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APPENDIX B: ARGUMENTS OMITTED FROM THE PAPER

B.1. Properties of the Inverse Generating Function in Section 2.2

THATψ IS STRICTLY DECREASING in its third argument for all (y�x) ∈ Y ×X is immediate
from (1) and the corresponding property of the generating function φ stated in Assump-
tion 1. Because φ is defined onX×Y ×R, we have ψ(y�x�R)= R for all (y�x) ∈ Y ×X .
Except for a permutation of the arguments, the epigraph (hypograph) of φ coincides with
the hypograph (epigraph) of ψ. As a function into the real numbers is continuous if and
only if its epigraph and hypograph are closed (Ferrera (2014, Proposition 1.14, p. 5)),
continuity of φ is equivalent to continuity of ψ.

B.2. Details for Remark 1

Let RX be the set of functions from X to R. Then (u� y) ∈ R
X × YX (note that here u

is not required to be bounded) is implementable by an incentive compatible direct mech-
anism if there exists t ∈ R

X such that the feasibility conditions u(x) = φ(x� y(x)� t(x))
and the incentive compatibility conditions φ(x� y(x)� t(x))≥φ(x� y(x̂)� t(x̂)) hold for all
x� x̂ ∈X . Similarly, letting R

Y be the set of functions from Y to R, we may define (v�x) ∈
R
Y ×XY to be implementable by an incentive compatible direct mechanism if there ex-

ists t ∈ R
Y such that v(y) = ψ(y�x(y)� t(y)) and ψ(y�x(y)� t(y)) ≥ ψ(y�x(ŷ)� t(ŷ)) hold

for all y� ŷ ∈ Y .

LEMMA B.1: Let Assumption 1 hold.
(1) (u� y) ∈ R

X × YX is implementable by an incentive compatible direct mechanism if
and only if u ∈ B(X) and there exists v ∈ B(Y) implementing (u� y).

(2) (v�x) ∈ R
Y × XY is implementable by an incentive compatible direct mechanism if

and only if v ∈ B(Y) and there exists u ∈ B(X) implementing (v�x).

PROOF OF LEMMA B.1: We prove Lemma B.1(1); the proof of Lemma B.1(2) is analo-
gous.

It is immediate from the revelation principle that if (u� y) ∈ B(X)×YX is implemented
by v ∈ B(Y), then (u� y) is implementable by an incentive compatible direct mechanism.
Indeed, upon setting t(x) = v(y(x)) for all x ∈ X , conditions (3) and (4) imply u(x) =
φ(x� y(x)� t(x))≥φ(x� y(x̂)� t(x̂)) for all x� x̂ ∈X .
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Conversely, suppose that (u� y) ∈R
X ×YX is implementable by an incentive compatible

direct mechanism, so that there exists t ∈ R
X such that

u(x)=φ(
x� y(x)� t(x)

) ≥φ(
x� y(x̂)� t(x̂)

)
� (B.1)

t(x)=ψ(
y(x)�x�u(x)

) ≥ψ(
y(x)� x̂�u(x̂)

)
(B.2)

hold for all x� x̂ ∈X . The equality in (B.2) follows from the equality in (B.1) because φ
and ψ are inverse and the inequality in (B.2) follows from (B.1) upon reversing the roles
of x and x̂ in the inequality u(x) ≥ φ(x� y(x̂)� t(x̂)) and using, again, that φ and ψ are
inverse.

First, we establish that u is bounded. Fix x̂ ∈X . The inequality in (B.1) ensures that,
for all x ∈X ,

u(x)≥φ(
x� y(x̂)� t(x̂)

) ≥ min
x̃∈X

φ
(
x̃� y(x̂)� t(x̂)

) =: u ∈ R�

where the minimum u exists becauseX is compact and φ is continuous. Next, using (B.2),
we have

t(x)≥ψ(
y(x)� x̂�u(x̂)

) ≥ min
y∈Y

ψ
(
y� x̂�u(x̂)

) =: t ∈R

for all x ∈ X , where the minimum t exists because Y is compact and ψ is continuous.
Using the equality in (B.1) and that φ is strictly decreasing in its third argument, we then
have, for all x ∈X ,

u(x)=φ(
x� y(x)� t(x)

) ≤φ(
x� y(x)� t

) ≤ max
x̃∈X�ỹ∈Y

φ(x̃� ỹ� t)=: u ∈ R�

where the maximum u exists becauseX and Y are compact and φ is continuous. We thus
have u≤ u(x)≤ u for all x ∈X , which implies u ∈ B(X). From the equality in (B.2), t is
bounded, too.

Second, we show there exists v ∈ B(Y) implementing (u� y). We can fix a value v ∈ R

such that φ(x� y� v)≤ u holds for all (x� y) ∈X ×Y . Now let

v(y)=
{

t(x) if y = y(x) for some x ∈X�
v otherwise�

If there exist x� x̂ ∈X and y ∈ Y with y = y(x) = y(x̂), then the incentive constraints in
(B.1) imply t(x) = t(x̂). Therefore, v(y) is well-defined for all y ∈ Y and, because t is
bounded, we have v ∈ B(Y). Finally, using (B.1), it is immediate from the construction of
v that we have

u(x)=φ(
x� y(x)� v

(
y(x)

)) ≥φ(
x� y� v(y)

)
for all (x� y) ∈X ×Y , so that v implements (u� y). Q.E.D.

B.3. Details for Remark 2

To verify that (7) implies the strong implementability of every implementable assign-
ment, we first consider an implementable assignment y ∈ YX . Because y is implementable,
there exists v ∈ B(Y) such that y(x) ∈ Yv(x) holds for all x ∈X . Fix any x0 ∈X . Because v
implements y, it is immediate that y is implementable with initial condition (x0�u0), where
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u0 =φ(x0� y(x0)� v(y(x0))). Using Assumption 1, for any t0 ∈R we can find a uniquely de-
termined profile v̂ such that

φ
(
x0� y� v(y)

) −φ(
x0� y� v̂(y)

) = t0� ∀y ∈ Y� (B.3)

The optimal decisions of type x0 when maximizing against the tariff v are then iden-
tical to the optimal decisions when maximizing against v̂. Further, the same holds
for any other type x1 ∈ X , since (B.3) and (7) ensure that there exists t1 such that
φ(x1� y� v(y))−φ(x1� y� v̂(y))= t1 holds for all y ∈ Y . Therefore, if the generating func-
tion satisfies (7), then Yv(x) = Yv̂(x) holds for all x ∈ X , so that v̂ implements y with
initial condition (x0�u0 − t0). As both x0 and t0 were arbitrary, this shows that y is strongly
implementable.

Second, consider an implementable assignment x ∈ XY . Then there exists u ∈ B(X)
such that x(y) ∈ Xu(y) holds for all y ∈ Y . We first show that, for any (x0� t0) ∈ X × R,
there exists û ∈ B(X) satisfying Xû(y)= Xu(y) for all y ∈ Y and u(x0)− û(x0)= t0. To do
so, we make use of results from Section 3. We may suppose without loss of generality that
the profile u implementing x is itself implementable (Corollary 4(2)), so that the profile v
implemented by u also implements u (Corollary 3(2)). Applying Lemma 2, we then have
that the graphs of both Yv and Xu coincide with �u�v (with the latter defined in (16)). Now
consider v̂ as constructed in the first step above. Using condition (7), we then have Yv = Yv̂.
Because v is implementable, this equality of the argmax correspondences implies that v̂ is
also implementable (Remark 6). Applying Corollary 3(1), the profile û implemented by v̂
also implements v̂. Applying Lemma 2 again, it follows that Xû coincides with Xu. Then
the equality u(x0)− û(x0)= t0 follows directly from the construction of v̂.

To complete the argument, choose (y0� v0) and let x0 = x(y0). Then u implements (v�x)
with v(y0) = ψ(y0�x0�u(x0)). In addition, for any t0, û implements (v̂�x) with v̂(y0) =
ψ(y0�x0� û(x0))=ψ(y0�x0�u(x0)− t0). As t0 ranges through R, so does ψ(y0�x0�u(x0)−
t0), giving the result.

B.4. Proof of Lemma 1

First, we prove the continuity of Ψ : B(X)→ B(Y). The argument for the continuity of
� : B(Y)→ B(X) is analogous.

Fix u ∈ B(X) and ε > 0. We have to establish that there exists δ > 0 such that

‖ũ − u‖< δ =⇒ ‖Ψ ũ −Ψu‖< ε�
Let (the following expressions are well-defined because u is bounded) z̄ = supx∈X u(x)+

1, z = infx∈X u(x)− 1, and Z = [z� z̄] ⊂ R. For every δ ∈ (0�1) and x ∈X , we then have

‖ũ − u‖< δ =⇒ ũ(x) ∈Z�
As ψ is continuous, it is uniformly continuous on the compact set X × Y × Z. Hence,
there exist δ ∈ (0�1) and ε′ ∈ (0� ε) such that

‖ũ − u‖< δ =⇒ ∣∣ψ(
y�x� ũ(x)

) −ψ(
y�x�u(x)

)∣∣< ε′

for all x ∈X and y ∈ Y . We also have∣∣ψ(
y�x� ũ(x)

) −ψ(
y�x�u(x)

)∣∣< ε′ for all x ∈X and y ∈ Y
=⇒ sup

y∈Y

∣∣∣sup
x∈X

ψ
(
y�x� ũ(x)

) − sup
x∈X

ψ
(
y�x�u(x)

)∣∣∣ ≤ ε′ < ε�

which gives ‖Ψ ũ −Ψu‖< ε, as desired.
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Second, let V ⊂ B(Y) be bounded, ensuring the existence of a compact interval Z ⊂ R

such that v(Y)⊂Z holds for all v ∈ V . We then have �v(x) ∈ [min(x�y�v)∈X×Y×Z φ(x� y� v)�
max(x�y�v)∈X×Y×Z φ(x� y� v)] for all x ∈X and v ∈ V , ensuring that �V ⊂ B(X) is bounded.
The argument for Ψ is analogous.

B.5. Proof of Corollary 1 and Completion of the Proof of Proposition 1

We first use the defining property of a Galois connection (10) to establish (11)–(13)
in the statement of Corollary 1.1 In each case, we prove one of the two statements; the
other statement follows by an analogous argument. First, for any v ∈ B(Y) we trivially
have �v ≥�v, so that setting u =�v in (10) yields (11). Second, let v1 ≥ v2. By (11), we
have v2 ≥Ψ�v2 and thus v1 ≥Ψ�v2. Applying (10) with v = v1 and u =�v2 then gives the
consequent of (12). Third, (11) gives v ≥ Ψ�v. Applying (12) with v1 = v and v2 = Ψ�v
to this inequality yields �Ψ�v ≥�v. To establish the reverse inequality and hence (13),
notice that, for every v ∈ B(Y), we have Ψ�v ≥Ψ�v, so that using Ψ�v in place of v and
�v in place of u in (10) yields the reverse inequality �v ≥�Ψ�v.

We next show that (10) implies that � and Ψ are dualities that are dual to each other.
To confirm that � is a duality (with Ψ analogous), let v be the infimum of some set V ⊂

B(Y). Corollary 1(2) implies that �v then is an upper bound of �V . Let u be any upper
bound of �V . By (10), we then have v ≥ Ψu for all v ∈ V , implying v ≥ Ψu. Applying
(10) again, this yields u ≥ �v, showing that �v is the supremum of �V . To see that �
and Ψ are dual, note that (10) implies {u|v ≥Ψu} = {u|u ≥�v}, so that inf{u|v ≥Ψu} =
inf{u|u ≥�v} =�v. An analogous argument establishes Ψu = inf{v|u ≥�v}.

Finally, we argue that dualities that are dual to one another constitute a Galois con-
nection. The proof is straightforward (cf. Singer (1997, p. 179)): Let u ≥ �v. Then
Ψu ≤ Ψ�v ≤ inf{ṽ|�ṽ ≤ �v} ≤ v, where the first inequality follows from the order-
reversing property of the duality Ψ , the second inequality follows from the fact that Ψ
and � are dual, and the final inequality from the definition of the infimum. This gives one
of the implications of (10); the other is analogous.

B.6. Proof of Corollary 4

We prove Corollary 4(1); Corollary 4(2) is analogous.
If (u� y) is implementable, there exists ṽ ∈ B(Y) implementing it, thus satisfying u =�ṽ,

from which we obtain Ψu = Ψ�ṽ. From the first inequality in (11) in Corollary 1(1), we
have ṽ ≥ Ψ�ṽ and thus ṽ ≥ Ψu. Now suppose that Ψu does not implement y. Because
Ψu implements u (Corollary 3(1)), there exists (x̂� ŷ) ∈X ×Y such that

u(x̂)=φ(
x̂� ŷ�Ψu(ŷ)

)
>φ

(
x̂� y(x̂)�Ψu

(
y(x̂)

)) ≥φ(
x̂� y(x̂)� ṽ

(
y(x̂)

))
�

where the last inequality uses ṽ ≥Ψu and the assumption that φ is decreasing in its third
argument. But because ṽ implements (u� y), we also have

u(x̂)=φ(
x̂� y(x̂)

)
� ṽ

(
y(x̂)

)
)�

resulting in a contradiction which finishes the proof.

1As noted in Birkhoff (1995, Section 5.8), the properties stated in (11)–(12) are in fact equivalent to (10)
and are sometimes taken to be the definition of a Galois connection (e.g., Singer (1997, Definition 5.3 and
Remark 5.6)). See also the original definition of a Galois connection in Ore (1944).
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B.7. Details for Remark 6

We prove
v ∈ I(Y) ⇐⇒ Yv is nonempty-valued and onto; (B.4)

the proof of the other equivalence is analogous.
First, suppose the profile v ∈ B(Y) is implementable. Then v implements and is im-

plemented by u =�v (Corollary 3), implying that both Xu and Yv are nonempty-valued.
Further, from Lemma 2, the correspondences are inverses of each other, and hence must
be onto.

Second, suppose that Yv is nonempty-valued and onto. Then v implements u =�v (be-
causeYv is nonempty-valued) and, for any given ŷ ∈ Y , there exists x̂ ∈X such that u(x̂)=
φ(x̂� ŷ� v(ŷ)) holds (because Yv is onto), which is equivalent to v(ŷ) = ψ(ŷ� x̂�u(x̂)).
As v implements u, we have u(x) ≥ φ(x� ŷ� v(ŷ)) for all x ∈ X , which is equivalent to
v(ŷ)≥ψ(ŷ�x�u(x)) for all x ∈X . Combining the equality and the inequality for v(ŷ), we
have v(ŷ)= maxx∈X φ(ŷ�x�u(x)). As this holds for all ŷ ∈ Y , it follows that u implements
v, so that v is implementable.

B.8. Proof of Corollary 5

We prove statements (1)–(3), with the proofs of the corresponding statements for I(Y)
being analogous.

(1) Consider a sequence (un)∞n=1 of profiles in I(X) converging to some u∗ ∈ B(X). We
want to show that u∗ is implementable. For all n ∈ N, let vn = Ψun. Because Ψ is con-
tinuous (Lemma 1), the sequence (vn)∞n=1 converges to v∗ = Ψu∗. Corollary 3(1) implies
that vn implements un, so that we have un =�vn for all n ∈N . Taking limits on both sides
of this equation and using the continuity of � (Lemma 1), we obtain u∗ = �v∗. From
Proposition 2, this establishes the implementability of u∗, and hence that I(X) is closed.
Next, suppose that the sequence (un)∞n=1 is in Uy ⊂ I(X). With the same construction of
the sequence (vn)∞n=1 as above, Corollary 4(1) then implies that vn implements y for all n,
so that

φ(x� y(x)� vn
(
y(x)

) ≥φ(
x� y� vn(y)

)
holds for all x ∈X , y ∈ Y , and n ∈ N. As the (uniform) convergence of (vn)∞n=1 to v∗ implies
its pointwise convergence to the same limit and φ is continuous, the above inequalities
imply

φ(x� y(x)� v∗(y(x)
) ≥φ(

x� y� v∗(y)
)

for all x ∈X and y ∈ Y . Therefore, v∗ implements y. As v∗ also implements u∗, this estab-
lishes u∗ ∈ Uy.

(2) Let U ⊂ I(X) be bounded. Fix ε > 0. To show equicontinuity of U , we establish that
there exists δ > 0 such that

‖x̂− x‖< δ =⇒ ∥∥u(x̂)− u(x)
∥∥< ε (B.5)

for all x̂� x ∈X and u ∈ U .
Because U is bounded, so is V =ΨU (Lemma 1). We may then choose v < v̄ ∈ R such

that v ∈ V implies v ≤ v(y) ≤ v̄ for all y ∈ Y . Because φ is continuous, it is uniformly
continuous on the compact set X ×Y × [v� v̄]. Consequently, there exists δ > 0 such that

‖x̂− x‖< δ =⇒ ∥∥φ(x̂� y� v)−φ(x� y� v)∥∥< ε (B.6)

for all (y� v) ∈ Y × [v� v̄]. Fix such a δ and let ‖x̂− x‖< δ hold.
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Consider any u ∈ U . From Corollary 3, the profile v = Ψu ∈ V implements u. Let ỹ ∈
Yv(x) and ŷ ∈ Yv(x̂). We then have

u(x)=φ(
x� ỹ� v(ỹ)

) ≥φ(
x� ŷ� v(ŷ)

)
�

u(x̂)=φ(
x̂� ŷ� v(ŷ)

) ≥φ(
x̂� ỹ� v(ỹ)

)
�

implying

ε >φ
(
x̂� ŷ� v(ŷ)

) −φ(
x� ŷ� v(ŷ)

) ≥ u(x̂)− u(x)≥φ(
x̂� ỹ� v(ỹ)

) −φ(
x� ỹ� v(ỹ)

)
>−ε�

where the outer inequalities are from (B.6) and the fact that v ≤ v(y) ≤ v̄ holds for all
y ∈ Y . Consequently, we have ‖u(x̂)− u(x)‖< ε, thus establishing (B.5).

(3) This follows from Corollary 5(2) and an application of the Arzela–Ascoli theorem
(Ok (2007, p. 264)).

B.9. Proof of Lemma 3

We prove the first statement in the lemma; the second is analogous.
Fix an implementable y ∈ YX and consider u1�u2 ∈ Uy. Let v1 implement (u1� y) and v2

implement (u2� y). For any x ∈X , we then have

u1(x)=φ(
x� y(x)� v1

(
y(x)

))
� (B.7)

u2(x)=φ(
x� y(x)� v2

(
y(x)

))
� (B.8)

From (B.7) and (B.8), it is immediate that

u1(x)∨ u2(x)=φ(
x� y(x)� v1

(
y(x)

) ∧ v2

(
y(x)

))
(B.9)

holds for all x ∈X . Combined with the equality�(v1 ∧v2)= u1 ∨u2 (cf. the first paragraph
of Section 3.4.2), (B.9) shows that v1 ∧ v2 implements (u1 ∨ u2� y). Hence, u1 ∨ u2 ∈ Uy.

From (B.7) and (B.8), it is also immediate that

u1(x)∧ u2(x)=φ(
x� y(x)� v1

(
y(x)

) ∨ v2

(
y(x)

))
(B.10)

holds for all x ∈ X . From the implementation condition (4), we further have φ(x� y�
v1(y))≤ u1(x) and φ(x� y� v2(y))≤ u2(x) for all (x� y) ∈X × Y , so that u1(x) ∧ u2(x) ≥
φ(x� y� v1(y)∨ v2(y)) holds for all x and y . Combined with (B.10), this shows that v1 ∨ v2

implements (u1 ∧ u2� y). Hence, u1 ∧ u2 ∈ Uy.

B.10. Details for the Finite-Support Matching Models in Section 4.1.2

With every finite-support matching model (X�Y�φ�μ�ν�u� v) satisfying Assumption 1
we associate a matching model with a finite number of agents as follows: there are finite sets
of buyers I = {1� � � � �m} and sellers J = {1� � � � � n}. Buyer i has type xi ∈X and seller j
has type yj ∈ Y . Reservation utilities are given by ui = u(xi) for buyer i ∈ I and vj = v(yj)
for seller j ∈ J. The utility frontier available to a pair of matched agents (i� j) ∈ I × J is
given by φ(xi� yj� v).

The standard definition of a match for such a matching model with a finite number
of agents (see, for instance, Roth and Sotomayor (1990, Definition 9.1)) is equivalent
to specifying a measure ρ on I × J that satisfies ρ(i� j) ∈ {0�1} for all (i� j) ∈ I × J,
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j∈J ρ(i� j) ≤ 1 for all i ∈ I, and

∑
i=I ρ(i� j) ≤ 1 for all j ∈ J. A stable outcome then

consists of such a match and a specification of utility profiles (u1� � � � � un) and (v1� � � � � vn)
satisfying the natural counterparts to our feasibility and stability conditions (e.g., (20)
becomes ui = φ(xi� yj� vj) for all (i� j) satisfying ρ(i� j) = 1 and (25) becomes ui ≥
φ(xi� yj� vj) for all (i� j) ∈ I × J).

Every stable outcome for a matching model with a finite number of agents satis-
fies the equal treatment property (i.e., xi = xi′ implies ui = ui′ and yj = yj′ implies
vj = vj′) if the characteristic function describing the utility frontier available to a pair of
matched agents satisfies our Assumption 1. This allows us to identify stable outcomes
for the matching model with a finite number of agents with stable outcomes for our
finite-support matching model. Specifically, let X = {x ∈ X|x = xi for some i ∈ I} and
Y = {y ∈ Y |y = yj for some j ∈ J} denote the supports of the type distributions in the
finite-support matching model. For x ∈ X , let I(x) = {i ∈ I|xi = x}, and for y ∈ Y , let
J(y) = {j ∈ J|yj = y}. Consider now a stable outcome (ρ�u1� � � � � um� v1� � � � � vn) for the
matching model with a finite number of agents. Let ũ and ṽ be arbitrary profiles in B(X)
and B(Y). Given that equal treatment holds, setting

u(x)=
{
ui if x ∈ I(x)�
ũ otherwise�

and

v(y)=
{
vj if y ∈ J(y)�
ṽ otherwise�

gives two well-defined profiles u ∈ B(X) and v ∈ B(Y). Let the measure λ have support
contained in X ×Y and on this set be given by

λ(x� y)=
∑
i∈I(x)

∑
j∈J(y)

ρ(i� j)�

With these definitions, it is straightforward to verify that (λ�u� v) is a stable outcome for
the finite-support matching model.

It is well-known that stable outcomes for a matching model with a finite number of
agents exist if the characteristic function describing the utility frontier available to a pair
of matched agents satisfies our Assumption 1 (Roth and Sotomayor (1990, Section 9.4)).
Hence, we may conclude that every finite-support matching model satisfying Assump-
tion 1 has a stable outcome.

B.11. Proof of Proposition 5(3)

Let (λ�u� v) be a pairwise stable outcome for the balanced matching model (X�Y�φ�
μ�ν�u� v). Let X ⊆X and Y ⊆ Y be the supports of μ and ν. Noticing that supp(λ) ⊆
X ×Y holds, every pair of profiles ũ and ṽ that satisfy ũ = u on X and ṽ = v on Y satisfy
(20) and (25), implying that, for any such pair, (λ� ũ� ṽ) is a pairwise stable outcome. It
thus suffices to construct a pair of profiles satisfying ũ = u on X and ṽ = v on Y that
implement each other.

Because λ is a full match, for every x ∈ X there exists y ∈ Y with (x� y) ∈ supp(λ).
(Otherwise, we would have λX(X̃)= 0 for some neighborhood X̃ of x, a contradiction.)
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By (20) and (25), this implies that the restriction of the profile v to Y implements the
restriction of the profile u to X , that is,

u(x)= max
y∈Y

φ
(
x� y� v(y)

)
� ∀x ∈X �

Similarly, for every y ∈ Y , there must exist x ∈ X with (x� y) ∈ supp(λ), so that (20) and
(25) imply that restriction of u to X implements the restriction of v to Y :

v(y)= max
x∈X

ψ
(
y�x�u(x)

)
� ∀y ∈ Y �

Now define the profile ũ ∈ B(X) by

ũ(x)= max
y∈Y

φ
(
x� y� v(y)

)
�

This profile satisfies ũ = u on X (because the restriction of v to Y implements the restric-
tion of u to X ). Further, it is implementable. Indeed, because v is bounded, any profile
v̂ ∈ B(Y) of the form

v̂(y)=
{

v(y) if y ∈Y�
v̆ otherwise�

with sufficiently large v̆ implements ũ. Now, let ṽ = Ψ ũ. As ũ is implementable, we then
have that ũ and ṽ implement each other (Corollary 3(1)). It remains to show that ṽ = v
holds on Y . This follows upon noting that (i) ũ = u on X implies ṽ ≥ v on Y (because
the restriction of u to X implements the restriction of v to Y) and (ii) we have ṽ =Ψ�v̂,
which implies (from Corollary 1(1)) v̂ ≥ ṽ and therefore, because v̂ = v on Y , also implies
the inequality v ≥ ṽ on Y .

B.12. Proof of Lemma 5

Suppose λ is a deterministic match satisfying λ = λy for an implementable y. From
Proposition 4(1), the implementability of y implies that there exists u and v implementing
each other such that the graph of y is contained in �u�v. As the argmax correspondence Yv

is upper hemicontinuous (Corollary 2), its graph is closed. Hence, �u�v, which coincides
with the graph of Yv (Lemma 2), also contains the closure of the graph of y. Moreover, the
closure of the graph of y contains the support of λy (otherwise, there is a point (x� y)with a
neighborhood that does not intersect the graph of y and which receives positive measure
under λy, a contradiction to the definition of λy in (28)). We thus have supp(λ) ⊆ �u�v,
implying that λ is pairwise stable (Propositions 5(1) and 5(2)).

Conversely, suppose the deterministic match λ is pairwise stable. From Proposi-
tion 5(3), the pairwise stability of λ implies that there exist (u� v) implementing each
other such that supp(λ)⊆ �u�v. By Proposition 4(1), it remains to show that there exists a
measurable assignment y with graph contained in �u�v satisfying λy = λ. By definition of
a deterministic match, there exists a measurable assignment y′ such that λ= λy′ holds. If
the graph of y′ is contained in the support of λ, then we are done upon setting y = y′. It
remains to consider the case that the graph of y′ is not contained in the support of λ.

We construct the assignment y. Let X denote the support of μ. First, we note that λy′
does not depend on the specification of y′ outside the support of μ. In addition, we can
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define the assignment y on X \ X so that (x� y(x)) ∈ �u�v holds for all x ∈X \ X .2 Now
let X̃ = {x ∈ X |(x� y′(x)) /∈ supp(λ)}. The set X̃ is negligible (i.e., contained in a subset
of X with measure zero) by definition of λy′ . Hence, we can complete the specification
of y by taking y to equal a measurable selection from Yv (cf. footnote 2) (and hence
(x� y(x)) ∈ �u�v) on a subset of X that contains X̃ and has measure zero, and taking y to
equal y′ (and hence (x� y(x)) ∈ supp(λ)⊆ �u�v) on the remainder of X . This construction
ensures that the graph of y is contained in �u�v. It follows immediately from the definitions
of λy and λy′ that we further have λy = λy′ . As λy′ = λ holds by assumption, this implies
λy = λ, finishing the proof.

B.13. Proof of Corollary 6

Fix a matching model (X�Y�φ�μ�ν�u� v) satisfying Assumption 1. We construct an
augmented matching model (X0�Y0�φ0�μ0� ν0�u0� v0) as follows.

First, we augment the type spacesX and Y by adding dummy types x0 and y0, where x0

and y0 are elements of the metric spaces containing X and Y but are not contained in X
or Y . We let X0 =X ∪ {x0} and Y0 = Y ∪ {y0}.

Second, the reservation utility profiles u0 and v0 duplicate u on X and v on Y , with
u(x0)= v(y0)= 0.

Third, we let the generating function φ0 equal φ on X ×Y ×R, and then extend φ0 to
X0 ×Y0 ×R by defining

φ0(x� y0� v)= u(x)− v�
φ0(x0� y� v)= v(y)− v�
φ0(x0� y0� v)= −v�

We letψ0 denote the inverse generating function associated withφ0. Note thatψ0 satisfies
ψ0(y�x0�u)= v(y)− u, indicating that any type of seller y receives her reservation utility
v(y) when matching with a buyer x0 who receives her reservation utility u0(x0)= 0, thus
mirroring the utility obtained by a buyer of any type x who matches with y0.

Fourth, we let the measure μ0 duplicate μ on the set X , and attach mass ν(Y)+ 1 to
the isolated point x0. Similarly, the measure ν0 duplicates ν on the set Y , and attaches
mass μ(X)+ 1 to the isolated point y0. Note that μ0(X0) = ν0(Y0) = 1 + μ(X)+ ν(Y)
holds, and so the matching model (X0�Y0�φ0�μ0� ν0�u0� v0) is balanced.

The augmented matching model (X0�Y0�φ0�μ0� ν0�u0� v0) features continuous reser-
vation utility profiles and satisfies Assumption 1: the sets X0 and Y0 are compact because
X and Y are so, and the generating function φ0 satisfies the full range condition and is
continuous because the profiles u and v used in the construction of the extension of φ are
(by assumption) continuous.

With any full match λ0 for (X0�Y0�φ0�μ0� ν0�u0� v0), we associate the match λ for
(X�Y�φ�μ�ν�u� v) obtained by restricting λ0 to X × Y . Vice versa, we can extend any
match λ for (X�Y�φ�μ�ν�u� v) to a full match λ0 for (X0�Y0�φ0�μ0� ν0�u0� v0) by assign-
ing the masses of unmatched agents to the dummy agents and matching the remaining

2As we have noted earlier in this proof, the correspondence Yv has a closed graph, ensuring that it is weakly
measurable (Aliprantis and Border (2006, Theorem 18.20 and Lemma 18.2)), and hence has a measurable
selection (Aliprantis and Border (2006, Theorem 18.13)) ỹ. Take y to equal ỹ on X \X .
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masses of the dummy agents with each other. That is, we associate with λ the uniquely
defined measure λ0 satisfying

λ0

(
X̃ × {y0}

) = μ(X̃)− λX(X̃)�
λ0

({x0} × Ỹ ) = ν(Ỹ )− λY(Ỹ )�
for all measurable X̃ ⊆X and Ỹ ⊆ Y , and

λ0

({x0} × {y0}
) = 1 + λ(X ×Y)�

We say that a full outcome (λ�u0� v0) for (X0�Y0�φ0�μ0� ν0�u0� v0) and an outcome
(λ�u� v) for (X�Y�φ�μ�ν�u� v) are associated if (i) λ0 and λ are associated, (ii) u is
the restriction of u0 to X , and (iii) v is the restriction of v0 to Y .

Because the augmented matching model (X0�Y0�φ0�μ0� ν0�u0� v0) is balanced, we can
invoke Proposition 6 to conclude that it has a pairwise stable outcome (λ0�u0� v0) satisfy-
ing u0(x0)= 0. The proof is then completed by the “if” direction of the following lemma.
(The “only-if” direction of the lemma will be required in the proof of the subsequent
Proposition 8.)

LEMMA B.2: Let the matching model (X�Y�φ�μ�ν�u� v) satisfy Assumption 1. Then
(λ�u� v) is a stable outcome of (X�Y�φ�μ�ν�u� v) if and only if it is associated with a
pairwise stable outcome (λ0�u0� v0), satisfying u0(x0)= 0, of the augmented matching model
(X0�Y0�φ0�μ0� ν0�u0� v0).

PROOF OF LEMMA B.2: Suppose the outcome (λ0�u0� v0) is a pairwise stable out-
come of the augmented matching model (X0�Y0�φ0�μ0� ν0�u0� v0) with u0(x0) = 0 and
let (λ�u� v) be the associated outcome of (X�Y�φ�μ�ν�u� v). The measures μ0 and ν0

have been constructed so that λ0(x0� y0) = 1 + λ0(X × Y) > 0 holds for the full match
λ0 in the augmented matching model. Together with the equality u0(x0) = 0, the feasi-
bility condition (20) for types (x0� y0) in the augmented matching model then implies
v0(y0)= 0. For any type x ∈ supp(μ), (25) in the augmented matching model then implies
u(x) ≥ φ0(x� y0�0) = u(x) and similarly v(y) ≥ ψ0(y�x0�0) = v(y) for all y ∈ supp(ν).
Thus, the participation constraints (23)–(24) in the associated outcome (λ�u� y) for the
matching model hold. Next, the incentive constraints (25) in the augmented matching
model,

u0(x)≥φ0

(
x� y� v(y)

) ∀(x� y) ∈ supp(ν0)× supp(μ0)�

imply

u(x)≥φ(
x� y� v(y)

) ∀(x� y) ∈ supp(ν)× supp(μ)�

which are the incentive constraints in the matching model. It remains to check the feasibil-
ity conditions (20)–(22) to infer that (λ�u� v) is a stable outcome of (X�Y�φ�μ�ν�u� v).
As λ and λ0 coincide on X × Y , the feasibility conditions for the augmented matching
model immediately imply u(x)=φ(x� y� v(y)) for all (x� y) in the support of λ, which is
(20). We then need only show that buyers x in the support of μ− λX and sellers y in the
support of μ− λY receive their reservation utilities. For such types, we have that (x� y0)
and (y�x0) are in the support of λ0, so that (recalling the equalities u0(x0) = v0(y0) = 0
and the definition of φ0) the feasibility condition

u0(x)=φ(
x� y� v0(y)

)
� ∀(x� y) ∈ supp(λ0)
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for the augmented matching model implies u(x) = u(x) and v(y) = v(y), which is the
desired result.

Conversely, suppose the outcome (λ�u� v) is a stable outcome of the matching model
(X�Y�φ�μ�ν�u� v). Let the profiles u0 ∈ B(X0) and v0 ∈ B(Y0) agree with u and v on X
and Y and satisfy u0(x0)= 0 and v0(x0)= 0. Let λ0 be the augmented match associated
with λ. It suffices to show that (λ0�u0� v0) is a pairwise stable outcome of the matching
model (X0�Y0�φ0�μ0� ν0�u0� v0). The equalities u0(x0) = 0 and v0(y0) = 0 hold by con-
struction. Feasibility and the conditions for pairwise stability follow from the feasibility
and stability conditions for (λ�u� v) in the matching model (X�Y�φ�μ�ν�u� v) via argu-
ments analogous to those establishing the previous direction. Q.E.D.

This completes the proof of Corollary 6.

B.14. Proof of Proposition 8

We establish that the set of stable buyer profiles of the matching model (X�Y�φ�μ�ν�
u� v), denoted by Us in the following, is a complete sublattice of B(X); the argument for
the case of stable seller profiles is analogous.

From Lemma B.2 in the proof of Corollary 6 in Appendix B.13, an outcome (λ�u� v) is
stable in the matching model (X�Y�φ�μ�ν�u� v) if and only if the associated full outcome
(λ0�u0� v0) is a pairwise stable outcome satisfying the initial condition u0(x0) = 0 in the
augmented matching model (X0�Y0�φ0�μ0� ν0�u0� v0). Denote the set of pairwise stable
buyer profiles satisfying the initial condition u0(x0)= 0 in the augmented matching model
by Ua. With the obvious notational convention for the profile (u0(x0)�u) of the augmented
matching model, we then have (u0(x0)�u) ∈ Ua if and only if both u0(x0)= 0 and u ∈ Us

hold. It is then immediate that Us is a complete sublattice of B(X) if Ua is a complete
sublattice of B(X0).

To show that Ua, which is nonempty by Proposition 6, is a complete sublattice of B(X0),
we first observe that Ua is the intersection of two closed sublattices of B(X0), namely the
set of pairwise stable buyer profiles of the augmented matching model (which is closed by
Proposition 6 and a sublattice by Proposition 7) and the set of profiles u0 ∈ B(X0) satisfy-
ing u0(x0)= 0 (which is obviously a sublattice and closed). Hence, Ua is a closed sublat-
tice of B(X0). Further, the closed sublattice Ua is bounded, with the profile u0 providing a
lower bound and the profile �v0 providing an upper bound. Hence (Corollary 5(3)), Ua is
a compact sublattice and therefore (by the same argument as in the proof of Lemma 4,
cf. footnote 27 in Appendix A.2) complete.

B.15. Proof of Lemma 6

Step 1: We first argue that it is without loss of generality to restrict the principal’s choice
set to implementable tariffs: Let (λ�u� v) ∈ M × B(X) × B(Y) be any triple satisfying
the constraints in the principal’s maximization problem defined in Section 5.1. Consider
the triple (λ�u�Ψu). The tariff Ψu is implementable and implements u (Corollary 3(1))
and, further, implements any selection from Yv (Corollary 4(1)), so that Yv(x)⊆ YΨu(x)
holds for all x ∈X . Consequently, we have supp(λ)⊆ �u�v ⊆ �u�Ψu, ensuring that the triple
(λ�u�Ψu) is feasible in the principal’s problem. As we have noted in the text following
equation (30), the feasibility of (λ�u�Ψu) implies that it results in the same expected
payoff as (λ�u� v).

Step 2: From Step 1, we can restrict attention to (λ�u� v) ∈ M × B(X) × I(Y) when
considering the principal’s problem. As v ∈ I(Y) implements u ∈ B(Y) if and only if u =
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�v, we can eliminate the first constraint from the principal’s problem and substitute this
equality in the remaining constraints. The resulting problem is

max
v∈I(Y)�λ∈M

∫
X

∫
Y

π
(
x� y� v(y)

)
dλ(x� y)

s.t. supp(λ)⊆ ��v�v and �v ≥ u�

Because implementable profiles are continuous (Proposition 2), the objective function
in this problem is well-defined for all v ∈ I(Y) and λ ∈ M. Using (i) the definition of
F(v�λ) in (31), observing (ii) that the constraint supp(λ) ⊆ ��v�v is equivalent to λ ∈
G(v), where G(v) is defined in (32), and using (iii) the order reversal property of the
implementation maps (Corollary 1(2)) to transform the constraint �v ≥ u into v ≤ Ψu,
we may rewrite the above problem as

max
{v∈I(Y):v≤Ψu}

[
max
λ∈G(v)

F(v�λ)
]
�

Step 3: Let (vn)∞n=1 converge in norm to v and let (λn)∞n=1 converge weakly to λ. Let
μ(X) = η = λ(X × Y) > 0. Then, for any ε > 0, we can find N such that for all n ≥N ,
we have

F(v�λ)− 2εη=
∫
X

∫
Y

π
(
x� y� v(y)

)
dλ(x� y)− 2εη

≤
∫
X

∫
Y

π
(
x� y� v(y)

)
dλn(x� y)− εη

=
∫
X

∫
Y

(
π

(
x� y� v(y)

) − ε)dλn(x� y)
≤

∫
X

∫
Y

π
(
x� y� vn(y)

)
dλn(x� y)

≤
∫
X

∫
Y

(
π

(
x� y� v(y)

) + ε)dλn(x� y)
=

∫
X

∫
Y

π
(
x� y� v(y)

)
dλn(x� y)+ εη

≤
∫
X

∫
Y

π
(
x� y� v(y)

)
dλ(x� y)+ 2εη

= F(v�λ)+ 2εη�

The two central inequalities follow from the convergence of (vn)∞n=1, and the two remain-
ing inequalities from the convergence of (λn)∞n=1. Combining the middle and outside two
terms, we have F(v�λ)− 2εη≤ F(vn�λn)≤ F(v�λ)+ 2εη. Hence, the function F(v�λ) is
continuous.

Step 4: For v ∈ I(Y), the correspondence G(v) defined in (32) is nonempty-valued and
compact-valued and upper hemicontinuous. To show that G(v) is nonempty-valued, let
y be a measurable selection (cf. footnote 2 in Appendix B.12) from Yv and let λy be the
associated deterministic measure (cf. (28)). As v and �v implement each other, the same
argument as in the first paragraph of the proof of Lemma 5 yields that the support of λy

is contained in ��v�v. Hence, G(v) is nonempty-valued.
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To obtain the other two properties, define the function H : X × Y × I(Y) → R by
H(x�y� v) = φ(x� y� v(y)) − �v(x). Notice that H is continuous because φ and � are
(Lemma 1). In addition, H(x�y� v) ≤ 0, with equality if and only if (x� y) ∈ ��v�v. Now
consider the maximization problem maxλ∈M Ĥ(v�λ), where Ĥ : I(Y)×M → R is defined
by Ĥ(v�λ) = ∫

X

∫
Y
H(x� y� v)dλ(x� y). For any v, we have Ĥ(v�λ) ≤ 0, with equality if

and only if supp(λ) ∈ ��v�v. The argmax correspondence for this maximization problem
thus is G(v). We have noted that H(x�y� v) is continuous and hence so is Ĥ(v�λ). The
set M is compact by Prokhorov’s theorem (Shiryaev (1996, p. 318)). An application of
Berge’s maximum theorem (Ok (2007, p. 306)) then ensures that G(v) is compact-valued
and upper hemicontinuous.

Step 5: Fix v ∈ I(Y) and consider the problem appearing in (33):

Π(v)= max
λ∈G(v)

F(v�λ)�

We have shown in Step 3 that F(v�λ) is continuous, and in Step 4 that G(v) is nonempty-
valued and compact-valued. Therefore, Weierstrass’s extreme value theorem ensures that
this problem has a solution so that the function Π : I(Y)→ R is well-defined. Further,
because the correspondence G is also upper hemicontinuous (Step 4), Berge’s maximum
theorem (Ok (2007, p. 306)) ensures that Π is upper semicontinuous.

Step 6: Let v∗ solve the problem

max
{v∈I(Y):v≤Ψu}

Π(v)

and let λ∗ be an element of arg maxλ∈G(v∗) F(v∗�λ). Then it is immediate from (33) that
(v∗�λ∗) solves the problem

max
{v∈I(Y):v≤Ψu}

[
max
λ∈G(v)

F(v�λ)
]
�

As noted in Step 2, this implies that (λ∗��v∗� v∗) solves the principal’s problem when the
principal is restricted to v ∈ I(Y). Step 1 then ensures that the triple (λ∗��v∗� v∗) solves
the principal’s problem.

B.16. Proof of Lemma 7

We first construct an auxiliary balanced finite-support matching model (X�Y�φ�
n ·μn�n · νn�u˜� v˜) satisfying Assumption 1 by (i) multiplying the measures μn and νn by n
(so as to convert them into counting measures) and (ii) replacing the reservation utility
profiles u and v by reservation utility profiles

u˜(x)= u� ∀x ∈X
and

v˜(y)=
{
v0 if y = y0�

u otherwise�

where u is sufficiently small as to ensure φ(x� y�u) > φ(x� y0� v0) > u for all x ∈X and
y ∈ Y .

Consider the matching model with a finite number of agents associated with (X�Y�φ�
n · μn�n · νn�u˜� v˜) (cf. Appendix B.10 of this supplement). By construction of u˜ and v˜,
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the inequalities φ(xi� yj�u) > φ(xi� y0� v0) > u hold for all i� j ∈ {1� � � � � n}. Because there
are an equal number of buyers and sellers, these inequalities ensure that there are no un-
matched agents in a stable outcome and similarly preclude the possibility that any seller
with yk �= y0 obtains her reservation utility in a stable outcome. Hence, it follows from
Lemma 3 in Demange and Gale (1985) that this matching model with a finite number of
agents has a stable outcome in which all buyers and sellers are matched and sellers with
yk = y0 obtain their reservation utility. This implies (cf. Appendix B.10) that the finite-
support matching model (X�Y�φ�n ·μn�n · νn�u˜� v˜) has a fully matched stable outcome
(λ̂n�un� vn) satisfying the initial condition v(y0) = v0. As any fully matched stable out-
come is also pairwise stable and the pairwise stability conditions do not depend on the
reservation utility profiles, the outcome (λ̂n�un� vn) is also pairwise stable for the finite-
support matching model (X�Y�φ�n ·μn�n · νn�u� v). Letting λn = λ̂n/n, it is obvious that
(λn�un� vn) is a pairwise stable outcome for the matching model (X�Y�φ�μn� νn�u� v). Fi-
nally, from Proposition 5(3), we may assume that un and vn implement each other, giving
a pairwise stable outcome (λn�un� vn) satisfying all the conditions from the statement of
the lemma.

APPENDIX C: EXAMPLES

C.1. Example 1: The Set of Implementable Profiles Is not a Sublattice

LetX = {1�2�3} and Y = {1�2} and let the generating function be the quasilinear func-
tion given by

φ(x�1� v)= 1 − v�
φ(x�2� v)= 2 + x− v

for x ∈X . The inverse generating function then is

ψ(1�x�u)= 1 − u�
ψ(2�x�u)= 2 + x− u�

The profiles u1 = (1�1�1) and u2 = (0�1�2) are both implementable (v1 = (0�4) imple-
ments u1 and v2 = (1�3) implements u2). The profile u1 ∧u2 = (0�1�1), however, is not im-
plementable. Hence, I(X) is not a sublattice of B(X). To establish that u1 ∧ u2 = (0�1�1)
is not implementable, it suffices to note (Remark 6) that X(0�1�1) is not onto: x= 1 is the
unique maximizer of ψ(1�x�u(x)) and x = 3 is the unique maximizer of ψ(2�x�u(x)).
(Alternatively, we may note that Ψ(0�1�1)= (0�4)= v1. As v1 implements u1 = (1�1�1),
we obtain �Ψ(0�1�1) �= (0�1�1) with Proposition 3(1) then implying that (0�1�1) is not
implementable.)

C.2. Example 2: The Participation Constraint Is not Binding in a Solution to the Principal’s
Problem

Let X = {1�2} and Y = {1�2} and let the generating function be given by

φ(1�1� v)= 3 − 2v�

φ(1�2� v)= 2 − v�
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φ(2�1� v)= 3
2

− 1
2
v�

φ(2�2� v)= 2 − v�
Let μ(1)= μ(2)= 1/2 and u(1)= u(2)= 0. Then Assumptions 1 and 3 hold for any spec-
ification of the principal’s utility function π which is strictly increasing and continuous in v
and satisfies the full-range condition. Throughout the following, we focus on deterministic
measures, which we may identify with the corresponding assignment y = (y(1)� y(2)).

Figure S.1 illustrates the set of profiles v = (v(1)� v(2)) and, for each such profile, iden-
tifies the assignment(s) y = (y(1)� y(2)) implemented by that profile. The two lines, iden-
tifying profiles that make either x= 1 or x= 2 indifferent between the two elements of Y ,
form the boundaries of four closed (and hence overlapping on the boundaries) regions,
whose union is the set B(Y) of profiles v. All assignments y ∈ YX are implementable, but
only the constant assignments y = (1�1) and y = (2�2) are strongly implementable.

The set of implementable tariffs I(Y) is the (blue and orange, or dark and light) shaded
area in Figure S.1, including the boundaries. This is immediate from Remark 6 upon
observing that these tariffs are the ones implementing assignments that are onto Y .

All tariffs with v(2)≤ 2 satisfy �v ≥ u, whereas tariffs in the shaded area of Figure S.1
with v(2) > 2 lead to a violation of agent 1’s participation constraint. Hence, the set
{v ∈ I(Y) : v ≥Ψu} appearing in the nonlinear pricing problem (34) is given by that por-
tion of the shaded area in Figure S.1 for which v(2)≤ 2.

As the principal’s utility function is strictly increasing in the payment v, there are only
four candidates for a deterministic solution to the principal’s problem: she could imple-
ment either y = (2�2) or y = (2�1) by choosing v = (3�2), she could implement y = (1�1)
by choosing (1�5�2), or she could implement y = (1�2) by choosing v = (1�1). Now, sup-

FIGURE S.1.—Illustration of the assignments y implemented by various profiles v, the set I(Y) of imple-
mentable profiles (colored or shaded areas, including the boundary), and the feasible set for the principal’s
nonlinear pricing problem (the portion of the shaded areas for which v(2) ≤ 2) in Example 2. The profile
v̂ = (1�1) is both the smallest profile implementing y = (2�1) and the largest profile implementing y = (1�2).
As a consequence, neither of these two assignments is strongly implementable. The principal’s optimum im-
plements y = (1�2) while leaving both participation constraints slack.
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pose the principal’s utility function is

π(1�1� v)= v+ 5�

π(1�2� v)= v�
π(2�1� v)= v�
π(2�2� v)= v+ 5�

Then it is a straightforward calculation that among those four candidates, choosing v =
(1�1) to implement y = (1�2) maximizes the principal’s expected utility. The resulting
utility profile for the agent is u = (1�1), so that the participation constraint for neither
agent type binds in the unique solution to the principal’s problem.

This example features common values, in the sense that the principal cares directly
about which type of the agent obtains which decision. This is an essential ingredient in the
construction of the example: In the absence of such common values, any change in tariff
that changes the implemented assignment from y = (1�2) to y = (2�1) affects the princi-
pal’s utility only through the change in tariff, ensuring that the principal would welcome
the attendant increase in tariff from implementing y = (2�1) with the tariff v = (3�2)
rather than implementing y = (1�2) with the tariff v = (1�1).

APPENDIX D: EXTENSIONS

D.1. Exclusion in the Principal-Agent Model

Our formulation of the principal-agent model in Section 5.1 does not include an explicit
outside option for the agent; rather, it simply insists that the principal must respect the
agent’s participation constraint. It is clear, though, that in the presence of an outside
option, the principal may sometimes prefer to exclude some agent type(s) by designing
a tariff that induces them to choose their outside option (Jullien (2000)). Here we show
how to incorporate the possibility of exclusion into our model, explain why this leaves
our existence result (Proposition 9) unchanged, and demonstrate that in the absence of
quasilinearity or private values, the principal might sometimes find it advantageous to
“bribe” some type of the agent to be excluded.

To model the agent’s outside option, we follow a strategy analogous to that used
to incorporate nonparticipation in the matching model. Given a principal-agent model
(X�Y�φ�μ�π�u) satisfying Assumptions 1 and 3, we let Y0 = Y ∪ {y0}, where the out-
side option y0 is in the metric space containing Y , but is not contained in Y , and extend
the definition of the generating function φ to a function φ0 on X × Y0 × R satisfying
Assumption 1 and

φ0(x� y0�0)= u(x)� (D.1)

Hence, in the absence of a transfer (v = 0), agent types choosing the outside option y0

receive their reservation utility u(x). Similarly, we extend the definition of the principal’s
utility function π to a function π0 on X ×Y0 ×R satisfying Assumption 3 and

π0(x� y0� v)= π(v)
for some function π : R → R, with π(0) then specifying the principal’s utility from not
trading.
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We will refer to (X�Y0�φ0�μ�π0�u) as the principal-agent model with exclusion. Be-
cause we have supposed that Assumptions 1 and 3 carry over from (X�Y�φ�μ�π�u) to
(X�Y0�φ0�μ�π0�u), it is immediate from Proposition 9 that the principal-agent model
with exclusion has a solution (λ�u� v) in which u and v implement each other. Further,
because any such solution respects the participation constraint u ≥ u, it satisfies the con-
straint that the principal cannot charge the agent for choosing the outside option.3

COROLLARY D.1: Let Assumptions 1 and 3 hold. The principal-agent model with exclu-
sion has a solution (λ�u� v) satisfying v(y0)≤ 0.

Provided that the participation constraint binds for some type of agent in a solution
to the principal-agent model with exclusion, we must have v(y0)= 0, and hence no agent
is paid for nonparticipation. As the extension of the principal’s payoff function to Y0

preserves private values, this will be the case whenever the underlying principal-agent
model satisfies the private value condition. Similarly, whenever the agent’s utility function
in the underlying principal-agent model is quasilinear and the specification of φ0(x� y0� v)
is also quasilinear (i.e., we have φ0(x� y0� v)= u(x)− v), then the principal-agent model
with exclusion will satisfy quasilinearity. As in Jullien’s quasilinear model of exclusion,
there is then no loss of generality to restrict the principal to tariffs satisfying v(y0) = 0
(Jullien (2000, footnote 7)).4

If the participation constraint does not hold with equality for any agent type in a so-
lution to the principal-agent model with exclusion, then such a solution might satisfy
v(y0) < 0. There are two ways in which this might come about. The first possibility is
that no type of the agent is excluded, but, as in Example 2 (in Appendix C.2 of this sup-
plement), all types of the agent obtain strictly higher utility than their reservation utility.
In this case, the optimal (u� y) can also be implemented by a (non-implementable) tar-
iff v satisfying v(y0) = 0. The second, more interesting, case is that some excluded type
receives the strictly positive payment −v(y0) as a reward for not taking up any of the
decisions in Y . The following example illustrates this can indeed occur.

EXAMPLE 3: LetX = {1�2}, let Y = {1}, and let μ(1)= μ(2)= 1/2. There are thus two
equally likely types of agents, and the principal has the option of either assigning decision
1 to an agent (hereafter “interacting with the agent”) or excluding the agent by making
him choose the outside option y0 = 0.

The agents’ utilities are given by

φ0(1�1� v)= 1 − v� φ0(1�0� v)= −1
2
v�

φ0(2�1� v)= 2 − v� φ0(2�0� v)= −2v�

3Using the obvious notation for the inverse generating function and the implementation map in the model
with exclusion, the formal argument is this: If u and v implement each other, the participation constraint
implies v ≤ Ψ0u. Therefore, we have v(y0) ≤ ψ0(y0�x�u(x)) for all x ∈ X . From (D.1), the right side of the
latter inequality is equal to zero.

4Strong implementability of the optimal decision function in the principal-agent model (without exclusion)
does not imply that the participation constraint holds as an equality in the principal-agent model with exclu-
sion. Example 3 below (with only one decision in the absence of exclusion, so that strong implementability is
immediate) provides an illustration.
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and hence u(1)= u(2)= 0. The principal’s utility is given by

π0(1�1� v)= b+ v�
π0(1�0� v)= v�

π0(2�1� v)= v− c�
π0(2�0� v0)= v�

so that π = 0. The parameter b > 0 is a benefit the principal obtains from interacting with
an agent of type 1 and c > 0 is a corresponding cost of interacting with an agent of type 2.
Now suppose that the principal’s optimum involves interacting with agent 1 and excluding
agent 2, as will be the case whenever both b and c are sufficiently large. Then the optimal
tariff is v(1)= 2/3 = −v(0). Hence, the principal pays agent 2 to not participate.

D.2. Stochastic Contracts in the Principal-Agent Model

In the principal-agent model with quasilinear utility, it is well-known that the principal
may benefit from offering stochastic rather than deterministic contracts to screen dif-
ferent agent types (cf. Strausz (2006), for extensive discussion). In general, a stochastic
contract corresponds to an incentive compatible direct mechanism which specifies, for
every type of the agent, a lottery over transfers and decisions. To explain how stochastic
contracts can be embedded in our model, it will be easier to begin with the case in which
transfers are taken to be deterministic.

Fix a principal-agent model (X�Y�φ�μ�ν�π�u) satisfying Assumptions 1 and 3 and let
�Y be the set of probability measures over the set Y , with typical element ζ. We equip
the set �Y with the topology of weak convergence, and note that �Y is then a compact
metric space (with the Prokhorov metric).

We can then extend the definitions of the payoff functions by taking the appropriate
expectations:

φ�(x�ζ� v)=
∫
Y

φ(x� y� v)dζ(y)�

π�(x�ζ� v)=
∫
Y

π(x� y� v)dζ(y)�

thereby obtaining a principal-agent model (X��Y�φ��μ�π��u) in which the set of pos-
sible decisions is given by �Y rather than Y and a tariff assigns a transfer to every prob-
ability measure ζ ∈ �Y rather than to every decision y .5 In this model, our version of the
taxation principle (Remark 1) as well as all the results from Section 5 continue to hold.

5We have already noted that �Y is a compact metric space. It is obvious that φ� and π� inherit the requisite
monotonicity properties and the full range condition from φ and π. Consider continuity. From the definition
of weak convergence and the fact that, for fixed x and v, the function φ(x�y� v) : Y → R is continuous on a
compact set, we can conclude that if the sequence (ζn)∞n=1 converges (weakly) to the limit ζ, then∫

Y

φ(x� y� v)dζn(y) →
∫
Y

φ(x� y� v)dζ(y)� (D.2)

This in turn implies that φ� is continuous: Suppose we have a sequence (xn� ζn� vn)∞n=1 converging to (x�ζ� v)
(pointwise in the first and third arguments, and in the sense of weak convergence in the second). Notice that
the set {vn}∞

n=1 is contained in a compact subset Z of R. Then, for any ε, there exists a sufficiently large N such
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If both φ and π are quasilinear, then the restriction to deterministic transfers is without
loss of generality, as both the agent’s and the principal’s preferences only depend on the
expected transfer. In the general case, this is not so, raising the question whether we can
incorporate stochastic transfers in our model. That we can do so is not immediately ob-
vious because the duality theory developed in Sections 2 and 3 hinges on a tariff being a
map into the real numbers. However, while doing so would be redundant for determinis-
tic contracts, there is nothing in the formal structure of the model which prevents us from
supposing that decisions y include the specification of a monetary transfer.6 Therefore,
the same construction that we have described above—replacing the set Y by the set �Y—
allows us to introduce stochastic transfers into the model with the only salient restriction
being that any randomization over payments that comes on top of the deterministic trans-
fer v is restricted to a compact set of probability distributions.

D.3. Moral Hazard in the Principal-Agent Model

We have considered adverse-selection principal-agent models. Following Myerson
(1982), Laffont and Tirole (1993), Laffont and Martimort (2002, Section 7.1), Kadan,
Reny, and Swinkels (2017), and others, one might extend the model to encompass moral
hazard. The recipe for incorporating moral hazard is similar to that for stochastic con-
tracts. We offer a simple illustration.

Suppose the agent must choose an effort level e ∈ [0�1] that induces a probability mass
function f (z� e) with support on the finite set Z, from which an output z is realized.
The principal cannot observe the agent’s effort. Once again, we can view the agent as
choosing a decision y and paying a transfer v(y) to the principal. A decision y now is
a function w : Z → [w�w] identifying, for each output level z, the wage w(z) ∈ [w�w]
paid by the principal to the agent if output z is realized. The agent’s utility from wage
w, output z, effort level e, and transfer v is given by u(x�e�w− v), while the principal’s
utility is z− (w− v).

that, for all n≥N ,∣∣∣∣∫
Y

φ(xn� y� vn)dζn(y)−
∫
Y

φ(x� y� v)dζ(y)

∣∣∣∣
≤

∣∣∣∣∫
Y

φ(xn� y� vn)dζn(y)−
∫
Y

φ(x� y� v)dζn(y)

∣∣∣∣ +
∣∣∣∣∫
Y

φ(x� y� v)dζn(y)−
∫
Y

φ(x� y� v)dζ(y)

∣∣∣∣
≤

∣∣∣∣∫
Y

(
φ(xn� y� vn)−φ(x�y� v)dζn(y)

)∣∣∣∣ + ε

2

≤
∫
Y

ε

2
dζn(y)+ ε

2

≤ ε�

where the first appearance of ε/2 follows from (D.2) and the second follows from the uniform continuity of
the function φ on the compact set X ×Y ×Z. A similar argument applies to establish continuity of π�.

6For example, let q ∈ [0� q̄] be the quantity of some good. Ordinarily, we would take Y = [0� q̄] and then
suppose that a monopolistic seller (the principal) with utility function π(x�q�v) designs a tariff specifying
payments v(q) for all possible quantities that a consumer (the agent) with preferences described by the utility
functionφ(x�q�v)might want to buy. Instead, we may take Ŷ = [0� q̄]×[0� t̄] and suppose that the seller prices
bundles (q� t) ∈ Y , consisting of a quantity q of the good and a rebate t ∈ [0� t̄] that the consumer receives if
he buys the bundle (q� t) at price v(q� t). Setting φ̂(x� y� v) = φ(x�q�v − t) and π̂(x� y� v) = π(x�q�v − t)

for y = (q� t) then yields a principal-agent model (X� Ŷ � φ̂�μ� π̂�u) that satisfies Assumptions 1 and 3 if the
original model (X�Y�φ�μ�π�u) does so and describes the same underlying economic environment.
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The set X is again a compact set of agent types. We take the set Y to be the set of
functions w :Z→ [w�w]. Then we let

φ(x�w� v)= max
e∈[0�1]

∑
z∈Z
u
(
x�e�w(z)− v)f (z� e)�

We let E(x�w) be the set of maximizers of this problem, and let the principal’s utility be

π(x�w� v)= max
e∈E(x�w)

∑
z∈Z

(
z− (

w(z)− v))f (z� e)�
Assuming that u and f are continuous, it follows from Berge’s maximum theorem that φ
is continuous, and hence Assumption 1 is satisfied. The function π(x�w� v) is upper semi-
continuous. We would again have Assumptions 1 and 3 satisfied, except that the function
π is only semicontinuous. However, this suffices for an argument analogous to that of
Section 5.

One might want to generalize this illustration in many ways, including allowing an in-
finite set of possible outputs and relaxing the bounds on the function w. Our results will
apply as long as attention is restricted to circumstances in which the set Y can reasonably
be taken to be compact.
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