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1. PACKAGE AUCTION MODEL

THE PACKAGE AUCTION MODEL is a generalization of the menu auction model, in which
each bidder cares about and bids for only some part of the allocation. As one example,
there may be a set of goods to be allocated among bidders, with each bidder caring about
and bidding for only its own allocation or “package.”

Does Corollary 5—that test-set equilibrium leads to core payoffs in the menu auction
setting—extend to the full set of package auctions? In this section, we demonstrate by
example that the answer is no.1

As before, there is one auctioneer, who selects a decision that affects himself and N
bidders. The possible packages for bidder n are given by the set Xn and the possible
choices for the auctioneer by X ⊆ ×N

n=1 Xn. The gross monetary payoffs that bidder
n receives are described by the function vn : Xn → R. Similarly, the auctioneer receives
gross monetary payoffs described by v0 :X → R.2

The N bidders simultaneously submit bids. A bid is a menu of payments to the
auctioneer, contingent on the package received, which can be expressed as a function
bn : Xn → R+. Given bids, the auctioneer chooses a decision x ∈ X that maximizes his
payoff v0(x)+ ∑N

n=1 bn(xn). As before, we assume that if there are several such decisions,
then the auctioneer chooses the one that maximizes the total surplus. We also continue to
assume that all agents have lexicographic preferences, first preferring outcomes with the
highest personal payoff and secondarily preferring ones with higher total surplus. And we
also assume as before that against any bid profile in which at least one competing bidder is
playing a strictly dominated strategy, each bidder strictly prefers to set its bid vector equal
to its value vector over any other bid vector that leads to the same auctioneer decision
and the same zero payoff.
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While Bernheim and Whinston (1986) demonstrated that truthful equilibrium and
coalition-proof equilibrium lead to bidder-optimal core payoffs only in the menu auction
setting, these results generalize to all package auctions. In contrast, Corollary 5—that
test-set equilibrium leads to core payoffs in the menu auction setting—does not general-
ize to all package auctions. Example 1, below, describes a package auction that possesses
a test-set equilibrium with non-core payoffs.

In the example, there are six bidders, with possible packages Xn = {l�w} (“lose” or
“win”). The set X includes six combinations of packages, describing which sets of bidders
can simultaneously win. First, bidder 1 may win alone. Alternatively, bidder 2 may win
together with one of bidders 3, 4, 5, or 6. Finally, bidders 3, 4, 5, and 6 may win together.
The last of these possibilities maximizes total surplus. However, there exists a test-set
equilibrium implementing the decision in which bidder 1 wins alone.

EXAMPLE 1: Let N = 6. For all n, let Xn = {l�w}. Let

X =
{

(w� l� l� l� l� l)� (l�w�w� l� l� l)� (l�w� l�w� l� l)�
(l�w� l� l�w� l)� (l�w� l� l� l�w)� (l� l�w�w�w�w)

}
�

For all x ∈X , let v0(x)= 0. Let the payoffs of the bidders be as follows:

v1(l)= 0� v1(w) = 29�
v2(l)= 0� v2(w) = 19�
v3(l)= 0� v3(w) = 9�
v4(l)= 0� v4(w) = 8�
v5(l)= 0� v5(w) = 7�
v6(l)= 0� v6(w) = 6�

Then the following bid profile is a test-set equilibrium, which results in the inefficient
decision (w� l� l� l� l� l):

b1(l)= 0� b1(w) = 28�
b2(l)= 0� b2(w) = 19�
b3(l)= 0� b3(w) = 9�
b4(l)= 0� b4(w) = 0�
b5(l)= 0� b5(w) = 0�
b6(l)= 0� b6(w) = 0�

PROOF OF EXAMPLE 1: It is easy to verify that these bids result in the decision
(w� l� l� l� l� l). This decision is inefficient because it yields a total surplus of 29, whereas
the decision (l� l�w�w�w�w) yields a total surplus of 30. It is also easy to check that these
bids are a Nash equilibrium. Moreover, in the equilibrium no bidder is using a bid that is
weakly dominated in the game, by an extension of Lemma 2.

Bidder 1 has a unique best response to the equilibrium bids of the other bidders: its
equilibrium bid of b1(l) = 0 and b1(w) = 28. The best responses of bidder 2 are those of
the form b2(l)= 0 and b2(w) ∈ [0�19]. For all bidders n ∈ {3�4�5�6}, their best responses
are those of the form bn(l)= 0 and bn(w) ∈ [0�9]. Given this, it is easily checked that each
bidder’s test-set condition is satisfied. Q.E.D.

This package auction example helps to sharpen our understanding of how test-set
equilibrium promotes core allocations in the original Bernheim–Whinston menu auction
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model. Test-set equilibrium is effective there because it promotes “high enough” bids for
losing decisions. It does so because each bidder n believes that a deviation by a single
other bidder playing a different best response might offer an opportunity for a better
outcome, provided that n bids high enough. In this package auction example, however,
bidders 4, 5, and 6 are not bidding “high enough,” yet there is no element in the test set
that offers an opportunity for a better outcome. No single deviation can create such an
opportunity; only a joint deviation by two or more others could do that.

Coalition-proof equilibrium refines away this package-auction equilibrium because it
considers the possibility of a cooperative joint deviation. Truthful strategies work as a
refinement in this context, too, because the restriction to truthful bids is a restriction to
bids that are high enough for losing decisions. The test-set refinement for these package
auction games, however, does not imply high bids for losing decisions.

2. PROPER EQUILIBRIA OF THE AGENT-NORMAL FORM OF THE SECOND-PRICE,
COMMON-VALUE AUCTION

Although we have been unable to characterize the pure proper equilibria of the normal
form of the second-price, common-value auction described in Section 4.2—which is a
discrete version of the motivating example of Abraham et al. (2016)—we do have such a
characterization for the agent-normal form. In the agent-normal form of this auction, the
pure test-set equilibria and the pure proper equilibria coincide.

PROPOSITION 12: There exist two pure proper equilibria of the agent-normal form of the
discrete second-price, common-value auction described in Section 4.2: (0�1�0) and (0�1�1).

PROOF OF PROPOSITION 12: The proof consists of two parts. First, we construct se-
quences of trembles that justify each of (0�1�0) and (0�1�1) as proper equilibria. Second,
we argue that no other pure strategy profile is a proper equilibrium. For brevity, we focus,
in each part, on the case where the discretized bid set is {0� 1

m
� � � � � m−1

m
�1}.

Part One: For all sufficiently small values of ε, the following completely mixed strat-
egy profile is an ε-proper equilibrium: (i) for k ∈ {1� � � � �m}, the low-type informed
bidder places probability εk on k/m and places all remaining probability on 0, (ii) for
k ∈ {0� � � � �m − 1}, the high-type informed bidder places probability ε2m−k on k/m and
places all remaining probability on 1, and (iii) for k ∈ {1� � � � �m}, the uninformed bidder
places probability εk on k/m and places all remaining probability on 0. As ε converges to
zero, these ε-proper equilibria converge to (0�1�0), which is therefore a proper equilib-
rium.

For all sufficiently small values of ε, the following completely mixed strategy profile
is an ε-proper equilibrium: (i) for k ∈ {1� � � � �m}, the low-type informed bidder places
probability εm+k on k/m and places all remaining probability on 0, (ii) for k ∈ {0� � � � �
m − 1}, the high-type informed bidder places probability εm−k on k/m and places all
remaining probability on 1, and (iii) for k ∈ {0� � � � �m− 1}, the uninformed bidder places
probability εm−k on k/m and places all remaining probability on 1. As ε converges to zero,
these ε-proper equilibria converge to (0�1�1), which is therefore a proper equilibrium.

Part Two: Let {εt}∞
t=1 be a sequence of positive numbers converging to zero and let

{(σt
0�σ

t
1�σ

t
U)}∞

t=1 be a sequence of completely mixed strategy profiles such that for each t,
(σt

0�σ
t
1�σ

t
U) is an εt-proper equilibrium.

Suppose b�b′ ∈ {0� 1
m
� � � � � m−1

m
�1} with b < b′. Because σt

U is completely mixed, the low-
type informed bidder receives a strictly higher payoff from b than from b′ against (σt

1�σ
t
U).
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Thus, εt-properness requires σt
0(b

′) ≤ εtσ
t
0(b). Likewise, the high-type informed bidder

receives a strictly higher payoff from b′ than from b against (σt
0�σ

t
U), and we conclude

σt
1(b) ≤ εtσ

t
1(b

′).
The uninformed bidder’s payoff from bidding k/m against (σt

0�σ
t
1) is

πt
U

(
k

m

)
= 1

2

∑
k′<k

[
σt

0

(
k′

m

)(
−k′

m

)
+ σt

1

(
k′

m

)(
1 − k′

m

)]

+ 1
4

[
σt

0

(
k

m

)(
− k

m

)
+ σt

1

(
k

m

)(
1 − k

m

)]
�

We argue that if (σt
0�σ

t
1) satisfies the restrictions described above and if the index t is suf-

ficiently large, then πt
U cannot be maximized at k/m for any k ∈ {2� � � � �m− 1}. Suppose

to the contrary that it were. This implies πt
U(

k
m
)≥ πt

U(
k+1
m
), or equivalently,

σt
0

(
k+ 1
m

)(
k+ 1
m

)
+ σt

0

(
k

m

)(
k

m

)
≥ σt

1

(
k+ 1
m

)(
1 − k+ 1

m

)
+ σt

1

(
k

m

)(
1 − k

m

)
�

Applying the above restrictions on (σt
0�σ

t
1), we obtain

σt
0

(
k

m

)[
k

m
+ εt

(
k+ 1
m

)]
≥ σt

1

(
k

m

)[(
1 − k

m

)
+ 1

εt

(
1 − k+ 1

m

)]
� (12)

Similarly, πt
U being maximized at k/m with k ∈ {2� � � � �m − 1} also implies πt

U(
k
m
) ≥

πt
U(

k−1
m
), or equivalently,

σt
0

(
k

m

)(
k

m

)
+ σt

0

(
k− 1
m

)(
k− 1
m

)
≤ σt

1

(
k

m

)(
1 − k

m

)
+ σt

1

(
k− 1
m

)(
1 − k− 1

m

)
�

Applying again the above restrictions on (σt
0�σ

t
1), we obtain

σt
0

(
k

m

)[
k

m
+ 1

εt

(
k− 1
m

)]
≤ σt

1

(
k

m

)[(
1 − k

m

)
+ εt

(
1 − k− 1

m

)]
� (13)

Together, (12) and (13) further imply

k

m
+ εt

(
k+ 1
m

)
(

1 − k

m

)
+ 1

εt

(
1 − k+ 1

m

) ≥
k

m
+ 1

εt

(
k− 1
m

)
(

1 − k

m

)
+ εt

(
1 − k− 1

m

) �

which is a contradiction for sufficiently large indices t. Q.E.D.

3. SUFFICIENT CONDITIONS FOR EXISTENCE OF TEST-SET EQUILIBRIUM

Despite the fact that test-set equilibria may fail to exist in finite games (cf. Section 6),
there are classes of games in which a test-set equilibrium always exists. Proposition 13
states three conditions, each of which is sufficient to guarantee the existence of a test-set
equilibrium. One sufficient condition is for the game to have two players: proper equilib-
ria exist and by Proposition 1 are also test-set equilibria in such games. A second sufficient
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condition is for the game to have three players, each of whom has two pure strategies. To-
gether, these two results imply that the game in Figure 1 is the smallest possible game in
which a test-set equilibrium may fail to exist. A third sufficient condition is for the game to
be a potential game (Monderer and Shapley (1996)): any strategy profile that maximizes
the potential function is a test-set equilibrium.

In addition, Proposition 14 states that in generic games, every Nash equilibrium is a
test-set equilibrium.

PROPOSITION 13: A finite game in normal form has at least one test-set equilibrium if it
also satisfies at least one of the following conditions:

(i) it is a two-player game,
(ii) it is a three-player game in which each player has at most two pure strategies, or
(iii) it is a potential game.

PROOF OF PROPOSITION 13:
Part One: This follows immediately from Proposition 1 and the existence of proper

equilibria in finite games.
Part Two: We show that for three-player games in which each player has two pure strate-

gies, test-set equilibrium is implied by extended proper equilibrium (Milgrom and Moll-
ner (2017)). The result will then follow from the existence of extended proper equilibrium
in finite games, which we establish in that paper. Since extended proper equilibrium re-
quires players to use strategies that are undominated in the game, it suffices to establish
that the test-set condition must hold.

Consider a three-player game with strategy sets Sn = {an�bn}. Suppose by way of con-
tradiction that σ is an extended proper equilibrium of this game that fails the test-set
condition. Without loss of generality, suppose it is player 1 for whom the test-set condi-
tion fails. Then there exists σ̂1 ∈ �(S1) that weakly dominates σ1 in T(σ). Also without
loss of generality, suppose that (σ1� a2�σ3) is an element of the test set against which σ̂1

strictly outperforms σ1. Thus, a2 ∈ BR2(σ1�σ3), and

π1(σ̂1� a2�σ3) > π1(σ1� a2�σ3)� (14)

Now if σ2(a2) = 1, then equation (14) contradicts Nash equilibrium. Therefore, σ2(a2) <
1, which implies b2 ∈ BR2(σ1�σ3). Then by the failure of the test-set condition for player 1,
we also have

π1(σ̂1� b2�σ3)≥ π1(σ1� b2�σ3)� (15)

Now if σ2(a2) > 0, then equations (14) and (15) would together contradict Nash equi-
librium. Thus, σ2 = b2. The remainder of the argument splits into two cases. In the first,
BR3(σ1�σ2)= {a3� b3}. In the second, BR3(σ1�σ2) is a singleton.

The first case is that BR3(σ1�σ2)= {a3� b3}. Then

T(σ)= {
(a1� b2�σ3)� (b1� b2�σ3)� (σ1� a2�σ3)� (σ1� b2�σ3)� (σ1� b2� a3)� (σ1� b2� b3)

}
�

Then by the failure of player 1’s test-set condition, we also have

π1(σ̂1� b2� a3)≥ π1(σ1� b2� a3)� (16)

π1(σ̂1� b2� b3)≥ π1(σ1� b2� b3)� (17)
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Suppose that for some α > 0, σε is a sequence of (α�ε)-extended proper equilibria con-
verging to σ . Then,

π1

(
σ̂1�σ

ε
2 �σ

ε
3

) −π1

(
σ1�σ

ε
2 �σ

ε
3

) = [
π1

(
σ̂1� a2�σ

ε
3

) −π1

(
σ1� a2�σ

ε
3

)]
σε

2 (a2)

+ [
π1

(
σ̂1� b2�σ

ε
3

) −π1

(
σ1� b2�σ

ε
3

)]
σε

2 (b2)�

which is positive for sufficiently small values of ε, and which therefore constitutes a con-
tradiction to σ being an extended proper equilibrium. To see that this is positive:

(i) Equation (14) implies that the first term is positive for completely mixed σε
3 suffi-

ciently close to σ3.
(ii) Equations (16) and (17) imply that the second term is nonnegative.
Without loss of generality, the second case is BR3(σ1�σ2) = {a3}, so that σ3 = a3. Sup-

pose that for some α> 0, σε is a sequence of (α�ε)-extended proper equilibria converging
to σ . Then,

π1

(
σ̂1�σ

ε
2 �σ

ε
3

) −π1

(
σ1�σ

ε
2 �σ

ε
3

) = [
π1(σ̂1� a2� a3)−π1(σ1� a2� a3)

]
σε

2 (a2)σ
ε
3 (a3)

+ [
π1(σ̂1� b2� a3)−π1(σ1� b2� a3)

]
σε

2 (b2)σ
ε
3 (a3)

+ [
π1(σ̂1� a2� b3)−π1(σ1� a2� b3)

]
σε

2 (a2)σ
ε
3 (b3)

+ [
π1(σ̂1� b2� b3)−π1(σ1� b2� b3)

]
σε

2 (b2)σ
ε
3 (b3)

= σε
2 (a2)σ

ε
3 (a3)

{[
π1(σ̂1� a2� a3)−π1(σ1� a2� a3)

]

+ [
π1(σ̂1� a2� b3)−π1(σ1� a2� b3)

]σε
3 (b3)

σε
3 (a3)

+ [
π1(σ̂1� b2� a3)−π1(σ1� b2� a3)

]σε
2 (b2)

σε
2 (a2)

+ [
π1(σ̂1� b2� b3)−π1(σ1� b2� b3)

]σε
2 (b2)σ

ε
3 (b3)

σε
2 (a2)σ

ε
3 (a3)

}
�

which is positive for sufficiently small values of ε, and which therefore constitutes a con-
tradiction to σ being an extended proper equilibrium. To see that this is positive:

(i) Equation (14) implies that the first term inside the braces is positive.
(ii) Equation (15) implies that the second term inside the braces is nonnegative.

(iii) Since σ2 = a2, σε
2 (b2)

σε
2 (a2)

converges to zero. Because payoffs in the game are bounded,
this implies that the third term inside the braces converges to zero as well.

(iv) Finally, since a2 ∈ BR2(σ1�σ3) while b3 /∈ BR3(σ1�σ2), the definition of (α�ε)-
extended proper equilibrium requires that σε

3 (b3)

σε
2 (a2)

converges to zero. Moreover, since
σε

3 (a3) converges to 1, this implies that the fourth term inside the braces converges to
zero as well.

Part Three: We use the fact that any potential game is strategically equivalent to a
game in which there exists a function P , referred to as the potential function of the
game, which is such that for all n and for all s ∈ ∏N

n=1 Sn, πn(s) = P(s). It is known that
any finite potential game possesses a pure strategy trembling-hand perfect equilibrium
s∗ ∈ arg maxs∈∏N

n=1 Sn
P(s) (Carbonell-Nicolau and McLean (2014)). Since s∗ is trembling-
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hand perfect, it is also a Nash equilibrium in undominated strategies. We claim that s∗ is
a test-set equilibrium; to show this, it only remains to check the test-set condition.

Let n ∈ N and σ ′ ∈ T(s∗). By definition, there exist a player m and a strategy
ŝm ∈ BRm(s

∗
−m) such that σ ′ = σ/ŝm. Let P̄ = P(s∗) be the maximum potential. Since

ŝm ∈ BRm(s
∗
−m), we have P(s∗/ŝm) = P(s∗) = P̄ . Moreover, for any σ̂n ∈ �(Sn), we must

have P(σ ′/σ̂n)≤ P̄ . Therefore, P(σ ′/s∗
n)≤ P(σ ′/σ̂n), as desired. Q.E.D.

PROPOSITION 14: For almost all finite games in normal form, every Nash equilibrium is a
test-set equilibrium.3

PROOF OF PROPOSITION 14: A Nash equilibrium σ is quasi-strict if for each player n,
each element of BRn(σ−n) is in the support of σn. Harsanyi (1973) established that, for
almost all finite games in normal form, every Nash equilibrium is quasi-strict.4 Similarly,
Kreps and Wilson (1982) established that, for almost all finite games in normal form, ev-
ery Nash equilibrium is trembling-hand perfect. We argue that if both of these conditions
are satisfied, as is the case for almost all finite games, then every Nash equilibrium is a test-
set equilibrium. In such games, every Nash equilibrium is both a trembling-hand perfect
equilibrium—and therefore an equilibrium in undominated strategies—and a quasi-strict
Nash equilibrium. To complete the proof, we argue that every quasi-strict Nash equilib-
rium satisfies the test-set condition.

Let σ be quasi-strict equilibrium. Suppose by way of contradiction that the test-set
condition does not hold. Then without loss of generality, there exist players 1 and 2 and a
strategy σ̂1 ∈ �(S1) such that (i) for some s2 ∈ BR2(σ−2), π1(σ̂1� s2�σ−12) > π1(σ1� s2�σ−12),
and (ii) for all s2 ∈ BR2(σ−2), π1(σ̂1� s2�σ−12) ≥ π1(σ1� s2�σ−12). Because σ is quasi-strict,
supp(σ2) = BR2(σ−2). Thus, the above conditions imply that π1(σ̂1�σ−1) > π1(σ1�σ−1),
which contradicts that σ is a Nash equilibrium. Q.E.D.
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