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APPENDIX A: NUMERICAL IMPLEMENTATION

THIS SECTION DESCRIBES how to implement the recursive dual approach numerically.
Under the conditions of Theorem 2, the dual Bellman operator is a contraction and, con-
sequently, it is natural to calculate D∗ via value iteration. Numerical approximation of
candidate dual value functions is facilitated by their sub-linearity and the simplicity of
their domain. The dual Bellman involves an (outer) minimization over a set of multipli-
ers; these multipliers are passed to (and “coordinate”) a family of simple (inner) maxi-
mizations over current actions and states. Additive separability in the objective may be
exploited to decompose the inner maximizations into a family of simpler maximizations
that in parametric settings often have analytical solutions.

Dual Value Function Approximation. Numerical implementation of a value function iter-
ation algorithm requires approximations to candidate value functions. Our implementa-
tion exploits the sub-linearity of dual value functions and uses a piecewise linear approx-
imation (on the spherical domain C). Piecewise linear approximations to value functions
defined on spheres were first applied in economics by Judd, Yeltekin, and Conklin (2003).
We apply their approximation procedure to our setting.31 Recall that under the condi-
tions of Theorem 2, the domain for the dual Bellman operator may be identified with an
interval of functions D : S × Y → R, each of which is sub-linear in its second argument.
As noted, these functions are fully determined on S × C (or a subset thereof). Moreover,
their sub-linearity implies that, for all y ∈ C,32

D(s� y)= max
r∈V

{
r · y|∀y ′ ∈ C� r · y ′ ≤D(

s� y ′)}� (A.1)
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31Judd, Yeltekin, and Conklin (2003) used this approach to approximate the support function of a payoff set

in a repeated game; we use it to approximate the recursive dual value function. In other aspects, our (recursive
dual) formulation is different from that of Judd, Yeltekin, and Conklin (2003). Alternative approaches to
approximation on spherical domains are described in Sloan and Womersley (2000).

32For this and other properties of sub-linear functions used below, see Florenzano and Van (2001).
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Given such a function D and a set of N distinct points ĈN := {yn}Nn=1 ⊂ C, define the ap-
proximation D̂N as, for each (s� y) ∈ S × C,

D̂N(s� y) := max
r∈V

{
r · y|∀yn ∈ ĈN� r · yn ≤D(s� yn)

}
� (A.2)

Since the constraint set in problem (A.2) is less restrictive than that in (A.1),

D≤ D̂N�

with equality at each (s� yn) ∈ S × ĈN . In addition, the approximation D̂N remains sub-
linear, is summarized by {s� yn� D̂N(s� yn)}Nn=1, and is easily evaluated by solving the simple
linear programming problem in (A.2). Let {ĈN}, N ≥ 1, be a sequence of subsets of C
such that (i) for all N , ĈN ⊂ ĈN+1 and (ii) Ĉ∞ = ⋃

N ĈN is dense in C.33 It is readily verified
that the corresponding sequence of approximating functions D̂N(s� ·) converges point-
wise to D(s� ·) from above.34 Moreover, by Dini’s theorem,35 it converges uniformly on
C and, hence, in the Thompson-like metric d to D(s� ·). In practical applications, we use
(hyper)spherical coordinates to represent points in ĈN . The corresponding Cartesian co-
ordinates of points in this grid are recovered from spherical coordinates {φrn} according
to the formulas y1

n = cos(φ1
n), for j = 2� � � � � nK + nV − 1, yjn = cos(φjn)

∏j−1
r=1 sin(φrn), and

ynK+nV
n = ∏nK+nV −1

r=1 sin(φrn).
The approximation procedure described above may be integrated into the dual value

iteration to give the ν+ 1-iteration step36

∀(s� yn) ∈ S × ĈN�
(A.3)

B̂
(
D̂N
ν

)
(s� yn)= inf

q∈Q
sup
p∈P

J(s� yn;q�p)+ δ
∑
s′∈S

DN
ν

(
s′� y ′(s′))π(

s′|s)�

Optimization. The inner supremum operation in (A.3) results in the indirect current
dual function J∗(s� yn;q) = supp∈P J(s� yn;q�p). Additive separability of the function J
across different components of p can often be exploited to break the supremum down
into separate optimizations over the components of p which can be run in parallel or in
some cases solved analytically. In these latter cases, no explicit numerical maximization
over primal choices is needed. Once the inner suprema are solved, an indirect objective

33For example, the set of points in C with rational coordinates is dense in C; see Schmutz (2008).
34 It clearly converges at all points in Ĉ∞. Choose a point y ∈ C. Let {y1

r } and {y2
r } be two sequences in⋃

N ĈN converging to y and such that y = λrary
1
r + (1 − λr)bry

2
r , with λr ∈ (0�1), ar� br ∈ R+, and ar� br ↓ 1,

that is, ary1
r and bry2

r lie either side of y on the tangent to C passing through y . There is a sequence {Nr}
such that D̂Nr (s� y1

r ) = D(s� y1
r ) and D̂Nr (s� y2

r ) = D(s� y2
r ). By the sub-linearity of D(s� ·) and each D̂Nr (s� ·),

we haveD(s� y)≤DNr (s� y)≤ λrD̂Nr (s� ary
1
r )+ (1−λr)D̂Nr (s� bry

2
r )= λrarD̂Nr (s� y1

r )+ (1−λr)brD̂Nr (s� y2
r )=

λrarD(s� y
1
r )+ (1 −λr)brD(s� y2

r ). SinceD(s� ·) is real-valued and convex, it is continuous at all interior points;
by linear homogeneity, D(s� ·) is continuous throughout Y , hence y1

r → y , y2
r → y , and ar� br ↓ 1, it follows

that the last term in the string of inequalities converges to D(s� y). Thus, the sequence of functions converges
pointwise on C and by the positive homogeneity of the functions on Y as well.

35See Chapter 2, Aliprantis and Border (2006) for a statement and proof of Dini’s theorem.
36With some simplification if the problem is quasilinear.
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over multipliers is obtained and (A.3) becomes

∀(s� yn) ∈ S × ĈN� B̂
(
D̂N
ν

)
(s� yn)= inf

q∈Q
J∗(s� yn;q)+ δ

∑
s′∈S

DN
ν

(
s′� y ′(s′))π(

s′|s)� (A.4)

The objective in (A.4) is convex (even if the underlying problem is not), but it is not
smooth.37 There are many optimization procedures for non-smooth, convex dual prob-
lems (e.g., sub-gradient algorithms, cutting plane algorithms, and so forth38). These may
be used to solve the problems (A.4). An alternative approach developed by Necoara and
Suykens (2008) is to smooth the dual problem through the addition of strongly concave
(prox) functions to the objective in (A.2) (and, if necessary, the objective J in the inner sup
problems). In our calculations, we follow Necoara and Suykens (2008) by adding terms
cv‖r‖2 to the objective in (A.2) and allowing cv → 0 with successive iterations. We use the
optimizer SNOPT to solve these (smoothed) optimizations.

APPENDIX B: THE LIMITED COMMITMENT EXAMPLE

This section collects details of and extensions to the results of Section 2.

B.1. Numerical Method

The numerical approach is outlined in Section A. We apply this approach to the trans-
formed version of the problem described in Section 2. Inner maximizations are solved
analytically when possible and the indirect payoffs J∗(s� y;q) are substituted directly into
(5). On the νth application of the Bellman operator, the following family of minimizations
is solved, for s ∈ S and yn ∈ ĈN+ :

DN
ν+1(s� yn)= inf

q
J∗(s� yn;q)+ δ

∑
s′∈S

DN
ν

(
s′� y ′(s′))π(

s′|s)� (B.1)

where J∗ is defined as in (7) and ĈN+ is a finite subset of C+ = C∩R
nI+ and is represented as a

grid of points in spherical coordinates (either {φn} ⊂ [0�π) if nI = 2 or {φ1
n�φ

2
n} ∈ [0�π)2

if nI = 3). In the nI = 2 case, the spherical coordinate gives the (Pareto) weights on agents
1 and 2 according to y1 = cosφ and y2 = sinφ; in the nI = 3 case, φ1 gives the weight on
agent 1 relative to agents 2 and 3, while φ2 gives the weight on agent 2 relative to agent 3.

B.2. Construction of Bounding Functions

Application of Theorem 2 (and the proof that B is a contraction) requires the definition
of bounding value functionsD,D, andD. In this subsection, bounding functions satisfying
Assumption 3 are obtained for the transformed limited commitment problem. Let v :=
maxS

γ(s)1−σ
1−σ and v = (a/2)1−σ

1−σ , where a is the nonnegative (positive if σ > 1) lower bound
on agent consumptions. Assume an ã ∈ AnS and let ξ > 0 be such that for each s ∈ S ,

37J∗ may be smooth if it is obtained from component problems with strictly concave objectives and concave
constraint functions. However, our approximation procedure implies that D̂N is non-smooth.

38Good references for such methods include Bertsekas (2003) and Ruszczyński (2006).
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γ(s) >
∑

i∈I ã
i(s), and for each s ∈ S and i ∈ I ,

v− ξ ≥ 1 − δ
1 − σ

[
ãi(s)

]1−σ + δv
(B.2)

>
1 − δ
1 − σ

[
ãi(s)

]1−σ + δ

1 − σ
{∑
s′∈S

[
(1 − σ)wi

(
s′
)]θ
π

(
s′|s)} 1

θ

> wi(s)+ ξ�

where θ := 1−ρ
1−σ . Set

D(s� y)=
∑
i∈I
yiϕi

(
yi� s

)
� ϕi

(
yi� s

) =
{
v if yi ≥ 0�
v else if yi < 0�

and

D(s� y)=
∑
i∈I

{
yiψi

(
yi� s

) + ∣∣yi∣∣ξ}� ψi
(
yi� s

) =
{
wi(s) if yi ≥ 0�
v else if yi < 0�

It is immediate that D is continuous and that D is continuous and positively homoge-
neous. It is also easy to see that D≥D∗: while the supremum operations defining D∗ are
restricted by feasibility and default constraints, D gives the maximal weighted payoff sub-
ject only to the restriction that payoffs remain within V . In addition, it follows from (B.2)
that D≤D∗.

We verify that for ε > 0, B(D)≤D and B(D) >D+ ε on S × C. B(D) is given by, for
all (s� y) ∈ S ×Y ,

B(D)(s� y)

= inf
Q

sup
P

∑
i∈I

(
yi +mi

){ 1 − δ
1 − σ

[
ai

]1−σ + δ

1 − σ
{∑
s′∈S

[
(1 − σ)v′�i(s′)]θπ(

s′|s)} 1
θ
}
(B.3)

−
∑
i∈I
miwi(s)−mnI+1

(∑
i∈I
ai − γ(s)

)
− δ

∑
s′∈S

∑
i∈I
y ′�i(s′)v′�i(s′)π(

s′|s)

+ δ
∑
s′∈S

D
(
s′� y ′(s′))π(

s′|s)�
Setting D=D, using the definition of v and v, and noting that the dual variables (m�y ′)
can always be chosen equal to 0 in the infimum and D(s�0) = 0, we have B(D)(s� y) ≤
D(s� y). Finally, we show B(D) > D + ε on S × C. Given y ′ = {y ′�i(s′)}, define ψ(y ′) =
{ψi(y ′�i(s′)� s′)}(i�s′)∈I×S . Setting D=D and noting that for any s and choice of (m�y ′), the
pair (ã(s)�ψ(y ′)) is a feasible choice for the supremum with respect to both the resource
and no default constraints, we have

B(D)(s� y)

≥ inf
q∈Q

∑
i∈I

(
yi +mi

){ 1 − δ
1 − σ

[
ãi(s)

]1−σ + δ

1 − σ
{∑
s′∈S

[
(1 − σ)ψi(y ′�i(s′)� s′)]θπ(

s′|s)} 1
θ
}
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−
∑
i∈I
miwi(s)−mnI+1

(∑
i∈I
ãi(s)− γ(s)

)

≥ inf
y′

∑
i∈I
yi

{
1 − δ
1 − σ

[
ãi(s)

]1−σ + δ

1 − σ
{∑
s′∈S

[
(1 − σ)ψi(y ′�i(s′)� s′)]θπ(

s′|s)} 1
θ
}
�

where the first inequality follows from the replacement of the sup with the choices
(ã(s)�ψ(y ′)). The second inequality uses the feasibility of these choices and thus the fact
that m= 0 is minimizing. Now, using the additive separability across agents, each agent i
can be analyzed separately. If yi ≥ 0, then

inf
y′�i(·)

yi
{

1 − δ
1 − σ

[
ãi(s)

]1−σ + δ

1 − σ
{∑
s′∈S

[
(1 − σ)ψi(y ′�i(s′)� s′)]θπ(

s′|s)} 1
θ
}

≥ yi
{

1 − δ
1 − σ

[
ãi(s)

]1−σ + δ

1 − σ
{∑
s′∈S

[
(1 − σ)wi

(
s′
)]θ
π

(
s′|s)} 1

θ
}

≥ yi(wi(s)+ ξ)�
with the inequality strict if yi > 0. Note that if σ > 1, then 0 ≤ (1−σ)ψi(y ′�i(s′)� s′)≤ (1−
σ)wi(s′)�∀i� s, and hence {∑S[(1 − σ)ψi(y ′�i(s′)� s′)]θπ(s′|s)} 1

θ ≤ {∑S[(1 − σ)wi(s′)]θ ×
π(s′|s)} 1

θ , which implies the above inequality when both sides are multiplied by the nega-
tive number δ

1−σ . The last inequality holds by our assumption on ãi(s). Similarly, if yi < 0,
then

inf
y′�i
yi

{
1 − δ
1 − σ

[
ãi(s)

]1−σ + δ

1 − σ
{∑
s′∈S

[
(1 − σ)ψi(y ′�i(s′)� s′)]θπ(

s′|s)} 1
θ
}

≥ yi
{

1 − δ
1 − σ

[
ãi(s)

]1−σ + δv
}
> yi(v− ξ)�

Consider now the auxiliary function

D̃(s� y)=
∑
i∈I

{
yiψ̃i

(
yi� s

) + ∣∣yi∣∣ξ}�
where

ψ̃i
(
yi� s

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − δ
1 − σ

[
ãi(s)

]1−σ + δ

1 − σ
{∑
s′∈S

[
(1 − σ)wi

(
s′
)]θ
π

(
s′|s)} 1

θ

if yi ≥ 0�

1 − δ
1 − σ

[
ãi(s)

]1−σ + δv else if yi < 0�

D̃(s� y) is clearly a continuous function. Our preceding derivations show that for all
(s� y) ∈ S × C, B(D)(s� y)≥ D̃(s� y) >D(s� y). The continuity of each D(s� ·) and D̃(s� ·)
and the compactness of C then imply that there is an ε > 0 such that, for all (s� y) ∈ S ×C,
B(D)(s� y)≥ D̃(s� y) >D(s� y)+ ε, and hence B(D)(s� y)≥D(s� y)+ ε as required.
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B.3. Numerical Calculations

This subsection reports additional calculations for the two and three agent cases.

B.3.1. Two Agents

In the main text, results for the case σ = 1�5 and ρ = 5 are reported. Values of ρ that
are smaller and closer to σ result in more volatility in consumption and a muting of the
dynamics that occur when none of the no default constraints are binding. In the lim-
iting case of expected utility preferences ρ = σ , these dynamics disappear completely.
Figures 1 and 2 illustrate for the case σ = ρ= 1�5.

B.3.2. Three Agents

We now show computed results from a three agent economy. The preference parame-
ters are set to σ = 1�5, ρ= 5, and δ= 0�8. In shock state s, agent s has an outside option
equal to the utility from a steady endowment stream of 40% of the total endowment;
agents s′ �= s have outside options equal to the utility from a steady endowment stream of
10% of the total endowment. These values preclude full risk sharing. It is convenient to
plot policies as functions of spherical coordinates (φ1�φ2). The corresponding costates
or “Pareto weights” on agents are y1 = cosφ1, y2 = sinφ1 cosφ2, and y3 = sinφ1 sinφ2.
Thus, higher values of φ1 imply less weight on agent 1’s utility and more on agent 2’s and
agent 3’s, while higher values of φ2 imply less weight on agent 2’s utility and more on
agent 3’s (with no change in the weight on agent 1’s). Figure 3 shows the computed op-
timal dual value function and the Thompson metric distance between successive iterates,
illustrating the geometric convergence of the value iteration.

Figure 4 shows calculated policy functions. Panel (a) of the figure displays the optimal
multiplier m2 for agent 2 in shock state 2 (in which agent 2 has a high outside option
and agents 1 and 3 low ones). The weight y2 is small and agent 2’s incentive multiplier
correspondingly large when the spherical coordinates φ1 and φ2 are, respectively, small

FIGURE 1.—Solid lines give agent 1’s policy; dashed lines, agent 2’s policy. Policies are given as functions of
agent 1’s normalized costate and for s = 1. Panel (a) shows agent consumption; panel (b), multipliers on the
commitment constraints.
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FIGURE 2.—Panels (a) and (b) show the (normalized) costates associated with remaining in state 1 and state
3, respectively, as a function of the initial value of the costate ψ. Solid lines give agent 1’s policy; dashed lines,
agent 2’s policy. The 45 degree line is illustrated with dots. Policies are given as functions of agent 1’s normal-
ized costate and for s = 1. Panels (c) and (d) illustrate a 250 period simulation of agent 1’s consumption which
displays the usual ‘memoryless property on the ergodic set’. When a change of state s leads a different agent’s
no default constraint to bind, an adjustment in agent 1’s consumption occurs. Thus, this agent’s consumption
bounces between two (history independent) levels; it remains constant whenever the economy remains in the
same state or transitions into s = 3.

and large. Then, the combination of a low costate and a high outside option imply that
additional consumption must be given to agent 2 now and in the future to keep her inside
the risk sharing arrangement. Panels (b), (c), and (d) of Figure 4 show the consumption
of agents 1, 2, and 3 as functions of the costates again given s = 2. Each agent’s consump-
tion rises in areas of the state space corresponding to a higher (Pareto) weighting. Agent
2’s consumption is sustained above 0.5 by her binding incentive constraint, while the con-
sumption of agents 1 and 3 decreases towards 0.2 as their (Pareto) weights decrease to
zero.
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FIGURE 3.—Panel (a) shows the planner’s dual value function in shock state s= 1 at the terminal iteration.
Panel (b) shows the Thompson metric distance between iterates.

Panels (a) and (b) of Figure 5 show “quiver plots” indicating the direction in which the
spherical coordinates describing costates are updated if the economy remains in shock
state s = 1 (panel a) and s = 2 (panel b). Consider panel (a). Recall that high values
of φ1 imply that the costate on agent 1 is low. Agent 1’s no default constraint is then
binding, her multiplier is positive, and her costate is raised. The spherical coordinate φ1

is correspondingly reduced (placing less weight on agents 2 and 3 and more on agent 1).
This is indicated by a left pointing arrow at high φ1 values (on the right-hand side of the
plot). Low values for φ1 and high values for φ2 imply that the costate on agent 2 is low.
If it is low enough, then even in state 1 (when agent 2’s outside option is low), agent 2’s
outside option binds. Hence, agent 2’s costate is increased. Spherical coordinate φ1 is
correspondingly increased and φ2 decreased and the arrows in the top left-hand corner
of the plot point down and inwards. Similar reasoning holds with respect to the bottom
left-hand corner of the plot, where agent 3’s costate is low and outside option binds and
the arrows point up and inwards. In the dotted region in the center left of the plot, no
incentive constraints bind. Here, very small adjustments to costates occur that stem from
the early resolution of uncertainty structure of preferences and the force for equality that
it imparts. Panel (b) shows the adjustments in spherical coordinates when the economy
remains in shock state s = 2 and agent 2’s outside option is large. It has an analogous
interpretation to panel (a).

Panels (c) and (d) show a simulation of shocks and agent 1’s consumption. Consump-
tion remains relatively stable if the economy persists in a given shock state. But large
adjustments occur when a transition into or out of shock s = 1 occurs (and agent 1’s out-
side option abruptly changes relative to the other agents’ outside options).

APPENDIX C: PROOF OF PROPOSITION 8

We first establish existence of a saddle point with summable multipliers for an abstract
problem with inequality constraints. We then relate this problem to a modified version
of (P) (called (MP)). We associate a Lagrangian with (MP) and show that each primal
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FIGURE 4.—Figures are drawn on a domain of costates expressed in spherical coordinates. Higher values of
φ1 place more weight on agents 2 and 3; higher values of φ2 place more weight on agent 3. Panel (a) displays
the incentive multiplier for agent 2 in shock s = 2. The remaining three panels display the consumption of
agents in shock s = 2.

plan solving (MP) is part of a saddle point with a minimizing summable multiplier. Fi-
nally, we show that each solution to (P) defines a solution to (MP) and use the minimiz-
ing multiplier from (MP) to construct a minimizing multiplier and, hence, saddle point
for (P).

The Abstract Problem. Consider

sup f (x) s.t. g(x)≥ 0� (AP)

where f : �∞ → R and g : �∞ → �∞, with g(x) = {gr(x)}∞
r=1 and each gr : �∞ → R. Asso-

ciate the Lagrangian L : �∞ × �∞��
+ → R with (AP), where39

L(x�λ) := f (x)+ 〈
λ�g(x)

〉
�

39Define λ ∈ �∞��
+ if λ ∈ �∞�� and λ≥ 0, where λ≥ 0 ⇐⇒ 〈λ�y〉 ≥ 0 ∀y ∈ �∞� y ≥ 0.
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FIGURE 5.—Policy functions and simulations. Panels (a) and (b) show a quiver plot for the costate policy
functions associated with remaining in states s = 1 and s = 2, respectively. The arrows in the plots indicate the
direction in which the spherical coordinates describing costates are updated. Panels (c) and (d) show simula-
tions of shocks and of the consumption of agent 1.

Given Assumption 7 below and the existence of a solution x∗ to (AP), Theorem C.1 es-
tablishes the existence of a saddle point.

ASSUMPTION 7: (C) Concavity: f and g are concave. (S) Slater Condition: There is an
x̂ such that infr gr(x̂) > 0.

THEOREM C.1—Saddle Point Existence for the Abstract Problem:
(i) If x∗ is feasible for (AP) and solves maxx∈�∞ L(x�λ∗) with λ∗ ∈ �∞�� such that λ∗ ≥ 0

and 〈λ∗� g(x∗)〉 = 0, then x∗ solves (AP).
(ii) If Assumption 7 holds and x∗ solves (AP), then there is a λ∗ ∈ �∞�� such that λ∗ ≥ 0

and 〈λ∗� g(x∗)〉 = 0. Moreover, x∗ solves maxx∈�∞ L(x�λ∗).
(iii) If (a) λ∗ ≥ 0 and (b) 〈λ∗� g(x∗)〉 = 0, then x∗ is feasible for (AP) if and only if

L
(
x∗�λ∗) ≤L

(
x∗�λ

) ∀λ ∈ �∞�� with λ≥ 0�

(iv) If Assumption 7 holds and x∗ solves (AP), then L has a saddle point in �∞ × �∞��
+ .
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PROOF OF THEOREM C.1: (i) If x is feasible for (AP), then all nonlinear constraints
must hold with inequality and 〈λ∗� g(x)〉 ≥ 0. Thus, for any feasible choice x: f (x∗) =
f (x∗) + 〈λ∗� g(x∗)〉 = L(x∗�λ∗) ≥ L(x�λ∗) = f (x) + 〈λ∗� g(x)〉 ≥ f (x). (ii) This proof
is standard. To save space, we do not report it here, but refer the interested reader to
Luenberger (1969), Theorem 1, pages 217–218. (iii) (⇒) If x∗ is feasible, then g(x∗)≥ 0.
Hence, for all λ≥ 0, 〈λ�g(x∗)〉 ≥ 0 and 0 is the infimum of 〈λ�g(x∗)〉 over λ≥ 0. Hence,
from (a) and (b), f (x∗) + 〈λ∗� g(x∗)〉 ≤ f (x∗) + 〈λ�g(x∗)〉, ∀λ ∈ �∞��

+ . (iii) (⇐) Sup-
pose, for a given x∗, we have 〈λ∗� g(x∗)〉 = 0, and λ∗ ∈ arg minλ∈�∞��

+ L(x∗�λ). Suppose,
for some r, gr(x∗) < 0. Let λ̂ = λ∗ + χ, with χ(ν) = 1 if ν = r and 0 otherwise. Then
L(x∗� λ̂) <L(x∗�λ∗), contradicting the fact that λ∗ is a minimizer. Hence, it must be that
g(x∗)≥ 0 (i.e., x∗ is feasible). (iv) It immediately follows from (ii) and (iii) that if Assump-
tion 7 holds and x∗ solves (AP), then L has a saddle point in �∞ × �∞��

+ . Q.E.D.

We now refine Theorem C.1 and give conditions such that the minimizing multiplier λ∗

in Theorem C.1(ii) lies in �1 ⊂ �∞��. By Yosida and Hewitt (1952), Theorems 1.22 and 1.24,
�∞�� admits the decomposition �∞�� = �1 + �s with �s the set of pure finitely additive compo-
nents. Assumption 8 below ensures summability of the minimizing multiplier.40 In the as-
sumption and throughout the proof, for a pair x and y ∈ �∞, and T ∈ N, let xT(x� y) := xr
if r ≤ T and yr , if r > T .

ASSUMPTION 8: (C) Continuity: limT→∞ f (xT (x� y))= f (x).
(AN) Asymptotically non-anticipatory: ∀t� limT→∞ gr(xT (x� y))= gr(x).
(AI) Asymptotically insensitive: for all N , limr→∞[gr(xN(x� y))− gr(y)] = 0.
(B) Uniform boundedness: ∃M s.t. for all T , supr ‖gr(xT (x� y))‖E ≤M .41

THEOREM C.2: Suppose f and g satisfy Assumptions 7(S) and 8. If (x∗�λ∗) ∈ �∞ × �∞��
+

is a saddle point of L, then (x∗�λ∗) ∈ �∞ × �1
+.

PROOF OF THEOREM C.2: The proof uses two key lemmas.

LEMMA C.1: Given Assumption 8(AI), ∀λs ∈ �s and N ≥ 1, 〈λs�g(xN(x� y))〉 =
〈λs�g(y)〉.

PROOF: If λs ∈ �s, then for all z = {zr} ∈ �∞ with limr→∞ zr = 0, we have 〈λs� z〉 = 0. By
Assumption 8(AI), ∀N , limr→∞[gr(xN(x� y))− gr(y)] = 0 and so ∀N , 〈λs� [g(xN(x� y))−
g(y)]〉 = 0 as required. Q.E.D.

LEMMA C.2: Given Assumption 8(ANA) and (B), ∀λ1 ∈ �1, limT→∞〈λ1� g(xT (x� y))〉 =
〈λ1� g(x)〉.

PROOF: For all T�N ∈ N, ‖〈λ1� g(xT (x� y))〉 − 〈λ1� g(x〉)‖E ≤ ∑N

r=0 ‖λ1
r‖E ×

‖gr(xT (x� y)) − gr(x)‖E + supr ‖gr(xT (x� y)) − gr(x)‖E ∑∞
r=N+1 ‖λ1

t ‖E . From Assump-
tion 8(B), there is an M > 0 such that ∀T , supr ‖gr(xT (x� y)) − gr(x)‖E ≤ M̄ :=
M + supr ‖gr(x)‖E . Since λ1 ∈ �1 for each ε > 0, there is an N0 such that

∑∞
r=N0+1 ‖λ1

r‖E <

40 Dechert (1982) introduced the terminology used in Assumption 8(AN) and (AI). He showed summability
of multipliers under slightly different assumptions. The proofs of Lemmas C.1 and C.2 follow Le Van and
Sağlam (2004) who focused on variations to the deterministic model of optimal growth.

41The number ‖gr(x)‖E represents the Euclidean norm of the vector gr(x).
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ε/2M̄ , and so, from Assumption 8(ANA), there is a T̄r such that ∀T ≥ T̄r ,
‖λ1

t ‖E‖gr(xT (x� y)) − gr(x)‖E < ε/2N0 . Hence, combining conditions, for all T >

maxr≤N0{T̄r}, ‖〈λ1� g(xT (x� y))〉 − 〈λ1� g(x)〉‖E < N0 ε/2N0 + M̄ ε/2M̄ = ε. Since ε > 0
was arbitrary, this proves the result. Q.E.D.

We now conclude the proof of Theorem C.2. Since (x∗�λ∗) is a saddle in �∞ × �∞��
+ ,

we have, for all x ∈ �∞, L(x�λ∗)≤ L(x∗�λ∗), and 〈λ∗� g(x∗)〉 = 0. Let λ∗ = λ1 + λs. Since
λ∗ ≥ 0, we have both 〈λ1� g(x∗)〉 = 0 and 〈λs�g(x∗)〉 = 0. Since x∗ maximizes L(·�λ∗) over
�∞ and 〈λ∗� g(x∗)〉 = 0,

f
(
x∗) ≥ f (xT (x∗� x̂

)) + 〈
λ1� g

(
xT

(
x∗� x̂

))〉 + 〈
λs�g

(
xT

(
x∗� x̂

))〉
� (C.1)

Recall that if x̂ is chosen to satisfy the Slater condition, then infr gr(x̂) > 0. Lem-
mas C.1 and C.2 together imply that, for T → ∞, we have both 〈λ1� g(xT (x∗� x̂))〉 →
〈λ1� g(x∗)〉 and 〈λs�g(xT (x∗� x̂))〉 → 〈λs�g(x̂)〉. Moreover, from Assumption 8(C), we
have f (xT (x∗� x̂)) → f (x∗). If λs �= 0, since λs ≥ 0, taking limits in (C.1), we have the
following contradiction: f (x∗)≥ f (x∗)+ 〈λs�g(x̂)〉> f(x∗). Thus, λs = 0. Q.E.D.

Modified Problem. Let

PR = {
p = (a�k� v)| ∀t ≥ 0� at : S t →A�kt : S t−1 →K� vct : S t → V c

}
denote the set of (modified) primal plans that exclude the quasilinear state variables. In
addition, letting bl0 = Inl (with Inl the nl-identity matrix) and for all ∀t� st� s′blt+1(s

t� s′|s0)=
blt(s

t |s0)B
l(st� s

′), define

V l
(
st�a|st) := (1 − δ)

∞∑
n=0

δn
∑
Sn
bln

(
st+n|st

)
ul

(
st+n� alt+n

(
st+n

))
πn

(
st+n|st

)
� (C.2)

where the previous expression is well defined since Assumption 5(iv) implies that all en-
tries of the diagonal matrices Bl are bounded between −1 and +1. Relax the nonlinear
laws of motion for state variables and replace the quasilinear state variables using (C.2)
to obtain the modified problem

MP∗
0 := supF

[
s0� v

c
0� V

l(s0�a)
]

(MP)

subject to pR ∈ PR, k0 ≤ k̄ and ∀t, st ,
kt+1

(
st

) ≤W k
[
kt

(
st−1

)
� st� at

(
st

)]
� (C.3)

vct
(
st

) ≤W c
[
st� at

(
st

)
�Mc

[
st� v

c
t+1

(
st� ·)]]� (C.4)

and

H
[
kt

(
st−1

)
� st� at

(
st

)
� vct+1

(
st� ·)� V l

(·�a|st� ·)] ≥ 0�

We relate the original problem (P) to the modified problem (MP).

LEMMA C.3: Let Assumptions 2, 4 and 5(iv) hold and let k̄ ∈ K∗(s0). Then MP∗
0 = P∗

0
and for any solution p∗ = (pR∗� vl∗) to (P), pR∗ is a solution to (MP).
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PROOF: Let p = (pR� vl) denote a feasible plan for (P); then, given Assumption 5(iv), it
is readily shown via iteration on the law of motion for quasilinear states that v0 = V l(s0�a)
and for all t = 1�2� � � � and st ∈ S t , vlt(s

t)= V l(st�a|st). Hence, since the nonlinear laws of
motion are relaxed in (MP), pR is feasible for (MP) and, so, MP∗

0 ≥ P∗
0 . Since k̄ ∈ K∗(s0)

and the constraints of (P) are non-empty, the constraint set for (MP) is also non-empty.
By Assumption 2 and a similar argument to Proposition 1, (MP) has a solution p̂R. Let
v̂l = {v̂lt}, with v̂0 = V l(s0� â) and for all t = 1�2� � � � and st ∈ S t , v̂lt(s

t)= V l(st� â|st). If p̂ =
(p̂R� v̂l) is feasible for (P), then MP∗

0 = P∗
0 and, hence, the pR component of any solution

to the original problem (P) solves (MP). Suppose that p̂ is not feasible for (P) and that
F[s0� v̂0]>P∗

0 . Then k̂0 ≤ k̄,

k̂t+1

(
st

) ≤W k
[
k̂t

(
st−1

)
� st� ât

(
st

)]
� (C.5)

v̂ct
(
st

) ≤W c
[
st� ât

(
st

)
�Mc

[
st� v̂

c
t+1

(
st� ·)]]� (C.6)

v̂lt
(
st

) =W l
[
st� ât

(
st

)
�Ml

[
st� v̂

l
t+1

(
st� ·)]]�

and

H
[
k̂t

(
st−1

)
� st� ât

(
st

)
� v̂t+1

(
st� ·)] ≥ 0�

with at least one of the constraints k̂0 ≤ k̄, (C.5), or (C.6) a strict inequality. Consider
first modifying p̂ by increasing k̂0 until it equals k̄ ∈ K∗(s0)⊂ K and successively at each
history raising k̂t+1(s

t) until it equalsW k[k̂t(st−1)� st� ât(s
t)]. By Assumption 4(ii) and (iii),

the modified plan satisfies (C.3) with equality at each st , the H constraints at each st , and
has each kt(st) ∈K. If each (C.6) holds with equality at p̂ and, hence, at the modified plan,
then the modified plan has a payoff MP∗

0 (since it did not alter v̂0) and is feasible for (P).
Thus, P∗

0 ≥MP∗
0 . Suppose that at some st , v̂ct (s

t) < W c[st� ât(st)�Mc[st� v̂ct+1(s
t� ·)]]. Then

further modify the plan by raising v̂ct (s
t) until equality is restored. Since we assume

throughout that W v[s� a�Mv[s� ·]] : VnS → V and, hence, W c[s� a�Mc[s� ·]] : (V c)nS → V c

and since vct+1(s
t� ·) ∈ (V c)nS , the adjusted vtc(s

t) ∈ V c . Continuing in this way through suc-
cessively shorter histories sτ, each vcτ(s

τ) is increased (by the strict monotonicity of W c

and Mc) and, in particular, vc0 is increased. Hence, by the increasingness of F[s0� ·], the
modified plan raises the value of F[s0� ·] above F[s0� v̂0]. Since the pR component of this
plan is feasible for (MP), the optimality of p̂R for (MP) is contradicted. Thus, the modified
plan must satisfy the conditions (C.4) with equality. We conclude that P∗

0 ≥MP∗
0 . Com-

bining inequalities P∗
0 =MP∗

0 and the pR component of any optimum for (P) is feasible
for (MP), attains a payoff of MP∗

0 and, hence, is optimal for (MP). Q.E.D.

Relating the Modified Problem to the Abstract Problem. For each (modified) primal plan
pR, define the constraint values as follows: z(pR)= (zk(pR)� zc(pR)� zh(pR)), with zk(pR)=
{zkt (pR)}∞

t=0, where zk0 (p
R) := k̄− k0 and, for all t = 1�2� � � � � and st ∈ S t ,

zkt
(
pR

)(
st

) :=W k
[
kt−1

(
st−1

)
� st−1� at−1

(
st−1

)] − kt
(
st

);
zc(pR)= {zct (pR)}∞

t=0, where for all t = 0�1�2� � � � � st ∈ S t ,

zct
(
pR

)(
st

) :=W v
[
st� at

(
st

)
�Mc

[
st� v

c
t+1

(
st� ·)]] − vct

(
st

)
and zh(pR)= {zht (pR)}∞

t=0, where

zht
(
pR

)(
st

) :=H[
kt

(
st−1

)
� st� at

(
st

)
� vct+1

(
st� ·)� V l

(
s′�a|st� ·)]�
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Let yk = {ykt }∞
t=0, with ykt : S t → R

nK+ , denote nonnegative costates for the backward-
looking law of motion and yc = {yct }∞

t=0, with yct : S t → R
nc+ , nonnegative costates for the

forward-looking nonlinear laws of motion. Let m = {mt}∞
t=0, with mt : S t → R

nH+ , denote
multipliers for the H-constraints. Collect these various multipliers into a (modified) dual
plan qR = {m� yk� yc} and define the set of such dual plans to be

QR =
{

qR
∣∣∣ ∞∑
t=0

∑
St
δt

{∥∥mt

(
st

)∥∥
E

+ ∥∥ykt (st)∥∥E + ∥∥yct (st)∥∥E}πt(st |s0

)
<∞

}
�

We associate the following Lagrangian L : PR × QR → R with (MP):

LR
(
pR�qR

) = F[
s0� v

c
0� V

l(s0�a|s0)
] + 〈

qR� z
(
pR

)〉
�

with 〈qR� z(pR)〉 = ∑∞
t=0

∑
St δ

t{mt(s
t) · zht (pR)(st)+ ykt (st) · zkt (pR)(st)+ yct (st) · zct (pR)×

(st)}πt(st |s0).

LEMMA C.4: If pR∗ solves (MP) and Assumptions 5 and 6 hold, then there exists a qR ∈ QR

such that (pR∗�qR∗) is a saddle point of LR on PR × QR.

PROOF: We first re-express (MP) as an abstract problem of the form (AP). Next, we
verify Assumptions 7 and 8. The result then follows from Theorems C.1 and C.2. In
(MP) constraints are indexed by histories, in (AP) by the natural numbers. To convert
one to the other, let S = ⋃∞

t=0 S t denote the countable set of all histories (and recall
that S = {1� � � � � nS}). Relabel histories according to τ : S → N with τ(st)= (1 + ∑t−1

r=1 sr ·
nt−rS + st).42 Thus, the relabeled history 1 is the initial (date 0) history, relabeled histories
2� � � � � nS + 1 are the period 1 histories occurring after each period 1 shock realization,
and so on. Choice variables may be grouped and re-indexed accordingly. Specifically, let
x= {xτ}∞

τ=1 ∈ �∞ denote a regrouped and labeled primal plan, with

xτ(st ) =
(
kt

(
st

)
� at

(
st

)
� vct

(
st

)) ∈X =K×A× V c�nS �

where V c denotes the bounded set of nonlinear states. Let g denote a regrouped and
relabeled constraint function with g= {gτ}∞

τ=1 and for each τ(st),

gτ(st )(x)= (
zkt

(
pR(x)

)(
st

)
� zct

(
pR(x)

)(
st

)
� zht

(
pR(x)

)(
st

))
�

where pR(x) = {pRt (x)(st)}∞
t=0 is the primal plan associated with x. The boundedness of

the constraint functions implies g : �∞ → �∞. Finally, let f (x)= F[s0� v
c
0(x)�V

l(s0�a(x))],
where vc0(x) and a(x) denote the v0 and a components of x. In this way, (MP) is re-
expressed in the form (AP) and, in particular, a Lagrangian of the form L(x�λ)= f (x)+
〈λ�g(x)〉 may be associated with (MP).

We next show that Assumptions 5 and 6 in the main text and the structure of f and
g in our setting imply Assumption 7 and 8. From Assumption 5, the concavity of F , H,
W c , and Mc imply concavity of f and g as required by Assumption 7(C). Assumption 6
ensures Assumption 7(S) (the Slater Condition). Specifically, if there is, as required by
Assumption 6, a p̂ ∈ P satisfying the law of motion constraints for vc and k and the H

42For example, consider the history (s0� s1� s2) = (s0�2�5). We have τ(s0) = 1, τ(s0�2) = 1 + 2 = 3, and
τ(s0�2�5)= 1 + 2 · nS + 5 = 2 · nS + 6.
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constraints with strict inequality and zl(p̂) = 0, then the corresponding p̂R ∈ PR satisfies
Assumption 7(S).

Assumption 8(C) holds if for all x and y , limT→∞ F[s0� v
c
0(x

T (x� y))�V l(s0�
a(xT (x� y)))] = F[s0� v

c
0(x)�V

l(s0�a(x))]. Since vc0(x
T (x� y)) = vc0(x) for all T ≥ 1

and F is linear, so, continuous in its third argument, Assumption 8(C) holds if
limT→∞ V l(s0�a(xT (x� y)))= V l(s0�a(x)). For any pair x and y , there is a non-decreasing
sequence of dates R(T) with limT→∞R(T) = ∞ such that, for all st with t < R(T), all
elements pRt (x)(s

t)= pRt (xT (x� y))(st). Thus,43

∣∣V l
(
s0�a

(
xT (x� y)

)) − V l
(
s0�a(x)

)∣∣
≤ δR(T)

∑
sR(T)

∣∣blR(T)(sR(T)|s0

)∣∣
× ∣∣V l

(
sR(T)�a

(
xT(x� y)

)|sR(T)) − V l
(
sR(T)�a(x)|sR(T))∣∣πR(T)(sR(T)|s0

)
�

Since δR(T) converges to 0 and the sequence of sums
∑

sR(T) |blR(T)(sR(T)|s0)||V l(st�

a(xT (x� y))|st) − V l(st�a(x)|st)|πR(T)(sR(T)|s0) is uniformly bounded, limT→∞ |V l(s0�
a(xT (x� y)))−V l(s0�a(x))| = 0. Thus, Assumption 8(C) is satisfied. Assumption 8(ANA)
holds if for each j = k� c�h, and t and all x and y , limT→∞ z

j
t (pR(xT (x� y)))(st) =

z
j
t (pR(x))(st). This result follows from the fact that each zjt (pR)(st), j = k� c, depends

only upon variables measurable with respect to st and st+1 and each zht (p
R)(st) depends

only upon these variables and upon V l(st�a|st) continuously. Thus, defining R(T) as
before, once R(T) > t + 1, zjt (pR(xT (x� y))(st) = z

j
t (pR(x))(st), j = k� c. Also, by a sim-

ilar argument to that given above, |V l(st�a(xT (x� y))|st) − V l(st�a(x)|st)| → 0. Thus,
limT→∞ zht (p

R(xT (x� y))(st)= zht (pR(x))(st) and Assumption 8(ANA) is verified.
Assumption 8(AI) requires that for each j = c�k�h, and N , limt→∞[zjt (pR(xN(x� y))−

z
j
t (pR(y))] = 0. This is an immediate consequence of the fact that each zjt does not depend

on any variable that is measurable with respect to st−1. Thus, for any fixed N , there exists
an M(N) such that for each j, t > M(N), and r ≥ 0, pRt+r(x

N(x� y))(st+r)= pRt+r(y)(s
t+r)

and so [zjt (pR(xN(x� y))− z
j
t (pR(y))] = 0. This confirms Assumption 8(AI). Finally, As-

sumption 8(B) follows from the boundedness of the constraint functions.
Thus, Assumptions 7 and 8 are verified. Let x∗ denote the regrouped and relabeled

primal plan corresponding to the solution pR∗ of (MP). By Theorems C.1 and C.2, there
exists a multiplier λ∗ ∈ �1

+ such that (x∗�λ∗) is a saddle point of L(x�λ)= f (x)+〈λ�g(x)〉,
where f and g are those implied by (MP) and defined above. Resetting the labeling, it
follows that pR∗ and qR∗ (where qR∗ is obtained from λ∗ by resetting the labeling and
normalizing multipliers at each t and history st by δtπt(st|s0)) is a saddle point of LR on
PR × QR. Q.E.D.

The preceding result establishes that if pR∗ solves (MP), then there is a qR∗ ∈ QR such
that (pR∗�qR∗) is a saddle point of LR on PR × QR. We now seek to show that if p∗

solves (P), then there is a q∗ ∈ Q such that (p∗�q∗) is a saddle point of L on P × Q. Recall
that the Lagrangian L associated with (P) incorporates quasi-linear state variables and
the laws of motion for such variables. It also allows the costates associated with nonlinear
laws of motion to belong to R rather than R+. We use a constructive argument to show

43We use the following notation: for a generic matrix R, |R| denotes the element-wise application of the
absolute value operator to R.
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that this Lagrangian also has a saddle point. Under Assumption 5, F[s0� v
c
0� v

l
0] is linear in

its third argument. Below, we use the notation

F
[
s0� v

c
0� v

l
0

] = F̂[
s0� v

c
0

] + Fl(s0) · vl0�
In addition, H[k� s�a� vc′� vl′] is linear in its final argument. Below, we use the notation

H
[
k� s�a� vc′� vl′

] = Ĥ[
k� s�a� vc′

] + δ
∑
s′∈S

Nl
(
s� s′

) · vl(s′)π(
s′|s)�

LEMMA C.5: Let p∗ = (pR∗� vl∗), with pR∗ = (a∗�k∗� vc∗), be a solution to (P). If (pR∗�qR∗),
with qR∗ = (yk∗� yc∗�m∗), is a saddle point of LR on PR × QR, then (pR∗� vl∗�qR∗� yl∗), where
yl∗ satisfies the recursion yl∗0 = Fl(s0) and for all t = 1�2� � � � and st ∈ S t ,

yl∗t+1

(
st� s′

) = yl∗t
(
st

) ·Bl(st� s′) +m∗
t

(
st

) ·Nl
(
st� s

′) (C.7)

is a saddle point of L on PR × QR.

PROOF: Let Q+ denote the subset of Q in which the costates yk and yc on backward-
looking and nonlinear forward-looking state variables are nonnegative. For (p�q) ∈ P ×
Q+ and (pR�qR) ∈ PR × QR, define

�
(
a� vl�m� yl

)
:= LR

(
pR�qR

) − L(p�q)

= Fl(s0) · V l(s0�a)

+
∞∑
t=0

δt
∑
St
mt

(
st

) ·
∑
st+1∈S

δNl(st� st+1)V
l
(
st+1�a|st� st+1

)
π(st+1|st)πt

(
st |s0

)
(C.8)

− Fl(s0) · vl0

−
∞∑
t=0

δt
∑
St
mt

(
st

) ·
∑
st+1∈S

δNl(st� st+1)v
l
t+1

(
st� st+1

)
π(st+1|st)πt

(
st |s0

)

−
∞∑
t=0

δt
∑
St
ylt

(
st

) ·
[
ul

(
st� at

(
st

)) + δ
∑
st+1

Bl(st� st+1)v
l
t+1

(
st� st+1

)
π(st+1|st)− vlt

(
st

)]

×πt(st |s0

)
�

where the second equality follows from the definitions of the Lagrangians. From
the recursion (C.7) defining the plan yl∗ and the assumption |B(s� s′)| ≤ Inl , yl∗ is
summable with respect to the δtπt(st |s0) normalization as long as m∗ is, that is, we have∑∞

t=0

∑
st∈St δ

t‖yl∗t (st)‖Eπt(st |s0) < ∞. Consequently, (qR∗� yl∗) ∈ Q+ and is feasible for
the minimization defining the saddle point of L. Hence, using the saddle point inequal-
ities for L and LR and the definition of �, (pR∗� vl∗�qR∗� yl∗) is a saddle point of L on
P × Q+ if for all (a� vl) ∈ P and (m� yl) ∈ Q+,

�
(
a� vl�m∗� yl∗

) ≥ �(
a∗� vl∗�m∗� yl∗

) ≥ �(
a∗� vl∗�m� yl

)
�



DUAL APPROACH TO RECURSIVE OPTIMIZATION 17

Consider first �(a∗� vl∗�m� yl). Since (a∗� vl∗) is part of an optimum and, hence, feasi-
ble for (P), it satisfies the law of motion for quasilinear states with equality. Conse-
quently, the last line in (C.8) when evaluated at (a∗� vl∗) equals zero. Moreover, the law
of motion for quasilinear states and Assumption 5(iv) imply that for all t� st , we have
v∗
t (s

t)= V l(st�a∗|st). Thus, (C.8) implies that for all m and yl forming part of q ∈ Q+,

�
(
a∗� vl∗�m� yl

) = 0�

Consequently, the inequality �(a∗� vl∗�m∗� yl∗)≥ �(a∗� vl∗�m� yl) is trivially satisfied. Next,
consider �(a� vl�m∗� yl∗). Substituting the recursion defining yl∗ into (C.8) eliminates all
terms involving vl from �(a� vl�m∗� yl∗). Moreover, the definition of V l implies that for all
a ∈ A,

∞∑
t=0

δt
∑
St
yl∗t

(
st

) · ul(st� at(st))
= Fl(s0) · V l(s0�a)

+
∞∑
t=0

δt
∑
St
m∗
t

(
st

) ·
∑
st+1∈S

δNl(st� st+1)V
l
(
st+1�a|st� st+1

)
π(st+1|st)πt

(
st |s0

)
�

Substituting this into (C.8), it follows that �(·� ·�m∗� yl∗) is zero and independent of a
and vl. Hence,

�
(
a� vl�m∗� yl∗

) ≥ �(
a∗� vl∗�m∗� yl∗

)
� ∀a� vl ∈ P�

Thus, (p∗�q∗)= (pR∗� vl∗�qR∗� yl∗) is a saddle point of L on P×Q+. It remains only to show
that (pR∗� vl∗�qR∗� yl∗) is a saddle point of L on P × Q (i.e., of the Lagrangian without the
costates yk and yc restricted to be nonnegative). However, since p∗ is a solution to (P),
it satisfies the laws of motion for backward-looking and nonlinear forward-looking states
with equality. Hence, L(p∗� ·) is independent of the multipliers on these states, implying
that q∗ minimizes L(p∗� ·) on the set Q. Q.E.D.

PROOF OF PROPOSITION 8: The proof now follows from the preceding lemmas. By
Assumption 2, the restriction on k̄, and Proposition 1, (P) has a solution p∗ = (pR∗� vl∗).
Given Assumptions 2, 4, and 5(iv), by Lemma C.3, pR∗ solves (MP). Given Assumptions 5
and 6, Lemma C.4 implies that the Lagrangian LR has a saddle point (pR∗�qR∗). Finally,
by Lemma C.5, the Lagrangian L has a saddle point. Q.E.D.
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