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APPENDIX A: MODEL EQUILIBRIUM: PROOFS

PROOF OF PROPOSITION 1: The potential is a function Q from the space of actions to
the real line such that Q(gij� g−ij�X)−Q(g′

ij� g−ij�X) = Ui(gij� g−ij�X)−Ui(g
′
ij� g−ij�X),

for any ij.45 A simple computation shows that, for any ij,

Q(gij = 1� g−ij�X)−Q(gij = 0� g−ij�X)

= uij + gjimij +
n∑

k=1
k �=i�j

gjkvik +
n∑

k=1
k �=i�j

gkivkj

=Ui(gij = 1� g−ij�X)−Ui(gij = 0� g−ij�X);
therefore, Q is the potential of the network formation game. Q.E.D.

PROOF OF COROLLARY 1: The proof consists of showing that Q(g�X) can be written
in the form θ′t(g�X). Consider the first part of the potential:

∑
i

∑
j

gijuij =
∑
i

∑
j

gij

P∑
p=1

θupHup(Xi�Xj)

=
P∑

p=1

θup

∑
i

∑
j

gijHup(Xi�Xj)

≡
P∑

p=1

θuptup(g�X) = θ′
utu(g�X)�

where tup(g�X) ≡ ∑
i

∑
j gijHup(Xi�Xj), θu = (θu1� � � � � θuP)

′, and tu(g�X) =
(tu1(g�X)� � � � � tuP(g�X))′. Analogously define θm = (θm1� θm2� � � � � θmL)

′ and tm(g�X) =
(tm1(g�X)� tm2(g�X)� � � � � tmL(g�X))′ and θv = (θv1� θv2� � � � � θvS)

′ and tv(g�X) =
(tv1(g�X)� tv2(g�X)� � � � � tvS(g�X))′. It follows that∑

i

∑
j>i

gijgjimij = θ′
mtm(g�X)�

∑
i

∑
j

gij

∑
k �=i�j

gjkvij = θ′
vtv(g�X)�

45For more details and definitions, see Monderer and Shapley (1996).
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Therefore, Q(g�X) can be written in the form θ′t(g�X), where θ = (θu�θm�θv)
′ and

t(g�X)= [tu(g�X)� tm(g�X)� tv(g�X)]′,
Q(g�X) = θ′

utu(g�X)+ θ′
mtm(g�X)+ θ′

vtv(g�X)

= θ′t(g�X)

and the result follows. Q.E.D.

Model Without Preference Shocks: Nash Networks

Let us consider a special case of the model, in which there are no preference shocks.
Let N (g) be the set of networks that differ from g by only one element of the matrix, that
is,

N (g) ≡ {
g′ : g′ = (

g′
ij� g−ij

)
� for all g′

ij �= gij� for all i� j ∈ I
}
� (19)

A Nash network is defined as a network in which any player has no profitable deviations
from his current linking strategy, when randomly selected from the population. The fol-
lowing results characterize the set of the pure-strategy Nash equilibria and the long-run
behavior of the model with no shocks.

PROPOSITION 2—Model Without Shocks: Equilibria and Long Run: Consider the
model without idiosyncratic preference shocks. Under Assumptions 1 and 2:

1. There exists at least one pure-strategy Nash equilibrium network.
2. The set NE(G�X�U) of all pure-strategy Nash equilibria of the network formation

game is completely characterized by the local maxima of the potential function:

NE(G�X�U)=
{
g∗ : g∗ = arg max

g∈N (g∗)
Q(g�X)

}
� (20)

3. Any pure-strategy Nash equilibrium is an absorbing state.
4. As t → ∞, the network converges to one of the Nash networks with probability 1.

PROOF: (1) The existence of Nash equilibria follows directly from the fact that the
network formation game is a potential game with finite strategy space (see Monderer and
Shapley (1996) for details).

(2) The set of Nash equilibria is defined as the set of g∗ such that, for every i and for
every gij �= g∗

ij ,

Ui

(
g∗
ij� g

∗
−ij�X

) ≥Ui

(
gij� g

∗
−ij�X

)
�

Therefore, since Q is a potential function, for every gij �= g∗
ij ,

Q
(
g∗
ij� g

∗
−ij�X

) ≥Q
(
gij� g

∗
−ij�X

)
�

Therefore, g∗ is a maximizer of Q. The converse is easily checked by the same reasoning.
(3) Suppose gt = g∗. Since this is a Nash equilibrium, no player will be willing to change

her linking decision when her turn to play comes. Therefore, once the chain reaches a
Nash equilibrium, it cannot escape from that state.
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(4) The probability that the potential will increase from t to t + 1 is

Pr
[
Q

(
gt+1�X

) ≥Q
(
gt�X

)]
=

∑
i

∑
j

Pr
(
mt+1 = ij

)
Pr

[
Ui

(
gt+1
ij � gt

−ij�X
) ≥ Ui

(
gt
ij� g

t
−ij�X

)|mt+1 = ij
]︸ ︷︷ ︸

=1 because agents play Best Response� conditioning on mt+1

=
∑
i

∑
j

ρij = 1�

By part (3) of the proposition, a Nash network is an absorbing state of the chain. There-
fore, any probability distribution that puts probability 1 on a Nash network is a stationary
distribution. For any initial network, the chain will converge to one of the stationary dis-
tributions. It follows that, in the long run, the model will be in a Nash network, that is, for
any g0 ∈ G,

lim
t→∞

Pr
[
gt ∈ NE|g0

] = 1� Q.E.D.

PROOF OF THEOREM 1: 1. The sequence of networks [g0� g1� � � �] generated by the net-
work formation game is a Markov chain. Inspection of the transition probability proves
that the chain is irreducible and aperiodic; therefore, it is ergodic. The existence of
a unique stationary distribution then follows from the ergodic theorem (see Gelman,
Roberts, and Gilks (1996) for details).

2. A sufficient condition for stationarity is the detailed balance condition. In our case,
this requires Pgg′πg = Pg′gπg′ , where Pgg′ = Pr(gt+1 = g′|gt = g) and πg = π(gt = g). The
transition from g to g′ is possible if these networks differ by only one element gij . Oth-
erwise, the transition probability is zero and the detailed balance condition is satisfied.
Let us consider the nonzero probability transitions, with g = (1� g−ij) and g′ = (0� g−ij).
Define �Q ≡ Q(1� g−ij�X)−Q(0� g−ij�X):

Pgg′πg = Pr
(
mt = ij

)
Pr(gij = 0|g−ij)

exp
[
Q(1� g−ij�X)

]∑
ω∈G

exp
[
Q(ω�X)

]
= ρ(g−ij�Xi�Xj)× 1

1 + exp[�Q]

× exp
[
Q(1� g−ij�X)+Q(0� g−ij�X)−Q(0� g−ij�X)

]∑
ω∈G

exp
[
Q(ω�X)

]
= ρ(g−ij�Xi�Xj)× 1

1 + exp[�Q]

× exp
[
Q(1� g−ij�X)−Q(0� g−ij�X)

]
exp

[
Q(0� g−ij�X)

]∑
ω∈G

exp
[
Q(ω�X)

]
= ρ(g−ij�Xi�Xj)

exp[�Q]
1 + exp[�Q]

exp
[
Q(0� g−ij�X)

]∑
ω∈G

exp
[
Q(ω�X)

]
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= Pr
(
mt = ij

)
Pr(gij = 1|g−ij)

exp
[
Q(0� g−ij�X)

]∑
ω∈G

exp
[
Q(ω�X)

]
= Pg′gπg′ �

So the distribution (5) satisfies the detailed balance condition. Therefore, it is a stationary
distribution for the network formation model. From part (1) of the proposition, we know
that the process is ergodic and it has a unique stationary distribution. Therefore, π(g�X)
is also the unique stationary distribution. Q.E.D.

APPENDIX B: COMPUTATIONAL DETAILS

B.1. Network Simulation

The algorithm used to simulate the network (Algorithm 1) produces samples from the
stationary equilibrium of the model.

1. The network simulation algorithm satisfies the detailed balance condition for the
stationary distribution (5). Indeed, for any given θ,

Pr
(
g′|g�X�θ

)
π(g�X�θ) = qg

(
g′|g)

min
{

1�
exp

[
Q

(
g′�X�θ

)]
exp

[
Q(g�X�θ)

] qg

(
g|g′)

qg

(
g′|g)}

exp
[
Q(g�X�θ)

]
c(G�X�θ)

= min
{
qg

(
g′|g)exp

[
Q(g�X�θ)

]
c(G�X�θ)

�
exp

[
Q

(
g′�X�θ

)]
c(G�X�θ)

qg

(
g|g′)}

= qg

(
g|g′)min

{
qg

(
g′|g)

qg

(
g|g′) exp

[
Q(g�X�θ)

]
c(G�X�θ)

�
exp

[
Q

(
g′�X�θ

)]
c(G�X�θ)

}

= qg

(
g|g′)min

{
qg

(
g′|g)

qg

(
g|g′) exp

[
Q(g�X�θ)

]
exp

[
Q

(
g′�X�θ

)] �1
}

exp
[
Q

(
g′�X�θ

)]
c(G�X�θ)

= Pr
(
g|g′�X�θ

)
π

(
g′�X�θ

)
�

This concludes the proof.
2. The algorithm generates a Markov chain of networks with finite state space. The

chain is irreducible and aperiodic and therefore it is uniformly ergodic (see Theorem 4.9,
p. 52 in Levin, Peres, and Wilmer (2008)).

3. The bound to the convergence rate used in the text was derived by Diaconis and
Stroock (1991), for reversible finite chains.
The algorithm has a very useful property that can be exploited in the posterior simu-
lation to reduce the computational burden. Adapting the suggestion in Liang (2010),
define P (R)

θ′ (g′|g) as the transition probability of a Markov chain that generates g′ with
R Metropolis–Hastings updates of the network simulation algorithm, starting at the ob-
served network g and using the proposed parameter θ′. Then,

P (R)
θ′

(
g′|g) =Pθ′

(
g1|g)

Pθ′
(
g2|g1

) · · ·Pθ′
(
g′|gR−1

)
� (21)

where Pθ′(gj|gi) = qg(g
j|gi)αmh(g

i� gj) is the transition probability of the network sim-
ulation algorithm above. Since the Metropolis–Hastings algorithm satisfies the detailed
balance condition, we can prove the following lemma.
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LEMMA 1: Simulate a network g′ from the stationary distribution π(·�X�θ′) using a
Metropolis–Hastings algorithm starting at the network g observed in the data. Then

P (R)
θ′

(
g|g′)

P (R)
θ′

(
g′|g) = exp

[
Q

(
g�X�θ′)]

exp
[
Q

(
g′�X�θ′)] (22)

for all R, g�g′ ∈ G and for any θ′ ∈ Θ.

PROOF: Let P (R)
θ′ (g′|g) be defined as in (21). This is the transition probability of the

chain that generates g′ with R Metropolis–Hastings updates, starting at the observed net-
work g and using the proposed parameter θ′. Notice that the Metropolis–Hastings algo-
rithm satisfies the detailed balance for π(g�X�θ′); therefore, we have

P (R)
θ′

(
g|g′)π(

g′�X�θ′) = Pθ′
(
gR−1|g′)Pθ′(gR−2|gR−1) · · ·Pθ′(g|g1)π

(
g′�X�θ′)

= Pθ′(g1|g)Pθ′(g2|g1) · · ·Pθ′
(
g′|gR−1

)
π

(
g�X�θ′)

= P (R)
θ′

(
g′|g)

π
(
g�X�θ′)�

It follows that

P (R)
θ′

(
g|g′)

P (R)
θ′

(
g′|g) = π

(
g�X�θ′)

π
(
g′�X�θ′)

= exp
[
Q

(
g�X�θ′)]

exp
[
Q

(
g′�X�θ′)] c

(
G�X�θ′)

c
(
G�X�θ′)

= exp
[
Q

(
g�X�θ′)]

exp
[
Q

(
g′�X�θ′)] � Q.E.D.

One should notice that as long as the algorithm is started from the network g observed
in the data (which is assumed to be a draw from the stationary equilibrium of the model),
the equality in (22) is satisfied for any R.

The approximate exchange algorithm presented in this paper removes the requirement
of exact sampling by exploiting the property of the stationary equilibrium characteriza-
tion, described in Lemma 1.

Local Simulations and Large Steps

The theoretical results using graph limits and large deviations suggest that the local
sampler has systematic convergence problems, even when in principle the simulation is
trivial because links are asymptotically independent (β> 0).

To attenuate these convergence issues, we propose a modification that allows the sam-
pler to make larger steps, in particular, steps that are not o(n). The local chain selects a
link gij with probability 1/(n(n − 1)), proposing to swap the value to 1 − gij . We add the
following large steps. First, with probability pr , the sampler selects a player i at random
(with probability 1/n) and proposes to swap all his links, that is, gij = 1 − gij for each
j = 1� � � � � n. Second, with probability pc , the sampler selects a player i at random (with
probability 1/n) and proposes to swap all the links pointing at i, that is, gji = 1 − gji for
each j = 1� � � � � n. Third, with probability pf , the sampler selects uniformly at random
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λn� links, where λ ∈ (0�1), and proposes to swap all of them. Notice that this step size
is a function of n, and in particular is not o(n). The crucial ingredient is to make the
length of the step a function of n. The parameter λ is under control of the researcher:
higher values allow larger steps and increase the computational cost of sampling. Last,
with probability pinv, the sampler proposes to invert the adjacency matrix. The goal of this
large step is to provide a way to jump across modes of the stationary distribution, when it
is bimodal.46

Using this sampler, we reproduce the simulation in Figure 1. We know that the local
chain can get trapped in local maxima of the variational problem. If we simulate model
(10) with parameters (α�β) = (−3�3), we obtain Figure 8(A). While Theorem 2 states
that the simulations should converge to the sparse network density μ1 ≈ 0�07, we observe
that the local sampler converges to a dense network with μ2 ≈ 0�93, if started at dense net-
works. In other words, when started at a dense network (say the full network), the sampler
gets trapped in a local maximum of the variational problem, with density μ2 ≈ 0�93. Fig-
ure 8(B) shows that our modified sampler does not have this problem, and also the chains
started at dense networks converge to the correct (sparse) network density. This simple
modification gets rid of the exponentially slow convergence of the local algorithm. More
generally, these larger steps allow the sampler to escape local maxima of the potential
function.

In general, this modification should help the sampler when the likelihood has multiple
modes. However, the improvement comes with the increased cost of sampling and ad-
ditional computational time. In some models, the cost may be substantial. For example,
it is intuitive that in regions of the parameter space (say, β < 0) where the likelihood is
unimodal, the gains from this modified sampler are minimal.

FIGURE 8.—Local sampler versus modified sampler. Comparison of network samplers for model (10), with
parameters (α�β) = (−3�3). Panel (A) shows the simulation using the local-chain sampler, which converges
to two different link densities (μ1 ≈ 0�07 and μ2 ≈ 0�93). However, we know from Theorem 2 that the correct
simulation should converge to the sparse network density. So the local chain fails to sample correctly if we
start it at a dense network, because it gets trapped at a local maximum of the stationary distribution. Panel (B)
shows the simulation using the modified algorithm. We use pr = pf = pinv = 0�01. The simulations converge
to the correct link density for any starting value; therefore, our modified algorithm provides a better sampler
for the model.

46We have seen that this is the case in the homogeneous player case, for many parameter values.
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B.2. Posterior Simulation

In this section, I provide the technical details for the algorithm proposed in the empir-
ical part of the paper. The first set of results show that the exchange algorithm generates
(approximate) samples from the posterior distribution (7).

The original exchange algorithm developed in Murray, Ghahramani, and MacKay
(2006) is slightly different from the one used here. The main modification is in Step 2:
the original algorithm requires an exact sample from the stationary equilibrium of the
model.

ALGORITHM 3—Exact Exchange Algorithm: Start at current parameter θt = θ and net-
work data g.

1. Propose a new parameter vector θ′

θ′ ∼ qθ(·|θ)� (23)

2. Draw an exact sample network g′ from the likelihood

g′ ∼ π
(·|X�θ′)� (24)

3. Compute the acceptance ratio

αex

(
θ�θ′� g′� g

)
= min

{
1�

exp
[
Q

(
g′�X�θ

)]
exp

[
Q(g�X�θ)

] p
(
θ′)

p(θ)

qθ

(
θ|θ′)

qθ

(
θ′|θ) exp

[
Q

(
g�X�θ′)]

exp
[
Q

(
g′�X�θ′)] c(θ)c

(
θ′)

c(θ)c
(
θ′)}

(25)

= min
{

1�
exp

[
Q

(
g′�X�θ

)]
exp

[
Q(g�X�θ)

] p
(
θ′)

p(θ)

qθ

(
θ|θ′)

qθ

(
θ′|θ) exp

[
Q

(
g�X�θ′)]

exp
[
Q

(
g′�X�θ′)]}

�

4. Update the parameter according to

θt+1 =
{
θ′� with prob. αex

(
θ�θ′� g′� g

)
�

θ� with prob. 1 − αex

(
θ�θ′� g′� g

)
�

(26)

The difference between this algorithm and the approximate one is in step 2. The exact
and approximate algorithms use the same acceptance ratio αex(θ�θ

′� g′� g), a consequence
of Lemma 1. Indeed, the acceptance ratio for the approximate algorithm is

α̃ex

(
θ�θ′� g′� g

) = min
{

1�
exp

[
Q

(
g′�X�θ

)]
exp

[
Q(g�X�θ)

] p
(
θ′)

p(θ)

qθ

(
θ|θ′)

qθ

(
θ′|θ) P (R)

θ′
(
g|g′)

P (R)
θ′

(
g′|g)}

(27)

= min
{

1�
exp

[
Q

(
g′�X�θ

)]
exp

[
Q(g�X�θ)

] p
(
θ′)

p(θ)

qθ

(
θ|θ′)

qθ

(
θ′|θ) exp

[
Q

(
g�X�θ′)]

exp
[
Q

(
g′�X�θ′)]}

(28)

= αex

(
θ�θ′� g′� g

)
� (29)

This result implies that to prove the convergence of the approximate algorithm to the ex-
act algorithm, there is no need to prove convergence of α̃ex(θ�θ

′� g′� g) to αex(θ�θ
′� g′� g).

The convergence of step 2 of the algorithm is sufficient.
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B.2.1. Preliminary Lemmas for Theorem 6

The convergence of the approximate exchange algorithm to the correct posterior distri-
bution is proven in four steps. First, we prove that the exact exchange algorithm converges
to the correct posterior (Lemma 2). Second, we prove that the approximate algorithm has
a stationary distribution and it is ergodic (Lemma 3, similar to Liang (2010)). Third, we
prove that the transition kernels of the approximate and exact algorithms are arbitrarily
close for a large enough number of network simulations (Lemma 4). Fourth, we combine
previous results to prove that the approximate algorithm converges to the correct poste-
rior. A similar proof strategy is contained in Liang, Liu, and Carroll (2010) and Andrieu
and Roberts (2009).

Let Q(dϑ|θ) = qθ(ϑ|θ)ν(dϑ). The transition kernel of the exact exchange algorithm
can be written as

P(θ�dϑ) =
[∑
g′∈G

π
(
g′�ϑ

)
αex

(
θ�ϑ�g′� g

)]
Q(θ�dϑ)

+ δθ(dϑ)

{
1 −

∫
Θ

[∑
g′∈G

π
(
g′�ϑ

)
αex

(
θ�ϑ�g′� g

)]
Q(θ�dϑ)

}
and the transition kernel of the approximate exchange algorithm can be written as

P̃R(θ�dϑ) =
[∑
g′∈G

P (R)
ϑ

(
g′|g)

αex

(
θ�ϑ�g′� g

)]
Q(θ�dϑ)

+ δθ(dϑ)

{
1 −

∫
Θ

[∑
g′∈G

P (R)
ϑ

(
g′|g)

αex

(
θ�ϑ�g′� g

)]
Q(θ�dϑ)

}
�

Let η(θ) be the average rejection probability for the approximate algorithm, that is,

η(θ) := 1 −
∫
Θ

[∑
g′∈G

P (R)
ϑ

(
g′|g)

αex

(
θ�ϑ�g′� g

)]
Q(θ�dϑ)� (30)

The next lemma proves that the transition kernel satisfies the detailed balance condition
for the posterior distribution. For any pair of parameters (θ�ϑ) ∈ Θ, we have

P[θ�ϑ|g�X]p(θ|g�X)= Pr[θ|ϑ�g�X]p(ϑ|g�X)� (31)

The detailed balance condition is sufficient to prove that posterior (7) is the stationary
distribution of the Markov chain generated by the algorithm (for details, see Robert and
Casella (2005) or Gelman et al. (2003)).

LEMMA 2: The exchange algorithm produces a Markov chain with invariant distribu-
tion (7).

PROOF: Define Z ≡ ∫
Θ
π(g|X�θ)p(θ)dθ. In the algorithm, the probability Pr[ϑ|θ�

g�X] of transition to θj , given the current parameter θ and the observed data (g�X),
can be computed as

Pr[ϑ|θ�g�X] = qθ(ϑ|θ)exp
[
Q

(
g′�X�ϑ

)]
c(G�X�ϑ)

αex

(
θ�ϑ�g′� g

)
� (32)
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This is the probability qθ(ϑ|θ) of proposing ϑ times the probability of generating the
new network g′ from the model’s stationary distribution, exp[Q(g′�X�ϑ)]

c(G�X�ϑ)
, and accepting the

proposed parameter αex(θ�ϑ�g
′� g). Therefore, the left-hand side of (31) can be written

as

Pr[ϑ|θ�g�X]p(θ|g�X) = qθ(ϑ|θ)exp
[
Q

(
g′�X�ϑ

)]
c(G�X�ϑ)

αex

(
θ�ϑ�g′� g

)
p(θ|g�X)

= qθ(ϑ|θ)exp
[
Q

(
g′�X�ϑ

)]
c(G�X�ϑ)

αex

(
θ�ϑ�g′� g

) exp
[
Q(g�X�θ)

]
c(G�X�θ)

p(θ)

Z

= qθ(ϑ|θ)exp
[
Q

(
g′�X�ϑ

)]
c(G�X�ϑ)

× min
{

1�
exp

[
Q

(
g′�X�θ

)]
exp

[
Q(g�X�θ)

] p(ϑ)

p(θ)

qθ(θ|ϑ)

qθ(ϑ|θ)
exp

[
Q(g�X�ϑ)

]
exp

[
Q

(
g′�X�ϑ

)]}

×
exp

[
Q(g�X�θ)

]
c(G�X�θ)

p(θ)

Z

= min
{
qθ(ϑ|θ)exp

[
Q

(
g′�X�ϑ

)]
c(G�X�ϑ)

exp
[
Q(g�X�θ)

]
c(G�X�θ)

p(θ)

Z �

qθ(θ|ϑ)
exp

[
Q(g′�X�θ

]
c(G�X�θ)

exp
[
Q(g�X�ϑ)

]
c(G�X�ϑ)

p(ϑ)

Z

}

= qθ(θ|ϑ)
exp

[
Q

(
g′�X�θ

)]
c(G�X�θ)

exp
[
Q(g�X�ϑ)

]
c(G�X�ϑ)

p(ϑ)

Z

× min
{

1�
exp

[
Q

(
g′�X�ϑ

)]
exp

[
Q(g�X�ϑ)

] p(θ)

p(ϑ)

qθ(ϑ|θ)
qθ(θ|ϑ)

exp
[
Q(g�X�θ)

]
exp

[
Q

(
g′�X�θ

)]}

= qθ(θ|ϑ)
exp

[
Q

(
g′�X�θ

)]
c(G�X�θ)

α
(
ϑ�θ�g′� g

)exp
[
Q(g�X�ϑ)

]
c(G�X�ϑ)

p(ϑ)

Z

= qθ(θ|ϑ)
exp

[
Q

(
g′�X�θ

)]
c(G�X�θ)

α
(
ϑ�θ�g′� g

)
p(ϑ|g�X)

= Pr[θ|ϑ�g�X]p(ϑ|g�X)�

The latter step proves the detailed balance for a generic network g′. Since the condition
is satisfied for any network g′, detailed balance follows from summing over all possible
networks. Q.E.D.

LEMMA 3—The Approximate Algorithm is Ergodic: Assume the exact exchange algo-
rithm is ergodic and that, for any ϑ ∈ Θ,

P (R)
ϑ

(
g′|g)

π
(
g′�ϑ

) > 0 for any g′ ∈ G� (33)
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Then, for any R ∈ N such that, for any θ ∈ Θ, ρ(θ) > 0, the transition kernel of the approxi-
mate algorithm P̃R is also irreducible and aperiodic, and there exists a stationary distribution
p̃(θ) such that

lim
s→∞

∥∥P̃(s)
R (θ0� ·)− p̃(θ)

∥∥
TV

= 0� (34)

PROOF: The exact algorithm with transition kernel P is an irreducible and aperiodic
Markov chain. To prove that the approximate algorithm with transition kernel P̃R defines
an ergodic Markov chain, it is sufficient to prove that the set of accessible states of P are
also included in those of P̃R. The proof proceeds by induction.

Formally, we need to show that for any s ∈ N, θ ∈ Θ and A ∈ B(Θ) such that
P(s)(θ�A) > 0, implies P̃(s)

R (θ�A) > 0.
Notice that for any θ ∈ Θ and A ∈ B(Θ),

P̃R(θ�A) =
∫
A

[∑
g′∈G

P (R)
ϑ

(
g′|g)

αex

(
θ�ϑ�g′� g

)]
qθ(ϑ|θ)dϑ+ I(θ ∈A)η(θ)

≥
∫
A

[∑
g′∈G

min
{

1�
P (R)

ϑ

(
g′|g)

π
(
g′�ϑ

) }
π

(
g′�ϑ

)
αex

(
θ�ϑ�g′� g

)]
qθ(ϑ|θ)dϑ

+ I(θ ∈ A)η(θ) > 0�

where the last inequality comes from P(R)
ϑ (g′ |g)
π(g′�ϑ)

> 0 for any g′ ∈ G and ϑ ∈Θ.
This proves that the statement is true when s = 1. By induction, we assume that it is

true up to s = n ≥ 1 and, for some θ ∈Θ, choose A ∈ B(Θ) such that P(n+1)(θ�A) > 0 and
assume that ∫

Θ

P̃(n)
R (θ�dϑ)P̃R(ϑ�A) = 0�

This implies that P̃R(ϑ�A) = 0, P̃(n)
R (θ� ·)-a.s.; by the induction assumption at s = 1, it

follows that P(ϑ�A) = 0, P̃(n)
R (θ� ·)-a.s.

From this and the induction assumption at s = n, P(ϑ�A) = 0, P(n)(θ� ·)-a.s. (as-
sume not, then P(ϑ�A) > 0, P(n)(θ� ·)-a.s. which by induction would imply P̃R(ϑ�A) > 0,
which is a contradiction). The latter step contradicts P(n+1)(θ�A) > 0 and the result fol-
lows. Q.E.D.

The next step consists of proving that the transition kernel of the approximate algorithm
P̃R(θ�ϑ) and the exact algorithm P(θ�ϑ) are arbitrarily close for a large enough number
of network simulations R. Formally, we prove a statement which is equivalent to proving
convergence in total variation norm.47

LEMMA 4—Convergence of the Exact and Approximate Transition Kernels: Let
ε ∈ (0�1]. There exist a number of simulations R0 ∈ N such that, for any function φ : Θ →
[−1�1] and any R>R0, ∣∣P̃Rφ(θ)− Pφ(θ)

∣∣< 2ε� (35)

47See Levin, Peres, and Wilmer (2008), Proposition 4.5, p. 49.
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PROOF: The transition of the exchange algorithm is

P
(
φ(θ)�φ(ϑ)

) =
∫
Θ

φ(ϑ)

[∑
g′∈G

π
(
g′�ϑ

)
αex

(
θ�ϑ�g′� g

)]
qθ(ϑ|θ)dϑ

+φ(θ)

[
1 −

∫
Θ

[∑
g′∈G

π
(
g′�ϑ

)
αex

(
θ�ϑ�g′� g

)]
qθ(ϑ|θ)dϑ

]
�

while the transition kernel for the approximate algorithm is

P̃R

(
φ(θ)�φ(ϑ)

) =
∫
Θ

φ(ϑ)

[∑
g′∈G

P (R)
ϑ

(
g′|g)

αex

(
θ�ϑ�g′� g

)]
qθ(ϑ|θ)dϑ

+φ(θ)

[
1 −

∫
Θ

[∑
g′∈G

P (R)
ϑ

(
g′|g)

αex

(
θ�ϑ�g′� g

)]
qθ(ϑ|θ)dϑ

]
�

and therefore the difference is

S = P
(
φ(θ)�φ(ϑ)

) − P̃R

(
φ(θ)�φ(ϑ)

)
=

∫
Θ

φ(ϑ)

[∑
g′∈G

[
π

(
g′�ϑ

) −P (R)
ϑ

(
g′|g)]

αex

(
θ�ϑ�g′� g

)]
qθ(ϑ|θ)dϑ

−φ(θ)

∫
Θ

[∑
g′∈G

[
π

(
g′�ϑ

) −P (R)
ϑ

(
g′|g)]

αex

(
θ�ϑ�g′� g

)]
qθ(ϑ|θ)dϑ�

Consider the quantity

S0 =
∫
Θ

[∑
g′∈G

[
π

(
g′�ϑ

) −P (R)
ϑ

(
g′|g)]

αex

(
θ�ϑ�g′� g

)]
qθ(ϑ|θ)dϑ

≤
∫
Θ

[∑
g′∈G

∣∣π(
g′�ϑ

) −P (R)
ϑ

(
g′|g)∣∣αex

(
θ�ϑ�g′� g

)]
qθ(ϑ|θ)dϑ�

and since αex(θ�ϑ�g
′� g) ≤ 1 for any (θ�ϑ) ∈ Θ×Θ and (g′� g) ∈ G × G, we have

S0 ≤
∫
Θ

[∑
g′∈G

∣∣π(
g′�ϑ

) −P (R)
ϑ

(
g′|g)∣∣]qθ(ϑ|θ)dϑ

=
∫
Θ

[
2 sup

g′∈G

∣∣π(
g′�ϑ

) −P (R)
ϑ

(
g′|g)∣∣]qθ(ϑ|θ)dϑ�

The convergence of the network simulation algorithm implies that for any ε > 0, there
exists an R0(ϑ�ε) ∈ N such that, for any R>R0(ϑ�ε) and for any g ∈ G,

2 sup
g′∈G

∣∣π(
g′�ϑ

) −P (R)
ϑ

(
g′|g)∣∣ ≤ ε�
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Pick R0(ε) = maxϑ∈Θ{R0(ϑ�ε)}. Then, for any ε ∈ (0�1], there is an R0(ε) ∈ N such that,
for any R>R0(ε) and for any g ∈ G,

S0 ≤
∫
Θ

εqθ(ϑ|θ)dϑ= ε�

This implies that|S| ≤ |2S0| = 2ε. Q.E.D.

The next theorem is the main result for the convergence. It states that the approximate ex-
change algorithm converges to the correct posterior distribution, provided that the num-
bers of network simulations and parameter samples are big enough.

B.2.2. Proof of Theorem 6

PROOF: The main idea is to decompose the total variation in two components:∥∥P̃(s)
R (θ0� ·)−p(·|g�X)

∥∥
TV

= ∥∥P̃(s)
R (θ0� ·)− P(s)(θ0� ·)+ P(s)(θ0� ·)−p(·|g�X)

∥∥
TV

≤ ∥∥P̃(s)
R (θ0� ·)− P(s)(θ0� ·)

∥∥
TV

+ ∥∥P(s)(θ0� ·)−p(·|g�X)
∥∥

TV
�

and prove that each component converges. We will use the same idea, but rewrite the
total variation in a more convenient form.48 For any function φ :Θ → [−1�1], we have∣∣P̃(s)

R φ(θ0)−p(φ)
∣∣ = ∣∣P̃(s)

R φ(θ0)− P(s)φ(θ0)+ P(s)φ(θ0)−p(φ)
∣∣

≤ ∣∣P̃(s)
R φ(θ0)− P(s)φ(θ0)

∣∣ + ∣∣P(s)φ(θ0)−p(φ)
∣∣�

The second component converges because the exact exchange algorithm is ergodic, as
stated in Lemma 2. For any ε > 0, there is a number of simulation steps s(θ0� ε) such
that, for any s ≥ s(θ0� ε), ∣∣P(s)φ(θ0)−p(φ)

∣∣ ≤ ε� (36)

For the remaining of the proof, I will set s0 := s(θ0� ε). I use the telescoping sum decom-
position in Andrieu and Roberts (2009) (p. 15, adapted from last formula)

∣∣P̃(s0)
R φ(θ0)− P(s0)φ(θ0)

∣∣ =
∣∣∣∣∣
s0−1∑
l=0

[
P(l)P̃

(s0−l)
R φ(θ0)− P(l+1)P̃

(s0−(l+1))
R φ(θ0)

]∣∣∣∣∣
=

∣∣∣∣∣
s0−1∑
l=0

P(l)(P̃R − P)P̃
(s0−(l+1))
R φ(θ0)

∣∣∣∣∣�
Now we can apply s0 times the result of Lemma 4 (as in Liang, Liu, and Carroll (2010)
and Andrieu and Roberts (2009)) to prove that there exists an R0(θ0� ε) ∈N such that, for
any R>R0(θ0� ε), ∣∣P̃(s0)

R φ(θ0)− P(s0)φ(θ0)
∣∣ ≤ 2s0ε� (37)

this implies ∣∣P̃(s)
R φ(θ0)−p(φ)

∣∣ ≤ (2s0 + 1)ε� (38)

We conclude the proof by choosing ε = ε/(2s0 + 1).

48See Levin, Peres, and Wilmer (2008), proposition 4.5, p. 49.
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This proves that the approximate exchange algorithm is ergodic, therefore the law of
large number holds, and the second part of the theorem is proven. Q.E.D.
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