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A. DISTRIBUTIONS OF EFFECTIVE VALUES

IN THIS SUPPLEMENT, we provide three examples in which Hi(wi) can be explicitly calcu-
lated.

(1) Uniform: suppose Vi and Zi are uniform over [0�1] (i.e., Fi(v) = Gi(v) = v). Pro-
vided that s ≤ 1/2 (which guarantees z∗

i ∈ [0�1]), z∗
i = 1 − √

2s. It is then straightforward
to show that Hi(wi) is given as follows:

Hi(wi)=
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Notice that, whereas Hi is continuous, the density function hi has an upward jump at z∗
i .

Therefore, Hi is not globally log-concave. Nevertheless, it is easy to show that both Hi

and 1 −Hi are log-concave above z∗
i .

(2) Exponential: suppose Vi and Zi are exponential distributions with parameters λ1

and λ2, respectively (i.e., Fi(vi)= 1−e−λ1vi and Gi(zi)= 1−e−λ2zi). Provided that s < 1/λ2

(which ensures that z∗
i > 0), then z∗

i = − log(λ2s)/λ2. For any wi ≥ 0,

Hi(wi) = 1 − e−λ2 min{wi�z
∗
i } − λ2

(
e(λ1−λ2)min{wi�z

∗
i } − 1

)
eλ1wi(λ1 − λ2)

+ (
1 − e−λ1(max{wi�z

∗
i }−z∗

i )
)
e−λ2z

∗
i �

Similarly to the uniform example, Hi is not globally log-concave, because hi has a upward
jump at z∗

i , but both Hi and 1 −Hi are log-concave above z∗
i .
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(3) Gumbel: suppose that Vi and −Zi are standard Gumbel distributions (i.e., Fi(vi)=
e−e−vi and Gi(zi)= 1 − e−ezi ). For any wi ∈ (−∞�∞),

Hi(wi)= 1 + e−wi−e
z∗
i (1+e−wi )

1 + e−wi
�

Since both fi and gi are log-concave, 1 − Hi is log-concave by Proposition 2. Given the
solution for Hi above, we have

hi(wi)

Hi(wi)
= ez

∗
i −wi − 1

1 + ewi+e
z∗
i (1+e−wi )

+ 1
1 + ewi

�

The first term falls in wi whenever wi ≥ z∗
i , while the second term constantly falls in wi.

Therefore, Hi(wi) is log-concave above z∗
i .

B. PROOF OF THE SECOND CLAIM IN PROPOSITION 2 (CONT’D)

Since
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it suffices to show that (hσ
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2 < 0 for all wσ
i , provided that σ is suffi-

ciently large. Integrate equation (2) by parts; we have Hσ
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σ
i )= ∫ v̄σi

vσi
Gi(w

σ
i −vσi ) dF

σ
i (v

σ
i )

for wσ
i < vσi + z∗

i . In this case, Hσ
i is log-concave by Prékopa’s theorem. For wσ
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By straightforward calculus,
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Changing the variables with a= Fσ
i (v

σ
i ) and r = Fσ

i (w
σ
i −z∗

i ), the above equation becomes
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Since V σ
i ≡ σVi, we have Fσ

i (v
σ
i ) = Fi(v
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Since F−1
i (r) − F−1

i (a) ≤ 0, the denominator converges to r as σ explodes. Integrating∫ 1
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Again, since F−1
i (r)−F−1

i (a)≤ 0, the second term vanishes as σ tends to infinity, and thus
the numerator converges to Gi(z

∗
i )fi(F
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i (r)). Therefore,
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Following a similar procedure, we have
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Altogether,
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Provided si is not too large, then Gi(z
∗
i ) and 1 − Gi(z

∗
i ) are in (0�1), so the sign of

the expression is determined by both terms.1 The square bracket term is weakly nega-
tive because F is log-concave; thus the entire expression is weakly negative. The strict
inequality (8) holds for each r ∈ [0�1] because fi(F

−1
i (r))/r > 0 when r ∈ [0�1) and

1If si is large so that Gi(z
∗
i ) = 0, then Wi = Vi + z∗

i and Hi has the same shape as Fi , and thus is log-concave.
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f ′
i (F

−1
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i (r)) < 0 when r = 1.2 Altogether, for each r ∈ [0�1] there is a σ̄r < ∞

such that if σ > σ̄r , then (logHσ
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for all r ∈ [0�1], or equivalently Hσ
i (w) is log-concave for all wσ

i ≥ vσi + z∗
i . Finally, if

fi(vi) = 0, then the ratio hσ
i (w

σ
i )/H

σ
i (w

σ
i ) is continuous at vσi + z∗

i . Since this ratio is de-
creasing for wi < vσi + z∗

i and decreasing for wi ≥ vσi + z∗
i when σ is large, it is globally

decreasing when σ is large, or equivalently, Hσ
i (w

σ
i ) is globally log-concave.

C. EXAMPLE OF A MIXED-STRATEGY EQUILIBRIUM

Now we assume Fi is degenerate and characterize a symmetric mixed-strategy equilib-
rium. Assume there are two symmetric sellers and u0 = ci = vi = 0. Assume Zi is expo-
nentially distributed with parameter λ, namely, Gi(z) = 1 − e−λz . Assume s < 1/λ so that
z∗ > 0. Below, we characterize the distribution of prices and show that it has decreasing
density.

Let Qi = min{Zi� z
∗} − Pi, and let �i and γi be its distribution function and density

function, repectively. Note that the equilibrium price Pi is ex ante random in a mixed-
strategy equilibrium. Moreover, in a symmetric equilibrium, the distribution of Pi has no
mass point, for if it has a mass point, then a seller can get an upward jump in demand by
moving the location of the mass point slightly to the left. Since the density of Pi exists (its
c.d.f. is atomless), the density γi also exists.

First, we derive the demand function in a mixed-strategy equilibrium. By the eventual
purchase theorem, consumers buy from seller 1 if min{z∗�Z1} −p1 > max{Q2�0}. There-
fore, no consumer will buy from seller 1 if p1 > z∗. For all p1 ≤ z∗, consumers buy from
seller 1 when z∗ −p1 >Q2 and Z1 −p1 > max{Q2�0}. Therefore, for all p1 ≤ z∗, seller 1’s
demand and its derivative are given by

D1(p1)=
∫ z∗−p1

q

(
1 −G

(
p1 + max{q�0}))d�2(q) =
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q

e−λ(p1+max{q�0}) d�2(q)�
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Therefore, the first-order necessary condition with respect to p1 is

1
p1
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γ2

(
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)
D1(p1)

+ λ�

Let π∗ be the equilibrium profit for the sellers in a symmetric equilibrium. Since
seller 1 is indifferent between offering any prices in the support of P1 in equilibrium,
π∗ = p1D(p1) for every p1 in the support of P1. Using D1(p1) = π∗/p1, the first-order

2For r ∈ (0�1), the strict inequality (8) is true as fi(F
−1
i (r)) > 0 within the support. Since fi(F

−1
i (r))/r

falls in r by log-concavity of Fi , fi(F−1
i (r))/r > 0 at r = 0, and thus the strict inequality (8) also holds for

r = 0. For r = 1, since fi has unbounded upper support, fi(F−1
i (r)) falls in r when r is large. Therefore

f ′
i (F

−1
i (r))/fi(F

−1
i (r)) < 0 for some r ∈ (0�1). Since f ′

i (F
−1
i (r))/fi(F

−1
i (r)) falls in r by the log-concavity of

fi , f ′
i (F

−1
i (r))/fi(F

−1
i (r)) < 0 when r = 1 and thus the inequality (8) holds when r = 1.
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condition can be rewritten as

γ2

(
z∗ −p1

) = π∗

p1

(
1
p1

− λ

)
eλz

∗
� (9)

The first-order condition implies p1 ≤ 1/λ in equilibrium. Since p1 ≥ 0, the support of P1

is a subset of the interval [0�min{z∗�1/λ}]. From equation (9), it is clear that the density
γi of Qi is monotonically increasing (because the right-hand side falls in p1).

Now we use the density of Qi (i.e., γi) and that of Zi to solve for the distribution of
Pi, by exploiting the equation Qi = min{Zi� z

∗} − Pi. This is generally a hard problem
because one must solve a complex differential equation. Below, we show that the problem
is especially tractable when Zi is exponentially distributed. Let B(p) be the distribution
function of Pi in a symmetric equilibrium. The c.d.f. and p.d.f. of Qi can be written as

�i(q)=
∫ ∞

0

[
1 −B

(
min

{
z� z∗} − q

)]
λe−λz dz�

γi(q)≡ �′
i(q)=
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0
b
(
min

{
z� z∗} − q

)
λe−λz dz�

Substitute the equation for γi into the first-order condition (9); then
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p

(
1
p

− λ

)
eλz

∗ =
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0
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(
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z − z∗ +p�p
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=
∫ 0

−z∗
b(y +p)λe−λ(y+z∗) dy + b(p)e−λz∗

�

The last line uses a change of variable y = z− z∗. Now multiply both sides by eλ(z
∗−p), and

let τ(p)≡ b(p)e−λp and T(p) ≡ ∫ p

0 τ(y)dy . Then we can rewrite the above equation as

π∗

p

(
1
p

− λ

)
eλ(2z

∗−p) = λ

∫ 0

−z∗
τ(y +p)dy + τ(p)�

Notice that, since p ≥ 0 in equilibrium, the density b(q) = τ(q) = 0 for all q < 0. Together
with p ≤ z∗, we have τ(y +p)= 0 for all y ∈ (−z∗�−p). In light of this, the lower support
of the integral term can be replaced by −p. Therefore, the equation above becomes

π∗

p

(
1
p

− λ

)
eλ(2z

∗−p) = λ

∫ 0

−p

τ(y +p)dy + τ(p)= λT(p)+ τ(p)� (10)

This equation is a first-order differential equation. The general solution is

T(p)= Ce−λp −π∗eλ(2z
∗−p)

(
λ log(p)+ 1

p

)
�

where C is a constant. By b(p)= τ(p)eλp and equation (10), the density b(p) is

b(p)= π∗

p

(
1
p

− λ

)
e2λz∗ − λT(p)eλp = π∗e2λz∗

(
1
p2 + λ2 log(p)

)
− λC�
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The constant C is chosen so that
∫ min{z∗�1/λ}

0 b(p)dp= 1. The value of π∗ can be solved by
substituting the solution of b(p) into the seller’s profit function. One can easily show that
the density b(p) falls in p by the equation above and p≤ 1/λ.

D. UNOBSERVABLE PRICES AND SEARCH COSTS

Anderson and Renault (1999) studied a stationary search model with unobservable
prices, and showed that ∂p∗/∂s > 0 provided that 1 − G(z) is log-concave. We argue
that this insight may not hold when search is non-stationary, due to the presence of a
prior value V . Assume there is no outside option and sellers are symmetric. Below, we
show ∂p∗/∂s < 0 is possible if the density of V is log-concave and increasing, even when
1 −G(z) is log-concave.

CLAIM 1: The equilibrium price p∗ falls in s when (i) s is sufficiently small and
(ii) f ′(v̄)/f (v̄) > limz↑z̄ g(z)/[1 −G(z)].

Since we have assumed f (v) is log-concave, it is single-peaked in v. Therefore, the
second condition requires f ′(v) > 0 for all [v� v̄], and the upper support v̄ must be finite.

PROOF: Let W̃i ≡ maxj =i Wj ; then the demand for seller i is given by (5). When prices
are unobservable, seller i controls pi but not pe

i , so the measure of marginal consumers is

−dDi

(
pi�p

e
i �p

∗)
dpi

∣∣∣∣
pi=pe

i =p∗
=E

[∫ v̄

W̃i−z∗
g(W̃ − vi)dF(vi)

]

=
∫ v̄+z∗

w

[∫ v̄

w−z∗
g(w − vi)dF(vi)

]
dH(w)n−1�

In a symmetric equilibrium, p∗ solves

p∗ − c = −
(
n
dDi

(
pi�p

e
i �p

∗)
dpi

∣∣∣∣
pi=pe

i =p∗

)−1

�

Since the right-hand side does not depend on p∗, to show ∂p∗/∂s < 0, it suffices to show
the right-hand side falls in s, or equivalently the following derivative is positive:

d

ds

∫ v̄+z∗

w

[∫ v̄

w−z∗
g(w − vi)dF(vi)

]
dH(w)n−1

= dz∗

ds

∫ v̄+z∗

w

[
g
(
z∗)f (

w − z∗)]dH(w)n−1

+
∫ v̄+z∗

w

[∫ v̄

w−z∗
g(w − vi)dF(vi)

][
f ′(w − z∗)

h(w)
+ (n− 2)f

(
w − z∗)

H(w)

]
dH(w)n−1�

The last line uses dH(w)/ds = f (w − z∗) and dh(w)/ds = f ′(w − z∗). Next, substitute
dz∗/ds = −1/[1 − G(z∗)] (by equation (1)) into the derivative and divide the entire ex-
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pression by
∫ v̄+z∗
w

f (w − z∗)dH(w)n−1; then the expression above has the same sign as

−g
(
z∗)

1 −G
(
z∗) +

∫ v̄+z∗

w

[∫ v̄

w−z∗
g(w − vi)dF(vi)

][
f ′(w− z∗)

h(w)
+ (n− 2)f

(
w− z∗)

H(w)

]
dH(w)n−1

∫ v̄+z∗

w

f
(
w − z∗)dH(w)n−1

≥ −g
(
z∗)

1 −G
(
z∗) +

∫ v̄+z∗

w

[
∫ v̄

w−z∗
g(w − vi)dF(vi)

h(w)

][
f ′(w − z∗)
f
(
w− z∗)

]
f
(
w − z∗)dH(w)n−1

∫ v̄+z∗

w

f
(
w − z∗)dH(w)n−1

�

Now take s → 0 and therefore z∗ → z̄. Since (i) h(w)→ ∫ v̄

w−z∗ g(w−vi)dF(vi) as z∗ → z̄,3
and (ii) f ′(v̄)/f (v̄) ≤ f ′(v)/f (v) for all v < v̄ by the log-concavity of f , the limit of the
above expression is at least

lim
z∗↑z̄

−g
(
z∗)

1 −G
(
z∗) + f ′(v̄)

f (v̄)
�

Finally, if f ′(v̄)/f (v̄) > limz∗↑z̄ g(z∗)/[1 − G(z∗)], then the last line is clearly positive and
thus ∂p∗/∂s < 0 when s is small.4 Q.E.D.

To put this result in context, note that Haan, Moraga-González, and Petrikaite (2017)
showed that in a symmetric duopoly model with unobservable prices, if F has full support
and 1 − G is log-concave, then ∂p∗/∂s > 0. Since Claim 1 allows n = 2 and log-concave
1 −G, the sign of ∂p∗/∂s is reversed in Claim 1 precisely because F has a bounded upper
support and rising density. Indeed, when v̄ < ∞ and f ′ > 0, as s rises, the upper support
of H(w), namely, v̄ + z∗, falls while the density h(w) rises at all w < v̄ + z∗. As a result,
the measure of marginal consumers rises as the other sellers’ search costs rise. By this
logic, as the other sellers’ search costs rise, seller i is willing to lower pi to attract more
marginal consumers. On the other hand, as si rises, seller i has an incentive to raise pi

to extract more surplus from the visiting consumers. The overall effect depends on the
relative strength of the two effects. We focus on small s because the first effect is relatively
stronger when s is small—indeed, the magnitude of the change in the upper support ∂(v̄+
z∗)/∂s = −1/(1 − G(z∗) is the largest when s ≈ 0. When s ≈ 0, the relative strength of
these two effects depends on the ratio f ′/f and the hazard rate g/(1 − G), respectively.
Finally, since f ′(v)/f (v) falls in v and g(z)/(1 − G(z)) rises in z, our second sufficient
condition ensures f ′/f > g/(1 −G) at all v and z.

E. CONSUMER SURPLUS AND SEARCH COSTS

We present an example where consumer surplus rises with search costs. Consider a
symmetric duopoly environment with no outside option. Assume the prior and match val-

3Integrate equation (2) by parts and differentiate with respect to w; then h(w) = ∫ v̄

w−z∗ g(w − vi)dF(vi) +
(1 −G(z∗))f (w − z∗). The second term vanishes as z∗ → z̄.

4If z̄ = ∞, then
∫ v̄+z∗
w

f (w− z∗)dH(w)n−1 vanishes as s → 0, and thus lims→0 ∂p
∗/∂s = 0. But by continuity,

the inequality ∂p∗/∂s < 0 remains valid for small but strictly positive s.
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ues are uniform random variables with V ∼ U[0�3/4] and Z ∼ U[0�1]. Since there is no
outside option and p1 = p2 = p∗ in a symmetric equilibrium, every consumer purchases
the product that offers the highest effective value. By Corollary 1, a (representative) con-
sumer’s expected payoff is equal to

CS = E
[
max{W1�W2}

] −p∗�

First, consider the effects of s on p∗. The equilibrium price is p∗ = 6/(9 + 32s) by direct
calculation.5 This implies

dp∗

ds
= −192

(9 + 32s)2 �

The expected value of the first-order statistic max{W1�W2} can be written as

E
[
max{W1�W2}

] = 2
∫ 1

0

∫ 3
4

0

(
v+ min

{
z� z∗})H(

v+ min
{
z� z∗})dvdz�

Next, we consider the effect of s on E[max{W1�W2}]. By equation (1), dz∗/ds = −1/(1 −
z∗). This result and the equation above imply

dE
[
max{W1�W2}

]
ds

= −2
∫ 3

4

0

[
H

(
v+ z∗) + (

v+ z∗)h(
v + z∗)]dv

− 2
1 − z∗

∫ 1

0

[∫ 3
4

0

(
v+ min

{
z� z∗})Hz∗

(
v+ min

{
z� z∗})dv

]
dz� (11)

where Hz∗(w) is defined as

Hz∗(w)≡ dH(w)

dz∗ = −f
(
w − z∗)(1 −G

(
z∗)) = −4

3
(
1 − z∗) for w ∈ [

z∗� z∗ + 4/3
]
�

and otherwise 0.
Now we evaluate the effect of an increase in s on CS at s = 0. When s = 0, z∗ = 1 by

equation (1). By direct calculation, the density and distribution function of W are

h(w) =

⎧⎪⎨
⎪⎩

4w/3 if w ≤ 3/4�
1 if 3/4 <w< 1�
7/3 − 4w/3 if 7/4 ≥ w> 1�

H(w) =

⎧⎪⎨
⎪⎩

2w2/3 if w ≤ 3/4�
w − 3/8 if 3/4 <w< 1�
7w/3 − 2w2/3 − 25/24 if 7/4 ≥w> 1�

5This pricing formula is also provided by Haan, Moraga-González, and Petrikaite (2017). They showed that
p∗ = 3z̄2v̄/(3z̄v̄ + 3sv̄ − v̄2), assuming the return to search is sufficiently high so that the consumers who visit
seller 1 first will always visit seller 2 with a strictly positive probability. They showed that this assumption is
satisfied when s is sufficiently small and z̄ > v̄. Both conditions are satisfied in our example.
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Substitute the expressions for h, H, and Hz∗ into equation (11); then

dE
[
max{W1�W2}

]
ds

∣∣∣∣
s=0

= −2
[∫ 3

4

0

[
H(v+ 1)+ (v+ 1)h(v+ 1)

]
dv

]

+8
3

∫ 1

0

∫ 4
3

0
(v+ z)1{v+z>1} dvdz

= −2
[∫ 7

4

1
−2w2 + 14

3
w − 25

24
dw

]
+ 8

3

(
45
128

)

= −21
16

�

Altogether, a consumer’s expected surplus rises in s when s = 0 because

dCS

ds

∣∣∣∣
s=0

= dE
[
max{W1�W2}

]
ds

∣∣∣∣
s=0

− dp∗

ds

∣∣∣∣
s=0

= −21
16

+ 192
81

= 457
432

> 0�

Intuitively, as s rises, each consumer pays a larger utility cost to visit sellers. On the other
hand, they are better off because the equilibrium price p∗ falls in s. This example shows
that the latter effect can dominate the former when s is small.

F. PRE-SEARCH INFORMATION: PROOF OF LEMMA 1

It suffices to show there exists a′ ∈ (0�1) such that ∂h(H−1(a))/∂α < 0 if and only if
a > a′. Let � denote the standard normal distribution function and φ denote its den-
sity function. Since V ∼ N (0�α2) and Z ∼ N (0�1 − α2), F(v) = �(v/α) and G(z) =
�(z/

√
1 − α2). Inserting these into equation (2) and differentiating H(w) with respect to

α yield

Hα(w) ≡ ∂H(w)

∂α
= −

[
1 −�

(
z∗√

1 − α2

)](
w − z∗

α2

)
φ

(
w − z∗

α

)
�

where ∂z∗/∂α can be obtained from equation (1) by applying the implicit function theo-
rem. Differentiating again with respect to w gives

hα(w) ≡ ∂h(w)

∂α
= −

[
1 −�

(
z∗√

1 − α2

)][
1 −

(
w − z∗

α

)2] 1
α2φ

(
w − z∗

α

)
�

Now observe that

∂h
(
H−1(a)

)
∂α

= hα

(
H−1(a)

) −Hα

(
H−1(a)

)h′(H−1(a)
)

h
(
H−1(a)

) �

Let w = H−1(a) and apply Hα(w) and hα(w) to the equation. Then,

∂h
(
H−1(a)

)
∂α

= −1
α2

[
1 −�

(
z∗√

1 − α2

)]
φ

(
w − z∗

α

)[
1 −

(
w− z∗)2

α2 − (
w − z∗)h′(w)

h(w)

]
�
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Since V ∼N (0�α2) and Z ∼N (0�1 − α2), the density of W = V + min{Z�z∗} is

h(w)= 1√
1 − α2

∫ ∞

−∞
φ

(
w − min

{
z� z∗}

α

)
φ

(
z√

1 − α2

)
dz

= 1√
1 − α2

∫ ∞

−∞
φ

(
w − z∗

α
+ max{r�0}

)
φ

(
z∗ − αr√

1 − α2

)
dr�

where the second line changes variable r = (z∗ − z)/α. Since ∂φ(x)/∂x = −xφ(x),

h′(w)

h(w)
= −w − z∗

α2 −

∫ ∞

−∞
max{r�0}φ

(
w− z∗

α
+ max{r�0}

)
φ

(
z∗ − αr√

1 − α2

)
dr

α

∫ ∞

−∞
φ

(
w − z∗

α
+ max{r�0}

)
φ

(
z∗ − αr√

1 − α2

)
dr

�

Applying this to the above equation leads to

∂h
(
H−1(a)

)
∂α

∝ −1 +
(
w − z∗

α

)2

+ (
w − z∗)h′(w)

h(w)

= −1 +
(
z∗ −w

)
α

∫ ∞

−∞
1{r≥0}rφ

(
w − z∗

α
+ max{r�0}

)
φ

(
z∗ − αr√

1 − α2

)
dr

∫ ∞

−∞
φ

(
w − z∗

α
+ max{r�0}

)
φ

(
z∗ − αr√

1 − α2

)
dr

�

The last expression is clearly negative if w> z∗. In addition, it converges to ∞ as w tends
to −∞. For w ≤ z∗, it decreases in w because (z∗ −w) falls in w and the density φ((w −
z∗)/α+max{r�0}) is log-submodular in (w� r). Therefore, there exists w′ less than z∗ such
that the expression is positive if and only if w < w′. The desired result follows from the
fact that w =H−1(a) is strictly increasing in a.
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