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APPENDIX C: UNOBSERVED HETEROGENEITY

IT IS POSSIBLE TO INCORPORATE unobserved heterogeneity or random coefficients in the
model. However, this would significantly increase the computational cost of estimation.
The simplest way to introduce unobserved heterogeneity is to model the preference shock
εij as incorporating individual random effects. The decision of the player to form a link is
modified as follows:

Ui(gij = 1� g−ij�X)+ηi +ηj + νij1 ≥Ui(gij = 0� g−ij�X)+ηi + νij0� (39)

where νij is an i.i.d. shock with logistic distribution and the vector η = {η1� � � � �ηn}
is drawn at time 0 from a known distribution W (η). In this formulation, we assume
that the players observe the random effect η but the econometrician does not. No-
tice that the random effect of player i cancels out, while the choice of linking j is
conditional on the random effect of player j (which is present only when the link is
formed).

Conditioning on the realization of the vector η ∈ Υ , the potential function is modified
as follows:

Q(g�X�θ;η)=Q(g�X�θ)+
n∑
i=1

n∑
j=1

gijηj� (40)

To compute the unconditional likelihood, we need to integrate out the unobserved vector
η to obtain

π(g�X�θ)=
∫
Υ

exp
[
Q(g�X�θ;η)]∑

ω∈G
exp

[
Q(ω�X�θ;η)] dW (η)� (41)

The integral above can be computed using Monte Carlo techniques, as it is stan-
dard in the empirical industrial organization literature or labor economics. However,
the model does not allow standard Monte Carlo, because of the normalizing con-
stant.

A more feasible strategy is to use data augmentation and Markov chain Monte Carlo
methods as in the discrete choice literature (Rossi, McCulloch, and Allenby (1996), Athey
and Imbens (2007)). Conditioning on the realization of the unobserved component η, we
can use the exchange algorithm to sample from the posterior distribution of θ. Condition-
ing on the proposed θ, we can use a Metropolis–Hastings step to sample the unobserved
component η.

Given an initial (θ�η) at simulation s, we propose a new θ′ and use the exchange al-
gorithm to accept or reject the proposal. Given the new value of θs+1, we propose a new
vector of unobserved components η′ and accept using a Metropolis–Hastings step. The
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probability of η, conditioning on (θ�g�X), is

Pr(η|g�X�θ)= W (η)π(g�X�θ;η)
π(g�X�θ)

� (42)

The Metropolis–Hastings step proceeds by proposing a new η′ from a distribution
qη(η

′|η), which is accepted with probability

αη
(
η�η′� g�θs

) =
{

1�
W

(
η′)π(

g�X�θ;η′)qη(η|η′)
W (η)π(g�X�θ;η)qη

(
η′|η) }

� (43)

Similar ideas apply to random coefficients. However, as discussed in Graham (2016),
when we observe only one network in the data, it is not possible to separately identify
the linking externalities and the unobserved heterogeneity.

The main cost of these extensions is the increased computational burden, which may
be substantial.

APPENDIX D: LARGE NETWORKS ANALYSIS AND CONVERGENCE

In this paper, we developed a network formation game model, which results in an equi-
librium network similar to a directed ERGM. The probability of observing network g is
given by (notice that gij = 1 does not imply gji = 1, because it is a directed network)

πn(g)=
exp

[
n∑
i=1

n∑
j=1

gijuij + 1
2

n∑
i=1

n∑
j=1

gijgjimij +
n∑
i=1

n∑
j=1

n∑
k �=i�j

gijgjkvik

]
c(Gn)

�

where the functions uij = u(Xi�Xj�θu), mij =m(Xi�Xj�θm), and vik = v(Xi�Xk�θv) are
function of vectors of covariatesXi’s and parameters θ= (θu�θm�θv). To simplify, we will
assume that all these functions are constants, so that we do not consider the covariates.
Hence, the probability of observing network g with parameters α, β, γ

πn(g;α�β�γ)=
exp

[
α

n∑
i=1

n∑
j=1

gij + β

2

n∑
i=1

n∑
j=1

gijgji + γo
n∑
i=1

n∑
j=1

n∑
k �=i
gijgjk

]
c(α�β�γ�Gn)

�

To apply the analysis of Chatterjee and Diaconis (2013), we re-scale the terms as

πn(g;α�β�γ)=
exp

{
n2

[
α

n∑
i=1

n∑
j=1

gij

n2 + β

2

n∑
i=1

n∑
j=1

gijgji

n2 + γ

n∑
i=1

n∑
j=1

n∑
k �=i
gijgjk

n3

]}
c(α�β�γ�Gn)

� (44)

Notice that γ needs to be re-scaled (i.e., divided by n) when we run the simulations
using the usual ERGM form, that is, γo = γ

n
for simulations using the ergm package in

the software R.
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In the formula above, the term
∑n
i=1

∑n
j=1 gij

n2 is the directed edge density of the network,

the term
∑n
i=1

∑n
j=1 gijgji

n2 is the reciprocity density, while
∑n
i=1

∑n
j=1

∑n
k �=i gijgjk

n3 is the density of
directed two-paths (in our model, the latter is intepreted as popularity or indirect links
effect).

In this appendix, we provide the technical results about the graph limits, large devia-
tions, and mean-field approximations of the model. In the exposition for graph limits and
large deviations, we report some results for undirected networks from Chatterjee and
Varadhan (2011) and Chatterjee and Diaconis (2013), for completeness.

D.1. A Crash Course on Graph Limits

Most of this brief digression follows the overview in Chatterjee and Diaconis (2013),
focusing on directed graphs. For a more detailed introduction to graph limits, see Lovasz
(2012), Borgs et al. (2008), and Lovasz and Szegedy (2007). Most of the theory is de-
veloped for dense graphs, but there are several results for sparse graphs. The model
presented here generates a dense graph; therefore, we present only the relevant the-
ory.

Consider a sequence of simple directed graphs Gn, where the number of nodes n tends
to infinity. Let |hom(H�G)| denote the number of homomorphisms of simple directed
graph H into G. An homomorphism is an arc-preserving map from the set of vertices
V (H) of H to the set of vertices V (G) of G.49 For the graph limits we are interested in
the homomorphism densities of the form

t(H�G)=
∣∣hom(H�G)

∣∣∣∣V (G)∣∣|V (H)| �
Intuitively, t(H�G) is the probability that a random mapping V (H)→ V (G) is a ho-

momorphism. We are interested in the behavior of t(H�Gn) when n→ ∞. In particular,
we want to characterize the limit object t(H), for any simple graphH. The work of Lovasz
(see Lovasz (2012) for an extensive overview) provides the limit object for this problem.
Let h ∈ W be a function in the space W of all measurable functions h : [0�1]2 → [0�1].
This slightly differs from the original paper of Chatterjee and Diaconis (2013) because
we are considering directed graphs, and therefore we do not require the function h to
be symmetric. For comparison with the original formulation, let Wo denote the set of all
measurable functions h : [0�1]2 → [0�1] such that h(x� y)= h(y�x).

The existence of such limit objects and the characterization for directed graphs is con-
tained in Boeckner (2013) and extends the usual formulation for undirected graphs. If H
is a simple directed graph with k vertices (i.e., V (H)= {1�2� � � � �k}), the limit object for
t(H�Gn) is

t(H�h)=
∫

[0�1]k

∏
(i�j)∈E(H)

h(xi�xj)dx1 · · · dxk�

49An important difference between homomorphisms for undirected graphs and directed graphs is that in
the latter class of models, the existence of homomorphisms is not guaranteed. See Lovasz (2012) for some
additional details.
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where E(H) is the set of directed edges ofH. For example, if we are interested in homor-
phisms of a directed edge, the homomorphism density is

t(H�G)=
∣∣hom(H�G)

∣∣∣∣V (G)∣∣|V (H)| =

∑
i

∑
j

gij

n2

and the limit object is

t(H�h)=
∫

[0�1]k

∏
(i�j)∈E(H)

h(xi�xj)dx1 · · · dxk =
∫ 1

0

∫ 1

0
h(x� y)dxdy�

If we are interested in the indirect links as in our model, we have

t(H�G)=
∣∣hom(H�G)

∣∣∣∣V (G)∣∣|V (H)| =

∑
i

∑
j

∑
k

gijgjk

n3

with limit object

t(H�h)=
∫

[0�1]k

∏
(i�j)∈E(H)

h(xi� xj)dx1 · · · dxk =
∫ 1

0

∫ 1

0

∫ 1

0
h(x� y)h(y� z)dxdy dz�

A sequence of graphs {Gn}n≥1 converges to h if, for every simple directed graph H,

lim
n→∞

t(H�Gn)= t(H�h)�

The intuitive interpretation of this theory is simple: when n becomes large, we re-scale
the vertices to a continuum interval [0�1]; and h(x� y) is the probability that there is
a directed edge from x to y . The limit object h ∈ W is called graphon. For any finite
graph G with vertex set {1� � � � � n}, we can always define the graph limit representation
fG as

fG(x� y)=
{

1 if
(�nx	� �ny	) is a directed edge of G�

0 otherwise

where the symbol �a	 indicates the ceiling of a, that is, the smallest integer greater than
or equal to a.

To study convergence in the space W of the functions h, we need to define a metric.
We use the cut distance

d�(f�g)≡ sup
S�T⊆[0�1]

∣∣∣∣∫
S×T

[
f (x� y)− g(x� y)]dxdy∣∣∣∣�

where f and g are functions in W . However, there is some nontrivial complication in
the topology induced by the cut metric. To solve this complication, the usual approach is
to work with a suitably defined quotient space W̃ . We introduce an equivalence relation
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in W : f ∼ g if f (x� y) = gσ(x� y) = g(σx�σy) for some measure-preserving bijection
σ : [0�1] → [0�1]. We will use h̃ to denote the equivalence class of h in (W� d�). Since d�
is invariant under σ , we can define a distance on the quotient space W̃ as

δ�(f̃ � g̃)≡ inf
σ
d�(f�gσ)= inf

σ
d�(fσ� g)= inf

σ1�σ2
d�(fσ1� gσ2)�

This makes (W̃� δ�) a metric space with several nice properties: it is compact and the
homomorphism densities t(H�h) are continuous functions on it. We associate fG to any
finite graph G and we have G̃ = τfG = f̃ G ∈ W̃ , where τ is a mapping, τ : f → f̃ . For
completeness, we prove the compactness of the metric space, which is crucial for some of
the following proofs.

LEMMA 5: The metric space (W̃� δ�) is compact.

PROOF: The proof follows similar steps as in Theorem 5.1 of Lovasz and Szegedy
(2007). For every function h ∈ W and a partition P = {P1�P2� � � � �Pk} of [0�1] into mea-
surable sets, we define hP : [0�1]2 → [0�1] to be the step-function obtained from h by
replacing its value at (x� y) ∈ Pi × Pj by the average of h over Pi × Pj .

Let h1�h2� � � � be a sequence of functions in W . We need to construct a subsequence
that has limit in W̃ . According to Lemmas 3.1.20 and 3.1.21 in Boeckner (2013), we can
create a partition Pn�k = {P1�n�k� � � � �Pmk�n�k} of [0�1] for every n and k. This partition
corresponds to a step-function hn�k = hPn�k ∈W , such that:

1. δ�(hn�hn�k)≤ 1/k,
2. |Pn�k| =mk (where mk only depends on k),
3. the partition Pn�k+1 refines the partition Pn�k for every k.

Notice that since δ�(hn�hn�k) ≤ 1/k, we can rearrange the range of hn�k so that all the
steps of the function are intervals. Select a subsequence of hn such that the length of the
ith interval Pi�n�1 of hn�1 converges for every i as n→ ∞; and the value hn�1 on Pi�n�1 ×Pj�n�1
also converges for every i and j as n→ ∞. Hence, the sequence hn�1 converges to a limit
almost everywhere. Let us call the limit U1: notice that U1 is also a step-function with m1

steps (that are themselves intervals). We can repeat this procedure for k = 2�3� � � � . We
obtain subsequences for which hn�k → Uk almost everywhere, and Uk is a step-function
with mk steps.

We know that for every k < l, the partition Pn�l is a refinement of partition Pn�k. As a
consequence, the partition into the steps of hn�l is a refinement of the partition into the
steps of hn�k. Clearly, the same relation must hold for Ul and Uk, that is, the partition into
the steps of Ul is a refinement of the partition into the steps of Uk. By construction of
hP , the function hn�k can be obtained from hn�l by averaging its value over each step. As a
consequence, the same holds for Ul and Uk.

It is shown in the proof of Lemma 3.1.21 in Boeckner (2013) that if we pick a random
point (X�Y) uniformly over [0�1]2, the sequence U1(X�Y), U2(X�Y)� � � � is martingale,
and each element of the sequence is bounded. Using the Martingale Convergence The-
orem, we can show that the sequence U1(X�Y), U2(X�Y)� � � � converges almost every-
where. We define this limit U .

The rest of the proof is the same as in Theorem 5.1 of Lovasz and Szegedy (2007). Fix
an ε > 0. Then there exists a k > 3/ε, which we denote as K, such that ‖U −Uk‖1 < ε/3.
Fix k=K; then there is an N such that, for all n≥N , we have ‖Uk − hn�k‖1 < ε/3. Then
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we finally have

δ�(U�hn) ≤ δ�(U�Uk)+ δ�(Uk�hn�k)+ δ�(hn�k�hn)
≤ ‖U −Uk‖1 + ‖Uk − hn�k‖1 + δ�(hn�k�hn)
≤ ε

3
+ ε

3
+ ε

3
= ε�

As a consequence, hn →U in the metric space (W̃� δ�). Q.E.D.

D.2. A Crash Course on Large Deviations for Random Graphs

D.2.1. Undirected Graphs (Original Chatterjee and Varadhan (2011) Formulation)

Chatterjee and Varadhan (2011) developed a large deviation principle for the undi-
rected Erdős–Rényi graph. Let G(n�p) indicate the random undirected graph with n
vertices where each link is formed independently with probability p. Define a function
Ip : [0�1] → R:

Ip(u)≡ 1
2
u log

u

p
+ 1

2
(1 − u) log

1 − u
1 −p (45)

whose domain is easily extended to Wo as

Ip(h)=
∫ 1

0

∫ 1

0
Ip

(
h(x� y)

)
dxdy

(46)

= 1
2

∫ 1

0

∫ 1

0

[
h(x� y) log

h(x� y)

p
+ (

1 − h(x� y)) log
1 − h(x� y)

p

]
dxdy�

Analogously, we can define Ip on W̃o as Ip(h̃) ≡ Ip(h). The graph G(n�p) induces a
probability distribution Pn�p on Wo, because we can use the mapG→ fG; and it induces a
probability distribution P̃n�p on W̃o according to the map G→ fG → f̃ G = G̃. Chatterjee
and Varadhan (2011) stated a large deviation principle for the Erdős–Rényi random graph
in both spaces (Wo� d�) and (W̃o� δ�).

We report the main result of Chatterjee and Varadhan (2011) for completeness.

THEOREM 7—Large Deviation Principle for Erdős–Rényi Graph, Chatterjee and
Varadhan (2011): For each fixed p ∈ (0�1), the sequence P̃n�p obeys a large deviation princi-
ple in the space (W̃o� δ�) with rate function Ip(h) defined in (46). For any closed set F̃ ⊆ W̃ ,

lim sup
n→∞

1
n2 log P̃n�p(F̃)≤ − inf

h̃∈F̃
Ip(h̃)�

and for any open set Ũ ⊆ W̃ ,

lim inf
n→∞

1
n2 log P̃n�p(Ũ)≥ − inf

h̃∈Ũ
Ip(h̃)�
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D.2.2. Directed Graphs

First, we consider the extension of Theorem 7 to directed Erdős–Rényi graphs. Let
Gd(n�p) indicate the random directed graph with n vertices where each arc is formed
independently with probability p. Define a function Ip : [0�1] → R

Ip(u)≡ u log
u

p
+ (1 − u) log

1 − u
1 −p : (47)

whose domain is easily extended to W as

Ip(h)=
∫ 1

0

∫ 1

0
Ip

(
h(x� y)

)
dxdy

(48)

=
∫ 1

0

∫ 1

0

[
h(x� y) log

h(x� y)

p
+ (

1 − h(x� y)) log
1 − h(x� y)

p

]
dxdy�

Analogously, we can define Ip on W̃ as Ip(h̃)≡ Ip(h). Chatterjee and Varadhan (2011)
(see their Lemma 2.1) proved that this function is lower semicontinuous on W̃ under the
metric δ�.

The graph Gd(n�p) induces a probability distribution Pn�p on W , because we can use
the map G→ fG; and it induces a probability distribution P̃n�p on W̃ according to the
map G→ fG → f̃ G = G̃. The large deviation principle for this case is presented in the
following theorem.

THEOREM 8—Large Deviation Principle for Directed Erdős–Rényi Graph: For each
fixed p ∈ (0�1), the sequence P̃n�p obeys a large deviation principle in the space (W̃� δ�)

with rate function Ip(h) defined in (48). For any closed set F̃ ⊆ W̃ ,

lim sup
n→∞

1
n2 log P̃n�p(F̃)≤ − inf

h̃∈F̃
Ip(h̃)�

and for any open set Ũ ⊆ W̃ ,

lim inf
n→∞

1
n2 log P̃n�p(Ũ)≥ − inf

h̃∈Ũ
Ip(h̃)�

PROOF: The proof follows the same steps as in the original theorem for undirected
graphs in Chatterjee and Varadhan (2011), but substituting the new rate function in (48).
For the upper bound, we define pi�j as in the original paper, but we do not require sym-
metry. We use slightly different regularity conditions, as provided in Boeckner (2013),
because of the directed nature of the graph. In particular, we use Lemmas 3.1.14, 3.1.20,
and 3.1.21 in Boeckner (2013). With these small changes, Lemma 2.4, 2.5, and 2.6 in
Chatterjee and Varadhan (2011) hold. The proof follows the same steps as in the undi-
rected case. For the lower bound, the proof is identical, without the requirement of sym-
metry. Q.E.D.
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D.3. Undirected ERGM (Chatterjee and Diaconis (2013))

Let T : W̃o → R be a bounded continuous function in space (W̃o� δ�). For a given n,
the probability function for the graphs is given by

πn(G)= exp
{
n2

[
T(G̃)−ψn

]}
�

where G̃ is defined on W̃o according to the map G→ fG → f̃ G = G̃, and ψn is a constant
defined as

ψn = 1
n2 log

∑
G∈Gn

exp
{
n2

[
T(G̃)

]}
� (49)

The re-scaling by n2 is necessary to guarantee that the limits for n→ ∞ converge to
some nontrivial quantity. We are interested in finding the value of ψn as n → ∞. We
define a rate function

I(u)≡ 1
2
u logu+ 1

2
(1 − u) log(1 − u) (50)

which we extend to W̃o as

I(h̃)≡ 1
2

∫ 1

0

∫ 1

0
I
(
h(x� y)

)
dxdy�

I(h̃)≡ 1
2

∫ 1

0

∫ 1

0
I
(
h(x� y)

)
dxdy (51)

= 1
2

∫ 1

0

∫ 1

0

[
h(x� y) logh(x� y)+ (

1 − h(x� y)) log
(
1 − h(x� y))]dxdy�

THEOREM 9—Theorem 3.1 for ERGM in Chatterjee and Diaconis (2013): If T : W̃o →
R is a bounded continuous function andψn and I are defined as in (49) and (51), respectively,
then

ψ≡ lim
n→∞

ψn = sup
h̃∈W̃o

{
T(h̃)− I(h̃)}�

D.4. Directed ERGM

Let T : W̃ → R be a bounded continuous function in space (W̃� δ�). In our model, T
corresponds to the potential function Q of the network formation game after re-scaling
some of the utility components (see below for details and examples). In what follows, we
omit the dependence on the parameters to simplify notation. For a given n, the probability
of observing network G is given by

πn(G)= exp
{
n2

[
T (G̃)−ψn

]}
�

where G̃ is defined on W̃ according to the map G→ fG → f̃ G = G̃, and ψn is a normal-
ization constant defined as

ψn = 1
n2 log

∑
G∈Gn

exp
{
n2

[
T (G̃)

]}
� (52)
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This is the same as the stationary distribution of our model, after some re-scaling of
the utility functions. The re-scaling by n2 is necessary to guarantee that the limits for
n→ ∞ converge to some nontrivial quantity. We are interested in finding the value of ψn
as n→ ∞, using the same line of reasoning in Theorem 3.1 of Chatterjee and Diaconis
(2013). We define a rate function

I(u)≡ u logu+ (1 − u) log(1 − u)� (53)

which we extend to W̃ as

I(h̃)≡
∫ 1

0

∫ 1

0
I
(
h(x� y)

)
dxdy

(54)

=
∫ 1

0

∫ 1

0

[
h(x� y) logh(x� y)+ (

1 − h(x� y)) log
(
1 − h(x� y))]dxdy�

THEOREM 10—Asymptotic Log-Constant for Directed ERGM: If T : W̃ → R is a
bounded continuous function and ψn and I are defined as in (52) and (54), respectively,
then

ψ≡ lim
n→∞

ψn = sup
h̃∈W̃

{
T (h̃)− I(h̃)

}
� (55)

PROOF: The proof of this result follows closely the proof of Theorem 3.1 in Chatterjee
and Diaconis (2013), with minimal changes. Let Ã denote a Borel set Ã⊆ W̃ . For each
n, let Ãn be the (finite) set

Ãn ≡ {h̃ ∈ Ã such that h̃= G̃ for some G ∈ Gn}�
Let Pn�p be the probability distribution of the directed random graph Gd(n�p) defined
above. We have

|Ãn| = 2n(n−1)Pn�1/2(Ãn)= 2n(n−1)Pn�1/2(Ã)�

We can use the result in Theorem 8 to show that, for a closed subset F̃ of W̃ , we have

lim sup
n→∞

1
n2 log P̃n�1/2(F̃n)= lim sup

n→∞

1
n2

[
log |F̃n| − n(n− 1) log 2

]
= lim sup

n→∞

1
n2 log |F̃n| − log 2

≤ − inf
h̃∈F̃

I1/2(h̃)�

Therefore, we obtain

lim sup
n→∞

1
n2 log |F̃n| ≤ log 2 − inf

h̃∈F̃
I1/2(h̃)

= inf
h̃∈F̃

I(h̃)�
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Similarly, for an open subset Ũ of W̃ , we have

lim inf
n→∞

1
n2 log |Ũn| ≥ log 2 − inf

h̃∈Ũ
I1/2(h̃)

= inf
h̃∈Ũ

I(h̃)�

The rest of the proof is equivalent to the undirected case (see proof of Theorem 3.1 in
Chatterjee and Diaconis (2013)). Q.E.D.

The result of Theorem 10 shows that as n grows large, we can compute the normalizing
constant of the ERGM as the result of a variational problem. The main issue is that the
variational problem does not have a closed-form solution for most cases. However, there
are some special cases in which the solution can be computed explicitly. Let us consider a
model with utility from directed links and friends of friends. Using the notation developed
above, we are considering a model with function T :

T (G̃)= θ1

n∑
i=1

n∑
j=1

gij

n2 + θ2

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk

n3 � (56)

For any h ∈W , we can define

T (h)= θ1t(H1�h)+ θ2t(H2�h)�

where the limit objects are

t(H1�h)=
∫ ∫

[0�1]2
h(x� y)dxdy

and

t(H2�h)=
∫ ∫ ∫

[0�1]3
h(x� y)h(y� z)dxdy dz�

We will assume that θ2 > 0. In this case, there is an explicit solution of the variational
problem. The following theorem provides a characterization of the variational problem
along the same lines of Radin and Yin (2013) and Aristoff and Zhu (2014).

THEOREM 11: Let θ2 > 0 and T be defined as in (56) above. Then

lim
n→∞

ψn =ψ= sup
μ∈[0�1]

{
θ1μ+ θ2μ

2 −μ logμ− (1 −μ) log(1 −μ)}�
1. If θ2 ≤ 2, the maximization problem has a unique maximizer μ∗ ∈ [0�1].
2. If θ2 > 2 and θ1 ≥ −2, then there is a unique maximizer μ∗ > 0�5.
3. If θ2 > 2 and θ1 <−2, then there is a V-shaped region of the parameters such that

(a) inside the V-shaped region, the maximization problem has two local maximizers μ∗
1 <

0�5<μ∗
2;

(b) outside the V-shaped region, the maximization problem has a unique maximizer μ∗.
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4. For any θ1 inside the V-shaped region, there exists a θ2 = q(θ1), such that the two
maximizers are both global, that is, �(μ∗

1)= �(μ∗
2).

PROOF: We need to use the Holder inequality: if p, q are such that 1/p+1/q= 1, then
for any measurable functions f , g defined on the same domain,∫

f (x)g(x)dx≤
(∫

f (x)p dx

) 1
p
(∫

g(x)q dx

) 1
q

�

In particular, we have in our case

t(H2�h)=
∫ ∫ ∫

[0�1]3
h(x� y)h(y� z)dxdy dz

≤
(∫ ∫ ∫

[0�1]3
h(x� y)2 dxdy dz

) 1
2
(∫ ∫ ∫

[0�1]3
h(y� z)2 dxdy dz

) 1
2

=
(∫ ∫

[0�1]2
h(x� y)2

[∫
[0�1]

dz

]
dxdy

) 1
2
(∫ ∫

[0�1]2
h(y� z)2

[∫
[0�1]

dx

]
dy dz

) 1
2

=
(∫ ∫

[0�1]2
h(x� y)2 dxdy

) 1
2
(∫ ∫

[0�1]2
h(y� z)2 dy dz

) 1
2

=
(∫ ∫

[0�1]2
h(x� y)2 dxdy

) 1
2
(∫ ∫

[0�1]2
h(x� y)2 dxdy

) 1
2

=
∫ ∫

[0�1]2
h(x� y)2 dxdy�

We have assumed that θ2 > 0. Given the results of the Holder inequality, we can say
that

T (h)= θ1t(H1�h)+ θ2t(H1�h)

= θ1

∫ ∫
[0�1]2

h(x� y)dxdy + θ2

∫ ∫ ∫
[0�1]3

h(x� y)h(y� z)dxdy dz

≤ θ1

∫ ∫
[0�1]2

h(x� y)dxdy + θ2

∫ ∫
[0�1]2

h(x� y)2 dxdy�

Suppose h(x� y)= μ is a constant. Then the equality holds, and if μ ∈ [0�1] solves the
variational problem

lim
n→∞

ψn(θ)=ψ(θ)= sup
μ∈[0�1]

θ1μ+ θ2μ
2 −μ logμ− (1 −μ) log(1 −μ)�

then h(x� y)= μ is the limit graphon.
To show that this is the only solution, let us consider the maximization problem again.

For h(x� y) to be a solution, we need

T (h)= θ1

∫ ∫
[0�1]2

h(x� y)dxdy + θ2

∫ ∫
[0�1]2

h(x� y)2 dxdy�
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In other words, the Holder inequality must hold with equality, that is, we need

t(H2�h)=
∫ ∫ ∫

[0�1]3
h(x� y)h(y� z)dxdy dz

=
∫ ∫

[0�1]2
h(x� y)2 dxdy�

This implies that

h(x� y)= h(y� z)
for almost all (x� y� z). In particular, we have that, given x and y , μ = h(x� y) = h(y� z)
for any z ∈ [0�1] because the left-hand side does not depend on z. Given y and z, we
have μ′ = h(y� z)= h(x� y) for any x ∈ [0�1] because the left-hand side does not depend
on x. For x = y and z = y , we have μ = h(y� y) = h(y� y) = μ′. In addition, we have
h(x� y)= h(y�x)= μ= h(x�z). It follows that h(x� y)= μ almost everywhere.

It follows that T (h)= θ1μ+ θ2μ
2 and I(μ)= μ logμ+ (1 −μ) log(1 −μ), so we get

lim
n→∞

ψn =ψ= sup
μ∈[0�1]

{
θ1μ+ θ2μ

2 −μ logμ− (1 −μ) log(1 −μ)}�
We can now characterize the maximization problem above, to obtain the rest of the

results. The analysis follows the same steps of Radin and Yin (2013) and Aristoff and
Zhu (2014). The first-order and second-order conditions are

�′(μ�θ1� θ2)= θ1 + 2θ2μ− log
μ

1 −μ� (57)

�′′(μ�θ1� θ2)= 2θ2 − 1
μ(1 −μ)� (58)

Let us study the concavity of �(μ;θ1� θ2). We have that �′′(μ�θ1� θ2)≤ 0 when

θ2 ≤ 1
2μ(1 −μ)�

Notice that 2 ≤ 1
2μ(1−μ) ≤ ∞ for any μ ∈ [0�1]; and 1

2μ(1−μ) = 2 if μ = 0�5. As a conse-
quence, the function �(μ;θ1� θ2) is concave on the whole interval [0�1] for θ2 ≤ 2.

When θ2 > 2, the second derivative can be positive or negative, with inflection points
denoted as a and b; notice that a < 0�5< b.50 Consider the first derivative �′(μ�θ1� θ2).
For θ2 ≤ 2, the derivative is decreasing for any μ, because �′′(μ�θ1� θ2) ≤ 0 for any μ ∈
[0�1].

For θ2 > 2 then (see Figure 9), it is decreasing in [0� a), increasing in (a�b), and de-
creasing in (b�1].

The function �(μ�θ1� θ2) is bounded and continuous for any θ and μ ∈ [0�1], and we
could find the interior maximizers by studying the first and second derivative. If we con-
sider the case θ2 ≤ 2, the derivative �′(μ�θ1� θ2) is decreasing on the whole interval [0�1].

50This is because, when θ2 > 2, we have �′′(μ�θ1� θ2)≤ 0 when θ2 ≤ 1
2μ(1−μ) or 2μ(1 −μ)≤ 1

θ2
. The equality

is realized at two intersections of the horizontal line 1/θ2 with the parabola 2μ(1−μ). We call the intersections
1
θ2

= 2μ(1 −μ), respectively a and b.
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FIGURE 9.—Analysis of second derivative �′′(μ�θ1� θ2).

It is easy to show that �′(0)= ∞ and �′(1)= −∞. Therefore, when θ2 ≤ 2, there is only
one maximizer μ∗ that solves �′(μ�θ1� θ2)= 0.

If θ2 > 2, then we have three possible cases. We know that in this region �′(μ�θ1� θ2) is
decreasing in [0� a), increasing in (a�b), and decreasing in (b�1].

1. If �′(a�θ1� θ2)≥ 0, then there is a unique maximizer μ∗ > b.
2. If �′(b�θ1� θ2)≤ 0, then there is a unique maximizer μ∗ < a.
3. If �′(a�θ1� θ2) < 0 < �′(b�θ1� θ2), then there are two local maximizers μ∗

1 < a <
b<μ∗

2.
The three cases are shown in Figure 10, where we plot �′(μ�θ1� θ2) against μ for several
values of θ1 and for a fixed θ2 = 4> 2.

We indicate the maximizer with μ∗ when it is unique, and with μ∗
1, μ∗

2 when there are
two.

Let us consider the first case, with �′(a�θ1� θ2)≥ 0. To compute �′(a�θ1� θ2), notice that
θ2 = 1

2a(1−a) . Substituting in �′(a�θ1� θ2), we obtain

�′(a�θ1� θ2)= θ1 + 1
1 − a − log

a

1 − a�

FIGURE 10.—First order conditions for maximization of �(μ�θ1� θ2): three cases (see text for details).
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and analogously for θ2 = 1
2b(1−b) we have

�′(b�θ1� θ2)= θ1 + 1
1 − b − log

b

1 − b�

So �′(a�θ1� θ2)≥ 0 implies

θ1 ≥ log
a

1 − a − 1
1 − a�

The function log a
1−a − 1

1−a has a maximum at −2 and therefore we have51

�′(a�θ1� θ2)≥ 0 ⇔ θ1 ≥ −2�

When the above condition is satisfied, there is a unique maximizer, μ∗ > b, as shown in
the picture on the left.

When θ1 < −2, it is easier to draw a picture of the function log a
1−a − 1

1−a , shown in
Figure 11.

Notice that when θ1 <−2, there are two intersections of the function and the horizon-
tal line y = θ1 (in the picture θ1 = −3). We denote the intersections φ1(θ1) and φ2(θ1).
By construction, we know that a < 0�5 < b. By looking at the picture, it is clear that
�′(a�θ1� θ2) > 0 if a < φ1(θ1) and �′(a�θ1� θ2) < 0 if a > φ1(θ1). Analogously, we have
�′(b�θ1� θ2) > 0 if b >φ2(θ1) and �′(b�θ1� θ2) < 0 if b <φ2(θ1).

For any θ1 <−2, there exist φ1(θ1) and φ2(θ1) which are the intersection of the func-
tion y = log( x

1−x)− 1
1−x with the line y = θ1. Since the function is continuous, monotonic

increasing in [0�0�5), and monotonic decreasing in (0�5�1], it follows that φ1(θ1) and
φ2(θ1) are both continuous in θ1. In addition, φ1(θ1) is increasing in θ1 and φ2(θ1) is

FIGURE 11.—Determination of values φ1(θ1) and φ2(θ1).

51Taking derivative 1
a

+ 1
1−a − 1

(1−a)2 = 0, we obtain the maximizer a∗ = 0�5. The function is increasing in
[0�0�5) and decreasing in (0�5�1]. The maximum is therefore at −2.
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FIGURE 12.—The case with two maximizers.

decreasing in θ1. It is trivial to show that when θ1 decreases, φ1(θ1) converges to 0 while
φ2(θ1) converges to 1.

Consider the case in which �′(a�θ1� θ2) < 0< �′(b�θ1� θ2) with two maximizers. Define
the function

s(μ)≡ 1
2μ(1 −μ)�

Since �′(a�θ1� θ2) < 0, we have a > φ1(θ1), which implies s(a) < s(φ1(θ1)). Therefore,
θ2 < s(φ1(θ1))= 1

2φ1(θ1)(1−φ1(θ1))
.

Since �′(b�θ1� θ2) > 0, we have b > φ2(θ1), which implies s(b) > s(φ2(θ1)). Therefore,
θ2 > s(φ2(θ1))= 1

2φ2(θ1)(1−φ2(θ1))
.

Notice that s(φ1(θ1)) > s(φ2(θ1)) for any (θ1� θ2) in this region of the parameters (see
Figure 12).

The areas are shown in Figure 13.
Within the V-shaped region, there are two solutions to the maximization problem, that

is, two local maxima. Also, it is trivial to show that there exists a function q such that,
for θ2 = q(θ1), both solutions are global maxima. Indeed, the two local maxima are both
global maxima if �(μ∗

2� θ1� θ2)− �(μ∗
1� θ1� θ2) = 0. The latter difference is negative when

μ∗
1 is the global maximizer, while it is positive when μ∗

2 is the global maximizer. Therefore,
for a given value of θ1, there must be a unique θ2 such that s(φ1(θ1)) > θ2 > s(φ2(θ1))
such that both μ∗

1 and μ∗
2 are global maximizers. Let us indicate this value of θ2 = q(θ1).

Notice that the difference �(μ∗
2� θ1� θ2) − �(μ∗

1� θ1� θ2) corresponds to the difference
between the positive and negative areas between μ∗

1and μ∗
2 in Figure 14, that is (let μ̂

indicate the intersection of �′(μ�θ1� θ2) and the x-axis between μ∗
1and μ∗

2),

�
(
μ∗

2� θ1� θ2

) − �(μ∗
1� θ1� θ2

) =
∫ μ∗

2

0
�′(μ�θ1� θ2)dμ−

∫ μ∗
1

0
�′(μ�θ1� θ2)dμ

=
∫ μ∗

1

0
�′(μ�θ1� θ2)dμ+

∫ μ̂

μ∗
1

�′(μ�θ1� θ2)dμ
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FIGURE 13.—The V-shaped region of the parameters where there are two local maximizers.

+
∫ μ∗

2

μ̂

�′(μ�θ1� θ2)dμ−
∫ μ∗

1

0
�′(μ�θ1� θ2)dμ

=
∫ μ̂

μ∗
1

�′(μ�θ1� θ2)dμ+
∫ μ∗

2

μ̂

�′(μ�θ1� θ2)dμ�

When this difference is equal to zero, it means that the positive area and the nega-
tive area are equivalent and they cancel each other out. If we increase θ1, then the curve
�′(μ�θ1� θ2) will shift upwards and the negative area will decrease; therefore, we have to
decrease θ2 to counterbalance this effect. The opposite happens when we decrease θ1.

FIGURE 14.—Graphical explanation for the derivation of function q(θ1).
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Therefore, q(θ1) is a downward-sloping curve and it is continuous because of the conti-
nuity of �′(μ�θ1� θ2). This completes the proof. Q.E.D.

This theoretical result is confirmed by simulations.
It turns out that there is a more general result. If the homomorphism density t(H2�G)

associated with the parameter θ2 is such that the resulting variational problem can be
shown to be

ψ= sup
μ∈[0�1]

�(μ�α�β)= sup
μ∈[0�1]

{
αμ+βμr −μ lnμ− (1 −μ) ln(1 −μ)}�

where we assume r ≥ 2, then the same characterization applies, as shown in the next
theorem. For example, this is the case if we consider

t(H2�G)=

∑
i

∑
j

∑
k

gijgjkgki

n3

with r = 3; or if we consider

t(H2�G)=

∑
i

∑
j

∑
k

∑
l

gijgjkgklgli

n4

with r = 4.
The next lemma provides conditions under which the network statistics can be upper-

bounded by the power of the graphon. For practical purposes, this condition is necessary
to be able to rewrite the variational problem as a calculus problem, as shown in the theo-
rems below.

LEMMA 6: For the following homomorphism densities:

t(H�G)=

∑
i

∑
j

∑
k

gijgjkgki

n3 � (59)

t(H�G)=

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk

n3 � (60)

t(H�G)=

∑
i

∑
j

∑
k

∑
l

gijgjkgklgli

n4 � (61)

t(H�G)= 1
nr

∑
1≤i�j1�j2�����jr≤n

gij1gj1j2 · · ·gjr i� (62)

t(H�G)= 1
nr−1

∑
1≤i�j1�j2�����jr≤n

gij1gij2 · · ·gijr � (63)
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the following property holds:

t(H�h)≤
∫ 1

0

∫ 1

0
h(x� y)e(H) dxdy�

where e(H) is the number of directed links included in the subgraph H.

PROOF: For the homomorphism density (59), the value e(H)= 3 and the limit object
is

t(H�h)=
∫

[0�1]3
h(x� y)h(y� z)h(z�x)dxdy dz�

Using the Holder inequality and some algebra, we obtain

t(H�h)=
∫

[0�1]3
h(x� y)h(y� z)h(z�x)dxdy dz

≤
(∫

[0�1]3
h(x� y)3 dxdy dz

) 1
3
(∫

[0�1]3
h(y� z)3 dxdy dz

) 1
3

×
(∫

[0�1]3
h(z�x)3 dxdy dz

) 1
3

=
(∫

[0�1]2
h(x� y)3 dxdy

∫ 1

0
dz

) 1
3
(∫

[0�1]2
h(y� z)3 dy dz

∫ 1

0
dx

) 1
3

×
(∫

[0�1]2
h(z�x)3 dxdz

∫ 1

0
dy

) 1
3

=
(∫

[0�1]2
h(x� y)3 dxdy

) 1
3
(∫

[0�1]2
h(y� z)3 dy dz

) 1
3
(∫

[0�1]2
h(z�x)3 dxdz

) 1
3

=
(∫

[0�1]2
h(x� y)3 dxdy

) 1
3
(∫

[0�1]2
h(x� y)3 dxdy

) 1
3
(∫

[0�1]2
h(x� y)3 dxdy

) 1
3

=
∫

[0�1]2
h(x� y)3 dxdy

=
∫ 1

0

∫ 1

0
h(x� y)e(H) dxdy�

For the homomorphism density in (60), e(H)= 2 and using the Holder inequality, we
get

t(H�h)=
∫ ∫ ∫

[0�1]3
h(x� y)h(y� z)dxdy dz

≤
(∫ ∫ ∫

[0�1]3
h(x� y)2 dxdy dz

) 1
2
(∫ ∫ ∫

[0�1]3
h(y� z)2 dxdy dz

) 1
2
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=
(∫ ∫

[0�1]2
h(x� y)2

[∫
[0�1]

dz

]
dxdy

) 1
2
(∫ ∫

[0�1]2
h(y� z)2

[∫
[0�1]

dx

]
dy dz

) 1
2

=
(∫ ∫

[0�1]2
h(x� y)2 dxdy

) 1
2
(∫ ∫

[0�1]2
h(y� z)2 dy dz

) 1
2

=
(∫ ∫

[0�1]2
h(x� y)2 dxdy

) 1
2
(∫ ∫

[0�1]2
h(x� y)2 dxdy

) 1
2

=
∫ ∫

[0�1]2
h(x� y)2 dxdy�

For the homomorphism density in (62), e(H)= r and using the Holder inequality, we
get

t(H�h)=
∫

[0�1]r
h(xi� xj1)h(xj1�xj2) · · ·h(xjr � xi)dxi dxj1 · · · dxjr

≤
(∫

[0�1]r
h(xi� xj1)

r dxi dxj1 · · · dxjr
) 1

r
(∫

[0�1]r
h(xj1�xj2)

r dxi dxj1 · · · dxjr
) 1

r

· · ·

×
(∫

[0�1]r
h(xjr � xi)

r dxi dxj1 · · · dxjr
) 1

r

=
(∫

[0�1]2
h(xi�xj1)

r dxi dxj1

∫
[0�1]r−2

dxj2 · · · dxjr
) 1

r

×
(∫

[0�1]2
h(xj1�xj2)

r dxj1 dxj2

∫
[0�1]r−2

dxi dxj3 · · · dxjr
) 1

r

· · ·

×
(∫

[0�1]2
h(xjr � xi)

r dxjr dxi

∫
[0�1]r−2

dxj1 · · · dxjr−1

) 1
r

=
(∫

[0�1]2
h(x� y)r dxdy

) 1
r
(∫

[0�1]2
h(x� y)r dxdy

) 1
r

· · ·
(∫

[0�1]2
h(x� y)r dxdy

) 1
r

=
∫

[0�1]2
h(x� y)r dxdy

=
∫ 1

0

∫ 1

0
h(x� y)e(H) dxdy�

For the homomorphism density in (63), e(H)= r and using the Holder inequality, we
get

t(H�h)=
∫

[0�1]r
h(xi� xj1)h(xi�xj2) · · ·h(xi�xjr ) dxi dxj1 · · · dxjr

≤
(∫

[0�1]r
h(xi� xj1)

r dxi dxj1 · · · dxjr
) 1

r
(∫

[0�1]r
h(xi� xj2)

r dxi dxj1 · · · dxjr
) 1

r

· · ·
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×
(∫

[0�1]r
h(xi� xjr )

r dxi dxj1 · · · dxjr
) 1

r

=
(∫

[0�1]2
h(xi�xj1)

r dxi dxj1

∫
[0�1]r−2

dxj2 · · · dxjr
) 1

r

×
(∫

[0�1]2
h(xi�xj2)

r dxi dxj2

∫
[0�1]r−2

dxj1 dxj3 · · · dxjr
) 1

r

· · ·

×
(∫

[0�1]2
h(xi�xjr )

r dxi dxjr

∫
[0�1]r−2

dxj1 · · · dxjr−1

) 1
r

=
(∫

[0�1]2
h(x� y)r dxdy

) 1
r
(∫

[0�1]2
h(x� y)r dxdy

) 1
r

· · ·
(∫

[0�1]2
h(x� y)r dxdy

) 1
r

=
∫

[0�1]2
h(x� y)r dxdy

=
∫ 1

0

∫ 1

0
h(x� y)e(H) dxdy� Q.E.D.

The following theorem uses the result of Lemma 6 above, to show that the variational
problem can be solved explicitly as a one-variable calculus problem in special cases. This
result is very useful in studying the behavior of the model as the number of players grows
large and it provides a way to characterize the convergence of the sampling algorithms
according to the same argument of Bhamidi, Bresler, and Sly (2011) (see more detail
below).

THEOREM 12: Let β> 0. For the following models:

T (G)= α

n∑
i=1

n∑
j=1

gij

n2 +β

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk

n3 �

T (G)= α

n∑
i=1

n∑
j=1

gij

n2 +β

n∑
i=1

n∑
j=1

n∑
k=1

gijgjkgki

n3 �

T (G)= α

n∑
i=1

n∑
j=1

gij

n2 +β

∑
1≤i�j1�j2�����jr≤n

gij1gj1j2 · · ·gjr i

nr
�

T (G)= α

n∑
i=1

n∑
j=1

gij

n2 +β

∑
1≤i�j1�j2�����jr≤n

gij1gij2 · · ·gijr

nr−1 �
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the log-partition asymptotic variational problem becomes a calculus problem. Let �(μ�α�β)
be the following function:

�(μ�α�β)= αμ+βμr −μ logμ− (1 −μ) log(1 −μ)�
Then, as n→ ∞, the log-partition is the solution of the following:

lim
n→∞

ψn(θ)=ψ(θ)= sup
μ∈[0�1]

�(μ�α�β)�

For the following model with β> 0 and γ > 0:

T (G)= α

n∑
i=1

n∑
j=1

gij

n2 +β

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk

n3 + γ

n∑
i=1

n∑
j=1

n∑
k=1

gijgjkgki

n3 �

the log-partition asymptotic variational problem is

lim
n→∞

ψn(θ)=ψ(θ)= sup
μ∈[0�1]

{
αμ+βμ2 + γμ3 −μ logμ− (1 −μ) log(1 −μ)}�

PROOF: Consider the first model. We have assumed that β> 0. Given the results of the
Holder inequality in Lemma 6, we can say that

T (h)= αt(H1�h)+βt(H2�h)

≤ α
∫ ∫

[0�1]2
h(x� y)dxdy +β

∫ ∫
[0�1]2

h(x� y)2 dxdy�

Suppose h(x� y)= μ is a constant. Then the equality holds, and if μ ∈ [0�1] solves the
variational problem

lim
n→∞

ψn(θ)=ψ(θ)= sup
μ∈[0�1]

αμ+βμ2 −μ logμ− (1 −μ) log(1 −μ)�

then h(x� y)= μ is the limit graphon.
To show that this is the only solution, let us consider the maximization problem again.

For h(x� y) to be a solution, we need

T (h)= α
∫ ∫

[0�1]2
h(x� y)dxdy +β

∫ ∫
[0�1]2

h(x� y)2 dxdy�

In other words, the Holder inequality must hold with equality, that is, we need

t(H2�h)=
∫ ∫ ∫

[0�1]3
h(x� y)h(y� z)dxdy dz

=
∫ ∫

[0�1]2
h(x� y)2 dxdy�

This implies that

h(x� y)= h(y� z)
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for almost all (x� y� z). In particular, we have that, given x and y , μ = h(x� y) = h(y� z)
for any z ∈ [0�1] because the left-hand side does not depend on z. Given y and z, we
have μ′ = h(y� z)= h(x� y) for any x ∈ [0�1] because the left-hand side does not depend
on x. For x = y and z = y , we have μ = h(y� y) = h(y� y) = μ′. In addition, we have
h(x� y)= h(y�x)= μ= h(x�z). It follows that h(x� y)= μ almost everywhere.

It follows that T (h)= αμ+βμ2 and I(μ)= μ logμ+ (1 −μ) log(1 −μ), so we get

lim
n→∞

ψn =ψ= sup
μ∈[0�1]

{
αμ+βμ2 −μ logμ− (1 −μ) log(1 −μ)}�

The proof for the remaining models follows similar steps and reasoning and it is omitted
for brevity. Q.E.D.

The next theorem contains a complete characterization of the maximization problem
considered in the previous theorem.

THEOREM 13: Assume that β > 0 and r ≥ 2. If the variational problem can be shown to
be

lim
n→∞

ψn(θ)=ψ(θ)= sup
μ∈[0�1]

{
αμ+βμr −μ logμ− (1 −μ) log(1 −μ)}�

then we have the following:
1. If β≤ rr−1

(r−1)r , the maximization problem has a unique maximizer μ∗ ∈ [0�1].
2. If β> rr−1

(r−1)r and α≥ log(r − 1)− r
r−1 , then there is a unique maximizer μ∗ > 0�5.

3. If β > rr−1

(r−1)r and α < log(r − 1)− r
r−1 , then there is a V-shaped region of parameters

such that
(a) inside the V-shaped region, the maximization problem has two local maximizers μ∗

1 <
0�5<μ∗

2;
(b) outside the V-shaped region, the maximization problem has a unique maximizer μ∗.

4. For any α inside the V-shaped region, there exists a β= ζ(α) such that the two maxi-
mizers are both global, that is, �(μ∗

1)= �(μ∗
2).

PROOF: The first- and second-order conditions are

�′(μ�α�β)= α+βrμr−1 − ln
(

μ

1 −μ
)
�

�′′(μ�α�β)= βr(r − 1)μr−2 − 1
μ(1 −μ)�

The function �(μ�α�β) is concave if �′′(μ�α�β) < 0, that is, when

β<
1

r(r − 1)μr−1(1 −μ) ≡ s(μ)�

The function s(μ) has a minimum at r
r−1 , where s( r

r−1) = rr−1

(r−1)r ; it is decreasing in the
interval [0� r

r−1) and increasing in the interval ( r
r−1 �1]. Therefore, the function �(μ�α�β)
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FIGURE 15.—Using function s(μ) to determine concavity.

is concave on the whole interval [0�1] if β < rr−1

(r−1)r .
52 In this region, there is a unique

maximizer μ∗ of �(μ�α�β).
If β > rr−1

(r−1)r , there are three possible cases. We know that in this region the second
derivative �′′(μ�α�β) can be positive or negative, with inflection points denoted as a
and b, found by solving the equation β= s(μ). An example for r = 3 and β= 4 is shown
in Figure 15 (notice that we are plotting the function 1/s(μ) against the line 1/β).

In particular, the first derivative �′(μ�α�β) is decreasing in [0� a), increasing in (a�b),
and decreasing in (b�1].

1. If �′(a�α�β)≥ 0, then there is a unique maximizer μ∗ > b.
2. If �′(b�α�β)≤ 0, then there is a unique maximizer μ∗ < a.
3. If �′(a�α�β) < 0 < �′(b�α�β), then there are two local maximizers μ∗

1 < a <
b<μ∗

2.
The three cases are shown in Figure 16, where we plot �′(μ�α�β) against μ for several
values of α and for a fixed β= 4. In the pictures, r = 3.

52Consider the function 1/s(μ)= r(r − 1)μr−1(1 −μ)= r(r − 1)(μr−1 −μr). This function has derivative

∂
[
1/s(μ)

]
∂μ

= r(r − 1)2μr−2 − r2(r − 1)μr−1 = r(r − 1)μr−2[(r − 1)− rμ]
�

∂2[1/s(μ)]
∂μ∂μ

= r(r − 1)2(r − 2)μr−3 − r2(r − 1)2μr−2 = r(r − 1)2μr−3[(r − 2)− rμ]
�

So, solving the FOCs, we obtain the maximizer of 1/s(μ),

r(r − 1)μr−2[(r − 1)− rμ] = 0 ⇔ μ= r − 1
r
�

and the maximum is

1/s
(
r − 1
r

)
= r(r − 1)

(
r − 1
r

)r−1(
1 − r − 1

r

)
= (r − 1)r

rr−1 �

Therefore, the minimum of s(μ) is rr−1

(r−1)r .
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FIGURE 16.—Three possible cases to find the maximizers of �(μ�θ1� θ2).

We indicate the maximizer with μ∗ when it is unique, and with μ∗
1, μ∗

2 when there are
two.

Let us consider the first case, with �′(a�α�β) ≥ 0. To compute �′(a�α�β), notice that
β= s(a)= 1

r(r−1)ar−1(1−a) . Substituting in �′(a�α�β), we obtain

�′(a�α�β)= α+ 1
(r − 1)(1 − a) − log

a

1 − a�

and analogously for β= s(b)= 1
r(r−1)br−1(1−b) we have

�′(b�α�β)= α+ 1
(r − 1)(1 − b) − log

b

1 − b�

So �′(a�α�β)≥ 0 implies

α≥ log
a

1 − a − 1
(r − 1)(1 − a) �

The function log a
1−a − 1

(r−1)(1−a) has a maximum at log(r−1)− r
r−1 and therefore we have53

�′(a�α�β)≥ 0 ⇔ θ1 ≥ log(r − 1)− r

r − 1
�

When the above condition is satisfied, there is a unique maximizer, μ∗ > b, as shown in
the picture on the left.

When θ1 < log(r − 1) − r
r−1 , it is easier to draw a picture of the function log a

1−a −
1

(r−1)(1−a) , shown Figure 17.
Notice that when θ1 < log(r − 1)− r

r−1 , there are two intersections of the function and
the horizontal line y = α (in the picture, α= −3). We denote the intersections φ1(α) and
φ2(α). By construction, we know that a < 0�5 < b. By looking at the picture, it is clear
that �′(a�α�β) > 0 if a < φ1(α) and �′(a�α�β) < 0 if a > φ1(α). Analogously, we have
�′(b�α�β) > 0 if b >φ2(α) and �′(b�α�β) < 0 if b <φ2(α).

53Taking derivative 1
a

+ 1
1−a − 1

(r−1)(1−a)2 = 0, we obtain the maximizer a∗ = r−1
r

. The function is increasing in
[0� r−1

r
) and decreasing in ( r−1

r
�1]. The maximum is therefore at log(r − 1)− r

r−1 .
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FIGURE 17.—How to compute φ1(θ1) and φ2(θ2).

For any α < −2, there exist φ1(α) and φ2(α) which are the intersection of the func-
tion y = log( x

1−x)− 1
(r−1)(1−x) with the line y = α. Since the function is continuous, mono-

tonic increasing in [0� r−1
r
), and monotonic decreasing in ( r−1

r
�1], it follows that φ1(α)

and φ2(α) are both continuous in α. In addition, φ1(α) is increasing in α and φ2(α) is
decreasing in α. It is trivial to show that when α decreases, φ1(α) converges to 0 while
φ2(α) converges to 1.

Consider the case in which �′(a�α�β) < 0 < �′(b�α�β) with two maximizers of
�(μ�α�β). Consider the function s(μ) defined above.

Since �′(a�α�β) < 0, we have a > φ1(α), which implies s(a) < s(φ1(α)). Therefore,
β< s(φ1(α�β))= 1

r(r−1)φ1(α)
r−1(1−φ1(α))

.
Since �′(b�α�β) > 0, we have b > φ2(α), which implies s(b) > s(φ2(α)). Therefore,

β> s(φ2(α))= 1
r(r−1)φ2(α)

r−1(1−φ2(α))
.

Notice that s(φ1(α)) > s(φ2(α)) for any (α�β) in this region of the parameters (see
Figure 18 for an example with β= 4, α= −2, and r = 3).

The areas are shown in Figure 19 and the rest of the proof follows. The existence of
ζ(α) is shown using similar arguments as in the proof of Theorem 11, so it is omitted for
brevity. Q.E.D.

The next result is analogous to Theorem 6.3 in Chatterjee and Diaconis (2013), adapted
to the directed network model. It shows that not all the specifications of the model gen-
erate directed Erdős–Rényi networks. We show this by focusing on a special case.

THEOREM 14: Consider the model with re-scaled potential T (G) and with β< 0,

T (G)= α

n∑
i=1

n∑
j=1

gij

n2 +β

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk

n3 �

Then, for any value of α, there exists a positive constant C(α) such that, for β<−C(α), the
variational problem is not solved at a constant graphon.
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FIGURE 18.—The case with two maximizers.

PROOF: Fix the value of α and let p= eα

1+eα , and λ= −β. For any h, we have

T (h)− I(h)= α

∫
h(x� y)dxdy +β

∫
h(x� y)h(y� z)dxdy dz

−
∫
h(x� y) lnh(x� y)+ (

1 − h(x� y)) ln
(
1 − h(x� y))dxdy

= α

∫
h(x� y)dxdy +β

∫
h(x� y)h(y� z)dxdy dz

FIGURE 19.—The V-shaped region with two maximizers.
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+
∫
h(x� y) ln

(
1 + eα)dxdy −

∫
h(x� y) ln

(
1 + eα)dxdy

−
∫
h(x� y) lnh(x� y)+ (

1 − h(x� y)) ln
(
1 − h(x� y))dxdy

= β

∫
h(x� y)h(y� z)dxdy dz+

∫
h(x� y) lnpdxdy

+
∫
h(x� y) ln(1 −p)dxdy

−
∫
h(x� y) lnh(x� y)+ (

1 − h(x� y)) ln
(
1 − h(x� y))dxdy

= β

∫
h(x� y)h(y� z)dxdy dz+

∫
h(x� y) lnpdxdy∫

h(x� y) ln(1 −p)dxdy

+
∫

ln(1 −p)dxdy −
∫

ln(1 −p)dxdy

−
∫
h(x� y) lnh(x� y)+ (

1 − h(x� y)) ln
(
1 − h(x� y))dxdy

= β

∫
h(x� y)h(y� z)dxdy dz+ ln(1 −p)

−
∫
h(x� y) ln

h(x� y)

p
+ (

1 − h(x� y)) ln
1 − h(x� y)

1 −p dxdy

= −λt(H2�h)+ ln(1 −p)− Ip(h)�

We have assumed that β< 0. Assume that the quantity T (h)− I(h) is maximized at a
constant graphon h(x� y)= μ. As a consequence, μ minimizes the function

λt(H2�h)+ Ip(h)= λμ2 + Ip(μ)�

Sinceμ is the graphon that maximizes T (h)−I(h), then we have that, for any x ∈ [0�1],
the following holds: λμ2 + Ip(μ)≤ λx2 + Ip(x). The first-order conditions for minimiza-
tion give

v(x)= d

dx

[
λx2 + Ip(x)

] = 2λx+ ln
x

1 − x − ln
p

1 −p�

Notice that v(0)= −∞ and v(1)= +∞; therefore, μ must be an interior minimum. By
solving the first-order conditions

2λμ+ ln
μ

1 −μ − ln
p

1 −p = 0�
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it is easy to see that there exists a function c(λ) such that

μ=
exp

[
−2λμ+ ln

p

1 −p
]

1 + exp
[
−2λμ+ ln

p

1 −p
] ≤ c(λ)�

So we get μ≤ c(λ), where c(λ) is a function such that

lim
λ→∞

c(λ)= 0�

and therefore, it follows that

lim
λ→∞

min
x∈[0�1]

λx2 + Ip(x)= Ip(0)= ln
1

1 −p�

We will now show that there exists a graphon ν(x� y) which is not a constant and gives a
lower value of the expression above.

Let ν(x� y) be the function

ν(x� y)=
{
p� if x ∈ [0�0�5] and y ∈ [0�5�1]�
0� otherwise.

It follows that, for almost all (x� y� z) triplets, ν(x� y)ν(y� z)= 0 and thus, t(H2� ν)= 0.
If we compute the value of Ip(ν), we obtain

Ip(ν)=
∫

[ 1
2 �1]×[0� 1

2 ]
0 ln

0
p

+ ln
1

1 −p dxdy

+
∫

[0� 1
2 ]×[0� 1

2 ]
0 ln

0
p

+ ln
1

1 −p dxdy

+
∫

[0� 1
2 ]×[ 1

2 �1]
p ln

p

p
+ (1 −p) ln

1 −p
1 −p dxdy

+
∫

[ 1
2 �1]×[ 1

2 �1]
0 ln

0
p

+ ln
1

1 −p dxdy

= 3
4

ln
1

1 −p�

Therefore, we have shown that for λ large enough (i.e., for β negative and large
enough), T (ν)− I(ν) ≥ T (μ)− I(μ). So, given a value for α, there exists a C(α) large
enough such that, for any β<−C(α), a constant graphon is not solution to the variational
problem. Q.E.D.

This result extends to models with two parameters and higher-order dependencies, as
shown in the next theorem.

THEOREM 15: For the models in the first part of Theorem 12, the result of Theorem 14
holds.
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PROOF: The proof is equivalent to the proof of Theorem 14, replacing μ2 with
μr , where r is the order of dependence of the second homomorphism density
t(H2�h). Q.E.D.

THEOREM 16: Consider the model with re-scaled potential T (G) and with β< 0,

T (G)= α

n∑
i=1

n∑
j=1

gij

n2 +β

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk

n3 + γ

n∑
i=1

n∑
j=1

n∑
k=1

gijgjkgki

n3 � (64)

Then, for any value of α ∈ R and γ > 0, there exists a positive constant C(α�γ) > 0 such that,
for β<−C(α�γ), the variational problem is not solved at a constant graphon. Analogously,
if γ < 0, then, for any value of α ∈ R and β> 0, there exists a positive constant C(α�β) > 0
such that, for γ < C(α�γ), the variational problem is not solved at a constant graphon.

PROOF: Fix the value of α and γ > 0. Let p= eα

1+eα , and λ= −β. For any h, we have

T (h)− I(h)= α

∫
h(x� y)dxdy +β

∫
h(x� y)h(y� z)dxdy dz

+ γ
∫
h(x� y)h(y� z)h(z�x)dxdy dz

−
∫
h(x� y) lnh(x� y)+ (

1 − h(x� y)) ln
(
1 − h(x� y))dxdy

= α

∫
h(x� y)dxdy +β

∫
h(x� y)h(y� z)dxdy dz

+ γ
∫
h(x� y)h(y� z)h(z�x)dxdy dz

+
∫
h(x� y) ln

(
1 + eα)dxdy −

∫
h(x� y) ln

(
1 + eα)dxdy

−
∫
h(x� y) lnh(x� y)+ (

1 − h(x� y)) ln
(
1 − h(x� y))dxdy

= β

∫
h(x� y)h(y� z)dxdy dz+ γ

∫
h(x� y)h(y� z)h(z�x)dxdy dz

+
∫
h(x� y) lnpdxdy +

∫
h(x� y) ln(1 −p)dxdy

−
∫
h(x� y) lnh(x� y)+ (

1 − h(x� y)) ln
(
1 − h(x� y))dxdy

= β

∫
h(x� y)h(y� z)dxdy dz+ γ

∫
h(x� y)h(y� z)h(z�x)dxdy dz

+
∫
h(x� y) lnpdxdy +

∫
h(x� y) ln(1 −p)dxdy

+
∫

ln(1 −p)dxdy −
∫

ln(1 −p)dxdy
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−
∫
h(x� y) lnh(x� y)+ (

1 − h(x� y)) ln
(
1 − h(x� y))dxdy

= β

∫
h(x� y)h(y� z)dxdy dz+ γ

∫
h(x� y)h(y� z)h(z�x)dxdy dz

+ ln(1 −p)−
∫
h(x� y) ln

h(x� y)

p
+ (

1 − h(x� y)) ln
1 − h(x� y)

1 −p dxdy

= βt(H2�h)+ γt(H3�h)+ ln(1 −p)− Ip(h)�

We have assumed that β< 0. Assume that the quantity T (h)− I(h) is maximized at a
constant graphon h(x� y)= μ. As a consequence, μ maximizes the function

βt(H2�h)+ γt(H3�h)− Ip(h)= βμ2 + γμ3 − Ip(μ)�

Since μ is the graphon that maximizes T (h)−I(h), then we have that for any x ∈ [0�1],
the following holds: βμ2 + γμ3 − Ip(μ)≥ βx2 + γx3 − Ip(x). The first-order conditions
for maximization give

v(x)= d

dx

[
βx2 + γx3 − Ip(x)

] = 2βx+ 3γx2 − ln
x

1 − x + ln
p

1 −p�

Notice that v(0)= +∞ and v(1)= −∞; therefore, μmust be an interior maximum. By
solving the first-order conditions

2βμ+ 3γμ2 − ln
μ

1 −μ + ln
p

1 −p = 0�

it is easy to see that there exists a function c(β�γ) such that

μ=
exp

[
2βμ+ 3γμ2 − ln

p

1 −p
]

1 + exp
[

2βμ+ 3γμ2 − ln
p

1 −p
] ≤ c(β�γ)�

So we get μ≤ c(β�γ), and c(β�γ) is a function such that

lim
β→−∞

c(β�γ)= 0�

and therefore, it follows that

lim
β→−∞

min
x∈[0�1]

βx2 + γx3 − Ip(x)= −Ip(0)= − ln
1

1 −p�

We will now show that there exists a graphon ν(x� y) which is not a constant and gives
a lower value of the expression above.

Let ν(x� y) be the function

ν(x� y)=
⎧⎨⎩p� if x ∈

[
0�

1
2

]
and y ∈

[
1
2
�1

]
�

0� otherwise.
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It follows that for almost all (x� y� z) triplets, ν(x� y)ν(y� z) = 0 and ν(x� y)ν(y� z) ×
ν(z�x)= 0. As a consequence, t(H2� ν)= 0 and t(H3� ν)= 0. If we compute the value of
Ip(ν), we obtain

Ip(ν)=
∫

[ 1
2 �1]×[0� 1

2 ]
0 ln

0
p

+ ln
1

1 −p dxdy

+
∫

[0� 1
2 ]×[0� 1

2 ]
0 ln

0
p

+ ln
1

1 −p dxdy

+
∫

[0� 1
2 ]×[ 1

2 �1]
p ln

p

p
+ (1 −p) ln

1 −p
1 −p dxdy

+
∫

[ 1
2 �1]×[ 1

2 �1]
0 ln

0
p

+ ln
1

1 −p dxdy

= 3
4

ln
1

1 −p�

Therefore, we have shown that for β < 0 large enough in magnitude, T (ν) − I(ν) ≥
T (μ) − I(μ). So, given a value of α ∈ R and γ > 0, there exists a positive constant
C(α�γ) > 0 such that, for β < −C(α�γ), a constant graphon is not solution to the
variational problem (55) for the model in (64). The proof for γ < 0 follows the same
steps. Q.E.D.

THEOREM 17: Fix parameter γ > 0. Let the variational problem be described as

lim
n→∞

ψn(θ)=ψ(θ)= sup
μ∈[0�1]

{
αμ+βμ2 + γμ3 −μ logμ− (1 −μ) log(1 −μ)}�

Let μ0 be (uniquely) determined by

6γ = 2μ0 − 1
μ2

0(1 −μ0)
2 �

and let α0,β0 be defined as follows:

β0 = 1
2μ0(1 −μ0)

− 3γμ0�

α0 = log
μ0

1 −μ0
− 1
(1 −μ0)

+ 2μ0 − 1
2(1 −μ0)

2 �

1. If β≤ β0, the maximization problem has a unique maximizer μ∗ ∈ [0�1].
2. If β>β0 and α≥ α0, then there is a unique maximizer μ∗ > 0�5.
3. If β > β0 and α < α0, then there are two functions Sγ(φ1(α)) and Sγ(φ2(α)) that

define a V-shaped region of parameters (α�β) such that
(a) inside the V-shaped region, the maximization problem has two local maximizers μ∗

1 <
0�5<μ∗

2;
(b) outside the V-shaped region, the maximization problem has a unique maximizer μ∗.
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4. For any α< α0 inside the V-shaped region, there exists a function β= ζγ(α), such that
Sγ(φ1(α)) < ζγ(α) < Sγ(φ2(α)) and the two maximizers are both global.

PROOF: Fix γ > 0 and consider the function

�γ(μ�α�β)= αμ+βμ2 + γμ3 −μ logμ− (1 −μ) log(1 −μ)�
For the moment, we do not constrain β to be positive. The first- and second-order deriva-
tives w.r.t. μ are

�′
γ(μ�α�β)= α+ 2βμ+ 3γμ2 − ln

(
μ

1 −μ
)
�

�′′
γ(μ�α�β)= 2β+ 6γμ− 1

μ(1 −μ)�

The function �γ(μ�α�β) is concave if �′′
γ(μ�α�β) < 0, that is, when

2β+ 6γμ<
1

μ(1 −μ) ≡ s(μ)�

The function s(μ) is decreasing in [0�0�5) and increasing in (0�5�1], and it has a minimum
at μ= 0�5, where s(0�5)= 4.

Let μ0 be the value of μ at which the line 2β+ 6γμ is tangent to s(μ), defined as the
solution of

6γ = 2μ− 1
μ2(1 −μ)2 �

Notice that μ0 is unique, since the right-hand side of the equation is a monotone in-
creasing function. Given μ0, we can find β0 by solving

β0 = 1
2

[
−6γμ0 + 1

μ0(1 −μ0)

]
�

Therefore, the function �γ(μ�α�β) is concave on the whole interval [0�1] if β ≤ β0. In
this region, there is a unique maximizer μ∗ of �γ(μ�α�β).

Ifβ>β0, the line 2β+6γμ has two intersections with s(μ), and there are three possible
cases. We know that in this region the second derivative �′′

γ(μ�α�β) can be positive or
negative, with inflection points denoted as a and b, found by solving the equation 2β+
6γμ = s(μ). In Figure 20, we plot s(μ) (in red), the line 2β + 6γμ (blue dashed) that
define the points a and b, and the tangent line (black solid) that defines μ0.

By looking at the picture, it is clear that the first derivative �′
γ(μ�α�β) is decreasing for

μ ∈ [0� a), increasing in μ ∈ (a�b), and decreasing in μ ∈ (b�1].
1. If �′

γ(a�α�β)≥ 0, then there is a unique maximizer μ∗ > b.
2. If �′

γ(b�α�β)≤ 0, then there is a unique maximizer μ∗ < a.
3. If �′

γ(a�α�β) < 0 < �′
γ(b�α�β), then there are two local maximizers μ∗

1 < a <
b<μ∗

2.
The three cases are shown in Figure 21, where we plot �′

γ(μ�α�β) against μ for several
values of α and for a fixed β= 1 and γ = 1�5.

We indicate the maximizer with μ∗ when it is unique, and with μ∗
1, μ∗

2 when there are
two.
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FIGURE 20.—Graphical explanation of the concavity for �γ(μ�α�β).

Let us consider the first case, with �′
γ(a�α�β)≥ 0. To compute �′

γ(a�α�β), notice that

β= 1
2a(1 − a) − 2μ0 − 1

2μ2
0(1 −μ0)

2a�

Substituting in �′
γ(a�α�β), we obtain

�′
γ(a�α�β)= α+ a

a(1 − a) − 2μ0 − 1
μ2

0(1 −μ0)
2a

2 + 2μ0 − 1
2μ2

0(1 −μ0)
2a

2 − log
a

1 − a

= α+ 1
(1 − a) − 2μ0 − 1

2μ2
0(1 −μ0)

2a
2 − log

a

1 − a�

and analogously we have for b

�′
γ(b�α�β)= α+ 1

(1 − b) − 2μ0 − 1
2μ2

0(1 −μ0)
2b

2 − log
b

1 − b�

FIGURE 21.—The three possible cases for the solution of the first order condition �′(μ�α�β).
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Notice that we can write �′
γ(a�α�β) = α + η(a), where η(a) = 1

(1−a) − 2μ0−1
2μ2

0(1−μ0)
2a

2 −
log a

1−a . Consider the derivative of η(a):

η′(a)= 1
(1 − a)2 − 2μ0 − 1

μ2
0(1 −μ0)

2a− 1
a(1 − a)

= a

[
2a− 1

a2(1 − a)2 − 2μ0 − 1
μ2

0(1 −μ0)
2

]
�

We know that the function h(a)= 2a−1
a2(1−a)2 is monotone increasing, with h(0)= −∞ and

h(1)= ∞. Therefore, the minimum of η(a) is found at a= μ0, where we have

η(μ0)= 1
(1 −μ0)

− 2μ0 − 1
2(1 −μ0)

2 − log
μ0

1 −μ0
�

This means that �′
γ(a�α�β)≥ 0 only if

α≥ α0 = −η(μ0)= log
μ0

1 −μ0
− 1
(1 −μ0)

+ 2μ0 − 1
2(1 −μ0)

2 �

When the above condition is satisfied, there is a unique maximizer, μ∗ > b, as shown in
the picture on the left.

When α < α0 and β > β0, we have �′
γ(a�α�β) < 0 < �′(b�α�β). We draw a picture of

−η(μ) to help with the reasoning (Figure 22).
Notice that when α < α0, there are two intersections of the function and the horizon-

tal line y = α (in the picture, α = −3). We denote the intersections φ1(α) and φ2(α).
By construction, we know that a < 0�5 < b. By looking at the picture, it is clear that
�′
γ(a�α�β) > 0 if a < φ1(α) and �′

γ(a�α�β) < 0 if a > φ1(α). Analogously, we have
�′
γ(b�α�β) > 0 if b >φ2(α) and �′

γ(b�α�β) < 0 if b <φ2(α).
For any α< α0, there exist φ1(α) and φ2(α) which are the intersections of the function

−η(μ) with the line α. Since the function is continuous, monotonic increasing in [0�μ0),
and monotonic decreasing in (μ0�1], it follows that φ1(α) and φ2(α) are both continuous

FIGURE 22.—Computation of φ1(α) and φ2(α).
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FIGURE 23.—Proof that S(φ1(α)) > S(φ2(α)) when there are two maximizers.

in α. In addition, φ1(α) is increasing in α and φ2(α) is decreasing in α. It is trivial to show
that when α decreases, φ1(α) converges to 0 while φ2(α) converges to 1.

Consider the case in which �′
γ(a�α�β) < 0 < �′

γ(b�α�β) with two maximizers of
�γ(μ�α�β). Consider the function

S(μ)= 1
2μ(1 −μ) − 2μ0 − 1

2μ2
0(1 −μ0)

2μ�

Since �′
γ(a�α�β) < 0, we have a > φ1(α), which implies S(a) < S(φ1(α)). Therefore,

β< S(φ1(α))= 1
2φ1(α)(1−φ1(α))

− 2μ0−1
2μ2

0(1−μ0)
2φ1(α).

Since �′
γ(b�α�β) > 0, we have b > φ2(α), which implies S(b) > S(φ2(α)). Therefore,

β> S(φ2(α))= 1
2φ2(α)(1−φ2(α))

− 2μ0−1
2μ2

0(1−μ0)
2φ2(α).

Notice that S(φ1(α)) > S(φ2(α)) for any (α�β) in this region of the parameters (see
Figure 23 for an example with β= 1, α= −3, and γ = 1�5).

In Figure 24, we show the function S(φ1(α)) and S(φ2(α)) in the (α�β) space, for a
given γ > 0. Notice that for our models, we are only interested in the part of the graph
where β> 0. The graphs show that when we increase the value of γ, the area in which the
model has multiple local maxima increases.

The existence of ζγ(α) is shown using similar arguments as in the proof of Theorem 11,
so it is omitted for brevity. Q.E.D.

The last set of results extends the analysis of sampling algorithms in Bhamidi, Bresler,
and Sly (2011) to directed graphs. In particular, the solution to the variational problems
in the previous theorems provides a characterization for the convergence of the MCMC
samplers commonly used to simulate samples of ERGMs from the model. The set of
parameters that lie within the V-shaped region correspond to what Bhamidi, Bresler, and
Sly (2011) called the low temperature phase. The set of parameters lying outside the V-
shaped region correspond to the high temperature phase.

To be precise, let M̃∗ ⊂ W̃ be the set of maximizers of the variational problem and let
Gn be a graph on n vertices drawn from the ERGM model implied by function T . The
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FIGURE 24.—The V-shaped region of the parameters space with two local maximizers, as a function of
γ > 0.

next theorem shows that as n grows large, the network G̃n must be close to the set M̃∗. If
the set consists of a single graph, then this is equivalent to a weak law of large numbers
for Gn.

THEOREM 18: Let M̃∗ be the set of maximizers of the variational problem (55). Let Gn be
a graph on n vertices drawn from the model implied by function T . Then, for any η> 0, there
exist C�κ > 0 such that, for any n,

P
(
δ�

(
G̃n� M̃

∗)>η) ≤ Ce−n2κ�

where P denotes the probability measure implied by the model.

PROOF: The proof is identical to the proof of Theorem 3.2 in Chatterjee and Diaconis
(2013). Q.E.D.
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For the model we analyze in this paper, the result specializes to the following theorem.

THEOREM 19: Consider the model above in (56) and assume θ2 > 0. Let Gn be the di-
rected graph implied by the model.

1. If the maximization problem in Theorem 11 has a unique solution μ∗, then Gn →
Gd(n�μ

∗) in probability as n→ ∞.
2. If the maximization problem in Theorem 11 has two solutions μ∗

1 <
1
2 <μ

∗
2, thenGn is

drawn from a mixture of directed Erdős–Rényi graphs Gd(n�μ
∗
1) and Gd(n�μ

∗
2), as n→ ∞.

PROOF: It is an application of Theorem 18. Q.E.D.

The previous results consider the limit as n→ ∞. However, for fixed n, the speed of
convergence of the model to the stationary distribution πn can be studied using the pre-
vious results. The model evolves according to a Glauber dynamics: essentially it behaves
like a random Gibbs sampler.

In particular, when the maximization problem in Theorem 11 has a unique solution,
the Markov chain of networks converges in an order n2 logn steps. However, when the
maximization problem in Theorem 11 has two solutions μ∗

1 <
1
2 < μ

∗
2, the convergence is

exponentially slow, that is, there exists a constant C > 0 such that the number of steps
needed to reach stationarity is O(eCn). This is true for any local chain, that is, a chain that
updates o(n) links per iteration.

The main convergence result that is proven in Bhamidi, Bresler, and Sly (2011) is ex-
tended to our directed network formation model in the following proposition.

PROPOSITION 3—Convergence Rates: Assume β�γ > 0 in any of the models in Theo-
rem 12.

1. If the variational problem has a unique solution, we say that the parameters belong to
the high temperature region. The chain of networks generated by the model mixes in order
n2 logn steps.

2. If the variational problem has two local maxima, we say that the parameters belong to
the low temperature region. The chain of networks generated by the model mixes in order en2

steps. This holds for any local dynamics, that is, a dynamics that updates an o(n) number of
links per period.

PROOF: See Bhamidi, Bresler, and Sly (2011), Theorems 5 and 6. Q.E.D.

The main reason for the slow convergence in the bi-modal regime is that a local chain
makes small steps. The solution to this problem is to allow the sampler to perform larger
steps. However, large steps are not sufficient. Indeed, we need to be able to make large
steps of order n; in other words, we need a large step whose size is a function of n.

The result of asymptotically independent edges (Theorem 7 in Bhamidi, Bresler, and
Sly (2011)) is proven above in our Theorem 19.

APPENDIX E: ADDITIONAL SIMULATION RESULTS

The performance of the estimation method is tested using artificial data. All the
computations with artificial data are performed in a standard desktop Dell Precision
T7620 with two Intel Xeon CPUs E5-2697 v2 with 12 Dual core processors at 2.7 GHZ
each and 64 GB of RAM. For replication purposes, there is a package in Github at
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https://github.com/meleangelo/netnew.54 Ideally, we want to compare the results of the
approximate exchange algorithm with the exact algorithm. This is feasible for a special
case, where preferences depend only on direct and mutual links (i.e., excluding friends of
friends and popularity effects):

Q(g�α�β)= α
n∑
i=1

n∑
j=1

gij +β
n∑
i=1

n∑
j>i1

gijgji� (65)

For this model, described by equation (65), we can show that the constant is

c(θ)= (
1 + 2eα + e2α+β) n(n−1)

2 ;

thus, we can compute the exact likelihood and we can perform inference using the exact
Metropolis–Hastings sampler. We then compare the results of the exact algorithm with
the approximate exchange algorithm.

The results of the simulations are shown in Table I. The data were generated by pa-
rameters (α�β) = (−2�0�0�5). The numbers of network simulations per each proposed
parameter are R = {1000, 5000, 10,000, 50,000, 100,000, 1,000,000, 10,000,000}. We run
each algorithm for S = 10�000 parameter iterations, and we use the output to measure the
Kolmogorov–Smirnov distance and the Kullback–Leibler divergence between the poste-
rior estimated with the exact metropolis sampler p(θ|g�X) and the posterior estimated
with the approximated algorithm with R network simulations pR(θ|g�X):

KS = sup
θi∈Θi

∣∣∣∣∫ θi

−∞
pR(θi|g�X)−

∫ θi

−∞
p(θi|g�X)

∣∣∣∣�
KL =

∫
Θi

log
[
pR(θi|g�X)
p(θi|g�X)

]
pR(θi|g�X)dθi�

The table reports posterior mean, median, standard deviation, Monte Carlo standard er-
rors for the posterior mean (mcse), 95% credibility intervals, Kolmogorov–Smirnov statis-
tics, Kullback–Leibler divergence, and time for computation.

The exact Metropolis–Hastings is reported in the first column of the table. The approx-
imate exchange algorithm works very well for small to moderate networks. For a small
network with n= 100 players, a reasonable degree of accuracy can be reached with as low
asR= 5000 network simulations per parameter. Simulations from over-dispersed starting
values converge to the same posterior distribution. Convergence is quite fast to the high
density region of the posterior.55

54In all estimation exercises, we use independent normal priors N (0�10). The proposal of the exchange
algorithm is a random walk N (0�Σ). We repeat the estimation twice: the first time, we use a diagonal Σ; in
the second round, we use the covariance from the first round as baseline. In all simulations, the probability of
large steps is 0�001 and a large step updates 0�1n links.

55This result is common with the class of exchange algorithms. See Caimo and Friel (2011), Atchade and
Wang (2014) for examples. Computations can be faster if we embed sparse matrix algebra routines in the codes.
The results in Table I are obtained with codes that do not use sparse matrix algebra, thus representing a worst
case scenario in computational time.

https://github.com/meleangelo/netnew
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TABLE I

CONVERGENCE OF ESTIMATED POSTERIORS, MODEL (65)

Exact Metropolis R= 1000 R= 5000 R= 10�000 R= 50�000 R= 100�000 R= 1 mil R= 10 mil

α β α β α β α β α β α β α β α β

n= 100
Mean −1�923 0�286 −1�915 0�286 −1�925 0�285 −1�922 0�275 −1�921 0�284 −1�919 0�286
Median −1�923 0�288 −1�919 0�296 −1�923 0�292 −1�921 0�273 −1�921 0�287 −1�919 0�286
Std. dev. 0�034 0�114 0�105 0�263 0�054 0�141 0�042 0�123 0�034 0�115 0�034 0�111
Mcse 0�000 0�002 0�007 0�033 0�001 0�005 0�001 0�004 0�000 0�003 0�000 0�003
Pctile 2�5% −1�992 0�058 −2�115 −0�257 −2�034 −0�007 −2�006 0�034 −1�987 0�039 −1�985 0�069
Pctile 97�5% −1�857 0�506 −1�705 0�767 −1�820 0�553 −1�842 0�514 −1�853 0�505 −1�851 0�512
KS NA NA 0�275 0�205 0�114 0�057 0�066 0�057 0�032 0�015 0�060 0�022
KL NA NA 0�041 0�027 0�013 0�186 0�039 0�075 0�040 0�062 0�006 0�088

n= 200
Mean −1�988 0�463 −1�975 0�463 −1�964 0�463 −1�979 0�465 −1�989 0�455 −1�988 0�463 −1�988 0�466 −1�987 0�459
Median −1�989 0�467 −1�974 0�509 −1�968 0�468 −1�978 0�465 −1�989 0�454 −1�989 0�464 −1�988 0�467 −1�987 0�457
Std. dev. 0�017 0�061 0�048 0�275 0�042 0�113 0�033 0�073 0�019 0�053 0�017 0�059 0�017 0�057 0�016 0�055
Mcse 0 0�003 0�002 0�075 0�002 0�012 0�001 0�005 0 0�002 0 0�003 0 0�003 0 0�002
Pctile 2�5% −2�021 0�335 −2�071 −0�21 −2�044 0�186 −2�042 0�32 −2�024 0�353 −2�024 0�339 −2�024 0�358 −2�017 0�354
Pctile 97�5% −1�954 0�572 −1�89 0�889 −1�872 0�687 −1�921 0�614 −1�949 0�56 −1�955 0�571 −1�955 0�582 −1�955 0�577
KS NA NA 0�343 0�34 0�381 0�135 0�25 0�057 0�067 0�105 0�015 0�039 0�039 0�045 0�062 0�086
KL NA NA 0�1 0�178 0�105 0�079 0�129 0�099 0�05 0�05 0�041 0�058 0�092 0�044 0�173 0�234
Time 0.124 s 14.539 s 21.808 s 30.451 s 100.761 s 193.722 s 1762.202 s 17,370.945 s

n= 500
Mean −2�018 0�551 −1�941 0�337 −2�014 0�562 −2�017 0�561 −2�017 0�552 −2�018 0�552 −2�018 0�55 −2�018 0�55
Median −2�018 0�552 −1�922 0�369 −2�012 0�562 −2�019 0�562 −2�016 0�553 −2�018 0�552 −2�018 0�551 −2�018 0�55
Std. dev. 0�007 0�024 0�071 0�218 0�045 0�107 0�036 0�074 0�016 0�036 0�012 0�028 0�007 0�022 0�007 0�022
Mcse 0 0 0�005 0�047 0�002 0�011 0�001 0�005 0 0�001 0 0 0 0 0 0
Pctile 2�5% −2�032 0�501 −2�074 −0�106 −2�105 0�335 −2�085 0�424 −2�05 0�479 −2�041 0�497 −2�032 0�508 −2�031 0�507
Pctile 97�5% −2�004 0�596 −1�838 0�666 −1�931 0�755 −1�942 0�707 −1�988 0�621 −1�994 0�606 −2�004 0�596 −2�005 0�592
KS NA NA 0�743 0�703 0�408 0�363 0�341 0�31 0�229 0�117 0�107 0�066 0�027 0�034 0�033 0�032
KL NA NA 0�466 0�196 0�121 0�081 0�081 0�019 0�026 0�009 0�02 0�008 0�061 0�036 0�049 0�041
Time 0.187 s 87.344 s 95.831 s 105.955 s 181.413 s 275.357 s 2010.322 s 19,319.663 s

(Continues)
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TABLE I—Continued

Exact Metropolis R= 1000 R= 5000 R= 10�000 R= 50�000 R= 100�000 R= 1 mil R= 10 mil

α β α β α β α β α β α β α β α β

n= 1000
Mean −2�001 0�481 −1�986 0�456 −1�974 0�459 −1�995 0�486 −1�999 0�479 −2�001 0�479 −2�001 0�481 −2�002 0�481
Median −2�001 0�48 −1�991 0�501 −1�979 0�461 −1�993 0�479 −2�001 0�48 −2�001 0�479 −2�001 0�48 −2�002 0�482
Std. dev. 0�003 0�011 0�081 0�247 0�05 0�091 0�031 0�07 0�017 0�037 0�011 0�026 0�004 0�012 0�003 0�012
Mcse 0 0 0�007 0�06 0�002 0�007 0�001 0�004 0 0�001 0 0 0 0 0 0
Pctile 2�5% −2�008 0�459 −2�148 −0�007 −2�047 0�284 −2�057 0�361 −2�029 0�404 −2�024 0�425 −2�01 0�457 −2�008 0�459
Pctile 97�5% −1�995 0�503 −1�835 0�813 −1�825 0�642 −1�938 0�64 −1�966 0�55 −1�979 0�529 −1�993 0�505 −1�995 0�504
KS NA NA 0�506 0�484 0�63 0�47 0�502 0�355 0�351 0�268 0�271 0�216 0�078 0�018 0�027 0�036
KL NA NA 0�3 0�261 0�528 0�041 0�297 0�083 0�45 0�21 0�137 0�047 0�021 0�031 0�034 0�014
Time 0.234 s 364.761 s 371.563 s 381.172 s 459.578 s 556.330 s 2304.228 s 19,730.772 s
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TABLE II

ESTIMATED STRUCTURAL PARAMETERS FOR MODEL (66), n= 100

R= 1000 R= 10�000 R= 100�000 R= 1�000�000

n= 100 α β α β α β α β

true = (−3�0�01) True parameters (α�β)= (−3�0�01)
Mean −2�7450 −0�0233 −2�9095 −0�0035 −2�9407 −0�0009 −2�9206 −0�0025
Median −2�7575 −0�0185 −2�9171 −0�0021 −2�9498 0�0003 −2�9288 −0�0014
Std. dev. 0�4782 0�0460 0�2032 0�0201 0�1860 0�0183 0�1916 0�0189
Mcse 0�0975 0�0010 0�0111 0�0001 0�0094 0�0001 0�0104 0�0001
Pctile 2�5% −3�6862 −0�1208 −3�2660 −0�0462 −3�2614 −0�0400 −3�2468 −0�0412
Pctile 97�5% −1�7789 0�0545 −2�4916 0�0305 −2�5452 0�0303 −2�5158 0�0297
Time (s) 25.3800 236.2100 2485.5200 24,658.1500

true = (−3�0�03) True parameters (α�β)= (−3�0�03)
Mean −2�6075 0�0002 −2�7578 0�0124 −2�7618 0�0126 −2�7720 0�0134
Median −2�6425 0�0036 −2�7804 0�0140 −2�7812 0�0140 −2�7917 0�0148
Std.dev. 0�4396 0�0306 0�1757 0�0122 0�1663 0�0116 0�1671 0�0116
Mcse 0�0819 0�0004 0�0075 0�0000 0�0073 0�0000 0�0080 0�0000
Pctile 2�5% −3�4144 −0�0682 −3�0320 −0�0150 −3�0185 −0�0132 −3�0165 −0�0129
Pctile 97�5% −1�6856 0�0526 −2�3671 0�0299 −2�4054 0�0299 −2�3897 0�0297
Time (s) 27.3900 256.2500 2647.7600 26,277.7000

true = (5�−0�1) True parameters (α�β)= (5�−0�1)
Mean 4�8397 −0�0964 4�8722 −0�0968 4�8743 −0�0968 4�8856 −0�0970
Median 4�8265 −0�0963 4�8674 −0�0968 4�8682 −0�0968 4�8846 −0�0970
Std. dev. 0�4031 0�0067 0�1550 0�0026 0�1188 0�0018 0�1137 0�0018
Mcse 0�0427 0�0000 0�0064 0�0000 0�0041 0�0000 0�0039 0�0000
Pctile 2�5% 4�0677 −0�1101 4�5688 −0�1020 4�6493 −0�1005 4�6645 −0�1006
Pctile 97�5% 5�6615 −0�0836 5�1707 −0�0920 5�1202 −0�0933 5�1156 −0�0936
Time (s) 49.3300 433.5100 4254.5800 41,218.3700

Let us now consider a model with homogeneous players where there is no utility from
reciprocated links, but only from indirect connections and popularity, that is,

Q(g�α�β)= α
n∑
i=1

n∑
j=1

gij +β
n∑
i=1

n∑
j=1

n∑
k=1

gijgjk� (66)

The estimated parameters for this model are shown in Tables II and III. We generate the
network data using different parameter vectors. The first panel corresponds to parame-
ters (α�β) = (−3�1/n). This is a model that generates a sparse network and the likeli-
hood has a unique mode. The second panel shows estimates for a model with parameters
(α�β) = (−3�3/n), with a variational problem with two local solutions that generates
problems of convergence with a local sampler. The last panel is a model with negative ex-
ternalities (α�β)= (5�−10/n) that does not converge to an Erdős–Rényi model. We also
simulated a model with parameters (α�β) = (−3�7/n). However, if we solve the varia-
tional problem with these parameters, we can show that the solution is an Erdős–Rényi
model with probability of linking μ∗ = 1, that is, the full network. Therefore, a model with
parameters α= −3, for any β> 7/n, would also generate a full network. Any attempt to
estimate β with data consisting of a full network is futile.

The estimates using the non-local sampler are precise for a moderate amount of net-
work simulations. Clearly, estimates in Table II are less precise than the ones in Table III,
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TABLE III

ESTIMATED STRUCTURAL PARAMETERS FOR MODEL (66), n= 200

R= 1000 R= 10�000 R= 100�000 R= 1�000�000

n= 200 α β α β α β α β

true = (−3�0�005) True parameters (α�β)= (−3�0�005)
Mean −2�6694 −0�0112 −2�9707 0�0042 −3�0529 0�0083 −3�0603 0�0086
Median −2�7045 −0�0086 −2�9972 0�0056 −3�0675 0�0089 −3�0784 0�0095
Std. dev. 0�5631 0�0254 0�1841 0�0083 0�1137 0�0053 0�1113 0�0052
Mcse 0�1341 0�0003 0�0089 0�0000 0�0035 0�0000 0�0032 0�0000
Pctile 2�5% −3�7109 −0�0665 −3�2574 −0�0148 −3�2202 −0�0035 −3�2244 −0�0036
Pctile 97�5% −1�5002 0�0332 −2�5689 0�0159 −2�8044 0�0159 −2�8007 0�0158
Time (s) 173.7800 1651.4400 16,248.9400 149,962.1800

true = (−3�0�015) True parameters (α�β)= (−3�0�015)
Mean −2�4770 −0�0033 −2�7773 0�0075 −2�8601 0�0104 −2�8518 0�0101
Median −2�5002 −0�0019 −2�8042 0�0083 −2�8785 0�0111 −2�8703 0�0108
Std. dev. 0�5828 0�0200 0�1627 0�0055 0�1012 0�0035 0�1028 0�0035
Mcse 0�1012 0�0001 0�0078 0�0000 0�0028 0�0000 0�0028 0�0000
Pctile 2�5% −3�6184 −0�0474 −3�0206 −0�0054 −3�0026 0�0024 −2�9961 0�0020
Pctile 97�5% −1�2515 0�0346 −2�4080 0�0148 −2�6267 0�0150 −2�6149 0�0149
Time (s) 190.5800 1783.1900 17,496.5900 161,462.5300

true = (5�−0�05) True parameters (α�β)= (5�−0�05)
Mean 5�0734 −0�0504 5�0782 −0�0503 5�0528 −0�0501 5�0477 −0�0501
Median 5�0475 −0�0502 5�0718 −0�0503 5�0539 −0�0501 5�0478 −0�0501
Std. dev. 0�4791 0�0039 0�1535 0�0012 0�0713 0�0005 0�0644 0�0005
Mcse 0�0765 0�0000 0�0068 0�0000 0�0017 0�0000 0�0011 0�0000
Pctile 2�5% 4�1775 −0�0587 4�7926 −0�0529 4�9129 −0�0512 4�9220 −0�0511
Pctile 97�5% 6�0765 −0�0431 5�3987 −0�0480 5�1904 −0�0490 5�1781 −0�0491
Time (s) 361.5600 2996.3300 29,001.6900 257,572.3700

since the number of links is smaller. Because of our modified network sampler, there is
no need to have a large number of network simulations. The reason is that the non-local
sampler can jump quickly to the correct mode(s) of the likelihood: once it reaches an area
close to the global maximum, convergence is in quadratic time, since it will reject jumps
to local maxima of the variational problem that are not global maxima. While the number
of iterations may be lower, the computational time of each iteration is higher, because the
large steps are computationally expensive. In Table II, the precision gain from additional
network simulations is negligible when R > 10�000. Notice that the computational time
is higher for the model with negative externality. The reason is that the equilibrium net-
work generated at the true parameters (α�β)= (5�−10/n) is denser than the ones in the
previous panels, and therefore the large steps are more computationally expensive than
for the other two models.

In the next table, we consider a model where players are homogeneous and they receive
utility from direct links, reciprocated links, indirect links, and popularity. The potential
function of such model is defined as

Q(g�α�β�γ)= α
n∑
i=1

n∑
j=1

gij +β
n∑
i=1

n∑
j>i

gijgji + γ
n∑
i=1

n∑
j=1

n∑
k=1

gijgjk� (67)
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TABLE IV

ESTIMATED STRUCTURAL PARAMETERS FOR MODEL (67), n= 100

True Parameters (α�β�γ)= (−2�00�0�50�0�01)

R= 1000 R= 10�000 R= 100�000 R= 1�000�000

n= 100 α β γ α β γ α β γ α β γ

Mean −1�9321 0.5098 0�0074 −2�1182 0�5168 0�0133 −2�1034 0�5115 0�0129 −2�0938 0�5196 0�0126
Median −1�9756 0.5080 0�0089 −2�1382 0�5214 0�0139 −2�1251 0�5134 0�0136 −2�1066 0�5207 0�0131
Std. dev. 0�4677 0.2330 0�0135 0�1899 0�0997 0�0054 0�1877 0�0894 0�0054 0�1832 0�0882 0�0053
Mcse 0�0967 0.0209 0�0001 0�0121 0�0037 0�0000 0�0110 0�0028 0�0000 0�0132 0�0027 0�0000
Pctile 2�5% −2�7241 0.0459 −0�0224 −2�4259 0�3186 0�0014 −2�4002 0�3341 0�0012 −2�3871 0�3416 0�0013
Pctile 97�5% −0�9492 0.9699 0�0300 −1�7149 0�7115 0�0216 −1�6983 0�6896 0�0213 −1�7014 0�6894 0�0211
Time (s) 42 355 3545 35,806
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TABLE V

ESTIMATED STRUCTURAL PARAMETERS FOR MODEL (68), n= 100

True Parameters (α�β�γ)= (2�00�0�11�−0�05)

R= 1000 R= 10�000 R= 100�000

n= 100 α β γ α β γ α β γ

Mean 2�2144 0�1056 −0�0530 2�0718 0�1053 −0�0503 2�0636 0�1052 −0�0501
Median 2�0828 0�1064 −0�0506 2�0443 0�1054 −0�0498 2�0396 0�1055 −0�0497
Std. dev. 0�8575 0�0227 0�0155 0�3348 0�0084 0�0061 0�2723 0�0066 0�0049
Mcse 0�4485 0�0002 0�0001 0�0711 0�0000 0�0000 0�0487 0�0000 0�0000
Pctile 2�5% 0�8456 0�0598 −0�0881 1�4803 0�0875 −0�0636 1�5959 0�0914 −0�0608
Pctile 97�5% 4�1495 0�1473 −0�0286 2�8115 0�1222 −0�0397 2�6445 0�1174 −0�0418
Time (s) 97 314 2913

The data are generated by parameters (α�β�γ)= (−2�00�0�50�0�01). The pattern of Ta-
ble IV is similar to the previous analysis: the increase in precision for R> 10�000 is mini-
mal with respect to the increased cost of sampling networks.

Finally, we estimate a simple model with heterogeneous players. There is only one bi-
nary covariate X and the players receive utility from direct links, and indirect links and
popularity. The covariate is generated as a Bernoulli variable with P(Xi = 1)= 0�3. The
utility from indirect links/popularity is positive if both i and k belong to type-1; and it is
negative if they belong to different types. The potential of this model is

Q(g�α�β�γ)= α
n∑
i=1

n∑
j=1

gij + β

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk1{Xi=Xk=1}

+ γ

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk1{Xi �=Xk} (68)

and the data are generated with parameters (2�11/n�−5/n).
The estimation results in Table V are for n= 100. The estimates are again very precise

for a moderate amount of simulations.
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