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The supplementary material contains 10 appendices with additional results and
some omitted proofs. Appendices G–K include additional results for Sections 2–7, re-
spectively. Appendix L gathers auxiliary results on algebra of covering entropies. Ap-
pendices M and N contain the proofs of Sections 4 and 5 omitted from the main text.
Appendix O contains the proofs of Sections 6 omitted from the main text, together with
the proofs of the additional results for Section 6 in Appendix J. Appendix P reports the
results of a simulation experiment.

APPENDIX G: ADDITIONAL RESULTS FOR SECTION 2

G.1. Causal Interpretations for Structural Parameters

THE QUANTITIES DISCUSSED in Sections 2.2 and 2.3 are well-defined and have causal
interpretation under standard conditions. We briefly recall these conditions, using the
potential outcomes notation. Let Yu1 and Yu0 denote the potential outcomes under the
treatment states 1 and 0. These outcomes are not observed jointly, and we instead observe
Yu =DYu1 + (1 −D)Yu0, where D ∈D = {0�1} is the random variable indicating program
participation or treatment state. Under exogeneity, D is assigned independently of the
potential outcomes conditional on covariates X , that is, (Yu1�Yu0)⊥⊥D|X a.s., where ⊥⊥
denotes statistical independence.

Exogeneity fails when D depends on the potential outcomes. For example, people may
drop out of a program if they think the program will not benefit them. In this case, in-
strumental variables are useful in creating quasi-experimental fluctuations in D that may
identify useful effects. Let Z be a binary instrument, such as an offer of participation,
that generates potential participation decisions D1 and D0 under the instrument states
1 and 0, respectively. As with the potential outcomes, the potential participation deci-
sions under both instrument states are not observed jointly. The realized participation
decision is then given by D=ZD1 + (1 −Z)D0. We assume that Z is assigned randomly
with respect to potential outcomes and participation decisions conditional on X , that is,
(Yu0�Yu1�D0�D1)⊥⊥Z|X a.s.

There are many causal quantities of interest for program evaluation. Chief among these
are various structural averages: d �−→ EP[Yud], the causal ASF; d �−→ EP[Yud|D= 1], the
causal ASF-T; d �−→ EP[Yud|D1 >D0], the causal LASF; and d �−→ EP[Yud|D1 >D0�D=
1], the causal LASF-T; as well as effects derived from them such as EP[Yu1 − Yu0], the
causal ATE; EP[Yu1 − Yu0|D = 1], the causal ATE-T; EP[Yu1 − Yu0|D1 > D0], the causal
LATE; and EP[Yu1 − Yu0|D1 > D0�D = 1], the causal LATE-T. These causal quantities
are the same as the structural parameters defined in Sections 2.2–2.3 under the following
well-known sufficient condition.

ASSUMPTION G.1—Assumptions for Causal/Structural Interpretability: The following
conditions hold P-almost surely: (Exogeneity) ((Yu1�Yu0)u∈U�D1�D0)⊥⊥Z|X; (First Stage)
EP[D1|X] �= EP[D0|X]; (Non-Degeneracy) PP(Z = 1|X) ∈ (0�1); (Monotonicity) PP(D1 ≥
D0|X)= 1.

This condition due to Imbens and Angrist (1994) and Abadie (2003) is much-used in the
program evaluation literature. It has an equivalent formulation in terms of a simultaneous
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equation model with a binary endogenous variable; see Vytlacil (2002) and Heckman
and Vytlacil (1999). For a thorough discussion of this assumption, we refer to Imbens
and Angrist (1994). Using this assumption, we present an identification lemma which
follows from results of Abadie (2003) and Hong and Nekipelov (2010) that both in turn
build upon Imbens and Angrist (1994). The lemma shows that the parameters θYu and
ϑYu defined in Sections 2.2 and 2.3 have a causal interpretation under Assumption G.1.
Therefore, our referring to them as structural/causal is justified under this condition.

LEMMA G.1—Identification of Causal Effects: Under Assumption G.1, for each d ∈D,

EP[Yud|D1 >D0] = θYu(d)� EP[Yud|D1 >D0�D= 1] =ϑYu(d)�

Furthermore, if D is exogenous, namely D≡Z a.s., then

EP[Yud|D1 >D0] = EP[Yud]�
EP[Yud|D1 >D0�D= 1] = EP[Yud|D= 1]�

APPENDIX H: ADDITIONAL RESULTS FOR SECTION 3

COMMENT H.1—Another Strategy for Estimating mZ and gV : An alternative to the
strategy for modeling and estimating mZ and gV is to treat mZ as in the text via (3.7)
while modeling gV through its disaggregation

gV (z�x)=
1∑

d=0

eV (d� z�x)lD(d� z�x)�(H.1)

where the regression functions eV and lD map the support of (D�Z�X), DZX , to the real
line and are defined by

eV (d� z�x) := EP[V |D= d�Z = z�X = x] and(H.2)

lD(d� z�x) := PP[D= d|Z = z�X = x]�(H.3)

We will denote other potential values for the functions eV and lD by the parameters e and
l. In this alternative approach, we can again use high-dimensional methods for modeling
and estimating eV and lD using the same approach as in the main paper, and we can then
use the relation (H.1) to estimate gV .1 Specifically, we model the conditional expectation
of V given D, Z, and X by

eV (d� z�x)=: ΓV
[
f (d� z�x)′θV

]+�V (d� z�x)�(H.4)

f (d� z�x) := ((1 − d)f (z�x)′�df (z�x)′
)′
�(H.5)

θV := (θV (0�0)′� θV (0�1)′� θV (1�0)′� θV (1�1)′
)′
�(H.6)

We model the conditional probability of D taking on 1 or 0, given Z and X , by

lD(1� z�x)=: ΓD
[
f (z�x)′θD

]+�D(z�x)�(H.7)

1Upon conditioning on D = d, some parts become known; for example, e1d(D)Y (d
′�x� z) = 0 if d �= d′ and

e1d(D)(d
′�x� z)= 1 if d = d′.
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lD(0� z�x)= 1 − ΓD
[
f (z�x)′θD

]−�D(z�x)�(H.8)

f (z�x) := ((1 − z)f (x)′� zf (x)′
)′
�(H.9)

θD := (θD(0)′� θD(1)′)′�(H.10)

Here �V (d� z�x) and �D(z�x) are approximation errors, and the functions ΓV (f (d� z�
x)′θV ) and ΓD(f (z�x)′θD) are generalized linear approximations to the target functions
eV (d� z�x) and lD(1� z�x). The functions ΓV and ΓD are taken again to be known link
functions from the set L= {Id���1 −��Λ0�1 −Λ0} defined following equation (3.7).

As in the strategy in the main text, we maintain approximate sparsity. We assume that
there exist βZ , θV , and θD such that, for all V ∈ V ,

‖θV ‖0 + ‖θD‖0 + ‖βZ‖0 ≤ s�(H.11)

That is, there are at most s = sn � n components of θV , θD, and βZ with nonzero values
in the approximations to eV , lD, and mZ .{

EP

[
�2
V (D�Z�X)

]}1/2 + {EP

[
�2
D(Z�X)

]}1/2 + {EP

[
r2
Z(X)

]}1/2
(H.12)

�
√
s/n�

Note that the size of the approximating model s = sn can grow with n just as in standard
series estimation as long as s2 log2(p∨ n) log2(n)/n→ 0.

We proceed with the estimation of eV and lD analogously to the approach outlined in
the main text. The Lasso estimator θ̂V and Post-Lasso estimator θ̃V are defined analo-
gously to β̂V and β̃V using the data (Ỹi� X̃i)

n
i=1= (Vi� f (Di�Zi�Xi))

n
i=1 and the link func-

tion Λ= ΓV . The estimator êV (D�Z�X)= ΓV [f (D�Z�X)′θ̄V ], with θ̄V = θ̂V or θ̄V = θ̃V ,
has the near oracle rate of convergence

√
(s logp)/n and other desirable properties. The

Lasso estimator θ̂D and Post-Lasso estimators θ̃D are also defined analogously to β̂V and
β̃V using the data (Ỹi� X̃i)

n
i=1= (Di� f (Zi�Xi))

n
i=1 and the link function Λ= ΓD. Again, the

estimator l̂D(Z�X)= ΓD[f (Z�X)′θ̄D] of lD(Z�X), where θ̄D = θ̂D or θ̄D = θ̃D, has good
theoretical properties including the near oracle rate of convergence,

√
(s logp)/n. The

resulting estimator for gV is then

ĝV (z�x)=
1∑

d=0

êV (d� z�x)l̂D(d� z�x)�(H.13)

The remaining estimation steps are the same as with the strategy given in the main text.

APPENDIX I: ADDITIONAL RESULTS FOR SECTION 4

ASSUMPTION I.1—Approximate Sparsity for the Strategy of Section H.1: Under each
P ∈ Pn and for each n ≥ n0, uniformly for all V ∈ V : (i) The approximations (H.4)–(H.10)
and (3.7) apply with the link functions ΓV , ΓD, and ΛZ belonging to the set L, the sparsity
condition ‖θV ‖0 + ‖θD‖0 + ‖βZ‖0 ≤ s holding, the approximation errors satisfying ‖�D‖P�2 +
‖�V ‖P�2 +‖rZ‖P�2 ≤ δnn

−1/4 and ‖�D‖P�∞ +‖�V ‖P�∞ +‖rZ‖P�∞ ≤ εn, and the sparsity index s
and the number of terms p in the vector f (X) obeying s2 log2(p∨ n) log2 n≤ δnn. (ii) There
are estimators θ̄V , θ̄D, and β̄Z such that, with probability no less than 1 − Δn, the estima-
tion errors satisfy ‖f (D�Z�X)′(θ̄V − θV )‖Pn�2 + ‖f (Z�X)′(θ̄D − θD)‖Pn�2 + ‖f (X)′(β̄Z −



4 BELLONI, CHERNOZHUKOV, FERNÁNDEZ-VAL, AND HANSEN

βZ)‖Pn�2 ≤ δnn
−1/4 and Kn‖θ̄V − θV ‖1 +Kn‖θ̄D − θD‖1 +Kn‖β̄Z − βZ‖1 ≤ εn; the estima-

tors are sparse such that ‖θ̄V ‖0 + ‖θ̄D‖0 + ‖β̄Z‖0 ≤ Cs; and the empirical and population
norms induced by the Gram matrix formed by (f (Xi))

n
i=1 are equivalent on sparse subsets,

sup‖δ‖0≤�ns |‖f (X)′δ‖Pn�2/‖f (X)′δ‖P�2 − 1| ≤ εn. (iii) The following boundedness conditions
hold: ‖‖f (X)‖∞‖P�∞ ≤Kn and ‖V ‖P�∞ ≤ C.

Under the stated assumptions, the empirical reduced-form process Ẑn�P = √
n(ρ̂− ρ)

defined by (3.16), but constructed using the alternative strategy for estimating mZ and gV
of Comment H.1, follows a functional central limit theorem and a functional central limit
theorem for the multiplier bootstrap. Theorem I.1 states these results. We omit the proof
because it is analogous to the proofs of Theorems 4.1–4.2.

THEOREM I.1: Under Assumption I.1, the results stated in Theorems 4.1–4.2 in the main
text apply to the alternative strategy for estimating mZ and gV of Comment H.1.

APPENDIX J: ADDITIONAL RESULTS FOR SECTION 6: FINITE SAMPLE RESULTS OF A
CONTINUUM OF LASSO AND POST-LASSO ESTIMATORS FOR FUNCTIONAL RESPONSES

J.1. Assumptions

We consider the following high-level conditions which are implied by the primitive
Assumptions 6.1 and 6.2. For each n ≥ 1, there is a sequence of independent random
variables (Wi)

n
i=1, defined on the probability space (Ω�AΩ�PP) such that model (6.1)

holds with U ⊂ [0�1]du . Let dU be a metric on U (and note that the results cover the
case where du is a function of n). Throughout this section, we assume that the variables
(Xi� (Yui� ζui := Yui − EP[Yui|Xi])u∈U) are generated as suitably measurable transforma-
tions of Wi and u ∈ U . Furthermore, this section uses the notation ĒP[·] = 1

n

∑n

i=1 EP[·],
because we allow for independent non-identically distributed (i.n.i.d.) data.

Consider fixed sequences of positive numbers δn ↘ 0, εn ↘ 0, and Δn ↘ 0 at a speed at
most polynomial in n, �n = logn, and 1 ≤Kn <∞; and positive constants c and C which
will not vary with P .

CONDITION WL: Suppose that for some ε > 0 there is a Nn such that: (i) we have

logN(ε�U� dU)≤Nn; (ii) uniformly over u ∈ U , we have that maxj≤p
{ĒP [|fj(X)ζu|3]}1/3

{ĒP [|fj(X)ζu|2]}1/2�
−1(1 −

1/{2pNnn}) ≤ δnn
1/6 and 0 < c ≤ ĒP[|fj(X)ζu|2] ≤ C, j = 1� � � � �p; and (iii) with prob-

ability 1 − Δn, we have that supu∈U maxj≤p |(En − ĒP)[fj(X)2ζ2
u]| ≤ δn, log(p ∨ Nn ∨

n) supdU (u�u′)≤εmaxj≤pEn[fj(X)2(ζu − ζu′)2] ≤ δn, supdU (u�u′)≤ε‖En[f (X)(ζu − ζu′)]‖∞ ≤
δnn

−1/2.

The following technical lemma justifies the choice of penalty level λ. It is based
on self-normalized moderate deviation theory. In what follows, for u ∈ U we let Ψ̂u0

denote a diagonal p × p matrix of “ideal loadings” with diagonal elements given by
Ψ̂u0jj = {En[f 2

j (X)ζ
2
u]}1/2 for j = 1� � � � �p.

LEMMA J.1—Choice of λ: Suppose Condition WL holds, let c′ > c > 1 be constants, γ ∈
[1/n�1/ logn], and λ= c′√n�−1(1 − γ/{2pNn}). Then for n ≥ n0 large enough depending
only on Condition WL,

PP

(
λ/n≥ c sup

u∈U

∥∥Ψ̂−1
u0 En

[
f (X)ζu

]∥∥
∞

)
≥ 1 − γ− o(1)�
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We note that Condition WL(iii) contains high-level conditions on the process (Yu�
ζu)u∈U . The following lemma provides easy to verify sufficient conditions that imply Con-
dition WL(iii).

LEMMA J.2: Suppose the i.i.d. sequence ((Yui� ζui)u∈U�Xi)� i = 1� � � � � n, satisfies
the following conditions: (i) c ≤ maxj≤p EP[fj(X)2] ≤ C, maxj≤p |fj(X)| ≤ Kn,
supu∈U maxi≤n |Yui| ≤ Bn, and c ≤ supu∈U EP[ζ2

u|X] ≤ C, P-a.s.; (ii) for some random vari-
able Y , we have Yu =G(Y�u) where {G(·�u) : u ∈ U} is a VC-class of functions with VC
index equal to C ′du; (iii) for some fixed ν > 0, we have EP[|Yu − Yu′ |2|X] ≤ Ln|u− u′|ν for
any u�u′ ∈ U , P-a.s. For Ã := pnKnBnn

ν/Ln, we have, with probability 1 −Δn,

sup
dU (u�u′)≤1/n

∥∥En

[
f (X)(ζu − ζu′)

]∥∥
∞

� 1√
n

{√
(1 + du)Ln log(Ã)

nν
+ (1 + du)KnBn log(Ã)√

n

}
�

sup
dU (u�u′)≤1/n

max
j≤p

En

[
fj(X)

2(ζu − ζu′)2
]

�Lnn
−ν
{

1 +
√
K2
n log

(
pnK2

n

)
n

+ K2
n

n
log
(
pnK2

n

)}
�

sup
u∈U

max
j≤p

∣∣(En − EP)
[
f 2
j (X)ζ

2
u

]∣∣
�
√
(1 + du) log(npKnBn)

n
+ (1 + du)K

2
nB

2
n

n
log(npBnKn)�

where Δn is a fixed sequence going to zero.

Lemma J.2 allows for several different cases including cases where Yu is generated by a
non-smooth transformation of a random variable Y . For example, if Yu = 1{Y ≤ u} where
Y has bounded conditional probability density function, we have du = 1, Bn = 1, ν = 1,
Ln = supy fY |X(y|x). A similar result holds for independent non-identically distributed
data.

In what follows for a vector δ ∈ R
p, and a set of indices T ⊆ {1� � � � �p}, we denote by

δT ∈ R
p the vector such that (δT )j = δj if j ∈ T and (δT )j = 0 if j /∈ T . For a set T , |T |

denotes the cardinality of T . Moreover, let

Δc�u := {δ ∈R
p : ‖δTcu‖1 ≤ c‖δTu‖1

}
�

J.2. Finite Sample Results: Linear Case

For the model described in (6.1) with Λ(t) = t and M(y� t) = 1
2(y − t)2, we will study

the finite sample properties of the associated Lasso and Post-Lasso estimators of (θu)u∈U
defined in relations (6.2) and (6.3).

The analysis relies on Tu = supp(θu), su := ‖θu‖0 ≤ s, with s ≥ 1, and on the restricted
eigenvalues

κc = inf
u∈U

min
δ∈Δc�u

∥∥f (X)′δ∥∥
Pn�2

‖δTu‖
�(J.1)
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and maximum and minimum sparse eigenvalues

φmin(m)= min
1≤‖δ‖0≤m

∥∥f (X)′δ∥∥2

Pn�2

‖δ‖2 and

φmax(m)= max
1≤‖δ‖0≤m

∥∥f (X)′δ∥∥2

Pn�2

‖δ‖2 �

Next we present technical results on the performance of the estimators generated by
Lasso that are used in the proof of Theorem 6.1.

LEMMA J.3—Rates of Convergence for Lasso: The events cr ≥ supu∈U ‖ru‖Pn�2, �Ψ̂u0 ≤
Ψ̂u ≤ LΨ̂u0, u ∈ U , and λ/n ≥ c supu∈U ‖Ψ̂−1

u0 En[f (X)ζu]‖∞, for c > 1/�, imply that, uni-
formly in u ∈ U ,

∥∥f (X)′(θ̂u − θu)
∥∥
Pn�2

≤ 2cr +
2λ

√
s

(
L+ 1

c

)
nκc̃

‖Ψ̂u0‖∞�

‖θ̂u − θu‖1 ≤ 2(1 + 2c̃)

{√
scr

κ2c̃
+
λs

(
L+ 1

c

)
nκc̃κ2c̃

‖Ψ̂u0‖∞

}

+
(

1 + 1
2c̃

)
c
∥∥Ψ̂−1

u0

∥∥
∞

�c− 1
n

λ
c2
r �

where c̃ = supu∈U ‖Ψ̂−1
u0 ‖∞‖Ψ̂u0‖∞(Lc+ 1)/(�c− 1).

The following lemma summarizes sparsity properties of (θ̂u)u∈U .

LEMMA J.4—Sparsity Bound for Lasso: Consider the Lasso estimator θ̂u, its support
T̂u = supp(θ̂u), and let ŝu = ‖θ̂u‖0. Assume that cr ≥ supu∈U ‖ru‖Pn�2, λ/n≥ c supu∈U ‖Ψ̂−1

u0 ×
En[f (X)ζu]‖∞, and �Ψ̂u0 ≤ Ψ̂u ≤ LΨ̂u0 for all u ∈ U , with L ≥ 1 ≥ � > 1/c. Then, for
c0 = (Lc+ 1)/(�c− 1) and c̃ = c0 supu∈U ‖Ψ̂u0‖∞‖Ψ̂−1

u0 ‖∞, we have, uniformly over u ∈ U ,

ŝu ≤ 16c2
0

(
min
m∈M

φmax(m)
)[ncr

λ
+

√
s

κc̃
‖Ψ̂u0‖∞

]2∥∥Ψ̂−1
u0

∥∥2

∞�

where M= {m ∈N :m> 32c2
0φmax(m) supu∈U [ ncr

λ
+ √

s

κc̃
‖Ψ̂u0‖∞]2‖Ψ̂−1

u0 ‖2
∞}.

LEMMA J.5—Rate of Convergence of Post-Lasso: Under Conditions WL, let θ̃u be the
Post-Lasso estimator based on the support T̃u. Then, with probability 1−o(1), uniformly over
u ∈ U , we have for s̃u = |T̃u|,

∥∥EP[Yu|X] − f (X)′θ̃u
∥∥
Pn�2

≤ C

√
s̃u log

(
p∨ ndu+1

)
√
nφmin(s̃u)

‖Ψ̂u0‖∞

+ min
supp(θ)⊆T̃u

∥∥EP[Yu|X] − f (X)′θ
∥∥
Pn�2
�
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Moreover, if supp(θ̂u)⊆ T̃u for every u ∈ U , the following events cr ≥ supu∈U ‖ru‖Pn�2, �Ψ̂u0 ≤
Ψ̂u ≤LΨ̂u0, u ∈ U , and λ/n≥ c supu∈U ‖Ψ̂−1

u0 En[f (X)ζu]‖∞, for c > 1/�, imply that

sup
u∈U

min
supp(θ)⊆T̃u

∥∥EP[Yu|X] − f (X)′θ
∥∥
Pn�2

≤ 3cr +
(
L+ 1

c

)
2λ

√
s

nκc̃
sup
u∈U

‖Ψ̂u0‖∞�

J.3. Finite Sample Results: Logistic Case

For the model described in (6.1) with Λ(t) = exp(t)/{1 + exp(t)} and M(y� t) =
−{1{y = 1} log(Λ(t))+ 1{y = 0} log(1 −Λ(t))}, we will study the finite sample properties
of the associated Lasso and Post-Lasso estimators of (θu)u∈U defined in relations (6.2) and
(6.3). In what follows we use the notation

Mu(θ)= En

[
M
(
Yu� f (X)

′θ
)]
�

In the finite sample analysis, we will consider not only the design matrix En[f (X)f (X)′]
but also a weighted counterpart En[wuf (X)f (X)

′] where wui = EP[Yui|Xi](1 − EP[Yui|
Xi]), i= 1� � � � � n, u ∈ U , is the conditional variance of the outcome variable Yui.

For Tu = supp(θu), su = ‖θu‖0 ≤ s, with s ≥ 1, the (logistic) restricted eigenvalue is
defined as

κ̄c := inf
u∈U

min
δ∈Δc�u

∥∥√wuf (X)
′δ
∥∥
Pn�2

‖δTu‖
�(J.2)

For a subset Au ⊂ R
p, u ∈ U , let the nonlinear impact coefficient (Belloni and Cher-

nozhukov (2011), Belloni, Chernozhukov, and Wei (2013)) be defined as

q̄Au := inf
δ∈Au

En

[
wu

∣∣f (X)′δ∣∣2]3/2

En

[
wu

∣∣f (X)′δ∣∣3] �(J.3)

Note that q̄Au can be bounded as

q̄Au = inf
δ∈Au

En

[
wu

∣∣f (X)′δ∣∣2]3/2

En

[
wu

∣∣f (X)′δ∣∣3] ≥ inf
δ∈Au

En

[
wu

∣∣f (X)′δ∣∣2]1/2

max
i≤n

∥∥f (Xi)
∥∥

∞‖δ‖1
�

which can lead to interesting bounds provided Au is appropriate (like the restrictive set
Δc�u in the definition of restricted eigenvalues). In Lemma J.6, we have Au = Δ2c̃�u ∪ {δ ∈
R
p : ‖δ‖1 ≤ 6c‖Ψ̂−1

u0 ‖∞
�c−1

n
λ
‖ ru√

wu
‖Pn�2‖√wuf (X)

′δ‖Pn�2}, for u ∈ U . For this choice of sets, and
provided that with probability 1 − o(1) we have �c > c′ > 1, supu∈U ‖ru/√wu‖Pn�2 �√
s log(p∨ n)/n, supu∈U ‖Ψ̂−1

u0 ‖∞ � 1, and
√
n log(p∨ n)� λ, we have that uniformly over

u ∈ U , with probability 1 − o(1),

q̄Au ≥ 1
max
i≤n

∥∥f (X)∥∥∞

(
κ̄2c̃√

su(1 + 2c̃)
∧ (λ/n)(�c− 1)

6c
∥∥Ψ̂−1

u0

∥∥
∞‖ru/√wu‖Pn�2

)
(J.4)

� κ̄2c̃√
smax

i≤n

∥∥f (Xi)
∥∥

∞
�
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The definitions above differ from their counterparts in the analysis of �1-penalized least
squares estimators by the weighting 0 ≤ wui ≤ 1. Thus it is relevant to understand their
relations through the quantities

ψu(A) := min
δ∈A

∥∥√wuf (X)
′δ
∥∥
Pn�2∥∥f (X)′δ∥∥

Pn�2

�

Many primitive conditions on the data-generating process will implyψu(A) to be bounded
away from zero for the relevant choices ofA. We refer to Belloni, Chernozhukov, and Wei
(2013) for bounds on ψu. For notational convenience we will also work with a rescaling of
the approximation errors r̃u(X) defined as

r̃ui = r̃u(Xi)=Λ−1
(
Λ
(
f (Xi)

′θu
)+ rui

)− f (Xi)
′θu�(J.5)

which is the unique solution to Λ(f(Xi)
′θu + r̃u(Xi))= Λ(f(Xi)

′θu)+ ru(Xi). It follows
that |rui| ≤ |r̃ui| and that2 |r̃ui| ≤ |rui|/ inf0≤t≤r̃ui Λ

′(f (X ′
iθu)+ t)≤ |rui|/{wui − 2|rui|}+.

Next we derive finite sample bounds provided some crucial events occur.

LEMMA J.6—Rates of Convergence for �1-Logistic Estimator: Assume that

λ/n≥ c sup
u∈U

∥∥Ψ̂−1
u0 En

[
f (X)ζu

]∥∥
∞

for c > 1. Further, let �Ψ̂u0 ≤ Ψ̂u ≤ LΨ̂u0 for L ≥ 1 ≥ � > 1/c, uniformly over u ∈ U , c̃ =
(Lc + 1)/(�c− 1) supu∈U ‖Ψ̂u0‖∞‖Ψ̂−1

u0 ‖∞, and

Au = Δ2c̃�u

∪
{
δ : ‖δ‖1 ≤ 6c

∥∥Ψ̂−1
u0

∥∥
∞

�c − 1
n

λ
‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δ
∥∥
Pn�2

}
�

Provided that the nonlinear impact coefficient q̄Au > 3{(L+ 1
c
)‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+9c̃‖r̃u/√wu‖Pn�2}

for every u ∈ U , we have uniformly over u ∈ U ,∥∥√wuf (X)
′(θ̂u − θu)

∥∥
Pn�2

≤ 3
{(
L+ 1

c

)
‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+ 9c̃‖r̃u/√wu‖Pn�2

}
and

‖θ̂u − θu‖1 ≤ 3
{
(1 + 2c̃)

√
s

κ̄2c̃
+ 6c

∥∥Ψ̂−1
u0

∥∥
∞

�c− 1
n

λ

∥∥∥∥ ru√
wu

∥∥∥∥
Pn�2

}

×
{(
L+ 1

c

)
‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+ 9c̃

∥∥∥∥ r̃u√
wu

∥∥∥∥
Pn�2

}
�

2The last relation follows from noting that, for the logistic function, we have inf0≤t≤r̃ui Λ
′(f (X ′

iθu) +
t) = min{Λ′(f (X ′

iθu) + r̃ui)�Λ
′(f (X ′

iθu))} since Λ′ is unimodal. Moreover, Λ′(f (X ′
iθu) + r̃ui) = wui and

Λ′(f (X ′
iθu))=Λ(f(X ′

iθu))[1−Λ(f(X ′
iθu))] = [Λ(f(X ′

iθu))+rui−rui][1−Λ(f(X ′
iθu))−rui+rui] ≥wui−2|rui|

since |rui| ≤ 1.
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The following result provides bounds on the number of nonzero coefficients in the �1-
penalized estimator θ̂u, uniformly over u ∈ U .

LEMMA J.7—Sparsity of �1-Logistic Estimator: Assume λ/n ≥ c supu∈U ‖Ψ̂−1
u0 ×

En[f (X)ζu]‖∞ for c > 1. Further, let �Ψ̂u0 ≤ Ψ̂u ≤ LΨ̂u0 for L ≥ 1 ≥ � > 1/c, uniformly
over u ∈ U , c0 = (Lc + 1)/(�c − 1), c̃ = c0 supu∈U ‖Ψ̂u0‖∞‖Ψ̂−1

u0 ‖∞ and Au = Δ2c̃�u ∪
{δ : ‖δ‖1 ≤ 6c‖Ψ̂−1

u0 ‖∞
�c−1

n
λ
‖ru/√wu‖Pn�2‖√wuf (X)

′δ‖Pn�2}, and q̄Au > 3{(L + 1
c
)‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+

9c̃‖r̃u/√wu‖Pn�2} for every u ∈ U . Then for ŝu = ‖θ̂u‖0, uniformly over u ∈ U ,

ŝu ≤
(

min
m∈M

φmax(m)
)[ c0

ψ(Au)

{
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/√wu‖Pn�2

λ

}]2

�

where M= {m ∈N :m> 2[ c0
ψ(Au)

supu∈U{3‖Ψ̂u0‖∞
√
s

κ̄2c̃
+ 28c̃ n‖r̃u/

√
wu‖Pn�2
λ

}]2}.
Moreover, if supu∈U maxi≤n |f (Xi)

′(θ̂u − θu)− r̃ui| ≤ 1, we have

ŝu ≤
(

min
m∈M

φmax(m)
)

4c2
0

{
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/√wu‖Pn�2

λ

}2

�

where M= {m ∈N :m> 8c2
0 supu∈U [3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃ n‖r̃u/

√
wu‖Pn�2
λ

]2}.

Next we turn to finite sample bounds for the logistic regression estimator where the
support was selected based on �1-penalized logistic regression. The results will hold uni-
formly over u ∈ U provided the side conditions also hold uniformly over U .

LEMMA J.8—Rate of Convergence for Post-�1-Logistic Estimator: Consider θ̃u defined
as the post-model-selection logistic regression with the support T̃u and let s̃u := |T̃u|. Uniformly
over u ∈ U , we have∥∥√wuf (X)

′(θ̃u − θu)
∥∥
Pn�2

≤ √
3
√

0 ∨ {Mu(θ̃u)−Mu(θu)
}

+ 3
{√

s̃u + su
∥∥En

[
f (X)ζu

]∥∥
∞

ψu(Au)
√
φmin(s̃u + su)

+ 3
∥∥∥∥ r̃u√

wu

∥∥∥∥
Pn�2

}

provided that, for every u ∈ U and Au = {δ ∈ R
p : ‖δ‖0 ≤ s̃u + su},

q̄Au > 6
{√

s̃u + su
∥∥En

[
f (X)ζu

]∥∥
∞

ψu(Au)
√
φmin(s̃u + su)

+ 3
∥∥∥∥ r̃u√

wu

∥∥∥∥
Pn�2

}
and

q̄Au > 6
√

0 ∨ {Mu(θ̃u)−Mu(θu)
}
�

COMMENT J.1: Since, for a sparse vector δ such that ‖δ‖0 = k, we have ‖δ‖1 ≤√
k‖δ‖ ≤ √

k‖f (X)′δ‖Pn�2/
√
φmin(k), the results above can directly establish bounds on

the rate of convergence in the �1-norm.
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APPENDIX K: ADDITIONAL RESULTS FOR SECTION 7

In this section, we report additional results to supplement those provided in the main
text. Specifically, we provide results with both total wealth and net total financial assets as
the outcome variable. We present detailed results for four different sets of controls f (X).
The first set uses the indicators of marital status, two-earner status, defined benefit pen-
sion status, IRA participation status, and home ownership status, a linear term for family
size, five categories for age, four categories for education, and seven categories for income
(Indicator specification). We use the same definitions of categories as in Chernozhukov
and Hansen (2004) and note that this is identical to the specification in Chernozhukov
and Hansen (2004) and Benjamin (2003). The second through fourth specifications corre-
spond to the Quadratic Spline specification, the Quadratic Spline Plus Interactions spec-
ification, and the Quadratic Spline Plus Many Interactions specification described in the
main text.

Results for intention to treat effects based on using 401(k) eligibility as the treatment
variable are given in Table S.I. In Table S.II, we report results using 401(k) participation as
the treatment variable instrumenting with 401(k) eligibility. We plot the QTE and QTE-T,
based on using 401(k) eligibility as the treatment variable, in Figures S.1–S.4. Finally, the
LQTE and LQTE-T, based on using 401(k) participation as the treatment variability and
instrumenting with eligibility, are plotted in Figures S.5–S.8. The results are broadly con-
sistent with the discussion provided in the main text with the selection and no-selection
results being similar in the low-dimensional cases and the selection results being sub-
stantially more regular in the high-dimensional cases. We also see that the patterns of
point estimates for total wealth and net total financial assets are similar, though the total
wealth estimates have substantially larger estimated standard errors, especially for high
quantiles.

APPENDIX L: AUXILIARY RESULTS: ALGEBRA OF COVERING ENTROPIES

LEMMA L.1—Algebra for Covering Entropies: Work with the setup described in Ap-
pendix C of the main text.

(1) Let F be a VC-subgraph class with a finite VC index k or any other class whose entropy
is bounded above by that of such a VC-subgraph class; then the covering entropy of F obeys

sup
Q

logN
(
ε‖F‖Q�2�F�‖ · ‖Q�2

)
� 1 + k log(1/ε)∨ 0�

(2) Forany measurable classes of functions F and F ′ mapping W to R,

logN
(
ε
∥∥F + F ′∥∥

Q�2
�F +F ′�‖ · ‖Q�2

)
≤ logN

(
ε

2
‖F‖Q�2�F�‖ · ‖Q�2

)
+ logN

(
ε

2

∥∥F ′∥∥
Q�2
�F ′�‖ · ‖Q�2

)
�

logN
(
ε
∥∥F · F ′∥∥

Q�2
�F ·F ′�‖ · ‖Q�2

)
≤ logN

(
ε

2
‖F‖Q�2�F�‖ · ‖Q�2

)
+ logN

(
ε

2

∥∥F ′∥∥
Q�2
�F ′�‖ · ‖Q�2

)
�

N
(
ε
∥∥F ∨ F ′∥∥

Q�2
�F ∪F ′�‖ · ‖Q�2

)
≤N

(
ε‖F‖Q�2�F�‖ · ‖Q�2

)+N
(
ε
∥∥F ′∥∥

Q�2
�F ′�‖ · ‖Q�2

)
�
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TABLE S.I

ESTIMATES AND STANDARD ERRORS OF AVERAGE 401(K) ELIGIBILITY EFFECTSa

Specification Exogenous: 401(k) Eligibility Endogenous: 401(k) Participation

Series Approximation Dimension Selection Linear Model ATE ATE-T Linear IV LATE LATE-T

Indicator 20 N 9122 8266 11,357 6454 6268 8807
(1343) (1144) (1567) (2117) (1881) (2517)

{1163} {1635} {1929} {2403}
Indicator 20 Y 9191 9634 11,701 6562 8453 9672

(1348) (1180) (1644) (2121) (1903) (2587)
{1113} {1579} {1887} {2604}

Quadratic Spline 35 (32) N 8997 8093 11,250 6194 5943 8710
(1252) (1082) (1513) (2020) (1800) (2428)

{967} {1423} {1823} {2467}
Quadratic Spline 35 (32) Y 8967 7614 10,257 6293 6733 7179

(1270) (1224) (1776) (2047) (1945) (2725)
{1234} {1676} {2002} {2817}

Quadratic Spline Plus Interactions 311 (272) N 9019 11,775 11,740 5988 73,109 6240
(1258) (4202) (1779) (2033) (36,787) (2577)

{4202} {1757} {36,697} {2650}
Quadratic Spline Plus Interactions 311 (272) Y 8307 7077 8830 4775 6177 7130

(1313) (1358) (2133) (2005) (1894) (2651)
{1237} {2105} {1908} {2700}

Quadratic Spline Plus Many Interactions 1756 (1526) N 8860 – – 5933 – –
(1358) – – (2097) – –

– – – –
Quadratic Spline Plus Many Interactions 1756 (1526) Y 8536 7848 9602 5084 5881 7142

(1321) (1317) (2047) (1998) (1912) (2876)
{1334} {1894} {1852} {2809}

aThe sample is drawn from the 1991 SIPP and consists of 9915 observations. All the specifications control for age, income, family size, education, marital status, two-earner status, defined benefit
pension status, IRA participation status, and home ownership status. Indicators specification uses a linear term for family size, five categories for age, four categories for education, and seven categories
for income. Quadratic Spline uses indicators for marital status, two-earner status, defined benefit pension status, IRA participation status, and home ownership status; a third-order polynomial in
age; second-order polynomials in education and family size; and a piecewise quadratic polynomial in income with six break points. The “Quadratic Spline Plus Interactions” specification include all
first-order interactions between the income variables and the remaining variables. The specification denoted “Quadratic Spline Plus Many Interactions” takes all first-order interactions between all
non-income variables and then fully interacts these interactions as well as the main effects with all income variables. Analytic standard errors are given in parentheses. Bootstrap standard errors based
on 500 repetitions with Mammen (1993) multipliers are given in braces.
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TABLE S.II

ESTIMATES AND STANDARD ERRORS OF AVERAGE 401(K) PARTICIPATION EFFECTSa

Specification Exogenous: 401(k) Eligibility Endogenous: 401(k) Participation

Series Approximation Dimension Selection Linear Model ATE ATE-T Linear IV LATE LATE-T

Indicator 20 N 13,102 11,833 16,120 9307 8972 12,500
(1922) (1638) (2224) (3038) (2692) (3572)

{1448} {2201} {2572} {3248}
Indicator 20 Y 13,150 13,915 16,608 9323 12,210 13,729

(1929) (1704) (2333) (3042) (2749) (3672)
{1684} {2417} {2835} {3616}

Quadratic Spline 35 (32) N 12,926 11,579 15,969 8910 8503 12,363
(1796) (1548) (2148) (2901) (2575) (3446)

{1413} {2195} {2837} {3611}
Quadratic Spline 35 (32) Y 12,890 10,937 14,560 9079 9672 10,189

(1821) (1758) (2520) (2941) (2794) (3869)
{1709} {2576} {2880} {3657}

Quadratic Spline Plus Interactions 311 (272) N 12,973 17,529 16,664 8599 109,160 8857
(1804) (6256) (2526) (2923) (54,927) (3658)

{6249} {2558} {56,974} {3784}
Quadratic Spline Plus Interactions 311 (272) Y 11,784 10,168 12,533 6964 8874 10,120

(1995) (1952) (3027) (2935) (2721) (3763)
{1963} {2818} {2733} {3636}

Quadratic Spline Plus Many Interactions 1756 (1526) N 12,827 – – 8601 – –
(1960) – – (3031) – –

– – – –
Quadratic Spline Plus Many Interactions 1756 (1526) Y 10,671 11,267 13,629 4620 8443 10,137

(2001) (1890) (2906) (2928) (2744) (4083)
{1835} {2862} {2719} {4022}

aThe sample is drawn from the 1991 SIPP and consists of 9915 observations. All the specifications control for age, income, family size, education, marital status, two-earner status, defined benefit
pension status, IRA participation status, and home ownership status. Indicators specification uses a linear term for family size, five categories for age, four categories for education, and seven categories
for income. Quadratic Spline uses indicators for marital status, two-earner status, defined benefit pension status, IRA participation status, and home ownership status; a third-order polynomial in
age; second-order polynomials in education and family size; and a piecewise quadratic polynomial in income with six break points. The “Quadratic Spline Plus Interactions” specification include all
first-order interactions between the income variables and the remaining variables. The specification denoted “Quadratic Spline Plus Many Interactions” takes all first-order interactions between all
non-income variables and then fully interacts these interactions as well as the main effects with all income variables. Analytic standard errors are given in parentheses. Bootstrap standard errors based
on 500 repetitions with Mammen (1993) multipliers are given in braces.
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FIGURE S.1.—QTE and QTE-T estimates based on the Indicators specification.

(3) Given a measurable class F mapping W to R and a random variable ξ taking values
in R,

log sup
Q

N
(
ε
∥∥|ξ|F∥∥

Q�2
� ξF�‖ · ‖Q�2

)
≤ log sup

Q

N
(
ε/2‖F‖Q�2�F�‖ · ‖Q�2

)
�
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FIGURE S.2.—QTE and QTE-T estimates based on the Quadratic Spline specification.

(4) Given measurable classes Fj and envelopes Fj , j = 1� � � � �k, mapping W to R,
a function φ : Rk → R such that for fj� gj ∈ Fj , |φ(f1� � � � � fk) − φ(g1� � � � � gk)| ≤∑k

j=1Lj(x)|fj(x) − gj(x)|, Lj(x) ≥ 0, and fixed functions f̄j ∈ Fj , the class of functions
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FIGURE S.3.—QTE and QTE-T estimates based on the Quadratic Spline Plus Interactions specification.

L= {φ(f1� � � � � fk)−φ(f̄1� � � � � f̄k) : fj ∈Fj� j = 1� � � � �k} satisfies

log sup
Q

N

(
ε

∥∥∥∥∥
k∑
j=1

LjFj

∥∥∥∥∥
Q�2

�L�‖ · ‖Q�2
)

≤
k∑
j=1

log sup
Q

N

(
ε

k
‖Fj‖Q�2�Fj�‖ · ‖Q�2

)
�
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FIGURE S.4.—QTE and QTE-T estimates based on the Quadratic Spline Plus Many Interactions specifica-
tion.

PROOF: For the proof (1)–(2) see, for example, Andrews (1994), and (3) follows from
(2). To show (4), let f = (f1� � � � � fk) and g = (g1� � � � � gk) where fj� gj ∈ Fj , j = 1� � � � �k.
Then, by the condition on φ, we have

∥∥φ(f)−φ(g)
∥∥
Q�2

≤
∥∥∥∥∥

k∑
j=1

Lj|fj − gj|
∥∥∥∥∥
Q�2

≤
k∑
j=1

∥∥Lj|fj − gj|
∥∥
Q�2
�(L.1)
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FIGURE S.5.—LQTE and LQTE-T estimates based on the Indicators specification.

Let N̂j be a (ε/k)-net for Fj with the measure Q̃j , where dQ̃j(x)=L2
j (x)dQ(x). Then the

set {φ(f1� � � � � fk)−φ(f̄1� � � � � f̄k) : fj ∈ N̂j} is an ε-net for L with respect to the measure
Q by (L.1). Thus, for any ε > 0, we have that

logN
(
ε�L�‖ · ‖Q�2

)≤ k∑
j=1

logN
(
ε/k�Fj�‖ · ‖Q̃j �2

)
�
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FIGURE S.6.—LQTE and LQTE-T estimates based on the Quadratic Spline specification.
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FIGURE S.7.—LQTE and LQTE-T estimates based on the Quadratic Spline Plus Interactions specification.
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FIGURE S.8.—LQTE and LQTE-T estimates based on the Quadratic Spline Plus Many Interactions specifi-
cation.
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Therefore,

logN

(
ε

∥∥∥∥∥
k∑
j=1

LjFj

∥∥∥∥∥
Q�2

�L�‖ · ‖Q�2
)

≤
k∑
j=1

logN

(
ε

k

∥∥∥∥∥
k∑
j=1

LjFj

∥∥∥∥∥
Q�2

�Fj�‖ · ‖Q̃j �2
)

≤
k∑
j=1

logN
(
ε

k
‖LjFj‖Q�2�Fj�‖ · ‖Q̃j �2

)

=
k∑
j=1

logN
(
ε

k
‖Fj‖Q̃j �2�Fj�‖ · ‖Q̃j �2

)

≤
k∑
j=1

log sup
Q̄

N

(
ε

k
‖Fj‖Q̄�2�Fj�‖ · ‖Q̄�2

)
�

and the result follows since the right-hand side no longer depends on Q. Q.E.D.

LEMMA L.2—Covering Entropy for Classes Obtained as Conditional Expectations: Let
F denote a class of measurable functions f : W × Y �−→ R with a measurable envelope
F . For a given f ∈ F , let f̄ : W �−→ R be the function f̄ (w) := ∫ f (w� y)dμw(y) where
μw is a regular conditional probability distribution over y ∈ Y conditional on w ∈ W . Set
F̄ = {f̄ : f ∈F} and let F̄(w) := ∫ F(w�y)dμw(y) be an envelope for F̄ . Then, for r� s ≥ 1,

log sup
Q

N
(
ε‖F̄‖Q�r� F̄�‖ · ‖Q�r

)≤ log sup
Q̃

N
(
(ε/4)r‖F‖Q̃�s�F�‖ · ‖Q̃�s

)
�

where Q belongs to the set of finitely-discrete probability measures over W such that 0 <
‖F̄‖Q�r <∞, and Q̃ belongs to the set of finitely-discrete probability measures over W × Y
such that 0< ‖F‖Q̃�s <∞. In particular, for every ε > 0 and any k≥ 1,

log sup
Q

N
(
ε� F̄�‖ · ‖Q�k

)≤ log sup
Q̃

N
(
ε/2�F�‖ · ‖Q̃�k

)
�

PROOF: The proof generalizes the proof of Lemma A.2 in Ghosal, Sen, and van der
Vaart (2000). For f�g ∈ F and the corresponding f̄ � ḡ ∈ F̄ , and any probability measure
Q on W , by Jensen’s inequality, for any k≥ 1,

EQ

[|f̄ − ḡ|k]= EQ

[∣∣∣∣
∫
(f − g)dμw(y)

∣∣∣∣k
]

≤ EQ

[∫
|f − g|k dμw(y)

]
= EQ̄

[|f − g|k]�
where dQ̄(w�y)= dQ(w)dμw(y). Therefore, for any ε > 0,

sup
Q

N
(
ε� F̄�‖ · ‖Q�k

)≤ sup
Q̄

N
(
ε�F�‖ · ‖Q̄�k

)≤ sup
Q̃

N
(
ε/2�F�‖ · ‖Q̃�k

)
�
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where we use Problems 2.5.1–2.5.2 of van der Vaart and Wellner (1996) to replace the
supremum over Q̄ with the supremum over finitely-discrete probability measures Q̃.

Moreover, ‖F̄‖Q�1 = EQ[F̄(w)] = EQ[∫ F(w�y)dμw(y)] = EQ̄[F(w�y)] = ‖F‖Q̄�1.
Therefore taking k= 1,

sup
Q

N
(
ε‖F̄‖Q�1� F̄�‖ · ‖Q�1

) ≤ sup
Q̄

N
(
ε‖F‖Q̄�1�F�‖ · ‖Q̄�1

)
≤ sup

Q̃

N
(
(ε/2)‖F‖Q̃�1�F�‖ · ‖Q̃�1

)
≤ sup

Q̃

N
(
(ε/2)‖F‖Q̃�s�F�‖ · ‖Q̃�s

)
�

where we use Problems 2.5.1–2.5.2 of van der Vaart and Wellner (1996) to replace the
supremum over Q̄ with the supremum over finitely-discrete probability measures Q̃, and
then Problem 2.10.4 of van der Vaart and Wellner (1996) to argue that the last bound is
weakly increasing in s ≥ 1.

Also, by the second part of the proof of Theorem 2.6.7 of van der Vaart and Wellner
(1996),

sup
Q

N
(
ε‖F‖Q�r�F�‖ · ‖Q�r

)≤ sup
Q

N
(
(ε/2)r‖F‖Q�1�F�‖ · ‖Q�1

)
�

Q.E.D.

COMMENT L.1: Lemma L.2 extends the result in Lemma A.2 in Ghosal, Sen, and
van der Vaart (2000) and Lemma 5 in Sherman (1994) which considered integral classes
with respect to a fixed measure μ on Y . In our applications, we need to allow the integra-
tion measure to vary with w, namely we allow for μw to be a conditional distribution.

APPENDIX M: PROOFS FOR SECTION 4

M.1. Proof of Theorem 4.1

Step 0 (Preparation). In the proof a � b means that a ≤ Ab, where the constant A
depends on the constants in Assumptions 4.1 and 4.2 only, but not on n once n ≥ n0 =
min{j : δj ≤ 1/2}, and not on P ∈Pn. We consider a sequence Pn in Pn, but for simplicity,
we write P = Pn throughout the proof, suppressing the index n. Since the argument is
asymptotic, we can assume that n≥ n0 in what follows.

To proceed with the presentation of the proofs, it might be convenient for the reader
to have the notation collected in one place. The influence function and low-bias moment
functions for αV (z) for z ∈Z = {0�1} are given respectively by

ψα
V �z(W )=ψα

V �z�gV �mZ

(
W�αV (z)

)
�

ψα
V �z�g�m(W �α)= 1(Z = z)

(
V − g(z�X)

)
m(z�X)

+ g(z�X)− α�

The influence function and the moment function for γV are ψγ
V (W ) = ψγ

V (W �γV ) and
ψγ
V (W �γ)= V − γ. Recall that the estimator of the reduced-form parameters αV (z) and

γV are solutions α= α̂V (z) and γ = γ̂V to the equations

En

[
ψα
V �z�ĝV �m̂Z

(W �α)
]= 0� En

[
ψγ
V (W �γ)

]= 0�
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where ĝV (z�x) = ΛV (f (z�x)
′β̄V ), m̂Z(1�x) = ΛZ(f (x)

′β̄Z), m̂Z(0�x) = 1 − m̂Z(1�x),
and β̄V and β̄Z are estimators as in Assumption 4.2. For each variable V ∈ Vu,

Vu = (Vuj)
5
j=1 = (Yu�10(D)Yu�10(D)�11(D)Yu�11(D)

)
�

we obtain the estimator ρ̂u = ({α̂V (0)� α̂V (1)� γ̂V })V ∈Vu of ρu := ({αV (0)�αV (1)�γV })V ∈Vu .
The estimator and the estimand are vectors in R

dρ with a fixed finite dimension. We stack
these vectors into the processes ρ̂= (ρ̂u)u∈U and ρ= (ρu)u∈U .

Step 1 (Linearization). In this step we establish the first claim, namely that
√
n(ρ̂− ρ)=Zn�P + oP(1) in D = �∞(U)dρ�(M.1)

where Zn�P = (Gnψ
ρ
u)u∈U and ψρ

u = ({ψα
V �0�ψ

α
V �1�ψ

γ
V })V ∈Vu . The components (

√
n(γ̂Vuj −

γVuj ))u∈U of
√
n(ρ̂ − ρ) trivially have the linear representation (with no error) for each

j ∈ J . We only need to establish the claim for the empirical process (
√
n(α̂Vuj (z) −

αVuj (z)))u∈U for z ∈ {0�1} and each j ∈J , which we do in the steps below.
(a) We make some preliminary observations. For t = (t1� t2� t3� t4) ∈ R

2 × (0�1)2, v ∈ R,
and (z� z̄) ∈ {0�1}2, we define the function (v� z� z̄� t) �−→ ϕ(v� z� z̄� t) via

ϕ(v� z�1� t)= 1(z = 1)(v− t2)

t4
+ t2�

ϕ(v� z�0� t)= 1(z = 0)(v− t1)

t3
+ t1�

The derivatives of this function with respect to t obey, for all k= (kj)
4
j=1 ∈N

4 : 0 ≤ |k| ≤ 3,∣∣∂kt ϕ(v� z� z̄� t)∣∣≤L�(M.2)

∀(v� z̄� z� t) : |v| ≤ C� |t1|� |t2| ≤ C�c′/2 ≤ |t3|� |t4| ≤ 1 − c′/2�

where L depends only on c′ and C , |k| =∑4
j=1 kj , and ∂kt := ∂

k1
t1
∂
k2
t2
∂
k3
t3
∂
k4
t4

.
(b) Let

ĥV (X) := (ĝV (0�X)� ĝV (1�X)�1 − m̂Z(1�X)� m̂Z(1�X)
)′
�

hV (X) := (gV (0�X)�gV (1�X)�1 −mZ(1�X)�mZ(1�X)
)′
�

fĥV �V �z(W ) := ϕ
(
V �Z�z� ĥV (X)

)
�

fhV �V �z(W ) := ϕ
(
V �Z�z�hV (X)

)
�

We observe that with probability no less than 1 −Δn,

ĝV (0� ·) ∈ GV (0)� ĝV (1� ·) ∈ GV (1)�
m̂Z(1� ·) ∈M(1)� m̂Z(0� ·) ∈M(0)= 1 −M(1)�

where

GV (z) :=
⎧⎨
⎩
x �−→ΛV

(
f (z�x)′β

) : ‖β‖0 ≤ sC∥∥ΛV

(
f (z�X)′β

)− gV (z�X)
∥∥
P�2

� δnn
−1/4∥∥ΛV

(
f (z�X)′β

)− gV (z�X)
∥∥
P�∞ � εn

⎫⎬
⎭ �
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M(1) :=
⎧⎨
⎩
x �−→ΛZ

(
f (x)′β

) : ‖β‖0 ≤ sC∥∥ΛZ

(
f (X)′β

)−mZ(1�X)
∥∥
P�2

� δnn
−1/4∥∥ΛZ

(
f (X)′β

)−mZ(1�X)
∥∥
P�∞ � εn

⎫⎬
⎭ �

To see this, note that under Assumption 4.2 for all n≥ min{j : δj ≤ 1/2},∥∥ΛZ

(
f (X)′β

)−mZ(1�X)
∥∥
P�2

≤ ∥∥ΛZ

(
f (X)′β

)−ΛZ

(
f (X)′βZ

)∥∥
P�2

+ ∥∥rZ(X)∥∥P�2
� ‖∂ΛZ‖∞

∥∥f (X)′(β−βZ)
∥∥
P�2

+ ∥∥rZ(X)∥∥P�2
� ‖∂ΛZ‖∞

∥∥f (X)′(β−βZ)
∥∥
Pn�2

+ ∥∥rZ(X)∥∥P�2 � δnn
−1/4�∥∥ΛZ

(
f (X)′β

)−mZ(1�X)
∥∥
P�∞

≤ ∥∥ΛZ

(
f (X)′β

)−ΛZ

(
f (X)′βZ

)∥∥
P�∞ + ∥∥rZ(X)∥∥P�∞

≤ ‖∂ΛZ‖∞
∥∥f (X)′(β−βZ)

∥∥
P�∞ + ∥∥rZ(X)∥∥P�∞

�Kn‖β−βZ‖1 + εn ≤ 2εn�

for β = β̄Z , with evaluation after computing the norms, and for ‖∂Λ‖∞ denoting
supl∈R |∂Λ(l)| here and below. Similarly, under Assumption 4.2,∥∥ΛV

(
f (Z�X)′β

)− gV (Z�X)
∥∥
P�2

� ‖∂ΛV ‖∞
∥∥f (Z�X)′(β−βV )

∥∥
Pn�2

+ ∥∥rV (Z�X)∥∥P�2 � δnn
−1/4�∥∥ΛV

(
f (Z�X)′β

)− gV (Z�X)
∥∥
P�∞ �Kn‖β−βV ‖1 + εn ≤ 2εn�

for β= β̄V , with evaluation after computing the norms, and noting that, for any β,∥∥ΛV

(
f (0�X)′β

)− gV (0�X)
∥∥
P�2

∨ ∥∥ΛV

(
f (1�X)′β

)− gV (1�X)
∥∥
P�2

�
∥∥ΛV

(
f (Z�X)′β

)− gV (Z�X)
∥∥
P�2

under condition (iii) of Assumption 4.1, and∥∥ΛV

(
f (0�X)′β

)− gV (0�X)
∥∥
P�∞ ∨ ∥∥ΛV

(
f (1�X)′β

)− gV (1�X)
∥∥
P�∞

≤ ∥∥ΛV

(
f (Z�X)′β

)− gV (Z�X)
∥∥
P�∞

under condition (iii) of Assumption 4.1.
Hence with probability at least 1 −Δn,

ĥV ∈HV �n := {h= (ḡ(0� ·)� ḡ(1� ·)� m̄Z(0� ·)� m̄Z(1� ·)
)

∈ GV (0)× GV (1)×M(0)×M(1)
}
�

(c) We have that

αV (z)= EP[fhV �V �z] and α̂(z)= En[fĥV �V �z]�
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so that
√
n
(
α̂V (z)− αV (z)

)
=Gn[fhV �V �z]︸ ︷︷ ︸

IV (z)

+Gn[fh�V �z − fhV �V �z]︸ ︷︷ ︸
IIV (z)

+√
nP[fh�V �z − fhV �V �z]︸ ︷︷ ︸

IIIV (z)

�

with h evaluated at h= ĥV .
(d) Note that for

ΔV �i := (Δ1V �i�Δ2V �i�Δ3V �i�Δ4V �i)= h(Xi)− hV (Xi)�

ΔkV �i := Δ
k1
1V �iΔ

k2
2V �iΔ

k3
3V �iΔ

k4
4V �i�

IIIV (z)= √
n
∑
|k|=1

P
[
∂kt ϕ

(
Vi�Zi� z�hV (Xi)

)
ΔkV �i

]
+ √

n
∑
|k|=2

2−1P
[
∂kt ϕ

(
Vi�Zi� z�hV (Xi)

)
ΔkV �i

]

+ √
n
∑
|k|=3

6−1

∫ 1

0
P
[
∂kt ϕ

(
Vi�Zi� z�hV (Xi)+ λΔV �i

)
ΔkV �i

]
dλ

=: IIIaV (z)+ IIIbV (z)+ IIIcV (z)�

with h evaluated at h= ĥ after computing the expectations under P .
By the law of iterated expectations and the orthogonality property of the moment con-

dition for αV ,

EP

[
∂kt ϕ

(
Vi�Zi� z�hV (Xi)

)|Xi

]= 0 ∀k ∈ N
4 : |k| = 1

�⇒ IIIaV (z)= 0�

Moreover, uniformly for any h ∈HV �n, in view of properties noted in Steps (a) and (b),∣∣IIIbV (z)
∣∣� √

n‖h− hV ‖2
P�2 �

√
n
(
δnn

−1/4
)2 ≤ δ2

n�∣∣IIIcV (z)
∣∣� √

n‖h− hV ‖2
P�2‖h− hV ‖P�∞ �

√
n
(
δnn

−1/4
)2
εn ≤ δ2

nεn�

Since ĥV ∈HV �n for all V ∈ V = {Vuj : u ∈ U� j ∈J } with probability 1 −Δn, for n≥ n0,

PP

(∣∣IIIV (z)
∣∣� δ2

n�∀z ∈ {0�1}�∀V ∈ V
)≥ 1 −Δn�

(e) Furthermore, with probability 1 −Δn

sup
V ∈V

max
z∈{0�1}

∣∣IIV (z)
∣∣≤ sup

h∈HV �n�z∈{0�1}�V ∈V

∣∣Gn[fh�V �z] −Gn[fhV �V �z]
∣∣�

The classes of functions

V := {Vuj : u ∈ U� j ∈J } and V∗ := {gVuj (Z�X) : u ∈ U� j ∈J
}
�(M.3)
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viewed as maps from the sample space W to the real line, are bounded by a constant enve-
lope and obey log supQN(ε�V�‖ · ‖Q�2)� log(e/ε)∨ 0, which holds by Assumption 4.1(ii),
and log supQN(ε�V∗�‖ · ‖Q�2) � log(e/ε) ∨ 0, which holds by Assumption 4.1(ii) and
Lemma L.2. The uniform covering entropy of the function sets

B = {1(Z = z) : z ∈ {0�1}} and M∗ = {mZ(z�X) : z ∈ {0�1}}
are trivially bounded by log(e/ε)∨ 0.

The class of functions

G := {GV (z) : V ∈ V� z ∈ {0�1}}
has a constant envelope and is a subset of{

(x� z) �−→Λ
(
f (z�x)′β

) :
‖β‖0 ≤ sC�Λ ∈L= {Id���1 −��Λ0�1 −Λ0}

}
�

which is a union of five sets of the form{
(x� z) �−→Λ

(
f (z�x)′β

) : ‖β‖0 ≤ sC
}

with Λ ∈ L a fixed monotone function for each of the five sets; each of these sets are
the unions of at most

(2p
Cs

)
VC-subgraph classes of functions with VC indices bounded by

C’s. Note that a fixed monotone transformation Λ preserves the VC-subgraph property
(van der Vaart and Wellner (1996, Lemma 2.6.18)). Therefore,

log sup
Q

N
(
ε�G�‖ · ‖Q�2

)
�
(
s logp+ s log(e/ε)

)∨ 0�

Similarly, the class of functions M= (M(1)∪ (1 −M(1))) has a constant envelope, is
a union of at most five sets, which are themselves the unions of at most

(
p

Cs

)
VC-subgraph

classes of functions with VC indices bounded by C’s since a fixed monotone transfor-
mation Λ preserves the VC-subgraph property. Therefore� log supQN(ε�M�‖ · ‖Q�2) �
(s logp+ s log(e/ε))∨ 0.

Finally, the set of functions

Jn = {fh�V �z − fhV �V �z : z ∈ {0�1}� V ∈ V�h ∈HV �n

}
is a Lipschitz transform of function sets V , V∗, B, M∗, G, and M, with bounded Lipschitz
coefficients and with a constant envelope. Therefore,

log sup
Q

N
(
ε�Jn�‖ · ‖Q�2

)
�
(
s logp+ s log(e/ε)

)∨ 0�

Applying Lemma C.1 with σn = C ′δnn−1/4 and the envelope Jn = C ′, with probability
1 −Δn for some constant K > e,

sup
V ∈V

max
z∈{0�1}

∣∣IIV (z)
∣∣

≤ sup
f∈Jn

∣∣Gn(f )
∣∣
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�
(√

sσ2
n log

(
p∨K ∨ σ−1

n

)+ s√
n

log
(
p∨K ∨ σ−1

n

))

�
(√

sδ2
nn

−1/2 log(p∨ n)+
√
s2n−1 log2(p∨ n)

)
�
(
δnδ

1/4
n + δ1/2

n

)
� δ1/2

n �

Here we have used some simple calculations, exploiting the boundedness condition in
Assumptions 4.1 and 4.2, to deduce that

sup
f∈Jn

‖f‖P�2 � sup
h∈HV �n�V ∈V

‖h− hV ‖P�2 � δnn
−1/4 � σn ≤ ‖Jn‖P�2�

by definition of the set HV �n, so that we can use Lemma C.1. We also note that log(1/δn)�
log(n) by the assumption on δn and that s2 log2(p ∨ n) log2(n)/n ≤ δn by Assump-
tion 4.2(i).

(f) The claim of Step 1 follows by collecting Steps (a)–(e).
Step 2 (Uniform Donskerness). Here we claim that Assumption 4.1 implies that the set

of vectors of functions (ψρ
u)u∈U is P-Donsker uniformly in P , namely that

Zn�P �ZP in D = �∞(U)dρ� uniformly in P ∈P�

where Zn�P = (Gnψ
ρ
u)u∈U and ZP = (GPψ

ρ
u)u∈U . Moreover�ZP has bounded, uniformly

continuous paths uniformly in P ∈P :

sup
P∈P

EP sup
u∈U

∥∥ZP(u)
∥∥<∞� lim

ε↘0
sup
P∈P

EP sup
dU (u�ũ)≤ε

∥∥ZP(u)−ZP(ũ)
∥∥= 0�

To verify these claims we shall invoke Theorem B.1
To demonstrate the claim, it will suffice to consider the set of R-valued functions Ψ =

(ψuk : u ∈ U�k ∈ [dρ]). Further, we notice that Gnψ
α
V �z =Gnf , for f ∈Fz ,

Fz =
{

1{Z = z}(V − gV (z�X)
)

mZ(z�X)
+ gV (z�X)�V ∈ V

}
� z = 0�1�

and that Gnψ
γ
V = Gnf , for f = V ∈ V . Hence Gn(ψuk)= Gn(f ) for f ∈FP =F0 ∪F1 ∪ V .

We thus need to check that the conditions of Theorem B.1 apply to FP uniformly in P ∈P .
Observe that Fz is formed as a uniform Lipschitz transform of the function sets B, V ,

V∗, and M∗ defined in Step 1(e), where the validity of the Lipschitz property relies on
Assumption 4.1(iii) (to keep the denominator away from zero) and on the boundedness
conditions in Assumption 4.1(iii) and Assumption 4.2(iii). The function sets B, V , V∗,
and M∗ are uniformly bounded classes that have uniform covering entropy bounded by
log(e/ε)∨ 0 up to a multiplicative constant, and so Fz , which is uniformly bounded under
Assumption 4.1, the uniform covering entropy bounded by log(e/ε)∨0 up to a multiplica-
tive constant (e.g., van der Vaart and Wellner (1996)). Since FP is uniformly bounded and
is a finite union of function sets with the uniform entropies obeying the said properties, it
also follows that FP has this property; namely,

sup
P∈P

sup
Q

logN
(
ε�FP�‖ · ‖Q�2

)
� log(e/ε)∨ 0�



28 BELLONI, CHERNOZHUKOV, FERNÁNDEZ-VAL, AND HANSEN

Since
∫ ∞

0

√
log(e/ε)∨ 0dε = e

√
π/2 <∞ and FP is uniformly bounded, the first condi-

tion in (B.1) and the entropy condition (B.2) in Theorem B.1 hold.
We demonstrate the second condition in (B.1). Consider a sequence of positive con-

stants ε approaching zero, and note that

sup
dU (u�ũ)≤ε

max
k≤dρ

‖ψuk −ψũk‖P�2 � sup
dU (u�ũ)≤ε

‖fu − fũ‖P�2�

where fu and fũ must be of the form

1{Z = z}(Uu − gUu(z�X)
)

mZ(z�X)
+ gUu(z�X)�

1{Z = z}(Uũ − gUũ(z�X)
)

mZ(z�X)
+ gUũ(z�X)�

with (Uu�Uũ) equal to either (Yu�Yũ) or (1d(D)Yu�1d(D)Yũ), for d = 0 or 1, and z = 0
or 1. Then

sup
P∈P

‖fu − fũ‖P�2 � sup
P∈P

‖Yu −Yũ‖P�2 → 0�

as dU(u� ũ)→ 0 by Assumption 4.1(ii). Indeed� supP∈P ‖fu − fũ‖P�2 � supP∈P ‖Yu −Yũ‖P�2
follows from a sequence of inequalities holding uniformly in P ∈P : (1)

‖fu − fũ‖P�2 � ‖Uu −Uũ‖P�2 + ∥∥gUu(z�X)− gUũ(z�X)
∥∥
P�2
�

which we deduce using the triangle inequality and the fact thatmZ(z�X) is bounded away
from zero, (2) ‖Uu −Uũ‖P�2 ≤ ‖Yu −Yũ‖P�2, which we deduce using the Holder inequality,
and (3) ∥∥gUu(z�X)− gUũ(z�X)

∥∥
P�2

≤ ‖Uu −Uũ‖P�2�
which we deduce by the definition of gUu(z�X) = EP[Uu|X�Z = z] and the contraction
property of the conditional expectation. Q.E.D.

M.2. Proof of Theorem 4.2

The proof will be similar to the proof of Theorem 4.1.
Step 0 (Preparation). In the proof a � b means that a ≤ Ab, where the constant A

depends on the constants in Assumptions 4.1 and 4.2 only, but not on n once n ≥ n0 =
min{j : δj ≤ 1/2}, and not on P ∈Pn. We consider a sequence Pn in Pn, but for simplicity,
we write P = Pn throughout the proof, suppressing the index n. Since the argument is
asymptotic, we can assume that n ≥ n0 in what follows. Let Pn denote the measure that
puts mass n−1 on points (ξi�Wi) for i = 1� � � � � n. Let En denote the expectation with re-
spect to this measure, so that Enf = n−1

∑n

i=1 f (ξi�Wi), and Gn denote the corresponding
empirical process

√
n(En − P), that is,

Gnf = √
n(Enf − Pf)

= n−1/2
n∑
i=1

(
f (ξi�Wi)−

∫
f (s�w)dPξ(s)dP(w)

)
�
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Recall that we define the bootstrap draw as

Z∗
n�P = √

n
(
ρ̂∗ − ρ̂

)=
(

1√
n

n∑
i=1

ξiψ̂
ρ
u(Wi)

)
u∈U

= (Gnξψ̂
ρ
u

)
u∈U�

since P[ξψ̂ρ
u] = 0 because ξ is independent ofW and has zero mean. Here ψ̂ρ

u = (ψ̂ρ
V )V ∈Vu ,

where ψ̂ρ
V (W )= {ψα

V �0�ĝV �m̂Z
(W � α̂V (0))�ψα

V �1�ĝV �m̂Z
(W � α̂V (1))�ψ

γ
V (W � γ̂V )}, is a plug-in es-

timator of the influence function ψρ
u.

Step 1 (Linearization). In this step we establish that

ζ∗
n�P :=Z∗

n�P −G∗
n�P = oP(1)� for(M.4)

G∗
n�P := (Gnξψ

ρ
u

)
u∈U in D = �∞(U)dρ�

where ζ∗
n�P = ζn�P(Dn�Bn) is a linearization error, arising completely due to estimation of

the influence function; if the influence function were known, this term would be zero.
For the components (

√
n(γ̂∗

V − γ̂V ))V ∈V of
√
n(ρ̂∗ − ρ̂), the linearization follows by the

representation
√
n
(
γ̂∗
V − γ̂V

)= Gnξψ
γ
V − (γ̂V − γV )Gnξ︸ ︷︷ ︸

I∗V

�

for all V ∈ V , and noting that supV ∈V |I∗
V | = supV ∈V |(γ̂V − γV )||Gnξ| = OP(n

−1/2), for V
defined in (M.3) by Theorem 4.1 and by |Gnξ| =OP(1).

It remains to establish the claim for the empirical process (
√
n(α̂∗

Vuj
(z) − α̂Vuj (z)))u∈U

for z ∈ {0�1} and j ∈ J . As in the proof of Theorem 4.1, we have that with probability at
least 1 −Δn,

ĥV ∈HV �n := {h= (ḡV (0� ·)� ḡV (1� ·)� m̄Z(0� ·)� m̄Z(1� ·)
)

∈ GV (0)× GV (1)×M(0)×M(1)
}
�

We have the representation
√
n
(
α̂∗
V (z)− α̂V (z)

)
=Gnξψ

α
V �z +Gn[ξfĥV �V �z − ξfhV �V �z] − (α̂V (z)− αV (z)

)
Gnξ︸ ︷︷ ︸

II∗V (z)

�

where supV ∈V�z∈{0�1}(α̂V (z)− αV (z))=OP(n
−1/2) by Theorem 4.1.

Hence to establish supV ∈V |II∗
V (z)| = oP(1), it remains to show that with probability

1 −Δn,

sup
z∈{0�1}�V ∈V

∣∣Gn[ξfĥV �V �z − ξfhV �V �z]
∣∣≤ sup

f∈ξJn

∣∣Gn(f )
∣∣= oP(1)�

where

Jn = {fh�V �z − fhV �V �z : z ∈ {0�1}� V ∈ V�h ∈HV �n

}
�
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By the calculations in Step 1(e) of the proof of Theorem 4.1�Jn obeys log supQN(ε�Jn�‖·
‖Q�2)� (s logp+ s log(e/ε))∨ 0. By Lemma L.1, multiplication of this class by ξ does not
change the entropy bound modulo an absolute constant, namely,

log sup
Q

N
(
ε‖Jn‖Q�2� ξJn�‖ · ‖Q�2

)
�
(
s logp+ s log(e/ε)

)∨ 0�

where the envelope Jn for ξJn is |ξ| times a constant. Also�E[exp(|ξ|)]<∞ implies that
(E[maxi≤n |ξi|2])1/2 � logn. Thus, applying Lemma C.1 with σ = σn = C ′δnn−1/4 and the
envelope Jn = C ′|ξ|, for some constant K > e,

sup
f∈ξJn

∣∣Gn(f )
∣∣� (√sσ2

n log
(
p∨K ∨ σ−1

n

)+ s logn√
n

log
(
p∨K ∨ σ−1

n

))

�
(√

sδ2
nn

−1/2 log(p∨ n)+
√
s2n−1 log2(p∨ n) log2(n)

)
�
(
δnδ

1/4
n + δ1/2

n

)
�
(
δ1/2
n

)= oP(1)�

for supf∈ξJn ‖f‖P�2 = supf∈Jn ‖f‖P�2 � σn, where the details of calculations are the same as
in Step 1(e) of the proof of Theorem 4.1.

Finally, we conclude that∥∥ζ∗
n�P

∥∥
D
� sup

V ∈V

∣∣I∗
V

∣∣+ sup
V ∈V�z∈{0�1}

∣∣II∗
V

∣∣= oP(1)�

Step 2. Here we are claiming that Z∗
n�P �B ZP in D, under any sequence P = Pn ∈ Pn,

where ZP = (GPψ
ρ
u)u∈U . We have that

sup
h∈BL1(D)

∣∣EBnh
(
Z∗
n�P

)− EPh(ZP)
∣∣

≤ sup
h∈BL1(D)

∣∣EBnh
(
G∗

n�P

)− EPh(ZP)
∣∣+ EBn

(∥∥ζ∗
n�P

∥∥
D

∧ 2
)
�

where the first term is o∗
P(1), since G∗

n�P �B ZP by Theorem B.2, and the second term is
oP(1) because ‖ζ∗

n�P‖D = oP(1) implies that EP(‖ζ∗
n�P‖D ∧ 2) = EPEBn(‖ζ∗

n�P‖D ∧ 2) → 0,
which in turn implies that EBn(‖ζ∗

n�P‖D ∧ 2)= oP(1) by the Markov inequality. Q.E.D.

M.3. Proof of Corollary 4.1

This is an immediate consequence of Theorems 4.1, 4.2, B.3 and B.4. Q.E.D.

APPENDIX N: OMITTED PROOFS FOR SECTION 5

LEMMA N.1—Donsker Theorem for Classes Changing With n: Work with the setup de-
scribed in Appendix B of the main text. Suppose that for some fixed constant q > 2 and every
sequence δn ↘ 0,

‖Fn‖Pn�q =O(1)� sup
dT (s�t)≤δn

‖fn�s − fn�t‖Pn�2 → 0�

∫ δn

0
sup
Q

√
logN

(
ε‖Fn‖Q�2�Fn�‖ · ‖Q�2

)
dε→ 0�
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(a) Then the empirical process (Gnfn�t)t∈T is asymptotically tight in �∞(T). (b) For any
subsequence such that the covariance function Pnfn�sfn�t − Pnfn�sPnfn�t converges pointwise
on T × T , (Gnfn�t)t∈T converges in �∞(T) to a Gaussian process with covariance function
given by the limit of the covariance function along that subsequence.

PROOF: The proof that follows is similar to the proof of Theorem 2.11.22 in van der
Vaart and Wellner (1996, pp. 220–221), except that the probability law is allowed to de-
pend on n. Indeed, the use of Theorem 2.11.1 in van der Vaart and Wellner (1996), which
does allow for the probability space to depend on n, allows us to establish claim (a),
whereas the proof of claim (b) follows by a standard argument.

The random distance given in Theorem 2.11.1 in van der Vaart and Wellner (1996)
(Lemma N.2 below) reduces to d2

n(s� t)= 1
n

∑n

i=1(fn�s − fn�t)
2(Wi)= Pn(fn�s − fn�t)

2. It fol-
lows that N(ε�T�dn) = N(ε�Fn�L2(Pn)), for every ε > 0. If Fn is replaced by Fn ∨ 1,
then the conditions of the lemma still hold. Hence, assume without loss of general-
ity that Fn ≥ 1. Insert the bound on the covering numbers and next make a change
of variables to bound the entropy integral

∫ δn
0

√
logN(ε�Fn� dn)dε in Lemma N.2 by∫ δn

0

√
logN(ε‖Fn‖Pn�2�Fn�L2(Pn))dε‖Fn‖Pn�2. This converges to zero in probability for

every δn ↓ 0 by the conditions of the lemma. Apply Lemma N.2 to obtain the re-
sult. Q.E.D.

LEMMA N.2—van der Vaart and Wellner (1996, Theorem 2.11.1): For each n, let
Zn1� � � � �Zn�mn be independent stochastic processes, defined on the product probability space∏mn

i=1(Wni�Ani�Pni), with each Zni = Zni(f�w) depending on the ith coordinate of w =
(w1� � � � �wmn), and indexed by a totally bounded semimetric space (T�ρ). Assume that the
sums

∑mn
i=1 eiZni are measurable in the sense that every one of the maps

w �−→ sup
ρ(f�g)<δ

∣∣∣∣∣
mn∑
i=1

ei
(
Zni(f )−Zni(g)

)∣∣∣∣∣�
w �−→ sup

ρ(f�g)<δ

∣∣∣∣∣
mn∑
i=1

ei
(
Zni(f )−Zni(g)

)2

∣∣∣∣∣
is measurable, for every δ > 0, every vector (e1� � � � � emn) ∈ {−1�0�1}mn , and every natural
number n. Also, for every η> 0 and every δn ↓ 0,

mn∑
i=1

E∗‖Zni‖2
Fn

{‖Zni‖Fn > η
}+ sup

ρ(s�t)<δn

mn∑
i=1

E
(
Zni(f )−Zni(g)

)2 → 0�

and
∫ δn

0

√
logN(ε�Fn� dn)dε

P∗→ 0, where dn is the random semimetric

d2
n(f�g)=

mn∑
i=1

(
Zni(f )−Zni(g)

)2
�

Then the sequence
∑mn

i=1(Zni − EZni) is asymptotically ρ-equicontinuous.
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APPENDIX O: PROOFS FOR SECTION 6 AND APPENDIX J

PROOF OF THEOREM 6.1: In order to establish the result uniformly in P ∈Pn, it suffices
to establish the result under the probability measure induced by any sequence P = Pn ∈
Pn. In the proof we shall use P , suppressing the dependency of Pn on the sample size n. To
prove this result, we invoke Lemmas J.3–J.5 in Appendix J. These lemmas rely on specific
events (described below) and Condition WL which is also stated in Appendix J. We will
show that Assumption 6.1 implies that the required events occur with probability 1 −o(1)
and also implies Condition WL.

Let Ψ̂u0�jj = {En[|fj(X)ζu|2]}1/2 denote the ideal penalty loadings. The three events re-
quired to occur with probability 1 − o(1) are the following: E1 := {cr ≥ supu∈U ‖ru‖Pn�2},
and where cr := C

√
s log(p∨ n)/n; E2 := {λ/n ≥ √

c supu∈U ‖Ψ̂−1
u0 En[ζuf (X)]‖∞}, E3 :=

{�Ψ̂u0 ≤ Ψ̂u ≤LΨ̂u0}, for some 1/
√
c < 1/ 4

√
c < � and L uniformly bounded for the penalty

loading Ψ̂u in all iterations k≤K for n sufficiently large.
By Assumption 6.1(iv)(b)�E1 holds with probability 1 − o(1).
Next we verify that Condition WL holds. Condition WL(i) is implied by the ap-

proximate sparsity condition in Assumption 6.1(i) and the covering condition in As-
sumption 6.1(ii). By Assumption 6.1 we have that du is fixed and the Algorithm sets
γ ∈ [1/n�min{log−1 n�pndu−1}] so that γ = o(1) and �−1(1 −γ/{2pndu})≤ C log1/2(np)≤
Cδnn

1/6 by Assumption 6.1(i). Since it is assumed that EP[|fj(X)ζu|2] ≥ c and EP[|fj(X)×
ζu|3] ≤ C uniformly in j ≤ p and u ∈ U , Condition WL(ii) holds. Condition WL(iii) fol-
lows from Assumption 6.1(iv).

Since Condition WL holds, by Lemma J.1, the event E2 occurs with probability 1−o(1).
Next we proceed to verify occurrence of E3. In the first iteration, the penalty loadings

are defined as Ψ̂ujj = {En[|fj(X)Yu|2]}1/2 for j = 1� � � � �p, u ∈ U . By Assumption 6.1� c ≤
EP[|fj(X)ζu|2] ≤ EP[|fj(X)Yu|2] ≤ C uniformly over u ∈ U and j = 1� � � � �p. Moreover,
Assumption 6.1(iv)(b) yields

sup
u∈U

max
j≤p

∣∣(En − EP)
[∣∣fj(X)Yu∣∣2]∣∣≤ δn and

sup
u∈U

max
j≤p

∣∣(En − EP)
[∣∣fj(X)ζu∣∣2]∣∣≤ δn

with probability 1 −Δn. In turn, this shows that for n large so that δn ≤ c/4, we have3

(1 − 2δn/c)En

[∣∣fj(X)ζu∣∣2] ≤ En

[∣∣fj(X)Yu∣∣2]
≤ ({C + δn}/{c− δn}

)
En

[∣∣fj(X)ζu∣∣2]
with probability 1 −Δn so that �Ψ̂u0 ≤ Ψ̂u ≤LΨ̂u0 for some uniformly bounded L and � >
1/ 4

√
c. Moreover, c̃ = {(L√

c+1)/(
√
c�−1)} supu∈U ‖Ψ̂−1

u0 ‖∞‖Ψ̂u0‖∞ is uniformly bounded
for n large enough which implies that κ2c̃ as defined in (J.1) in Appendix J.2 is bounded
away from zero with probability 1 − Δn by the condition on sparse eigenvalues of order
s�n (see Bickel, Ritov, and Tsybakov (2009, Lemma 4.1(ii))).

3Indeed, using that c ≤ EP [|fj(X)ζu|2] ≤ EP [|fj(X)Yu|2] ≤ C , we have (1 − 2δn/c)En[|fj(X)ζu|2] ≤
(1 − 2δn/c){δn + EP [|fj(X)ζu|2]} ≤ EP [|fj(X)ζu|2] − δn ≤ EP [|fj(X)Yu|2] − δn ≤ En[|fj(X)Yu|2].
Similarly�En[|fj(X)Yu|2] ≤ δn + EP [|fj(X)Yu|2] ≤ δn +C ≤ ({δn +C}/{c− δn})En[|fj(X)ζu|2].



PROGRAM EVALUATION AND CAUSAL INFERENCE 33

By Lemma J.3, since λ ∈ [cn1/2 log1/2(p∨ n)�Cn1/2 log1/2(p∨ n)] by the choice of γ and
du fixed� cr ≤ C

√
s log(p∨ n)/n, supu∈U ‖Ψ̂u0‖∞ ≤ C, we have

sup
u∈U

∥∥f (X)′(θ̂u − θu)
∥∥
Pn�2

≤ C ′
√
s log(p∨ n)

n
and

sup
u∈U

‖θ̂u − θu‖1 ≤ C ′

√
s2 log(p∨ n)

n
�

In the application of Lemma J.4, by Assumption 6.1(iv)(c), we have that
minm∈Mφmax(m) is uniformly bounded for n large enough with probability 1−o(1). Thus,
with probability 1 − o(1), by Lemma J.4 we have

sup
u∈U

ŝu ≤ C

[
ncr

λ
+ √

s

]2

≤ C ′s�

Therefore, by Lemma J.5 the Post-Lasso estimators (θ̃u)u∈U satisfy, with probability 1 −
o(1),

sup
u∈U

∥∥f (X)′(θ̃u − θu)
∥∥
Pn�2

≤ C̄

√
s log(p∨ n)

n
and

sup
u∈U

‖θ̃u − θu‖1 ≤ C̄

√
s2 log(p∨ n)

n

for some C̄ independent of n, since uniformly in u ∈ U we have a sparsity bound ‖(θ̃u −
θu)‖0 ≤ C ′′s and that ensures that a bound on the prediction rate yields a bound on the
�1-norm rate through the relations ‖v‖1 ≤ √‖v‖0‖v‖ ≤ √‖v‖0‖f (X)′v‖Pn�2/

√
φmin(‖v‖0).

In the kth iteration, the penalty loadings are constructed based on (θ̃(k)u )u∈U , defined as
Ψ̂ujj = {En[|fj(X){Yu − f (X)′θ̃(k)u }|2]}1/2 for j = 1� � � � �p, u ∈ U . We assume (θ̃(k)u )u∈U sat-
isfy the rates above uniformly in u ∈ U . Then with probability 1 −o(1), we have uniformly
in u ∈ U and j = 1� � � � �p

|Ψ̂ujj − Ψ̂u0jj| ≤ {En

[∣∣fj(X){f (X)′(θ̃u − θu)
}∣∣2]}1/2

+ {En

[∣∣fj(X)ru∣∣2]}1/2

≤Kn

∥∥f (X)′(θ̃u − θu)
∥∥
Pn�2

+Kn‖ru‖Pn�2

≤ C̄Kn

√
s log(p∨ n)

n
≤ C̄δ1/2

n ≤ Ψ̂u0jj

(
2C̄δ1/2

n /c
)
�

where we used that maxi≤n�j≤p |fj(Xi)| ≤ Kn a.s., and K2
ns log(p ∨ n) ≤ δnn by Assump-

tion 6.1(iv)(a), and that infu∈U�j≤p Ψ̂u0jj ≥ c/2 with probability 1 − o(1) for n large so that
δn ≤ c/2. Further, for n large so that (2C̄δ1/2

n /c) < 1−1/ 4
√
c, this establishes that the event

of the penalty loadings for the (k+ 1)th iteration also satisfy �Ψ̂−1
u0 ≤ Ψ̂−1

u ≤ LΨ̂−1
u0 for a

uniformly bounded L and some � > 1/ 4
√
c with probability 1 − o(1) uniformly in u ∈ U .

This leads to the stated rates of convergence and sparsity bound. Q.E.D.
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PROOF OF THEOREM 6.2: In order to establish the result uniformly in P ∈Pn, it suffices
to establish the result under the probability measure induced by any sequence P = Pn ∈
Pn. In the proof we shall use P , suppressing the dependency of Pn on the sample size n.
The proof is similar to the proof of Theorem 6.1. We invoke Lemmas J.6, J.7, and J.8
which require Condition WL and some events to occur. We show that Assumption 6.2
implies Condition WL and that the required events occur with probability at least 1−o(1).

Let Ψ̂u0�jj = {En[|fj(X)ζu|2]}1/2 denote the ideal penalty loadings�wui = EP[Yui|Xi](1 −
EP[Yui|Xi]) the conditional variance of Yui givenXi, and r̃ui = r̃u(Xi) the rescaled approx-
imation error as defined in (J.5). The three events required to occur with probability 1 −
o(1) are as follows: E1 := {cr ≥ supu∈U ‖r̃u/√wu‖Pn�2} for cr := C ′√s log(p∨ n)/n where
C ′ is large enough; E2 := {λ/n≥ √

c supu∈U ‖Ψ̂−1
u0 En[ζuf (X)]‖∞}; and E3 := {�Ψ̂u0 ≤ Ψ̂u ≤

LΨ̂u0}, for � > 1/ 4
√
c and L uniformly bounded, for the penalty loading Ψ̂u in all iterations

k≤K for n sufficiently large.
Regarding E1, by Assumption 6.2(iii), we have c(1 − c)≤wui ≤ 1/4. Since |ru(Xi)| ≤ δn

a.s. uniformly on u ∈ U for i= 1� � � � � n, we have that the rescaled approximation error de-
fined in (J.5) satisfies |r̃u(Xi)| ≤ |ru(Xi)|/{c(1 − c)− 2δn}+ ≤ C̃|ru(Xi)| for n large enough
so that δn ≤ c(1−c)/4. Thus ‖r̃u/√wu‖Pn�2 ≤ C̃‖ru/√wu‖Pn�2. Assumption 6.2(iv)(b) yields
supu∈U ‖ru/√wu‖Pn�2 ≤ C

√
s log(p∨ n)/n with probability 1−o(1), soE3 occurs with prob-

ability 1 − o(1).
To apply Lemma J.1 to show that E2 occurs with probability 1 − o(1), we need to

verify Condition WL. Condition WL(i) is implied by the sparsity in Assumption 6.2(i)
and the covering condition in Assumption 6.2(ii). By Assumption 6.2 we have that du
is fixed and the Algorithm sets γ ∈ [1/n�min{log−1 n�pndu−1}] so that γ = o(1) and
�−1(1 − γ/{2pndu}) ≤ C log1/2(np) ≤ Cδnn

1/6 by Assumption 6.2(i). Since it is assumed
that EP[|fj(X)ζu|2] ≥ c and EP[|fj(X)ζu|3] ≤ C uniformly in j ≤ p and u ∈ U , Condition
WL(ii) holds. Condition WL(iii) follows from Assumption 6.1(iv). Then, by Lemma J.1,
the event E2 occurs with probability 1 − o(1).

Next we verify the occurrence of E3. In the initial iteration, the penalty loadings are
defined as Ψ̂ujj = 1

2 {En[|fj(X)|2]}1/2 for j = 1� � � � �p, u ∈ U . Assumption 6.2(iv)(c) for
the sparse eigenvalues implies that for n large enough� c′ ≤ En[|fj(X)|2] ≤ C ′ for all
j = 1� � � � �p, with probability 1 − o(1).

Moreover, Assumption 6.2(iv)(b) yields

sup
u∈U

max
j≤p

∣∣(En − EP)
[∣∣fj(X)ζu∣∣2]∣∣≤ δn(O.1)

with probability 1−Δn, so that Ψ̂u0jj is bounded away from zero and from above uniformly
over j = 1� � � � �p, u ∈ U , with the same probability because EP[|fj(X)ζu|2] is bounded
away from zero and above. By (O.1) and EP[|fj(X)ζu|2] ≤ 1

4 EP[|fj(X)|2], for n large

enough, we have �Ψ̂u0 ≤ Ψ̂u ≤ LΨ̂u0 for some uniformly bounded L and � > 1/ 4
√
c with

probability 1 −Δn.
Thus, c̃ = {(L√

c+ 1)/(�
√
c− 1)} supu∈U ‖Ψ̂−1

u0 ‖∞‖Ψ̂u0‖∞ is uniformly bounded. In turn,
since infu∈U mini≤n wui ≥ c(1 − c) is bounded away from zero, we have κ̄2c̃ ≥√c(1 − c)κ2c̃

by their definitions in (J.1) and (J.2). It follows that κ2c̃ is bounded away from zero by the
condition on s�n sparse eigenvalues stated in Assumption 6.2(iv)(c); see Bickel, Ritov,
and Tsybakov (2009, Lemma 4.1(ii)).

By the choice of γ and du fixed�λ ∈ [cn1/2 log1/2(p ∨ n)�Cn1/2 log1/2(p ∨ n)]. By re-
lation (J.4) and Assumption 6.2(iv)(a)� infu∈U q̄Au ≥ c′κ̄2c̃/{√sKn}. Under the condition
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K2
ns

2 log2(p∨ n)≤ δnn, the side condition in Lemma J.6 holds with probability 1 − o(1),
and the lemma yields

sup
u∈U

∥∥f (X)′(θ̂u − θu)
∥∥
Pn�2

≤ C ′
√
s log(p∨ n)

n
and

sup
u∈U

‖θ̂u − θu‖1 ≤ C ′

√
s2 log(p∨ n)

n
�

In turn, under Assumption 6.2(iv)(c) andK2
ns

2 log2(p∨n)≤ δnn, with probability 1−o(1),
Lemma J.7 implies

sup
u∈U

ŝu ≤ C ′′
[
ncr

λ
+ √

s

]2

≤ C ′′′s�

since minm∈Mφmax(m) is uniformly bounded. The rate of convergence for θ̃u is given by
Lemma J.8, namely, with probability 1 − o(1),

sup
u∈U

∥∥f (X)′(θ̃u − θu)
∥∥
Pn�2

≤ C̄

√
s log(p∨ n)

n
and
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√
s2 log(p∨ n)

n

for some C̄ independent of n, since by (O.16) we have, uniformly in u ∈ U ,

Mu(θ̃u)−Mu(θu) ≤Mu(θ̂u)−Mu(θu)≤ λ
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supu∈U ‖En[f (X)ζu]‖∞ ≤ C
√

log(p∨ n)/n by Lemma J.1�φmin(ŝu + su) is bounded away
from zero (by Assumption 6.2(iv)(c) and ŝu ≤ C ′′′s), infu∈U ψu({δ ∈ R

p : ‖δ‖0 ≤ ŝu + su}) is
bounded away from zero (because infu∈U mini≤n wui ≥ c(1 − c)), and supu∈U ‖Ψ̂u0‖∞ ≤ C
with probability 1 − o(1).

In the kth iteration, the penalty loadings are constructed based on (θ̃(k)u )u∈U , defined as

Ψ̂ujj = {En[|fj(X){Yu − Λ(f(X)′θ̃(k)u )}|2]}1/2 for j = 1� � � � �p, u ∈ U . We assume (θ̃(k)u )u∈U
satisfy the rates above uniformly in u ∈ U . Then

|Ψ̂ujj − Ψ̂u0jj|
≤ {En
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(
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≤Kn
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s log(p∨ n)

n
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and therefore, provided that (2Cδn/c) < 1 − 1/ 4
√
c, uniformly in u ∈ U , �Ψ̂u0 ≤ Ψ̂u ≤LΨ̂u0

for � > 1/ 4
√
c and L uniformly bounded with probability 1 − o(1). Then the same proof

for the initial penalty loading choice applies to the iterate (k+ 1). Q.E.D.

O.1. Proofs for Lasso With Functional Response: Penalty Level

PROOF OF LEMMA J.1: By the triangle inequality,

sup
u∈U

∥∥Ψ̂−1
u0 En

[
f (X)ζu

]∥∥
∞
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u′0En

[
f (X)ζu′

]∥∥
∞�

where U ε is a minimal ε-net of U . We will set ε= 1/n so that |U ε| ≤ ndu .
The proofs in this section rely on the following result due to Jing, Shao, and Wang

(2003).

LEMMA O.1—Moderate Deviations for Self-Normalized Sums: Let Z1� � � � � Zn be in-
dependent, zero-mean random variables and μ ∈ (0�1]. Let Sn�n =∑n

i=1Zi, V 2
n�n =∑n

i=1Z
2
i ,
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1
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n∑
i=1

E
[
Z2
i

]}1/2/{1
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2
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�n
− 1�

For each j = 1� � � � �p, and each u ∈ U ε, we will apply Lemma O.1 with Zi := fj(Xi)ζui,
and μ= 1. Then, by Lemma O.1, the union bound, and |U ε| ≤Nn, we have

PP

(
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(O.2)

≤ 2pNn(γ/2pNn)
{
1 + o(1)

}≤ γ
{
1 + o(1)

}
�

provided that maxu�j{ĒP[|fj(X)ζu|3]1/3/ĒP[|fj(X)ζu|2]1/2}�−1(1−γ/2pNn)≤ δnn
1/6, which

holds by Condition WL since γ ≥ 1/n (under this condition, there is �n → ∞ obeying con-
ditions of Lemma O.1).

Moreover, by the triangle inequality, we have
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To control the first term in (O.3), we note that by Condition WL, Ψ̂u0jj is bounded away
from zero with probability 1 −o(1) uniformly over u ∈ U and j = 1� � � � �p. Thus we have,
uniformly over u ∈ U and j = 1� � � � �p,∣∣(Ψ̂−1

u0jj − Ψ̂−1
u′0jj
)
Ψ̂u0jj

∣∣= |Ψ̂u0jj − Ψ̂u′0jj|/Ψ̂u′0jj ≤ C|Ψ̂u0jj − Ψ̂u′0jj|(O.4)

with the same probability. Moreover, we have
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]}1/2

�

Thus, relations (O.4) and (O.5) imply that, with probability 1 − o(1),
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By (O.2),

sup
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[
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with probability 1 − o(1), so that with the same probability,
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where the last inequality follows by Condition WL(iii).
The last term in (O.3) is of the order o(n−1/2) with probability 1 − o(1) since by Condi-

tion WL,
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with probability 1 − Δn, and noting that by Condition WL, supu∈U ‖Ψ̂−1
u0 ‖∞ is uniformly

bounded with probability at least 1 − o(1)−Δn.
The results above imply that (O.3) is bounded by o(1)/

√
n with probability 1 − o(1).

Since 1
2

√
log(2pNn/γ)≤�−1(1−γ/{2pNn}) for n large enough (since γ/{2pNn} → 0 and

standard tail bounds), we have that with probability 1 − o(1),(
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and the result follows. Q.E.D.
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PROOF OF LEMMA J.2: We start with the last statement of the lemma since it is more
difficult (others will use similar calculations). Consider the class of functions F = {Yu :
u ∈ U}, F ′ = {EP[Yu|X] : u ∈ U}, and G = {ζ2

u = (Yu − EP[Yu|X])2 : u ∈ U}. Let F be a
measurable envelope for F which satisfies F ≤ Bn.

Because F is a VC-class of functions with VC index C ′du, by Lemma L.1(1) we have

logN
(
ε‖F‖Q�2�F�‖ · ‖Q�2

)
� 1 + [du log(e/ε)∨ 0

]
�(O.6)

To bound the covering number for F ′, we apply Lemma L.2, and since E[F |X] ≤ F , we
have
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2
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�(O.7)

Since G ⊂ (F −F ′)2,G= 4F 2 is an envelope for G and the covering number for G satisfies

logN
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(O.8)
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where (i) and (ii) follow by Lemma L.1(2), and (iii) follows from (O.7).
Hence, the entropy bound for the class M=⋃j∈[p] Mj , where Mj = {f 2

j (X)G}, j ∈ [p]
and envelope M = 4K2

nF
2, satisfies
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where (a) follows by Lemma L.1(2) for union of classes, (b) holds by Lemma L.1(2) when
one class has only a single function, (c) by (O.8), and (d) follows from (O.6) and ε ≤ 1.
Therefore, since supu∈U maxj≤p EP[f 2
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using the envelope M = 4K2
nB

2
n, v= C ′, a= pn, and a constant σ .

Consider the first term. By Lemma C.1 we have with probability 1 −O(1/ logn) that
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using the envelope F = 2KnBn, v = C ′, a = pn, the entropy bound in Lemma L.2, and
σ2 ∝Lnn
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To bound the second term in the statement of the lemma, it follows that
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where the first inequality holds by Jensen’s inequality, and the second inequality holds by
assumption. Since c ≤ maxj≤p{EP[fj(X)2]}1/2 ≤ C, the result follows by Lemma C.1 which
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where we used the choice C ≤ σ = C ′ ≤ F =K2
n, v= C, a= pn. Q.E.D.
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O.2. Proofs for Lasso With Functional Response: Linear Case

PROOF OF LEMMA J.3: Let δ̂u = θ̂u − θu. Throughout the proof we assume that the
events c2

r ≥ supu∈U En[r2
u], λ/n ≥ c supu∈U ‖Ψ̂−1

u0 En[ζuf (X)]‖∞, and �Ψ̂u0 ≤ Ψ̂u ≤ LΨ̂u0 oc-
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Therefore, if δ̂u /∈ Δc̃�u = {δ ∈ R
p : ‖δTcu‖1 ≤ c̃‖δTu‖1}, we have that (L + 1
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Otherwise assume δ̂u ∈ Δc̃�u. In this case (O.12), the definition of κc̃, and ‖δ̂uTu‖1 ≤√
s‖δ̂uTu‖, we have

En

[(
f (X)′δ̂u

)2]
≤ 2cr

{
En

[(
f (X)′δ̂u

)2]}1/2

+ 2λ
n

(
L+ 1

c

)
‖Ψ̂u0‖∞

√
s
{
En

[(
f (X)′δ̂u

)2]}1/2
/κc̃�

which implies

{
En

[(
f (X)′δ̂u

)2]}1/2 ≤ 2cr + 2λ
√
s

nκc̃

(
L+ 1

c

)
‖Ψ̂u0‖∞�(O.13)

To establish the �1-bound, first assume that δ̂u ∈ Δ2c̃�u. In that case,
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where we used that ‖δ̂uTu‖1 ≤ √
s‖δ̂uTu‖, the definition of the restricted eigenvalue, and

the prediction rate derived in (O.13).
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PROOF OF LEMMA J.4: Step 1. Let Lu = 4c0‖Ψ̂−1
u0 ‖∞[ ncr

λ
+ √

s

κc̃
‖Ψ̂u0‖∞]. By Step 2 below

and the definition of Lu, we have

ŝu ≤φmax(ŝu)L
2
u�(O.14)

Consider any M ∈M= {m ∈ N :m> 2φmax(m) supu∈U L
2
u}, and suppose ŝu >M .
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Next recall the sublinearity of the maximum sparse eigenvalue (for a proof, see
Lemma 3 in Belloni and Chernozhukov (2013)), namely, for any integer k ≥ 0 and con-
stant �≥ 1, we haveφmax(�k)≤ ���φmax(k), where ��� denotes the ceiling of �. Therefore,

ŝu ≤φmax(Mŝu/M)L2
u ≤

⌈
ŝu

M

⌉
φmax(M)L2

u�

Thus, since �k� ≤ 2k for any k ≥ 1, we have M ≤ 2φmax(M)L2
u which violates the condi-

tion that M ∈M. Therefore, we have ŝu ≤M .
In turn, applying (O.14) once more with ŝu ≤M , we obtain ŝu ≤φmax(M)L2

u. The result
follows by minimizing the bound over M ∈M.

Step 2. In this step we establish that, uniformly over u ∈ U ,

√
ŝu ≤ 4

√
φmax(ŝu)

∥∥Ψ̂−1
u0

∥∥
∞c0

[
ncr

λ
+

√
s

κc̃
‖Ψ̂u0‖∞

]
�

Let Ru = (ru1� � � � � run)
′, Yu = (Yu1� � � � �Yun)

′, ζ̄u = (ζu1� � � � � ζun)
′, and F = [f (X1); � � � ;

f (Xn)]′. We have from the optimality conditions that the Lasso estimator θ̂u satisfies

En

[
Ψ̂−1
ujj fj(X)

(
Yu − f (X)′θ̂u

)]= sign(θ̂uj)λ/n for each j ∈ T̂u�

Therefore, noting that ‖Ψ̂−1
u Ψ̂u0‖∞ ≤ 1/�, we have√

ŝuλ= ∥∥(Ψ̂−1
u F ′(Yu − Fθ̂u)

)
T̂u

∥∥
≤ ∥∥(Ψ̂−1

u F ′ζ̄u
)
T̂u

∥∥+ ∥∥(Ψ̂−1
u F ′Ru

)
T̂u

∥∥+ ∥∥(Ψ̂−1
u F ′F(θu − θ̂u)

)
T̂u

∥∥
≤
√
ŝu
∥∥Ψ̂−1

u Ψ̂u0

∥∥
∞
∥∥Ψ̂−1

u0 F
′ζ̄u
∥∥

∞ + n
√
φmax(ŝu)

∥∥Ψ̂−1
u

∥∥
∞cr

+ n
√
φmax(ŝu)

∥∥Ψ̂−1
u

∥∥
∞
∥∥F(θ̂u − θu)

∥∥
Pn�2

≤
√
ŝu(1/�)

∥∥Ψ̂−1
u0 F

′ζ̄u
∥∥

∞

+ n
√
φmax(ŝu)

∥∥Ψ̂−1
u0

∥∥
∞

�

{
cr +

∥∥F(θ̂u − θu)
∥∥
Pn�2

}
�

where we used that ‖v‖ ≤ ‖v‖1/2
0 ‖v‖∞ and∥∥(F ′F(θu − θ̂u)

)
T̂u

∥∥
≤ sup

‖δ‖0≤ŝu�‖δ‖≤1

∣∣δ′F ′F(θu − θ̂u)
∣∣

≤ sup
‖δ‖0≤ŝu�‖δ‖≤1

∥∥δ′F ′∥∥∥∥F(θu − θ̂u)
∥∥

≤ sup
‖δ‖0≤ŝu�‖δ‖≤1

{
δ′F ′Fδ

}1/2∥∥F(θu − θ̂u)
∥∥

≤ n
√
φmax(ŝu)

∥∥f (X)′(θu − θ̂u)
∥∥
Pn�2
�
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Since λ/c ≥ supu∈U ‖Ψ̂−1
u0 F

′ζ̄u‖∞, and by Lemma J.3, we have that the estimate θ̂u satisfies
‖f (X)′(θ̂u − θu)‖Pn�2 ≤ 2cr + 2(L+ 1

c
) λ

√
s

nκc̃
‖Ψ̂u0‖∞ so that

√
ŝu ≤

√
φmax(ŝu)

∥∥Ψ̂−1
u0

∥∥
∞

�

[
3ncr
λ

+ 3
(
L+ 1

c

)√
s

κc̃
‖Ψ̂u0‖∞

]
(

1 − 1
c�

)

≤ 4

(
L+ 1

c

)
(

1 − 1
c�

) 1
�

√
φmax(ŝu)

∥∥Ψ̂−1
u0

∥∥
∞

[
ncr

λ
+

√
s

κc̃
‖Ψ̂u0‖∞

]
�

The result follows by noting that (L + [1/c])/(1 − 1/[�c]) = c0� by definition of c0.
Q.E.D.

PROOF OF LEMMA J.5: Definemu := (E[Yu1|X1]� � � � �E[Yun|Xn])′, ζ̄u := (ζu1� � � � � ζun)
′,

and the n × p matrix F := [f (X1); � � � ; f (Xn)]′. For a set of indices S ⊂ {1� � � � �p}, we
define P̂S = F[S](F[S]′F[S])−1F[S]′ to denote the projection matrix on the columns asso-
ciated with the indices in S where we interpret P̂S as a null operator if S is empty.

Since Yui =mui + ζui, we have

mu − Fθ̃u = (I − P̂T̃u)mu − P̂T̃u ζ̄u�

where I is the identity operator. Therefore,

‖mu − Fθ̃u‖ ≤ ∥∥(I − P̂T̃u)mu

∥∥+ ‖P̂T̃u ζ̄u‖�(O.15)

Since ‖F[T̃u]/√n(F[T̃u]′F[T̃u]/n)−1‖ ≤√1/φmin(s̃u), the last term in (O.15) satisfies

‖P̂T̃u ζ̄u‖ ≤√1/φmin(s̃u)
∥∥F[T̃u]′ζ̄u/

√
n
∥∥

≤√1/φmin(s̃u)
√
s̃u
∥∥F ′ζ̄u/

√
n
∥∥

∞�

By Lemma J.1 with γ = 1/n, we have that with probability 1 −o(1), uniformly in u ∈ U ,

∥∥F ′ζ̄u/
√
n
∥∥

∞ ≤ C
√

log
(
p∨ ndu+1

)
max
1≤j≤p

√
En

[
fj(X)2ζ2

u

]
= C

√
log
(
p∨ ndu+1

)‖Ψ̂u0‖∞�

The result follows.
The last statement follows from noting that the mean square approximation error pro-

vides an upper bound to the best mean square approximation error based on the model
T̃u provided that the model include the Lasso’s mode, that is� T̂u ⊆ T̃u. Indeed, we have

sup
u∈U

min
supp(θ)⊆T̃u

∥∥EP[Yu|X] − f (X)′θ
∥∥
Pn�2

≤ sup
u∈U

min
supp(θ)⊆T̂u

∥∥EP[Yu|X] − f (X)′θ
∥∥
Pn�2
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≤ sup
u∈U

∥∥EP[Yu|X] − f (X)′θ̂u
∥∥
Pn�2

≤ cr + sup
u∈U

∥∥f (X)′θu − f (X)′θ̂u
∥∥
Pn�2

≤ 3cr +
(
L+ 1

c

)
2λ

√
s

nκc̃
sup
u∈U

‖Ψ̂u0‖∞�

where we invoked Lemma J.3 to bound ‖f (X)′(θ̂u − θu)‖Pn�2. Q.E.D.

O.3. Proofs for Lasso With Functional Response: Logistic Case

PROOF OF LEMMA J.6: Let δu = θ̂u − θu and Su = −En[f (X)ζu]. By definition of θ̂u we
have Mu(θ̂u)+ λ

n
‖Ψ̂uθ̂u‖1 ≤Mu(θu)+ λ

n
‖Ψ̂uθu‖1. Thus,

Mu(θ̂u)−Mu(θu) ≤ λ

n
‖Ψ̂uθu‖1 − λ

n
‖Ψ̂uθ̂u‖1(O.16)

≤ λ

n
‖Ψ̂uδu�Tu‖1 − λ

n
‖Ψ̂uδu�Tcu‖1

≤ λL

n
‖Ψ̂u0δu�Tu‖1 − λ�

n
‖Ψ̂u0δu�Tcu‖1�

Moreover, by convexity of Mu(·) and Hölder’s inequality, we have

Mu(θ̂u)−Mu(θu)(O.17)

≥ ∂θMu(θu)≥ −λ
n

1
c
‖Ψ̂u0δu‖1 − ‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2

because ∣∣∂θMu(θu)
′δu
∣∣= ∣∣S′

uδu + {∂θMu(θu)− Su
}′
δu
∣∣(O.18)

≤ ∣∣S′
uδu
∣∣+ ∣∣{∂θMu(θu)− Su

}′
δu
∣∣

≤ ∥∥Ψ̂−1
u0 Su

∥∥
∞‖Ψ̂u0δu‖1 + ‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2

≤ λ

n

1
c
‖Ψ̂u0δu‖1 + ‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2
�

where we used that λ/n ≥ c supu∈U ‖Ψ̂−1
u0 Su‖∞ and that ∂θMu(θu)= En[{ζu + ru}f (X)] so

that ∣∣{∂θMu(θu)− Su
}′
δu
∣∣= ∣∣En

[
ruf (X)

′δu
]∣∣(O.19)

≤ ‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2
�

Combining (O.16) and (O.17), we have

λ

n

c�− 1
c

‖Ψ̂u0δu�Tcu‖1(O.20)

≤ λ

n

Lc+ 1
c

‖Ψ̂u0δu�Tu‖1 + ‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2
�
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and for c̃ = Lc+1
�c−1 supu∈U ‖Ψ̂u0‖∞‖Ψ̂−1

u0 ‖∞ ≥ 1, we have

‖δu�Tcu‖1 ≤ c̃‖δu�Tu‖1 + n

λ

c
∥∥Ψ̂−1

u0

∥∥
∞

�c− 1
‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2
�

Suppose δu /∈ Δ2c̃�u, namely ‖δu�Tcu‖1 ≥ 2c̃‖δu�Tu‖1. Thus,

‖δu‖1 ≤ (1 + {2c̃}−1
)‖δu�Tcu‖1

≤ (1 + {2c̃}−1
)
c̃‖δu�Tu‖1

+ (1 + {2c̃}−1
)n
λ

c
∥∥Ψ̂−1

u0

∥∥
∞

�c− 1
‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2

≤ (1 + {2c̃}−1
)1

2
‖δu�Tcu‖1

+ (1 + {2c̃}−1
)n
λ

c
∥∥Ψ̂−1

u0

∥∥
∞

�c− 1
‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2
�

The relation above implies that if δu /∈ Δ2c̃�u,

‖δu‖1 ≤ 4c̃
2c̃ − 1

(
1 + {2c̃}−1

)n
λ

c
∥∥Ψ̂−1

u0

∥∥
∞

�c− 1
‖ru/√wu‖Pn�2(O.21)

× ∥∥√wuf (X)
′δu
∥∥
Pn�2

≤ 6c
∥∥Ψ̂−1

u0

∥∥
∞

�c− 1
n

λ
‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2

=: Iu�

where we used that 4c̃
2c̃−1(1 +{2c̃}−1)≤ 6 since c̃ ≥ 1. Combining the bound with the bound

‖δu�Tu‖1 ≤
√
s

κ̄2c̃

∥∥√wuf (X)
′δu
∥∥
Pn�2

=: IIu� if δu ∈ Δ2c̃�u�

we have that δu satisfies

‖δu�Tu‖1 ≤ Iu + IIu�(O.22)

For every u ∈ U , since

Au = Δ2c̃�u

∪
{
δ : ‖δ‖1 ≤ 6c‖Ψ̂−1

u0 ‖∞
�c− 1

n

λ
‖ru/√wu‖Pn�2

∥∥√wuf (X)
′δ
∥∥
Pn�2

}
�

it follows that δu ∈Au, and we have

1
3

∥∥√wuf (X)
′δu
∥∥2

Pn�2
∧
{
q̄Au
3

∥∥√wuf (X)
′δu
∥∥
Pn�2

}
≤(1) Mu(θ̂u)−Mu(θu)− ∂θMu(θu)

′δu
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+ 2‖r̃u/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2

≤(2)

(
L+ 1

c

)
λ

n
‖Ψ̂u0δu�Tu‖1 + 3‖r̃u/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2

≤(3)

(
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c

)
‖Ψ̂u0‖∞

λ
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{Iu + IIu}

+ 3‖r̃u/√wu‖Pn�2

∥∥√wuf (X)
′δu
∥∥
Pn�2

≤(4)

{(
L+ 1

c

)
‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+ 9c̃‖r̃u/√wu‖Pn�2

}∥∥√wuf (X)
′δu
∥∥
Pn�2
�

where (1) follows by Lemma O.2 with Au, (2) follows from (O.18) and |rui| ≤ |r̃ui|, (3)
follows by ‖Ψ̂u0δu�Tu‖1 ≤ ‖Ψ̂u0‖∞‖δu�Tu‖1 and (O.22)� (4) follows from simplifications and
|rui| ≤ |r̃ui|. Since the inequality (x2 ∧ ax) ≤ bx holding for x > 0 and b < a < 0 implies
x≤ b, the above system of the inequalities, provided that for every u ∈ U

q̄Au > 3
{(
L+ 1

c

)
‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+ 9c̃‖r̃u/√wu‖Pn�2

}
�

implies that

∥∥√wuf (X)
′δu
∥∥
Pn�2

≤ 3
{(
L+ 1

c

)
‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+ 9c̃‖r̃u/√wu‖Pn�2

}
=: IIIu for every u ∈ U �

The second result follows from the definition of κ̄2c̃, (O.21), and the bound on ‖√wu ×
f (X)′δu‖Pn�2 just derived, namely, for every u ∈ U , we have

‖δu‖1 ≤ 1{δu ∈ Δ2c̃�u}‖δu‖1 + 1{δu /∈ Δ2c̃�u}‖δu‖1

≤ (1 + 2c̃)IIu + Iu

≤ 3
{
(1 + 2c̃)

√
s

κ̄2c̃
+ 6c

∥∥Ψ̂−1
u0

∥∥
∞

�c− 1
n

λ

∥∥∥∥ ru√
wu

∥∥∥∥
Pn�2

}
IIIu� Q.E.D.

PROOF OF LEMMA J.7: The proofs of both bounds are similar to the proof of sparsity
for the linear case (Lemma J.4) differing only on the definition of Lu which is a conse-
quence of pre-sparsity bounds established in Step 2 and Step 3.

Step 1. To establish the first bound by Step 2 below, triangle inequality, and the defini-
tion of ψ(Au), we have

√
ŝu ≤ c(n/λ)

(c�− 1)

√
φmax(ŝu)

∥∥f (X)′(θ̂u − θu)− ru
∥∥
Pn�2

≤ c(n/λ)

(c�− 1)

√
φmax(ŝu)

{∥∥√wuf (X)
′(θ̂u − θu)

∥∥
Pn�2

ψ(Au)
+ ‖ru‖Pn�2

}
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uniformly in u ∈ U . By Lemma J.6�ψ(Au)≤ 1, and ‖ru‖Pn�2 ≤ ‖r̃u/√wu‖Pn�2, we have

√
ŝu ≤

√
φmax(ŝu)

c(n/λ)

(c�− 1)ψ(Au)

×
{

3
(
L+ 1

c

)
‖Ψ̂u0‖∞

(λ/n)
√
s

κ̄2c̃
+ 28c̃‖r̃u/√wu‖Pn�2

}

≤
√
φmax(ŝu)

c0

ψ(Au)

{
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/√wu‖Pn�2

λ

}
�

Let Lu = c0
ψ(Au)

{3‖Ψ̂u0‖∞
√
s

κ̄2c̃
+ 28c̃ n‖r̃u/

√
wu‖Pn�2
λ

}. Thus we have

ŝu ≤φmax(ŝu)L
2
u�(O.23)

which has the same structure as (O.14) in Step 1 of the proof of Lemma J.4.
Consider anyM ∈M= {m ∈ N :m> 2φmax(m) supu∈U L

2
u}, and suppose ŝu >M . By the

sublinearity of the maximum sparse eigenvalue (Lemma 3 in Belloni and Chernozhukov
(2013)), for any integer k≥ 0 and constant �≥ 1, we have φmax(�k)≤ ���φmax(k), where
��� denotes the ceiling of �. Therefore

ŝu ≤φmax(Mŝu/M)L2
u ≤

⌈
ŝu

M

⌉
φmax(M)L2

u�

Thus, since �k� ≤ 2k for any k ≥ 1, we have M ≤ 2φmax(M)L2
u which violates the condi-

tion that M ∈ M. Therefore, we have ŝu ≤M . In turn, applying (O.23) once more with
ŝu ≤ M , we obtain ŝu ≤ φmax(M)L2

u. The result follows by minimizing the bound over
M ∈M.

Next we establish the second bound. By Step 3 below, we have

√
ŝu ≤ 2c(n/λ)

(c�− 1)

√
φmax(ŝu)

∥∥√wu

{
f (X)′(θ̂u − θu)− r̃u

}∥∥
Pn�2
�

By Lemma J.6 and that ‖√wur̃u‖Pn�2 ≤ ‖r̃u/√wu‖Pn�2, we have

√
ŝu ≤

√
φmax(ŝu)

2c(n/λ)
(c�− 1)

×
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3
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(λ/n)
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κ̄2c̃
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≤
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√
s

κ̄2c̃
+ 28c̃
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}
�

Let Lu = 2c0{3‖Ψ̂u0‖∞
√
s

κ̄2c̃
+ 28c̃ n‖r̃u/

√
wu‖Pn�2
λ

}. Thus again we obtained the relation (O.14)
and the proof follows similarly to Step 1 in the proof of Lemma J.4.

Step 2. In this step we show that, uniformly over u ∈ U ,

√
ŝu ≤ c(n/λ)

(c�− 1)

√
φmax(ŝu)

∥∥f (X)′(θ̂u − θu)− ru
∥∥
Pn�2
�(O.24)
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Let Λui := EP[Yui|Xi] and Su = −En[f (X)ζu] = −En[(Yu − Λu)f (X)]. Let T̂u =
supp(θ̂u), ŝu = ‖θ̂u‖0, δu = θ̂u − θu, and Λ̂ui = exp(f (Xi)

′θ̂u)/{1 + exp(f (Xi)
′θ̂u)}. For

any j ∈ T̂u, we have |En[(Yu − Λ̂u)fj(X)]| = Ψ̂ujjλ/n.
Since �Ψ̂u0 ≤ Ψ̂u implies ‖Ψ̂−1

u Ψ̂u0‖∞ ≤ 1/�, the first relation follows from
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∥∥
∞
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]∥∥
≤
√
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∥∥Ψ̂−1
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]∥∥
∞
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∞ sup

‖θ‖0≤ŝu�‖θ‖=1
En

[|Λ̂u −Λu|
∣∣f (X)′θ∣∣]

≤ λ

�cn

√
ŝu +

√
φmax(ŝu)(1/�)

∥∥Ψ̂−1
u0

∥∥
∞
∥∥f (X)′δu − ru

∥∥
Pn�2

uniformly in u ∈ U , where we used that Λ is 1-Lipschitz. This relation implies (O.24).
Step 3. In this step we show that if maxi≤n |f (Xi)

′(θ̂u − θu)− r̃ui| ≤ 1, we have

√
ŝu ≤ 2c(n/λ)

(c�− 1)

√
φmax(ŝu)

∥∥√wu

{
f (X)′(θ̂u − θu)− r̃u

}∥∥
Pn�2
�(O.25)

Note that uniformly in u ∈ U , Lemma O.5 establishes that |Λ̂ui−Λui| ≤wui2|f (X)′δu− r̃ui|
since maxi≤n |f (Xi)

′δu − r̃ui| ≤ 1 is assumed. Thus, combining this bound with the calcula-
tions performed in Step 2, we obtain

λ

n

√
ŝu ≤ λ

�cn

√
ŝu

+ (2/�)
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∞
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∥∥√wu

{
f (X)′δu − r̃u

}∥∥
Pn�2
�

which implies (O.25). Q.E.D.

PROOF OF LEMMA J.8: Let δ̃u = θ̃u − θu and t̃u = ‖√wuf (X)
′δ̃u‖Pn�2 and Su =

−En[f (X)ζu].
By Lemma O.2 with Au = {δ ∈ R

p : ‖δ‖0 ≤ s̃u + su}, we have

1
3
t̃2
u ∧
{
q̄Au
3
t̃u

}
≤Mu(θ̃u)−Mu(θu)− ∂θMu(θu)

′δ̃u + 2‖r̃u/√wu‖Pn�2 t̃u

≤Mu(θ̃u)−Mu(θu)+ ‖Su‖∞‖δ̃u‖1 + 3‖r̃u/√wu‖Pn�2 t̃u

≤Mu(θ̃u)−Mu(θu)

+ t̃u

{ √
s̃u + su‖Su‖∞

ψu(Au)
√
φmin(s̃u + su)

+ 3‖r̃u/√wu‖Pn�2

}
�



PROGRAM EVALUATION AND CAUSAL INFERENCE 49

where the second inequality holds by calculations as in (O.18) and Hölder’s inequality,
and the last inequality follows from

‖δ̃u‖1 ≤
√
s̃u + su‖δ̃u‖1 ≤

√
s̃u + su√

φmin(s̃u + su)

∥∥f (X)′δ̃u∥∥
Pn�2

≤
√
s̃u + su√

φmin(s̃u + su)

∥∥√wuf (X)
′δ̃u
∥∥
Pn�2

ψu(Au)

by the definition ψu(A) := minδ∈A
‖√wuf(X)′δ‖Pn�2

‖f (X)′δ‖Pn�2
.

Recall the assumed conditions q̄Au/6> {
√
s̃u+su‖Su‖∞

ψu(Au)
√

φmin(s̃u+su)
+3‖r̃u/√wu‖Pn�2} and q̄Au/6>√

Mu(θ̃u)−Mu(θu). If 1
3 t̃

2
u > { q̄Au3 t̃u}, then

q̄Au
3
t̃u ≤ q̄Au

6

√
Mu(θ̃u)−Mu(θu)+ q̄Au

6
t̃u�

so that t̃u ≤
√

0 ∨ {Mu(θ̃u)−Mu(θu)} which implies the result. Otherwise, we have

1
3
t̃2
u ≤ {Mu(θ̃u)−Mu(θu)

}
+ t̃u

{ √
s̃u + su‖Su‖∞

ψu(Au)
√
φmin(s̃u + su)

+ 3‖r̃u/√wu‖Pn�2

}
�

since for positive numbers a, b, c, inequality a2 ≤ b+ ac implies a≤ √
b+ c, we have

t̃u ≤ √
3
√

0 ∨ {Mu(θ̃u)−Mu(θu)
}

+ 3
{ √

s̃u + su‖Su‖∞

ψu(Au)
√
φmin(s̃u + su)

+ 3‖r̃ui/√wui‖Pn�2

}
�

Q.E.D.

O.4. Technical Lemmas: Logistic Case

The proof of the following lower bound builds upon ideas developed in Belloni and
Chernozhukov (2011) for high-dimensional quantile regressions.

LEMMA O.2—Minoration Lemma: For any u ∈ U and δ ∈Au ⊂ R
p, we have

Mu(θu + δ)−Mu(θu)− ∂θMu(θu)
′δ

+ 2‖r̃u/√wu‖Pn�2

∥∥√wuf (X)
′δ
∥∥
Pn�2

≥
{

1
3

∥∥√wuf (X)
′δ
∥∥2

Pn�2

}
∧
{
q̄Au
3

∥∥√wuf (X)
′δ
∥∥
Pn�2

}
�

where

q̄Au = inf
δ∈Au

En

[
wu

∣∣f (X)′δ∣∣2]3/2

En

[
wu

∣∣f (X)′δ∣∣3] �
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PROOF: Step 1 (Minoration). Consider the following nonnegative convex function:

Fu(δ)=Mu(θu + δ)−Mu(θu)− ∂θMu(θu)
′δ

+ 2‖r̃u/√wu‖Pn�2

∥∥√wuf (X)
′δ
∥∥
Pn�2
�

Note that if q̄Au = 0, the statement is trivial since Fu(δ)≥ 0. Thus we can assume q̄Au > 0.
Step 2 below shows that for any δ = tδ̃ ∈ R

p where t ∈ R and δ̃ ∈ Au such that
‖√wuf (X)

′δ‖Pn�2 ≤ q̄Au , we have

Fu(δ)≥ 1
3

∥∥√wuf (X)
′δ
∥∥2

Pn�2
�(O.26)

Thus (O.26) covers the case that δ ∈Au and ‖√wuf (X)
′δ‖Pn�2 ≤ q̄Au .

In the case that δ ∈Au and ‖√wuf (X)
′δ‖Pn�2 > q̄Au , by convexity4 of Fu and Fu(0)= 0

we have

Fu(δ) ≥
∥∥√wuf (X)

′δ
∥∥
Pn�2

q̄Au
Fu

(
δ

q̄Au∥∥√wuf (X)
′δ
∥∥
Pn�2

)
(O.27)

≥ q̄Au
∥∥√wuf (X)

′δ
∥∥
Pn�2

3
�

where the last step follows by (O.26) since

∥∥√wuf (X)
′δ̄
∥∥
Pn�2

= q̄Au for δ̄= δ
q̄Au∥∥√wuf (X)

′δ
∥∥
Pn�2

�

Combining (O.26) and (O.27), we have

Fu(δ)≥
{

1
3

∥∥√wuf (X)
′δ
∥∥2

Pn�2

}
∧
{
q̄Au
3

∥∥√wuf (X)
′δ
∥∥
Pn�2

}
�

Step 2 (Proof of (O.26)). Let r̃ui be such that Λ(f(Xi)
′θu + r̃ui) = Λ(f(Xi)

′θu)+ rui =
EP[Yui|Xi]. Defining gui(t) = log{1 + exp(f (Xi)

′θu + r̃ui + tf (Xi)
′δ)}, g̃ui(t) = log{1 +

exp(f (Xi)
′θu + tf (Xi)

′δ)}, Λui := EP[Yui|Xi], Λ̃ui := exp(f (Xi)
′θu)/{1 + exp(f (Xi)

′θu)},
we have

Mu(θu + δ)−Mu(θu)− ∂θMu(θu)
′δ(O.28)

= En

[
log
{
1 + exp

(
f (X)′{θu + δ})}−Yuf (X)

′(θu + δ)
]

−En

[
log
{
1 + exp

(
f (X)′θu

)}−Yuf (X)
′θu
]

−En

[
(Λ̃u −Yu)f (X)

′δ
]

= En

[
log
{
1 + exp

(
f (X)′{θu + δ})}

− log
{
1 + exp

(
f (X)′θu

)}− Λ̃uf (X)
′δ
]

4If φ is a convex function with φ(0) = 0, for α ∈ (0�1) we have φ(t) ≥ φ(αt)/α. Indeed, by
convexity�φ(αt + (1 − α)0)≤ (1 − α)φ(0)+ αφ(t)= αφ(t).
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= En

[
g̃u(1)− g̃u(0)− g̃′

u(0)
]

= En

[
gu(1)− gu(0)− g′

u(0)
]

+En

[{
g̃u(1)− gu(1)

}− {g̃u(0)− gu(0)
}− {g̃′

u(0)− g′
u(0)

}]
�

Note that the function gui is three times differentiable and satisfies

g′
ui(t)= (f (Xi)

′δ
)
Λui(t)�

g′′
ui(t)= (f (Xi)

′δ
)2
Λui(t)

[
1 −Λui(t)

]
� and

g′′′
ui(t)= (f (Xi)

′δ
)3
Λui(t)

[
1 −Λui(t)

][
1 − 2Λui(t)

]
�

where Λui(t) := exp(f (Xi)
′θu + r̃ui + tf (Xi)

′δ)/{1 + exp(f (Xi)
′θu + r̃ui + tf (X)′δ)}. Thus

we have |g′′′
ui(t)| ≤ |f (X)′δ|g′′

ui(t). Therefore, by Lemmas O.3 and O.4 given following the
conclusion of this proof, we have

gui(1)− gui(0)− g′
ui(0)(O.29)

≥
(
f (Xi)

′δ
)2
wui(

f (Xi)
′δ
)2

{
exp
(−∣∣f (Xi)

′δ
∣∣)+ ∣∣f (Xi)

′δ
∣∣− 1

}

≥wui

{∣∣f (Xi)
′δ
∣∣2

2
−
∣∣f (Xi)

′δ
∣∣3

6

}
�

Moreover, letting Υui(t)= g̃ui(t)− gui(t), we have∣∣Υ ′
ui(t)

∣∣= ∣∣(f (Xi)
′δ
){
Λui(t)− Λ̃ui(t)

}∣∣≤ ∣∣f (Xi)
′δ
∣∣|r̃ui|�

where Λ̃ui(t) := exp(f (Xi)
′θu + tf (Xi)

′δ)/{1 + exp(f (Xi)
′θu + tf (Xi)

′δ)}. Thus∣∣En

[{
g̃u(1)− gu(1)

}− {g̃u(0)− gu(0)
}− {g̃′

u(0)− g′
u(0)

}]∣∣(O.30)

= ∣∣En

[
Υu(1)−Υu(0)− {Λ̃u −Λu}f (X)′δ

]∣∣
≤ 2En

[|r̃u|∣∣f (X)′δ∣∣]�
Therefore, combining (O.28) with the bounds (O.29) and (O.30), we have

Mu(θu + δ)−Mu(θu)− ∂θMu(θu)
′δ

≥ 1
2
En

[
wu

∣∣f (X)′δ∣∣2]− 1
6
En

[
wu

∣∣f (X)′δ∣∣3]
− 2‖r̃u/√wu‖Pn�2

∥∥√wuf (X)
′δ
∥∥
Pn�2
�

which holds for any δ ∈ R
p.

Take any δ = tδ̃, t ∈ R \ {0}, δ̃ ∈Au such that ‖√wuf (X)
′δ‖Pn�2 ≤ q̄Au . (Note that the

case of δ= 0 is trivial.) We have

En

[
wu

∣∣f (X)′δ∣∣2]1/2 = ∥∥√wuf (X)
′δ
∥∥
Pn�2

≤ q̄Au
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≤ En

[
wu

∣∣f (X)′δ̃∣∣2]3/2
/En

[
wu

∣∣f (X)′δ̃∣∣3]
= En

[
wu

∣∣f (X)′δ∣∣2]3/2
/En

[
wu

∣∣f (X)′δ∣∣3]�
since the scalar t cancels out. Thus�En[wu|f (X)′δ|3] ≤ En[wu|f (X)′δ|2]. Therefore we
have

1
2
En

[
wu

∣∣f (X)′δ∣∣2]− 1
6
En

[
wu

∣∣f (X)′δ∣∣3]≥ 1
3
En

[
wu

∣∣f (X)′δ∣∣2]
and

Mu(θu + δ)−Mu(θu)− ∂θMu(θu)
′δ

≥ 1
3
En

[
wu

∣∣f (X)′δ∣∣2]− 2
∥∥∥∥ r̃u√

wu

∥∥∥∥
Pn�2

∥∥√wuf (X)
′δ
∥∥
Pn�2
�

which establishes that Fu(δ) :=Mu(θu + δ)−Mu(θu)− ∂θMu(θu)
′δ+ 2‖ r̃u√

wu
‖Pn�2‖√wu ×

f (X)′δ‖Pn�2 is larger than 1
3En[wu|f (X)′δ|2] for any δ = tδ̃, t ∈ R, δ̃ ∈ Au, and ‖√wu ×

f (X)′δ‖Pn�2 ≤ q̄Au . Q.E.D.

LEMMA O.3—Lemma 1 From Bach (2010): Let g :R → R be a three times differentiable
convex function such that, for all t ∈ R, |g′′′(t)| ≤Mg′′(t) for someM ≥ 0. Then, for all t ≥ 0,
we have

g′′(0)
M2

{
exp(−Mt)+Mt − 1

} ≤ g(t)− g(0)− g′(0)t

≤ g′′(0)
M2

{
exp(Mt)+Mt − 1

}
�

LEMMA O.4: For t ≥ 0, we have exp(−t)+ t − 1 ≥ 1
2 t

2 − 1
6 t

3.

PROOF: For t ≥ 0, consider the function f (t) = exp(−t) + t3/6 − t2/2 + t − 1. The
statement is equivalent to f (t) ≥ 0 for t ≥ 0. It follows that f (0) = 0, f ′(0) = 0, and
f ′′(t)= exp(−t)+ t−1 ≥ 0 so that f is convex. Therefore� f (t)≥ f (0)+ tf ′(0)= 0. Q.E.D.

LEMMA O.5: The logistic link function satisfies |Λ(t+ t0)−Λ(t0)| ≤Λ′(t0){exp(|t|)− 1}.
If |t| ≤ 1, we have exp(|t|)− 1 ≤ 2|t|.

PROOF: Note that |Λ′′(s)| ≤ Λ′(s) for all s ∈ R, so that −1 ≤ d
ds

log(Λ′(s)) = Λ′′(s)
Λ′(s) ≤ 1.

Suppose s ≥ 0. Therefore,

−s ≤ log
(
Λ′(s+ t0)

)− log
(
Λ′(t0)

)≤ s�

In turn, this implies Λ′(t0)exp(−s)≤Λ′(s+ t0)≤Λ′(t0)exp(s). For t > 0, integrating one
more time from 0 to t,

Λ′(t0)
{
1 − exp(−t)}≤Λ(t + t0)−Λ(t0)≤Λ′(t0)

{
exp(t)− 1

}
�

Similarly, for t < 0, integrating from t to 0, we have

Λ′(t0)
{
1 − exp(t)

}≤Λ(t + t0)−Λ(t0)≤Λ′(t0)
{
exp(−t)− 1

}
�
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The first result follows by noting that 1 − exp(−|t|)≤ exp(|t|)− 1. The second follows
by verification. Q.E.D.

APPENDIX P: SIMULATION EXPERIMENT

In this section, we present results from a brief simulation experiment. The results il-
lustrate the performance of our proposed treatment effect estimator that makes use of
estimating equations satisfying the key orthogonality condition given in Equation (1.2) in
the main text and variable selection relative to an estimator that uses variable selection
but is based on a “naive” estimating equation that does not satisfy the orthogonality con-
dition. We find that inference based on the naive estimator can suffer from substantial
size distortions and that the performance of this estimator is strongly dependent on fea-
tures of the data-generating process (DGP). We also find that tests based on the estimator
constructed using our procedure have size close to the nominal level uniformly across all
DGPs we consider consistent with the theory developed in the paper.

For simplicity, we consider the case where the treatment� di, is exogenous conditional
on control variables xi. In this case, we can apply the results of the paper substituting di for
zi in each instance where instruments zi are used since di is conditionally exogenous and
thus a valid instrument for itself. All of the simulation results are based on data generated
as

di = 1
{

exp
{
x′
i(cdθ0)

}
1 + exp

{
x′
i(cdθ0)

} > vi}�
yi = di

[
x′
i(cyθ0)

]+ ζi�

where vi ∼ U(0�1), ζi ∼ N(0�1), vi and ζi are independent�p = dim(xi) = 250, the co-
variates xi ∼N(0�Σ) with Σkj = (0�5)|j−k|, and the sample size n= 200. θ0 is a p×1 vector
with elements set as θ0�j = (1/j)2 for j = 1� � � � �p. cd and cy are scalars that control the
strength of the relationship between the controls, the outcome, and the treatment vari-

able. We use several different combinations of cd and cy , setting cd =
√

(π2/3)R2
d

(1−R2
d
)θ′

0Σθ0
and

cy =
√

R2
d

(1−R2
d
)θ′

0Σθ0
for all combinations of R2

d ∈ {0�0�1�0�2�0�3�0�4�0�5�0�6�0�7�0�8�0�9}
and R2

y ∈ {0�0�1�0�2�0�3�0�4�0�5�0�6�0�7�0�8�0�9}.
We report results for two different inference procedures in Figure S.9. The right panel

of the figure shows size of 5% level t-tests for the average treatment effect where the point
estimate is formed using our proposed estimator based on model selection and orthogonal
estimating equations and the standard error is estimated using a plug-in estimator of
the asymptotic variance. The left panel shows size of 5% level t-tests for the average
treatment effect estimated as

θ̂naive = 1
n

n∑
i=1

(
ĝy(1�xi)− ĝy(0�xi)

)
�

where ĝy(d�xi) is a post-model-selection estimator of E[Y |D= d�X = xi] and the stan-
dard error is estimated using a plug-in estimator of the asymptotic variance of θ̂naive.

Both procedures rely on post-model-selection estimates of the conditional expectations
E[Y |D= d�X = xi], and we use exactly the same estimator of this quantity in both cases.
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FIGURE S.9.—Rejection frequencies of 5% level tests for average treatment effect estimators following
model selection. The left panel shows size of a test based on a “naive” estimator (Naive rp(0.05)), and the right
panel shows size of a test based on our proposed procedure (Proposed rp(0.05)).

Specifically, we apply the Square-Root Lasso of Belloni, Chernozhukov, and Wang (2011)
with outcome Y and covariates (D�D ∗X1� � � � �D ∗Xp� (1 −D)� (1 −D) ∗X1� � � � � (1 −
D) ∗ Xp) to select variables. We set the penalty level in the Square-Root Lasso using
the “exact” option of Belloni, Chernozhukov, and Wang (2011) under the assumption
of homoscedastic, Gaussian errors ζi with the tuning confidence level required in Belloni,
Chernozhukov, and Wang (2011) set equal to 95%. After running the Square-Root Lasso,
we then estimate regression coefficients by regressing Y onto only those variables that
were estimated to have nonzero coefficients by the Square-Root Lasso. We then form
estimates of E[Y |D = 1�X = xi] by plugging (1�x′

i)
′ into the estimated model for i =

1� � � � � n and form estimates of E[Y |D= 0�X = xi] by plugging (0�x′
i)

′ into the estimated
model for i= 1� � � � � n.

For our proposed method, we also need an estimate of the propensity score. We obtain
our estimates of the propensity score by using �1-penalized logistic regression with D
as the outcome and X as the covariates with penalty level set equal to 0�5

√
n�−1(1 −

1/2p)/n, where �(·) is the standard normal distribution function using the MATLAB
function “glmlasso.”5 We standardize the variables in X and set penalty loadings equal
to 1. After running the �1-penalized logistic regression, we estimate the propensity score
by taking fitted values from the conventional logistic regression of D onto only those
variables that had nonzero estimated coefficients in the �1-penalized logistic regression.

Looking at the results, we see that the behavior of the naive testing procedure de-
pends heavily on the underlying coefficient sequence used to generate the data. There
are substantial size distortions for many of the coefficient designs considered with good
performance, size close to the nominal level, only occurring in a handful of cases. It is
worth noting that, in practice, one does not know the underlying DGP and even estima-
tion of the quantities necessary to know where one is in the figure may be infeasible even
in this simple scenario. Our proposed procedure does a much better job at delivering ac-
curate inference, producing tests with size close to the nominal level across all designs
considered. That is, the simulation illustrates the uniformity derived in the theoretical de-
velopment of our estimator, illustrating that its performance is relatively good uniformly

5This penalty level is equivalent to that discussed in the main paper since “glmlasso” scales the problem in
a slightly different way.
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across a variety of coefficient sequences. While simply illustrative, these simulation results
reinforce the theoretical development of the main paper which proves that our proposed
estimation and inference procedures have good properties uniformly across a variety of
DGPs where approximate sparsity holds.
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