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This supplement extends our analysis along three dimensions. One, it provides ad-
ditional analytical results that show how the specification of the preference shock in
recursive, Epstein and Zin (1991), preferences affects equilibrium outcomes. Two, it
explores the implications of using a risk premium shock instead of a preference shock
and additively separable preferences in consumption and leisure. Three, it conducts
further sensitivity analysis on the parameters.

S.1. TIME-INVARIANT WEIGHTS

IN THE ARTICLE, we show that the distributional weights in recursive, Epstein and Zin
(1991), preferences must sum to 1 when there is an intertemporal preference shock; oth-
erwise, it creates an asymptote in the value function. However, when the weights are
constant, they do not need to sum to 1 because it is possible to find a positive monotonic
transformation of the value function that eliminates the asymptote and leaves the stochas-
tic discount factor (SDF) unchanged (e.g., van Binsbergen, Fernandez-Villaverde, Koijen,
and Rubio-Ramirez (2012)). To demonstrate this point, consider the following recursive
preferences:

U, = [ + (U], S.1)
where 0 = (1 — 0)/(1 — 1/¢), o > 0 determines the coefficient of relative risk aversion,
¢ > 0 is the intertemporal elasticity of substitution (IES), 8 € (0, 1) is the subjective dis-
count factor, and E, is the mathematical expectation operator conditional on information
in period ¢. The distributional weights, 1 and 8, do not sum to 1, so there is an asymptote
with unit IES. The SDF is given by

e =B( )“‘”( i )
w=B—) \zp7) -
o Cry1 Et[V,_lH ]

To find the positive monotonic transformation of the utility function, apply the following
steps:
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Step 1: Multiply and divide by (1 — 8)?"! to obtain
¢ 1y 1- B)eq I/I}FEU 1-1
M =B\ — -1 -0
Cry1 1-p) Et[VtH ]
B B<i>l/l//< ((1 _ B)H/(]*U)I/t+l)17rr >1_%
i) \E[((A= B V) ]
Step 2: Let W, = (1 — B)¥=?V,, a positive monotonic transformation of V. The SDF

becomes
y _ 1
B(2 )W( Wi )
myiv1 = _p .
o) \EW]

Step 3: Check the properties of W,. We can rewrite (S.1) by substituting for V; and V4
to obtain

1/6

((1 _ 6)79/(170)1/1/;)(170)/0 _ c[(l—a-)/() + ,B(Et[((]. _ 6)79/(1,U)W+1)1—0])
= (=BT == (1= By BE[W ) (52)

t+1

= W=[-B) "+ BE[W]) "

t+1

The distributional weights in (S.2) sum to 1, while the SDF is the same as when the weights
did not sum to 1. However, if a preference shock is included and the distributional weights
do not sum to 1, as in the BB model, then a similar transformation of V; will introduce
the preference shock at both ¢ and ¢ + 1 in the new utility function so the weights will not
sum to 1 even after the transformation.

S.2. AUGMENTED DISCOUNT FACTOR DECOMPOSITION

For simplicity, the decomposition of the augmented discount factor given in equation
(18) and presented in Figure 2 of the comment is based on an approximation where
cPB = Br/(1+ B). We could instead solve for equilibrium ¢P®. Figure S.1 shows that the
approximate decomposition presented in the paper is nearly identical to the decomposi-
tion based on the exact solution for c}®.

S.3. TOY MODEL I: TWO-PERIOD MODEL

The section solves a simple two-period endowment economy with BB preferences
that analytically shows the relationship between demand uncertainty and household im-
patience. We set n =1 so u(c,, n,) = ¢, and {a,.}>, = {1, a,41,0,0,...}. We assume
log(a;y1) ~N(—0a?/2,02) so a,y; > 0 and E,a,,, = 1, but a,,, for 7 # 1 are known with
certainty. Then preferences become

U =[(1 - Byc!="" + B(E [, cl7]) )"

The household receives a unit endowment each period and can save, x,, at an exogenous
net real interest rate 7 = 0. For simplicity, we set 8 = 1 so the household’s optimality
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FIGURE S.1.—Key terms in the decomposition of the augmented discount factor in equation (18) of the
comment.

condition is given by

(1- xt)7]/¢, = (Et[ateﬂ])l/o(l + xt)il/'//-

The household’s intertemporal choice between consuming today or tomorrow depends on
the value of B = (E,[a!,,1)"/% = E,[exp(0loga,.1)]"* = exp((6 — 1)0/2), where B alters
the household’s impatience relative to the certainty equivalent case. In the special case
when 0, =0, B=1s0 x; =0 and ¢; = ¢},, = 1. When o, > 0, we obtain the following
conditions (based on o > 1):

1. When 6 <1 (ie., ¥ >1or y <1/o), then B <1 and ¢ > ¢}, (impatient house-
holds).

2. When 6 =1, then B =1 and ¢; = ¢}, (certainty equivalent households).

3. When 6 > 1, just like in BB’s calibration, then B > 1 and ¢} < ¢}, (patient house-
holds).

4. As § — +oo (¢ — 1 from below), B — 400 and ¢ — 0.

5. As § - —oo (¢ — 1 from above), then B — 0 and ¢ — ¢™, where ¢™* is deter-
mined by the natural borrowing constraint.

S.4. TOY MODEL II: INFINITE HORIZON MODEL

The section solves a small-open endowment economy-type model using a Campbell-
Shiller log-linear approximation that exploits the assumption of log-normal shocks. The
benefit of this model is that it is easy to see the asymptote in the solution and the results
are based on the shock in BB.
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S.4.1. Model
A representative household chooses sequences of consumption, ¢,, to maximize

1/(1=x)
b

U =[a(1-B)c/o) ™+ B(Z/2) ]

where y = 1/¢ is the inverse IES and the risk aggregator, Z,, is defined as Z, =
(E[U/;7])V1=2). The preferences are normalized so U = 1 in steady state. For simplicity,
we assume g, is given by

A _ A2 _ 2 2_
a,=loga, —loga=o0,, &, o O, — 0, =0s851, &8 ~N(0,1),

a,t =

where a hat denotes log-deviations from the steady state. The household’s choices are
constrained by ¢, + w,,1/r = w,, where w;, is wealth and r is the gross return. The Euler
equation is given by

L=E[Br(ai/a)(ci/c)*Vin/Z) (1) 2)' 7],

where V is the value function that solves the household’s constrained optimization prob-
lem.

S.4.2. Log-Linear Solution

We posit the following minimum state variable solution:

A A A~ )
=AW, + Aa,+ A, 0

a,t?’
5 A A A2
I/t = wat + Baat + Bu'o-a,[,

~ A A )
Wiy = wat + Cuat + C()'O-a’t-

A, is the main object of interest, since we are concerned with the response of consump-
tion to a demand uncertainty shock. To solve the model, we first log-linearize the value
function to obtain

Vi=(1=B)la/(1—x)+&]+BZ,
Z, = —log Z +log(E[exp((1 — 0)V,11)]) /(1 — o).

Notice that in log-linearized form, &, enters the value function equation with coefficient
1/(1 — x). It is the presence of this term that will generate the asymptote in 4, when the
IES is equal to 1.

After substituting the guess into the value function and then equating coefficients, we
find

B,=(1-pB)Ay,+ BB,Cu, B,=(1-p)/1—-x)+1-p)A.+ BB.Cy,
B,=(1-p)A, + B(B.C, + (1 - 0)B;/2).
Next, we log-linearize the Euler equation to obtain
0=1log(BR)— (1 —0)logZ

+10g(E [exp(a — i — (61 — &) + (x — ) Vit — Z)]).
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As before, we substitute in the unknown decision rules, collect terms, and take expecta-
tions. Since the Euler equation must hold at all points in the state space, we obtain the
following restrictions:

0=Aw(1_Cw)Xa 0=(1_AaX)+AwCaXa
0=x(Ay — A,Co)+ (1= Aux + (x — )B.) /2 — (1= o) (x — 0)B2/2.

In steady state, c/w = 7/r where ¥ = r — 1, so the log-linear budget constraint is given
by W, = ri, — ¢,. Substituting in the guess for the final time and equating coefficients
yields

C,=r—rA,, C,=—-rA,, C,=—-rA,.

Thus, we have nine equations and nine unknown coefficients. The system implies A4,, =
Bw = Cw = 1a

A, =1/(xr), Co=—T/(xr), B,=1-B)/A—x)+ A —pBr)/(xr),
Ap=—((1= Aux + (x = 0)B.) = (1 = ) (x — 0)BY)/2x7).
The gross return, r, is endogenous and must satisfy the steady-state Euler equation, given
by
log(Br) =[(1 — 0)*B> — (1= x A, + (x — )B,)"]02/2
+ [(1 — O')ZBi — ((X —o0)B, — XAU)Z]O'ia/Z.

Notice A, depends on B,. Since B, has an asymptote when y =1 (IES equals 1), so does
A, . Therefore, it is possible to obtain an arbitrary large consumption response by setting
the IES closer to 1. As x tends to 0 or oo (IES moves away from 1), 4, approaches 0.
When the degree of risk aversion, o, increases, the asymptote has a bigger effect on the
consumption response. In the case when y = o (expected utility), B, drops out of the
equation for A,, so the asymptote disappears.

S.4.3. Alternative Preferences
We repeat the same exercise with the alternative preferences,

1/d=x)
b

U = [(1 - atﬁ)(ct/c)l_x + atB(Zt/Z)l_X]

so the weights on current and future utility sum to 1. The log-linear value function is given
by

Vi=(-B)é+BZ.

Notice the a, term that appeared with the BB preferences drops out. The Euler equation

becomes
. 1—a..pB i\ (Vi )1 X
1_E,|:at,8r< = ap )( c, 2 ~ .
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Once again, we log-linearize the value function and the Euler equation, plug in the deci-
sion rules, and equate coefficients. After solving the system of equations, the new coeffi-
cients are given by

A,=—-1/(xr(1 - PB)), B,=—(1-Br)/(xr(1—B)),
(S.3)
A, =

—((=B/(1 = B) = Aux + (x — 0)B,)" — (1 — &) (x — 0)B2)/(2xT).

The asymptote in A, disappears, since there is no longer an asymptote in B,. Also, r is
given by

log(Br) = [(1— 0)*B2 — (—B/(1 — B) — x Ay + (x — 0)B,)’]02/2
+[(1=0)B2 = ((x — 0)By — xA,) 0% /2.

After substituting r into (S.3), we find A, = 0. To see that result, we guess and verify that
r=1/B by noting yA, = —B/(1 — B) and B, = 0. Thus, households are certainty equiva-
lent with respect to intertemporal preference shocks with our alternative preferences that
eliminate the asymptote.

S.4.4. Asymptote

Figure S.2 plots the response of consumption to a preference volatility shock (A, ) with
the BB preferences and our alternative specification across different IES values. We set
the coefficient of relative risk aversion, o, to 80 and the shock standard deviations, o,
and o, to 0.003—the values in BB. As our analytical solution demonstrates, there is no
response of consumption to an increase in volatility with our alternative preferences. In
contrast, the BB preferences break certainty equivalence because there is an asymptote in
the response of consumption when the IES equals 1. Therefore, values of the IES around
1 magnify the effect of changes in ¢2.!

BB Preferences Alternative Preferences
0.05 . 0.05 : : ,
— | —
= 0025t | = 0025 |
=} | =}
S S
= 0 | 2 0 -
g I g
2 -0.025 ' £ -0.025
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FIGURE S.2.—Impact response of consumption to a change in the standard deviation of the preference
shock (A, ).
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FIGURE S.3.—Responses of output, consumption, and investment to a one standard deviation preference
shock.

S.5. IMPULSE RESPONSES: BB VERSUS ALTERNATIVE PREFERENCES

Figure S.3 compares impulse responses to a one standard deviation level and volatility
shock to household preferences under BB preferences and our alternative specification.
All of the parameters, including the IES, are set to the baseline values in BB. The top
row shows the responses to the level shock are nearly identical for the two sets of pref-
erences, which validates our transformation of the shock process. The impulse responses
to the other shocks in the model—technology level and volatility shocks—are also mostly
unaffected by changing the preference specification. The only time the model behaves
differently is in response to higher volatility. The bottom row shows the BB preferences
produce economically meaningful declines in output, consumption, and investment. In
contrast, the responses to demand uncertainty shocks under our alternative preference
specification are so small that it is difficult to see their shape and size when plotted on the
same axes.

S.6. COMPARISON WITH RISK PREMIUM UNCERTAINTY SHOCKS

Risk premium shocks are a common alternative to preference shocks because they are a
proxy for changes in demand. They also help explain the comovement between consump-
tion and investment because risk premium shocks affect the return on risk-free bonds
relative to the return on capital. If we remove the preference shock by setting a, = a and
add a risk premium shock to the return on the nominal bond in the BB model, then the

'The qualitative results are identical when we solve the model with persistent shocks to household prefer-
ences.
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FIGURE S.4.—Responses of output and stock market volatility to a one standard deviation increase in risk
premium volatility.

first-order condition for the bond becomes
1= Et[mt,tﬂa:prt/ﬂ'tﬂ]a

where r, is the gross nominal interest rate and 7, is the gross inflation rate. Following
Smets and Wouters (2007), a;” is a risk premium shock that follows the same process as
the preference shock.

To match the responses from the VAR, the model requires a very large standard devi-
ation of the risk premium uncertainty shock (Figure S.4). As a result, the model signif-
icantly overstates the unconditional and stochastic volatility in the data, as shown in Ta-
ble S.I. Moreover, the large standard deviation causes the model to overstate the increase
in stock market volatility from the VAR. When we decrease the standard deviation of the
volatility shock to match stock market volatility, the output response is much smaller than
it is in the data even though the unconditional volatilities from the model are still larger
than in the data. To test the robustness of our result, we reran BB’s impulse response
matching exercise, replacing the preference shock with a risk premium shock. However,
the algorithm was unable to find parameters that allowed the model to match the VAR.

S.7. SENSITIVITY ANALYSIS I: EXPECTED UTILITY AND ADDITIVE SEPARABILITY
Expected utility is common in the literature. Epstein—Zin preferences collapse to ex-
pected utility when ¢ = 1/0 because the value function drops out of the SDF. Figure S.5

TABLE S.I
STANDARD DEVIATIONS (%)*

Unconditional Volatility Stochastic Volatility
Moment Data o"? =0.0025 P =0.0004 Data oo'? =0.0025 P =0.0004
Output 1.1 5.1 3.0 0.4 1.5 0.8
Consumption 0.7 1.5 0.9 0.2 0.4 0.2
Investment 3.8 15.8 8.8 1.6 4.5 2.2

aThe data are based on a sample from 1986 to 2014. The model-based statistics reflect the average from repeated simulations with
the same length as the data. Stochastic volatility is measured by the standard deviation of the time-series of 5-year rolling standard
deviations. These procedures follow Table 2 from BB.
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(b) Impact responses to a risk premium volatility shock.

FIGURE S.5.—Impact effect on output, consumption, and investment from a one standard deviation volatil-
ity shock.

compares the impact responses of real activity to a preference volatility shock (top panel)
and a risk premium volatility shock (bottom panel) under expected utility. In addition to
showing the effects of the shocks under BB’s and our alternative preferences, we also
consider additively separable preferences, given by Ey> -, B'a(c/" — 1)/(1 — o) —
xn: " /(1 + )], where 1/7 is the Frisch elasticity of labor supply and 1/0 is the IES.
With additively separable preferences, household optimality implies

AS
w, = xnl'c/ and m;} = Ba/a)(c/cy)’.

As is common practice, the preference parameter, y, is set so steady-state labor hours
equal 1/3 of available time. The other parameters and equilibrium conditions are the
same as the BB model.

A preference shock has a similar effect with the BB preferences and our alternative
preferences. The magnitudes are also similar with additively separable preferences. In-
terestingly, in all three cases, both output and investment increase, while consumption
decreases. The comovement problem, however, is resolved by replacing the preference
shock with a risk premium shock, regardless of whether the model has multiplicative or
additively separable preferences. Once again, the impact responses are similar under ad-
ditively separable preferences, although they have a different relationship with the IES
parameter than in the multiplicative case. By correcting the comovement problem, the
responses are slightly larger but still considerably smaller than BB’s VAR estimates.
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S.8. SENSITIVITY ANALYSIS II: INTEREST RATE INERTIA AND FRISCH ELASTICITY

Figure S.6 provides additional sensitivity analysis on the persistence of the nominal
interest rate in the policy rule and the Frisch elasticity of labor supply by reproducing
Figure 3 in the Comment. In the BB model, there is no persistence in the Taylor rule, but
VAR evidence shows the federal funds rate responds to shocks in a hump-shaped pattern
over time. It is also a feature commonly included in DSGE models. BB set the Frisch
elasticity of labor supply to 2. We decided to examine other values given its importance
for the precautionary labor supply response to uncertainty shocks.

Adding interest rate smoothing has very little effect on the size of the responses. Fur-
thermore, given BB’s baseline calibration, it does not fix the comovement problem. In the
special case where the capital adjustment cost parameter is near 0, output and investment
both decline but the magnitudes are so small it is impossible to find parameters where the
model matches the responses from the VAR. The Frisch elasticity of labor supply has a
slightly larger effect on the responses, but they are still two orders of magnitude smaller
than with the BB preferences, and output and investment both increase. With elasticities
near zero, output declines but investment still increases.
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(b) Impact responses as a function of the Frisch elasticity of labor supply (7).

FIGURE S.6.—Impact effect on output, consumption, and investment from a one standard deviation prefer-
ence volatility shock with our alternative preferences. In each panel, the dashed line shows the response with
the parameter value from BB.
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FIGURE S.7.—Responses of output to a one standard deviation increase in the level and volatility of tech-
nology.

S.9. ASYMPTOTE WITH TECHNOLOGY SHOCKS

For values of the IES near 1, this section shows that the BB preferences can affect the
responses of other shocks in the model besides a preference shock. In their appendix,
BB introduced a technology volatility shock that evolves in the same way as the prefer-
ence volatility shock. We set the standard deviation of the volatility shock, ", so a one
standard deviation positive shock generates a 95% increase in volatility, just like the pref-
erence volatility shock. The other parameters are set to the values BB estimated, so the
responses are directly comparable. Figure S.7 reports the impact effect on output from a
one standard deviation increase in the level and volatility of technology as a function of
the IES. Once again, with the BB preferences, an asymptote appears with unit IES, and it
goes away when we adjust the distributional weights in the utility function so they always
sum to 1. Those results show that the effects of the preference shock on the time aggre-
gator spill over to the predictions of other shocks. Given the BB calibration, however, the
asymptote only has a large effect on the responses when the IES is close to unity similar
to first-moment preference shocks.
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