x) with T ≥ t converge to B∞

t (x)
as T → ∞ in probability. By Lemma C.1, P(T − t�Xt)/P(T�x) is σ(Xt)-measurable (Xt

is viewed as a random element taking values in E equipped with the σ-algebra E∗, thus
σ(Xt) is generated by inverses of universally measurable sets). Its limit in probability
B∞

t (x) can also be taken σ(Xt)-measurable and, by the Doob–Dynkin lemma, we can
write it as b∞(t�x�Xt), where, for each fixed t > 0 and x ∈ E, b∞(t�x� y) is a universally
measurable function of y . Q.E.D.

By Lemma C.2, for each t > 0 and x ∈ E, the random variables P(T − t�Xt)/P(T�x)
converge to the random variable b∞(t�x�Xt) in probability under Px. In Theorem 4.1, we
strengthen it to pointwise convergence of the function P(T − t� y)/P(T�x) as T goes to
infinity, that is, for each t > 0 and x� y ∈E,

(C.3) lim
T→∞

P(T − t� y)

P(T�x)
= b∞(t�x� y) > 0�

Now we are ready to prove Theorem 4.1.

PROOF OF THEOREM 4.1: By Lemma C.1, P(t�x) is jointly measurable with respect to
B(R+)⊗ E∗. Thus, by Eq. (C.3), P(T − t� y)/P(T�x) is jointly measurable with respect to
B(R+)⊗ E∗ ⊗ E∗. Thus, the function b∞(t�x� y) is also jointly measurable with respect to
B(R+)⊗ E∗ ⊗ E∗.

For any t� s > 0 and x� y� z ∈E, we can write

b∞(t + s� y� z)= lim
T→∞

P(T − t� z)

P(T + s� y)
= lim

T→∞
P(T�x)

P(T + s� y)

P(T − t� z)

P(T�x)
(C.4)

= b∞(s� y�x)b∞(t�x� z)�

Taking x = y = z in Eq. (C.4), we have

b∞(t�x�x)b∞(s�x�x) = b∞(t + s�x�x)�

which implies that, for each fixed x ∈ E, b∞(t�x�x) satisfies Cauchy’s multiplicative func-
tional equation as a function of time. Since b∞(t�x� y) is jointly measurable with respect
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to B(R+) ⊗ E∗ ⊗ E∗, for fixed x lnb∞(t�x�x) is measurable with respect to B(R+). It
is known that a Borel measurable function that satisfies Cauchy’s functional equation is
linear. Thus, we have that b∞(t�x�x)= eλL(x)t .

Again by Eq. (C.4), for any x� y ∈ E, we have

b∞(2t� y�x)= b∞(t� y�x)b∞(t�x�x) = b∞(t� y� y)b∞(t� y�x)�

and we have b∞(t� y� y) = b∞(t�x�x). Thus, λL(x) is independent of x. Taking y = x in
Eq. (C.4), we have b∞(t + s�x� z)= eλLsb∞(t�x� z). Thus, e−λLtb∞(t�x� z) is independent
of t. Fix x0 ∈ E and define πL(x) := e−λLtb∞(t�x0�x). It is independent of t and x0 is
fixed. By Eq. (C.4), b∞(t�x0�x)b

∞(t�x�x0)= b∞(2t� x0�x0)= e−2λLt . Thus, b∞(t�x�x0) =
eλLt1/πL(x). Finally, we have

b∞(t�x� y)= b∞(t/2�x�x0)b
∞(t/2�x0� y)= eλLt

πL(y)

πL(x)
�

By Eq. (C.2) we then have

B∞
t (x)= eλLt

π(Xt)

π(x)
�

πL is an eigenfunction of the pricing operators Pt with the eigenvalues e−λLt from the
fact that M∞

t = StB
∞
t is a martingale. Thus, we arrive at the identification of the long

forward measure with an eigen-measure associated with the eigenfunction πL, and the
identification L= QπL thus follows. Q.E.D.

REMARK C.1: We note the difference between the setting here and the one in Qin and
Linetsky (2016). Here we do not assume that the pricing operator maps Borel functions to
Borel functions upfront. Since the long bond eλLt πL(Xt)

πL(x)
is a right-continuous semimartin-

gale, by Çinlar, Jacod, Protter, and Sharpe (1980) the function πL is locally the difference
of two 1-excessive functions. For a Borel right process, its excessive functions are generally
only universally measurable, but not necessarily Borel measurable. Thus the eigenfunc-
tion πL we find above is also not necessarily Borel measurable, but is universally mea-
surable. Hence, after the measure change from the data-generating measure to the long
forward measure, under L=Qπ the Markov process X may not be a Borel right process,
but it is a right process. If we explicitly assume that the pricing operator maps Borel func-
tions to Borel functions, as is done in Qin and Linetsky (2016), then the eigenfunction πL

is automatically Borel and X is a Borel right process under QπL . Here we opted for this
slightly more general setup, so not to impose further restrictions on the pricing kernel.

PROOF OF THEOREM 4.2: Let QπR(t�x� ·) denote the transition measure of X under
QπR . We verify the L1 convergence condition Eq. (3.1) with M∞

t = M
πR
t with the martin-

gale associated with the recurrent eigenfunction. This then identifies eλRt πR(Xt)

πR(X0)
with the

long bond B∞
t and the recurrent eigen-measure with the long forward measure, QπR = L.

We note that for any valuation process V , the condition (3.1) can be written under any
locally equivalent probability measure QV defined by QV |Ft = StR

V
0�tP|Ft :

(C.5) lim
T→∞

EQV [∣∣BT
t /Vt −B∞

t /Vt

∣∣] = 0�
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We can use this freedom to choose the measure convenient for the setting at hand. Here
we choose to verify it under QπR , that is, we will verify Eq. (C.5) under QV = QπR due to
its convenient form. Since

PT
t = e−λR(T−t)πR(Xt)E

QπR

Xt

[
1

πR(XT−t)

]
�

we have

e−λRt
PT
t πR(X0)

PT
0 πR(Xt)

=
E

QπR

Xt

[
1

πR(XT−t)

]

E
QπR

X0

[
1

πR(XT)

] �

Let J := ∫
E
ς(dy) 1

πR(y)
(it is finite by Assumption 4.2). Since

EQπR

x

[
1

πR(Xt)

]
=

∫
E

QπR(t�x�dy)
1

πR(y)
�

by Eq. (4.5) we have, for T − t ≥ t0,

(C.6) J − c

πR(Xt)
e−α(T−t) ≤ E

QπR

Xt

[
1

πR(XT−t)

]
≤ J + c

πR(Xt)
e−α(T−t)�

and for each initial state X0 = x ∈ E and T ≥ max(T0� t + t0),

(C.7) J − c

πR(x)
e−αT ≤ EQπR

x

[
1

πR(XT)

]
≤ J + c

πR(x)
e−αT �

For each x ∈ E, there exists T0 such that for T ≥ T0, c
πR(x)

e−αT ≤ J/2. We can thus write,
for each x ∈ E,

−1 ≤ e−λRt
PT
t πR(x)

PT
0 πR(Xt)

− 1 ≤ 2
J

(
c

πR(Xt)
e−α(T−t) + c

πR(x)
e−αT

)
�

Thus,
∣∣∣∣e−λRt

PT
t πR(x)

PT
0 πR(Xt)

− 1
∣∣∣∣ ≤ 2

J

(
c

πR(Xt)
e−α(T−t) + c

πR(x)
e−αT

)
+ 1�

Since, for each t, the Ft-measurable random variable 1
πR(Xt)

is integrable under QπR
x for

each x ∈ E, for each t the Ft-measurable random variable |e−λRt PT
t πR(x)

PT
0 πR(Xt)

− 1| is bounded

by an integrable random variable. Furthermore, by Eqs. (C.6) and (C.7),

lim
T→∞

∣∣∣∣e−λRt
PT
t (ω)πR(x)

PT
0 πR

(
Xt(ω)

) − 1
∣∣∣∣ = 0

for each ω. Thus, by the dominated convergence theorem, Eq. (C.5) is verified with B∞
t =

eλRt πR(Xt)

πR(X0)
. Q.E.D.
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