SUPPLEMENT TO "CONSUMER SEARCH AND PRICE COMPETITION"
 (Econometrica, Vol. 86, No. 4, July 2018, 1257-1281)
 Michael Choi
 Department of Economics, University of California, Irvine
 ANOVIA Yifan Dai
 Department of Economics, Hong Kong Baptist University

Kyungmin Kim

Department of Economics, University of Miami

A. DISTRIBUTIONS OF EFFECTIVE VALUES

IN THIS SUPPLEMENT, we provide three examples in which $H_{i}\left(w_{i}\right)$ can be explicitly calculated.
(1) Uniform: suppose V_{i} and Z_{i} are uniform over [0, 1] (i.e., $F_{i}(v)=G_{i}(v)=v$). Provided that $s \leq 1 / 2$ (which guarantees $z_{i}^{*} \in[0,1]$), $z_{i}^{*}=1-\sqrt{2 s}$. It is then straightforward to show that $H_{i}\left(w_{i}\right)$ is given as follows:

$$
H_{i}\left(w_{i}\right)= \begin{cases}\frac{w_{i}^{2}}{2} & \text { if } w_{i} \in\left[0, z_{i}^{*}\right) \\ w_{i}-z_{i}^{*}+\frac{\left(z_{i}^{*}\right)^{2}}{2} & \text { if } w_{i} \in\left[z_{i}^{*}, 1\right) \\ 2 w_{i}-\frac{w_{i}^{2}}{2}-z_{i}^{*}+\frac{\left(z_{i}^{*}\right)^{2}}{2}-\frac{1}{2} & \text { if } w_{i} \in\left[1,1+z_{i}^{*}\right]\end{cases}
$$

Notice that, whereas H_{i} is continuous, the density function h_{i} has an upward jump at z_{i}^{*}. Therefore, H_{i} is not globally log-concave. Nevertheless, it is easy to show that both H_{i} and $1-H_{i}$ are log-concave above z_{i}^{*}.
(2) Exponential: suppose V_{i} and Z_{i} are exponential distributions with parameters λ_{1} and λ_{2}, respectively (i.e., $F_{i}\left(v_{i}\right)=1-e^{-\lambda_{1} v_{i}}$ and $G_{i}\left(z_{i}\right)=1-e^{-\lambda_{2} z_{i}}$). Provided that $s<1 / \lambda_{2}$ (which ensures that $z_{i}^{*}>0$), then $z_{i}^{*}=-\log \left(\lambda_{2} s\right) / \lambda_{2}$. For any $w_{i} \geq 0$,

$$
\begin{aligned}
H_{i}\left(w_{i}\right)= & 1-e^{-\lambda_{2} \min \left\{w_{i}, z_{i}^{*}\right\}}-\frac{\lambda_{2}\left(e^{\left(\lambda_{1}-\lambda_{2}\right) \min \left\{w_{i}, z_{i}^{*}\right\}}-1\right)}{e^{\lambda_{1} w_{i}}\left(\lambda_{1}-\lambda_{2}\right)} \\
& +\left(1-e^{-\lambda_{1}\left(\max \left\{w_{i}, z_{i}^{*}\right\}-z_{i}^{*}\right)}\right) e^{-\lambda_{2} z_{i}^{*}} .
\end{aligned}
$$

Similarly to the uniform example, H_{i} is not globally log-concave, because h_{i} has a upward jump at z_{i}^{*}, but both H_{i} and $1-H_{i}$ are log-concave above z_{i}^{*}.

[^0](3) Gumbel: suppose that V_{i} and $-Z_{i}$ are standard Gumbel distributions (i.e., $F_{i}\left(v_{i}\right)=$ $e^{-e^{-v_{i}}}$ and $\left.G_{i}\left(z_{i}\right)=1-e^{-e^{z_{i}}}\right)$. For any $w_{i} \in(-\infty, \infty)$,
$$
H_{i}\left(w_{i}\right)=\frac{1+e^{-w_{i}-e^{z_{i}^{*}}\left(1+e^{-w_{i}}\right)}}{1+e^{-w_{i}}}
$$

Since both f_{i} and g_{i} are log-concave, $1-H_{i}$ is log-concave by Proposition 2. Given the solution for H_{i} above, we have

$$
\frac{h_{i}\left(w_{i}\right)}{H_{i}\left(w_{i}\right)}=\frac{e^{z_{i}^{*}-w_{i}}-1}{1+e^{w_{i}+e_{i}^{z_{i}^{*}}\left(1+e^{-w_{i}}\right)}}+\frac{1}{1+e^{w_{i}}}
$$

The first term falls in w_{i} whenever $w_{i} \geq z_{i}^{*}$, while the second term constantly falls in w_{i}. Therefore, $H_{i}\left(w_{i}\right)$ is log-concave above z_{i}^{*}.

B. PROOF OF THE SECOND CLAIM IN PROPOSITION 2 (CONT’D)

Since

$$
\left(\log H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)\right)^{\prime \prime}=\frac{\left(h_{i}^{\sigma}\right)^{\prime}\left(w_{i}^{\sigma}\right) H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)-h_{i}^{\sigma}\left(w_{i}^{\sigma}\right)^{2}}{H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)^{2}}
$$

it suffices to show that $\left(h_{i}^{\sigma}\right)^{\prime}\left(w_{i}^{\sigma}\right) H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)-h_{i}^{\sigma}\left(w_{i}^{\sigma}\right)^{2}<0$ for all w_{i}^{σ}, provided that σ is sufficiently large. Integrate equation (2) by parts; we have $H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)=\int_{\underline{v}_{i}^{\sigma}}^{\bar{v}_{i}^{\sigma}} G_{i}\left(w_{i}^{\sigma}-v_{i}^{\sigma}\right) d F_{i}^{\sigma}\left(v_{i}^{\sigma}\right)$ for $w_{i}^{\sigma}<\underline{v}_{i}^{\sigma}+z_{i}^{*}$. In this case, H_{i}^{σ} is log-concave by Prékopa's theorem. For $w_{i}^{\sigma} \geq \underline{v}_{i}^{\sigma}+z_{i}^{*}$, we have

$$
H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)=\int_{w_{i}^{\sigma}-z_{i}^{*}}^{\bar{\nu}_{i}^{\sigma}} G_{i}\left(w_{i}^{\sigma}-v_{i}^{\sigma}\right) d F_{i}^{\sigma}\left(v_{i}^{\sigma}\right)+F_{i}^{\sigma}\left(w_{i}^{\sigma}-z_{i}^{*}\right)
$$

By straightforward calculus,

$$
\frac{h_{i}^{\sigma}\left(w_{i}^{\sigma}\right)}{H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)}=\frac{\int_{w_{i}^{\sigma}-z_{i}^{*}}^{\bar{v}_{i}^{\sigma}} g_{i}\left(w_{i}^{\sigma}-v_{i}^{\sigma}\right) d F_{i}^{\sigma}\left(v_{i}^{\sigma}\right)+\left(1-G_{i}\left(z_{i}^{*}\right)\right) f_{i}^{\sigma}\left(w_{i}^{\sigma}-z_{i}^{*}\right)}{\int_{w_{i}^{\sigma}-z_{i}^{*}}^{\bar{v}_{i}^{\sigma}} G_{i}\left(w_{i}^{\sigma}-v_{i}^{\sigma}\right) d F_{i}^{\sigma}\left(v_{i}^{\sigma}\right)+F_{i}^{\sigma}\left(w_{i}^{\sigma}-z_{i}^{*}\right)}
$$

Changing the variables with $a=F_{i}^{\sigma}\left(v_{i}^{\sigma}\right)$ and $r=F_{i}^{\sigma}\left(w_{i}^{\sigma}-z_{i}^{*}\right)$, the above equation becomes

$$
\begin{aligned}
& \frac{h_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)}{H_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)} \\
& \quad=\frac{\int_{r}^{1} g_{i}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)-\left(F_{i}^{\sigma}\right)^{-1}(a)+z_{i}^{*}\right) d a+\left(1-G_{i}\left(z_{i}^{*}\right)\right) f_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)\right)}{\int_{r}^{1} G_{i}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)-\left(F_{i}^{\sigma}\right)^{-1}(a)+z_{i}^{*}\right) d a+r}
\end{aligned}
$$

Since $V_{i}^{\sigma} \equiv \sigma V_{i}$, we have $F_{i}^{\sigma}\left(v_{i}^{\sigma}\right)=F_{i}\left(v_{i}^{\sigma} / \sigma\right),\left(F_{i}^{\sigma}\right)^{-1}(r)=\sigma F_{i}^{-1}(r), f_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)\right)=$ $f_{i}\left(F_{i}^{-1}(r)\right) / \sigma$, and $\left(f_{i}^{\sigma}\right)^{\prime}\left(F_{i}^{-1}(r)\right)=f_{i}\left(F_{i}^{-1}(r)\right) / \sigma^{2}$. Arranging the terms in the right-hand side above yields

$$
\begin{aligned}
& \frac{\sigma h_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)}{H_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)} \\
& \quad=\frac{\int_{r}^{1} \sigma g_{i}\left(\sigma\left(F_{i}^{-1}(r)-F_{i}^{-1}(a)\right)+z_{i}^{*}\right) d a+\left(1-G_{i}\left(z_{i}^{*}\right)\right) f_{i}\left(F_{i}^{-1}(r)\right)}{\int_{r}^{1} G_{i}\left(\sigma\left(F_{i}^{-1}(r)-F_{i}^{-1}(a)\right)+z_{i}^{*}\right) d a+r}
\end{aligned}
$$

Since $F_{i}^{-1}(r)-F_{i}^{-1}(a) \leq 0$, the denominator converges to r as σ explodes. Integrating $\int_{r}^{1} \sigma g_{i}\left(\sigma\left(F_{i}^{-1}(r)-F_{i}^{-1}(a)\right)+z_{i}^{*}\right) d a$ in the numerator by parts yields

$$
G_{i}\left(z_{i}^{*}\right) f_{i}\left(F^{-1}(r)\right)+\int_{r}^{1} G_{i}\left(\sigma\left(F_{i}^{-1}(r)-F_{i}^{-1}(a)\right)+z_{i}^{*}\right) d f\left(F_{i}^{-1}(a)\right)
$$

Again, since $F_{i}^{-1}(r)-F_{i}^{-1}(a) \leq 0$, the second term vanishes as σ tends to infinity, and thus the numerator converges to $G_{i}\left(z_{i}^{*}\right) f_{i}\left(F_{i}^{-1}(r)\right)$. Therefore,

$$
\lim _{\sigma \rightarrow \infty} \frac{\sigma h_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)}{H_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)}=\frac{f_{i}\left(F_{i}^{-1}(r)\right)}{r} .
$$

Following a similar procedure, we have

$$
\lim _{\sigma \rightarrow \infty} \frac{\sigma\left(h_{i}^{\sigma}\right)^{\prime}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)}{h_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)}=\frac{\left(1-G_{i}\left(z_{i}^{*}\right)\right) f_{i}^{\prime}\left(F_{i}^{-1}(r)\right)}{f_{i}\left(F_{i}^{-1}(r)\right)} .
$$

Altogether,

$$
\begin{align*}
& \lim _{\sigma \rightarrow \infty} \sigma\left[\frac{\left(h_{i}^{\sigma}\right)^{\prime}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)}{h_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)}-\frac{h_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)}{H_{i}^{\sigma}\left(\left(F_{i}^{\sigma}\right)^{-1}(r)+z_{i}^{*}\right)}\right] \\
& \quad=\frac{\left(1-G_{i}\left(z_{i}^{*}\right)\right) f_{i}^{\prime}\left(F_{i}^{-1}(r)\right)}{f_{i}\left(F_{i}^{-1}(r)\right)}-\frac{f_{i}\left(F_{i}^{-1}(r)\right)}{r} \\
& \quad=\left(1-G_{i}\left(z_{i}^{*}\right)\right)\left[\frac{f_{i}^{\prime}\left(F_{i}^{-1}(r)\right)}{f_{i}\left(F_{i}^{-1}(r)\right)}-\frac{f_{i}\left(F_{i}^{-1}(r)\right)}{r}\right]-\frac{G_{i}\left(z_{i}^{*}\right) f_{i}\left(F_{i}^{-1}(r)\right)}{r}<0 . \tag{8}
\end{align*}
$$

Provided s_{i} is not too large, then $G_{i}\left(z_{i}^{*}\right)$ and $1-G_{i}\left(z_{i}^{*}\right)$ are in $(0,1)$, so the sign of the expression is determined by both terms. ${ }^{1}$ The square bracket term is weakly negative because F is log-concave; thus the entire expression is weakly negative. The strict inequality (8) holds for each $r \in[0,1]$ because $f_{i}\left(F_{i}^{-1}(r)\right) / r>0$ when $r \in[0,1)$ and

[^1]$f_{i}^{\prime}\left(F_{i}^{-1}(r)\right) / f_{i}\left(F_{i}^{-1}(r)\right)<0$ when $r=1 .^{2}$ Altogether, for each $r \in[0,1]$ there is a $\bar{\sigma}_{r}<\infty$ such that if $\sigma>\bar{\sigma}_{r}$, then $\left(\log H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)\right)^{\prime \prime} \propto\left(h_{i}^{\sigma}\right)^{\prime}\left(w_{i}^{\sigma}\right) / h_{i}^{\sigma}\left(w_{i}^{\sigma}\right)-h_{i}^{\sigma}\left(w_{i}^{\sigma}\right) / H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)<0$ where $w_{i}^{\sigma}=F_{i}^{-1}(r)+z_{i}^{*}$. Since $[0,1]$ is a compact convex set and $\left(\log H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)\right)^{\prime \prime}$ is continuous in r, there exists $\bar{\sigma}=\max _{r \in[0,1]} \bar{\sigma}_{r}<\infty$ such that if $\sigma>\bar{\sigma}$, then $\left(h_{i}^{\sigma}\right)^{\prime} / h_{i}^{\sigma}-h_{i}^{\sigma} / H_{i}^{\sigma}<0$ for all $r \in[0,1]$, or equivalently $H_{i}^{\sigma}(w)$ is log-concave for all $w_{i}^{\sigma} \geq \underline{v}_{i}^{\sigma}+z_{i}^{*}$. Finally, if $f_{i}\left(\underline{v}_{i}\right)=0$, then the ratio $h_{i}^{\sigma}\left(w_{i}^{\sigma}\right) / H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)$ is continuous at $\underline{v}_{i}^{\sigma}+z_{i}^{*}$. Since this ratio is decreasing for $w_{i}<\underline{v}_{i}^{\sigma}+z_{i}^{*}$ and decreasing for $w_{i} \geq \underline{v}_{i}^{\sigma}+z_{i}^{*}$ when σ is large, it is globally decreasing when σ is large, or equivalently, $H_{i}^{\sigma}\left(w_{i}^{\sigma}\right)$ is globally log-concave.

C. EXAMPLE OF A MIXED-STRATEGY EQUILIBRIUM

Now we assume F_{i} is degenerate and characterize a symmetric mixed-strategy equilibrium. Assume there are two symmetric sellers and $u_{0}=c_{i}=v_{i}=0$. Assume Z_{i} is exponentially distributed with parameter λ, namely, $G_{i}(z)=1-e^{-\lambda z}$. Assume $s<1 / \lambda$ so that $z^{*}>0$. Below, we characterize the distribution of prices and show that it has decreasing density.

Let $Q_{i}=\min \left\{Z_{i}, z^{*}\right\}-P_{i}$, and let Γ_{i} and γ_{i} be its distribution function and density function, repectively. Note that the equilibrium price P_{i} is ex ante random in a mixedstrategy equilibrium. Moreover, in a symmetric equilibrium, the distribution of P_{i} has no mass point, for if it has a mass point, then a seller can get an upward jump in demand by moving the location of the mass point slightly to the left. Since the density of P_{i} exists (its c.d.f. is atomless), the density γ_{i} also exists.

First, we derive the demand function in a mixed-strategy equilibrium. By the eventual purchase theorem, consumers buy from seller 1 if $\min \left\{z^{*}, Z_{1}\right\}-p_{1}>\max \left\{Q_{2}, 0\right\}$. Therefore, no consumer will buy from seller 1 if $p_{1}>z^{*}$. For all $p_{1} \leq z^{*}$, consumers buy from seller 1 when $z^{*}-p_{1}>Q_{2}$ and $Z_{1}-p_{1}>\max \left\{Q_{2}, 0\right\}$. Therefore, for all $p_{1} \leq z^{*}$, seller 1's demand and its derivative are given by

$$
\begin{aligned}
& D_{1}\left(p_{1}\right)=\int_{\underline{q}}^{z^{*}-p_{1}}\left(1-G\left(p_{1}+\max \{q, 0\}\right)\right) d \Gamma_{2}(q)=\int_{\underline{q}}^{z^{*}-p_{1}} e^{-\lambda\left(p_{1}+\max \{q, 0\}\right)} d \Gamma_{2}(q), \\
& D_{1}^{\prime}\left(p_{1}\right)=-e^{-\lambda z^{*}} \gamma_{2}\left(z^{*}-p_{1}\right)-\lambda \int_{\underline{q}}^{z^{*}-p_{1}} e^{-\lambda\left(p_{1}+\max \{q, 0\}\right)} d \Gamma_{2}(q) .
\end{aligned}
$$

Therefore, the first-order necessary condition with respect to p_{1} is

$$
\frac{1}{p_{1}}=\frac{-D_{1}^{\prime}\left(p_{1}\right)}{D_{1}\left(p_{1}\right)}=\frac{e^{-\lambda z^{*}} \gamma_{2}\left(z^{*}-p_{1}\right)}{D_{1}\left(p_{1}\right)}+\lambda
$$

Let π^{*} be the equilibrium profit for the sellers in a symmetric equilibrium. Since seller 1 is indifferent between offering any prices in the support of P_{1} in equilibrium, $\pi^{*}=p_{1} D\left(p_{1}\right)$ for every p_{1} in the support of P_{1}. Using $D_{1}\left(p_{1}\right)=\pi^{*} / p_{1}$, the first-order

[^2]condition can be rewritten as
\[

$$
\begin{equation*}
\gamma_{2}\left(z^{*}-p_{1}\right)=\frac{\pi^{*}}{p_{1}}\left(\frac{1}{p_{1}}-\lambda\right) e^{\lambda z^{*}} \tag{9}
\end{equation*}
$$

\]

The first-order condition implies $p_{1} \leq 1 / \lambda$ in equilibrium. Since $p_{1} \geq 0$, the support of P_{1} is a subset of the interval $\left[0, \min \left\{z^{*}, 1 / \lambda\right\}\right]$. From equation (9), it is clear that the density γ_{i} of Q_{i} is monotonically increasing (because the right-hand side falls in p_{1}).

Now we use the density of Q_{i} (i.e., γ_{i}) and that of Z_{i} to solve for the distribution of P_{i}, by exploiting the equation $Q_{i}=\min \left\{Z_{i}, z^{*}\right\}-P_{i}$. This is generally a hard problem because one must solve a complex differential equation. Below, we show that the problem is especially tractable when Z_{i} is exponentially distributed. Let $B(p)$ be the distribution function of P_{i} in a symmetric equilibrium. The c.d.f. and p.d.f. of Q_{i} can be written as

$$
\begin{aligned}
& \Gamma_{i}(q)=\int_{0}^{\infty}\left[1-B\left(\min \left\{z, z^{*}\right\}-q\right)\right] \lambda e^{-\lambda z} d z \\
& \gamma_{i}(q) \equiv \Gamma_{i}^{\prime}(q)=\int_{0}^{\infty} b\left(\min \left\{z, z^{*}\right\}-q\right) \lambda e^{-\lambda z} d z
\end{aligned}
$$

Substitute the equation for γ_{i} into the first-order condition (9); then

$$
\begin{aligned}
\frac{\pi^{*}}{p}\left(\frac{1}{p}-\lambda\right) e^{\lambda z^{*}} & =\int_{0}^{\infty} b\left(\min \left\{z-z^{*}+p, p\right\}\right) \lambda e^{-\lambda z} d z \\
& =\int_{-z^{*}}^{0} b(y+p) \lambda e^{-\lambda\left(y+z^{*}\right)} d y+b(p) e^{-\lambda z^{*}}
\end{aligned}
$$

The last line uses a change of variable $y=z-z^{*}$. Now multiply both sides by $e^{\lambda\left(z^{*}-p\right)}$, and let $\tau(p) \equiv b(p) e^{-\lambda p}$ and $T(p) \equiv \int_{0}^{p} \tau(y) d y$. Then we can rewrite the above equation as

$$
\frac{\pi^{*}}{p}\left(\frac{1}{p}-\lambda\right) e^{\lambda\left(2 z^{*}-p\right)}=\lambda \int_{-z^{*}}^{0} \tau(y+p) d y+\tau(p)
$$

Notice that, since $p \geq 0$ in equilibrium, the density $b(q)=\tau(q)=0$ for all $q<0$. Together with $p \leq z^{*}$, we have $\tau(y+p)=0$ for all $y \in\left(-z^{*},-p\right)$. In light of this, the lower support of the integral term can be replaced by $-p$. Therefore, the equation above becomes

$$
\begin{equation*}
\frac{\pi^{*}}{p}\left(\frac{1}{p}-\lambda\right) e^{\lambda\left(2 z^{*}-p\right)}=\lambda \int_{-p}^{0} \tau(y+p) d y+\tau(p)=\lambda T(p)+\tau(p) \tag{10}
\end{equation*}
$$

This equation is a first-order differential equation. The general solution is

$$
T(p)=C e^{-\lambda p}-\pi^{*} e^{\lambda\left(2 z^{*}-p\right)}\left(\lambda \log (p)+\frac{1}{p}\right)
$$

where C is a constant. By $b(p)=\tau(p) e^{\lambda p}$ and equation (10), the density $b(p)$ is

$$
b(p)=\frac{\pi^{*}}{p}\left(\frac{1}{p}-\lambda\right) e^{2 \lambda z^{*}}-\lambda T(p) e^{\lambda p}=\pi^{*} e^{2 \lambda z^{*}}\left(\frac{1}{p^{2}}+\lambda^{2} \log (p)\right)-\lambda C .
$$

The constant C is chosen so that $\int_{0}^{\min \left\{z^{*}, 1 / \lambda\right\}} b(p) d p=1$. The value of π^{*} can be solved by substituting the solution of $b(p)$ into the seller's profit function. One can easily show that the density $b(p)$ falls in p by the equation above and $p \leq 1 / \lambda$.

D. UNOBSERVABLE PRICES AND SEARCH COSTS

Anderson and Renault (1999) studied a stationary search model with unobservable prices, and showed that $\partial p^{*} / \partial s>0$ provided that $1-G(z)$ is log-concave. We argue that this insight may not hold when search is non-stationary, due to the presence of a prior value V. Assume there is no outside option and sellers are symmetric. Below, we show $\partial p^{*} / \partial s<0$ is possible if the density of V is log-concave and increasing, even when $1-G(z)$ is log-concave.

CLAIM 1: The equilibrium price p^{*} falls in s when (i) s is sufficiently small and (ii) $f^{\prime}(\bar{v}) / f(\bar{v})>\lim _{z \uparrow \bar{z}} g(z) /[1-G(z)]$.

Since we have assumed $f(v)$ is log-concave, it is single-peaked in v. Therefore, the second condition requires $f^{\prime}(v)>0$ for all $[\underline{v}, \bar{v}]$, and the upper support \bar{v} must be finite.

Proof: Let $\tilde{W}_{i} \equiv \max _{j \neq i} W_{j}$; then the demand for seller i is given by (5). When prices are unobservable, seller i controls p_{i} but not p_{i}^{e}, so the measure of marginal consumers is

$$
\begin{aligned}
-\left.\frac{d D_{i}\left(p_{i}, p_{i}^{e}, p^{*}\right)}{d p_{i}}\right|_{p_{i}=p_{i}^{e}=p^{*}} & =E\left[\int_{\tilde{W}_{i}-z^{*}}^{\bar{v}} g\left(\tilde{W}-v_{i}\right) d F\left(v_{i}\right)\right] \\
& =\int_{\underline{w}}^{\bar{v}+z^{*}}\left[\int_{w-z^{*}}^{\bar{v}} g\left(w-v_{i}\right) d F\left(v_{i}\right)\right] d H(w)^{n-1}
\end{aligned}
$$

In a symmetric equilibrium, p^{*} solves

$$
p^{*}-c=-\left(\left.n \frac{d D_{i}\left(p_{i}, p_{i}^{e}, p^{*}\right)}{d p_{i}}\right|_{p_{i}=p_{i}^{e}=p^{*}}\right)^{-1}
$$

Since the right-hand side does not depend on p^{*}, to show $\partial p^{*} / \partial s<0$, it suffices to show the right-hand side falls in s, or equivalently the following derivative is positive:

$$
\begin{aligned}
& \frac{d}{d s} \int_{\underline{w}}^{\bar{v}+z^{*}}\left[\int_{w-z^{*}}^{\bar{v}} g\left(w-v_{i}\right) d F\left(v_{i}\right)\right] d H(w)^{n-1} \\
& \quad=\frac{d z^{*}}{d s} \int_{\underline{w}}^{\bar{v}+z^{*}}\left[g\left(z^{*}\right) f\left(w-z^{*}\right)\right] d H(w)^{n-1} \\
& \quad+\int_{\underline{w}}^{\bar{v}+z^{*}}\left[\int_{w-z^{*}}^{\bar{v}} g\left(w-v_{i}\right) d F\left(v_{i}\right)\right]\left[\frac{f^{\prime}\left(w-z^{*}\right)}{h(w)}+\frac{(n-2) f\left(w-z^{*}\right)}{H(w)}\right] d H(w)^{n-1} .
\end{aligned}
$$

The last line uses $d H(w) / d s=f\left(w-z^{*}\right)$ and $d h(w) / d s=f^{\prime}\left(w-z^{*}\right)$. Next, substitute $d z^{*} / d s=-1 /\left[1-G\left(z^{*}\right)\right]$ (by equation (1)) into the derivative and divide the entire ex-
pression by $\int_{\underline{w}}^{\bar{v}+z^{*}} f\left(w-z^{*}\right) d H(w)^{n-1}$; then the expression above has the same sign as

$$
\begin{gathered}
\frac{-g\left(z^{*}\right)}{1-G\left(z^{*}\right)}+\frac{\int_{\underline{w}}^{\bar{v}+z^{*}}\left[\int_{w-z^{*}}^{\bar{v}} g\left(w-v_{i}\right) d F\left(v_{i}\right)\right]\left[\frac{f^{\prime}\left(w-z^{*}\right)}{h(w)}+\frac{(n-2) f\left(w-z^{*}\right)}{H(w)}\right] d H(w)^{n-1}}{\int_{\underline{w}}^{\bar{v}+z^{*}} f\left(w-z^{*}\right) d H(w)^{n-1}} \\
\geq \frac{-g\left(z^{*}\right)}{1-G\left(z^{*}\right)}+\frac{\int_{\underline{w}}^{\bar{v}+z^{*}}\left[\frac{\int_{w-z^{*}}^{\bar{v}} g\left(w-v_{i}\right) d F\left(v_{i}\right)}{h(w)}\right]\left[\frac{f^{\prime}\left(w-z^{*}\right)}{f\left(w-z^{*}\right)}\right] f\left(w-z^{*}\right) d H(w)^{n-1}}{\int_{\underline{w}}^{\bar{v}+z^{*}} f\left(w-z^{*}\right) d H(w)^{n-1}} .
\end{gathered}
$$

Now take $s \rightarrow 0$ and therefore $z^{*} \rightarrow \bar{z}$. Since (i) $h(w) \rightarrow \int_{w-z^{*}}^{\bar{v}} g\left(w-v_{i}\right) d F\left(v_{i}\right)$ as $z^{*} \rightarrow \bar{z},{ }^{3}$ and (ii) $f^{\prime}(\bar{v}) / f(\bar{v}) \leq f^{\prime}(v) / f(v)$ for all $v<\bar{v}$ by the log-concavity of f, the limit of the above expression is at least

$$
\lim _{z^{*} \uparrow \bar{z}} \frac{-g\left(z^{*}\right)}{1-G\left(z^{*}\right)}+\frac{f^{\prime}(\bar{v})}{f(\bar{v})}
$$

Finally, if $f^{\prime}(\bar{v}) / f(\bar{v})>\lim _{z^{*} \uparrow \bar{z}} g\left(z^{*}\right) /\left[1-G\left(z^{*}\right)\right]$, then the last line is clearly positive and thus $\partial p^{*} / \partial s<0$ when s is small. ${ }^{4}$
Q.E.D.

To put this result in context, note that Haan, Moraga-González, and Petrikaite (2017) showed that in a symmetric duopoly model with unobservable prices, if F has full support and $1-G$ is log-concave, then $\partial p^{*} / \partial s>0$. Since Claim 1 allows $n=2$ and log-concave $1-G$, the sign of $\partial p^{*} / \partial s$ is reversed in Claim 1 precisely because F has a bounded upper support and rising density. Indeed, when $\bar{v}<\infty$ and $f^{\prime}>0$, as s rises, the upper support of $H(w)$, namely, $\bar{v}+z^{*}$, falls while the density $h(w)$ rises at all $w<\bar{v}+z^{*}$. As a result, the measure of marginal consumers rises as the other sellers' search costs rise. By this logic, as the other sellers' search costs rise, seller i is willing to lower p_{i} to attract more marginal consumers. On the other hand, as s_{i} rises, seller i has an incentive to raise p_{i} to extract more surplus from the visiting consumers. The overall effect depends on the relative strength of the two effects. We focus on small s because the first effect is relatively stronger when s is small—indeed, the magnitude of the change in the upper support $\partial(\bar{v}+$ $\left.z^{*}\right) / \partial s=-1 /\left(1-G\left(z^{*}\right)\right.$ is the largest when $s \approx 0$. When $s \approx 0$, the relative strength of these two effects depends on the ratio f^{\prime} / f and the hazard rate $g /(1-G)$, respectively. Finally, since $f^{\prime}(v) / f(v)$ falls in v and $g(z) /(1-G(z))$ rises in z, our second sufficient condition ensures $f^{\prime} / f>g /(1-G)$ at all v and z.

E. CONSUMER SURPLUS AND SEARCH COSTS

We present an example where consumer surplus rises with search costs. Consider a symmetric duopoly environment with no outside option. Assume the prior and match val-

[^3]ues are uniform random variables with $V \sim U[0,3 / 4]$ and $Z \sim U[0,1]$. Since there is no outside option and $p_{1}=p_{2}=p^{*}$ in a symmetric equilibrium, every consumer purchases the product that offers the highest effective value. By Corollary 1, a (representative) consumer's expected payoff is equal to
$$
C S=E\left[\max \left\{W_{1}, W_{2}\right\}\right]-p^{*}
$$

First, consider the effects of s on p^{*}. The equilibrium price is $p^{*}=6 /(9+32 s)$ by direct calculation. ${ }^{5}$ This implies

$$
\frac{d p^{*}}{d s}=\frac{-192}{(9+32 s)^{2}}
$$

The expected value of the first-order statistic $\max \left\{W_{1}, W_{2}\right\}$ can be written as

$$
E\left[\max \left\{W_{1}, W_{2}\right\}\right]=2 \int_{0}^{1} \int_{0}^{\frac{3}{4}}\left(v+\min \left\{z, z^{*}\right\}\right) H\left(v+\min \left\{z, z^{*}\right\}\right) d v d z
$$

Next, we consider the effect of s on $E\left[\max \left\{W_{1}, W_{2}\right\}\right]$. By equation (1), $d z^{*} / d s=-1 /(1-$ z^{*}). This result and the equation above imply

$$
\begin{align*}
& \frac{d E\left[\max \left\{W_{1}, W_{2}\right\}\right]}{d s} \\
& \quad=-2 \int_{0}^{\frac{3}{4}}\left[H\left(v+z^{*}\right)+\left(v+z^{*}\right) h\left(v+z^{*}\right)\right] d v \\
& \quad-\frac{2}{1-z^{*}} \int_{0}^{1}\left[\int_{0}^{\frac{3}{4}}\left(v+\min \left\{z, z^{*}\right\}\right) H_{z^{*}}\left(v+\min \left\{z, z^{*}\right\}\right) d v\right] d z \tag{11}
\end{align*}
$$

where $H_{z^{*}}(w)$ is defined as

$$
H_{z^{*}}(w) \equiv \frac{d H(w)}{d z^{*}}=-f\left(w-z^{*}\right)\left(1-G\left(z^{*}\right)\right)=-\frac{4}{3}\left(1-z^{*}\right) \quad \text { for } w \in\left[z^{*}, z^{*}+4 / 3\right]
$$

and otherwise 0 .
Now we evaluate the effect of an increase in s on $C S$ at $s=0$. When $s=0, z^{*}=1$ by equation (1). By direct calculation, the density and distribution function of W are

$$
\begin{aligned}
& h(w)= \begin{cases}4 w / 3 & \text { if } w \leq 3 / 4 \\
1 & \text { if } 3 / 4<w<1 \\
7 / 3-4 w / 3 & \text { if } 7 / 4 \geq w>1\end{cases} \\
& H(w)= \begin{cases}2 w^{2} / 3 & \text { if } w \leq 3 / 4 \\
w-3 / 8 & \text { if } 3 / 4<w<1 \\
7 w / 3-2 w^{2} / 3-25 / 24 & \text { if } 7 / 4 \geq w>1\end{cases}
\end{aligned}
$$

[^4]Substitute the expressions for h, H, and $H_{z^{*}}$ into equation (11); then

$$
\begin{aligned}
\left.\frac{d E\left[\max \left\{W_{1}, W_{2}\right\}\right]}{d s}\right|_{s=0}= & -2\left[\int_{0}^{\frac{3}{4}}[H(v+1)+(v+1) h(v+1)] d v\right] \\
& +\frac{8}{3} \int_{0}^{1} \int_{0}^{\frac{4}{3}}(v+z) \mathbb{1}_{\{v+z>1\}} d v d z \\
= & -2\left[\int_{1}^{\frac{7}{4}}-2 w^{2}+\frac{14}{3} w-\frac{25}{24} d w\right]+\frac{8}{3}\left(\frac{45}{128}\right) \\
= & -\frac{21}{16}
\end{aligned}
$$

Altogether, a consumer's expected surplus rises in s when $s=0$ because

$$
\left.\frac{d C S}{d s}\right|_{s=0}=\left.\frac{d E\left[\max \left\{W_{1}, W_{2}\right\}\right]}{d s}\right|_{s=0}-\left.\frac{d p^{*}}{d s}\right|_{s=0}=-\frac{21}{16}+\frac{192}{81}=\frac{457}{432}>0
$$

Intuitively, as s rises, each consumer pays a larger utility cost to visit sellers. On the other hand, they are better off because the equilibrium price p^{*} falls in s. This example shows that the latter effect can dominate the former when s is small.

F. PRE-SEARCH INFORMATION: PROOF OF LEMMA 1

It suffices to show there exists $a^{\prime} \in(0,1)$ such that $\partial h\left(H^{-1}(a)\right) / \partial \alpha<0$ if and only if $a>a^{\prime}$. Let Φ denote the standard normal distribution function and ϕ denote its density function. Since $V \sim \mathcal{N}\left(0, \alpha^{2}\right)$ and $Z \sim \mathcal{N}\left(0,1-\alpha^{2}\right), F(v)=\Phi(v / \alpha)$ and $G(z)=$ $\Phi\left(z / \sqrt{1-\alpha^{2}}\right)$. Inserting these into equation (2) and differentiating $H(w)$ with respect to α yield

$$
H_{\alpha}(w) \equiv \frac{\partial H(w)}{\partial \alpha}=-\left[1-\Phi\left(\frac{z^{*}}{\sqrt{1-\alpha^{2}}}\right)\right]\left(\frac{w-z^{*}}{\alpha^{2}}\right) \phi\left(\frac{w-z^{*}}{\alpha}\right)
$$

where $\partial z^{*} / \partial \alpha$ can be obtained from equation (1) by applying the implicit function theorem. Differentiating again with respect to w gives

$$
h_{\alpha}(w) \equiv \frac{\partial h(w)}{\partial \alpha}=-\left[1-\Phi\left(\frac{z^{*}}{\sqrt{1-\alpha^{2}}}\right)\right]\left[1-\left(\frac{w-z^{*}}{\alpha}\right)^{2}\right] \frac{1}{\alpha^{2}} \phi\left(\frac{w-z^{*}}{\alpha}\right) .
$$

Now observe that

$$
\frac{\partial h\left(H^{-1}(a)\right)}{\partial \alpha}=h_{\alpha}\left(H^{-1}(a)\right)-H_{\alpha}\left(H^{-1}(a)\right) \frac{h^{\prime}\left(H^{-1}(a)\right)}{h\left(H^{-1}(a)\right)}
$$

Let $w=H^{-1}(a)$ and apply $H_{\alpha}(w)$ and $h_{\alpha}(w)$ to the equation. Then,

$$
\frac{\partial h\left(H^{-1}(a)\right)}{\partial \alpha}=\frac{-1}{\alpha^{2}}\left[1-\Phi\left(\frac{z^{*}}{\sqrt{1-\alpha^{2}}}\right)\right] \phi\left(\frac{w-z^{*}}{\alpha}\right)\left[1-\frac{\left(w-z^{*}\right)^{2}}{\alpha^{2}}-\left(w-z^{*}\right) \frac{h^{\prime}(w)}{h(w)}\right]
$$

Since $V \sim \mathcal{N}\left(0, \alpha^{2}\right)$ and $Z \sim \mathcal{N}\left(0,1-\alpha^{2}\right)$, the density of $W=V+\min \left\{Z, z^{*}\right\}$ is

$$
\begin{aligned}
h(w) & =\frac{1}{\sqrt{1-\alpha^{2}}} \int_{-\infty}^{\infty} \phi\left(\frac{w-\min \left\{z, z^{*}\right\}}{\alpha}\right) \phi\left(\frac{z}{\sqrt{1-\alpha^{2}}}\right) d z \\
& =\frac{1}{\sqrt{1-\alpha^{2}}} \int_{-\infty}^{\infty} \phi\left(\frac{w-z^{*}}{\alpha}+\max \{r, 0\}\right) \phi\left(\frac{z^{*}-\alpha r}{\sqrt{1-\alpha^{2}}}\right) d r
\end{aligned}
$$

where the second line changes variable $r=\left(z^{*}-z\right) / \alpha$. Since $\partial \phi(x) / \partial x=-x \phi(x)$,

$$
\frac{h^{\prime}(w)}{h(w)}=-\frac{w-z^{*}}{\alpha^{2}}-\frac{\int_{-\infty}^{\infty} \max \{r, 0\} \phi\left(\frac{w-z^{*}}{\alpha}+\max \{r, 0\}\right) \phi\left(\frac{z^{*}-\alpha r}{\sqrt{1-\alpha^{2}}}\right) d r}{\alpha \int_{-\infty}^{\infty} \phi\left(\frac{w-z^{*}}{\alpha}+\max \{r, 0\}\right) \phi\left(\frac{z^{*}-\alpha r}{\sqrt{1-\alpha^{2}}}\right) d r}
$$

Applying this to the above equation leads to

$$
\begin{aligned}
\frac{\partial h\left(H^{-1}(a)\right)}{\partial \alpha} & \propto-1+\left(\frac{w-z^{*}}{\alpha}\right)^{2}+\left(w-z^{*}\right) \frac{h^{\prime}(w)}{h(w)} \\
& =-1+\frac{\left(z^{*}-w\right)}{\alpha} \frac{\int_{-\infty}^{\infty} \mathbb{1}_{\{r \geq 0\}} r \phi\left(\frac{w-z^{*}}{\alpha}+\max \{r, 0\}\right) \phi\left(\frac{z^{*}-\alpha r}{\sqrt{1-\alpha^{2}}}\right) d r}{\int_{-\infty}^{\infty} \phi\left(\frac{w-z^{*}}{\alpha}+\max \{r, 0\}\right) \phi\left(\frac{z^{*}-\alpha r}{\sqrt{1-\alpha^{2}}}\right) d r}
\end{aligned}
$$

The last expression is clearly negative if $w>z^{*}$. In addition, it converges to ∞ as w tends to $-\infty$. For $w \leq z^{*}$, it decreases in w because $\left(z^{*}-w\right)$ falls in w and the density $\phi((w-$ $\left.\left.z^{*}\right) / \alpha+\max \{r, 0\}\right)$ is \log-submodular in (w, r). Therefore, there exists w^{\prime} less than z^{*} such that the expression is positive if and only if $w<w^{\prime}$. The desired result follows from the fact that $w=H^{-1}(a)$ is strictly increasing in a.

REFERENCES

Anderson, S. P., and R. Renault (1999): "Pricing, Product Diversity, and Search Costs: A Bertrand-Chamberlin-Diamond Model," RAND Journal of Economics, 30 (4), 719-735. [6]
Haan, M., J. L. Moraga-González, and V. Petrikaite (2017): "A Model of Directed Consumer Search," Discussion Paper DP11955, CEPR. [7,8]

Co-editor Dirk Bergemann handled this manuscript.
Manuscript received 7 November, 2016; final version accepted 25 February, 2018; available online 6 March, 2018.

[^0]: Michael Choi: michael.yfchoi@uci.edu
 Anovia Yifan Dai: anovia.dai@gmail.com
 Kyungmin Kim: kkim@bus.miami.edu

[^1]: ${ }^{1}$ If s_{i} is large so that $G_{i}\left(z_{i}^{*}\right)=0$, then $W_{i}=V_{i}+z_{i}^{*}$ and H_{i} has the same shape as F_{i}, and thus is log-concave.

[^2]: ${ }^{2}$ For $r \in(0,1)$, the strict inequality (8) is true as $f_{i}\left(F_{i}^{-1}(r)\right)>0$ within the support. Since $f_{i}\left(F_{i}^{-1}(r)\right) / r$ falls in r by log-concavity of $F_{i}, f_{i}\left(F_{i}^{-1}(r)\right) / r>0$ at $r=0$, and thus the strict inequality (8) also holds for $r=0$. For $r=1$, since f_{i} has unbounded upper support, $f_{i}\left(F_{i}^{-1}(r)\right)$ falls in r when r is large. Therefore $f_{i}^{\prime}\left(F_{i}^{-1}(r)\right) / f_{i}\left(F_{i}^{-1}(r)\right)<0$ for some $r \in(0,1)$. Since $f_{i}^{\prime}\left(F_{i}^{-1}(r)\right) / f_{i}\left(F_{i}^{-1}(r)\right)$ falls in r by the log-concavity of $f_{i}, f_{i}^{\prime}\left(F_{i}^{-1}(r)\right) / f_{i}\left(F_{i}^{-1}(r)\right)<0$ when $r=1$ and thus the inequality (8) holds when $r=1$.

[^3]: ${ }^{3}$ Integrate equation (2) by parts and differentiate with respect to w; then $h(w)=\int_{w-z^{*}}^{\bar{v}} g\left(w-v_{i}\right) d F\left(v_{i}\right)+$ $\left(1-G\left(z^{*}\right)\right) f\left(w-z^{*}\right)$. The second term vanishes as $z^{*} \rightarrow \bar{z}$.
 ${ }^{4}$ If $\bar{z}=\infty$, then $\int_{\underline{w}}^{\bar{v}+z^{*}} f\left(w-z^{*}\right) d H(w)^{n-1}$ vanishes as $s \rightarrow 0$, and thus $\lim _{s \rightarrow 0} \partial p^{*} / \partial s=0$. But by continuity, the inequality $\partial p^{*} / \partial s<0$ remains valid for small but strictly positive s.

[^4]: ${ }^{5}$ This pricing formula is also provided by Haan, Moraga-González, and Petrikaite (2017). They showed that $p^{*}=3 \bar{z}^{2} \bar{v} /\left(3 \bar{z} \bar{v}+3 s \bar{v}-\bar{v}^{2}\right)$, assuming the return to search is sufficiently high so that the consumers who visit seller 1 first will always visit seller 2 with a strictly positive probability. They showed that this assumption is satisfied when s is sufficiently small and $\bar{z}>\bar{v}$. Both conditions are satisfied in our example.

