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APPENDIX A: PROOFS OF SECTION 1

A.1. Reduced-Form Production Function

Labor Supply Elasticities. The first-order condition (1) can be rewritten as v′(l(θ)) =
r(θ)w(θ), where r(θ)= 1−T ′(w(θ)l(θ)) is the retention rate of agent θ. Ignoring the en-
dogeneity of r(θ) and applying the implicit function theorem (IFT) to this equation gives
the labor supply elasticity along the linear budget constraint, e(θ) = r(θ)

l(θ)

∂l(θ)

∂r(θ)
= v′(l(θ))

l(θ)v′′(l(θ)) .
Applying the IFT again but accounting for the endogeneity of T ′(w(θ)l(θ)) to labor sup-
ply, that is, taking a first-order Taylor expansion of the perturbed first-order condition

v′(l(θ)+ δl(θ)) = [
1 − T ′(w(θ)(l(θ)+ δl(θ))) − δr(θ)]w(θ)

and solving for δl(θ)—leads to the expression (7) for the labor supply elasticity along the
nonlinear budget constraint εSr (θ). The elasticity with respect to the wage, εSw(θ), can be
derived analogously. Throughout the paper, we make the following assumption.

ASSUMPTION 1: The first-order condition (1) has a unique solution l(θ). For all θ ∈Θ, we
have |p(y(θ))e(θ)|< 1 and |εSw(θ)/εDw(θ)|< 1, where the labor supply and demand elastic-
ities e(θ)�εSw(θ)�ε

D
w(θ) are defined in Section 1.2.

As in the partial-equilibrium environment with exogenous wages, the uniqueness of the
solution to the individual first-order condition allows us to apply the IFT. The condition
|p(y(θ))e(θ)|< 1 ensures that the elasticities εSr (θ)�ε

S
w(θ) are well-defined. Specifically,

the condition p(y(θ))e(θ) > −1 ensures that the second-order condition of the individ-
ual problem is satisfied. The condition p(y(θ))e(θ) < 1 ensures the convergence of the
labor supply responses toward the fixed point that characterizes the elasticities along the
nonlinear budget constraint. Finally, the condition |εSw(θ)/εDw(θ)| < 1 ensures that the
equilibrium labor elasticities εw(θ) introduced in Lemma 1 are well-defined.

One-to-one Map Between Skills, Wages, and Incomes. Without loss of generality, we or-
der skills θ so that wages w(θ) are strictly increasing in θ in the initial equilibrium. Next,
note that the individual first-order condition (1) implies that the elasticity of income with
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respect to the wage is given by w(θ)

y(w(θ))
y ′(w(θ)) = 1 + εSw(θ), so that incomes are strictly

increasing in wages if and only if εSw(θ) >−1, or equivalently e(θ) >−1, which is equiv-
alent to the Spence–Mirrlees condition. Hence, imposing the Spence–Mirrlees condition
implies that there is a one-to-one map between incomes y(θ) and skills θ.

Importantly, note that for our analysis we do not need to impose that this monotone
mapping is preserved after the tax reform is implemented because the reforms we con-
sider are marginal. Nevertheless, we now show that when the production function is CES,
this ordering remains satisfied after any, possibly nonlocal, tax reform. This is useful be-
cause it implies that the ordering of types does not change between the wage distribution
calibrated using current data and the one implied by the optimal tax schedule. Without
loss of generality, we assume that types are uniformly distributed on the unit interval
Θ= [0�1], so that f (θ)= 1 for all θ. For a CES production function, we have

w′(θ)
w(θ)

= a′(θ)
a(θ)

− 1
σ

l′(θ)
l(θ)

= a′(θ)
a(θ)

− εSw(θ)

σ

w′(θ)
w(θ)

	

Assumption 1 above implies 1 + εSw(θ)/σ > 0, so that the sign of w′(θ) is the same as that
of a′(θ) independently of the tax system.

LEMMA 2—Euler’s Homogeneous Function Theorem: The following relationship be-
tween the own-wage elasticity and the structural cross-wage elasticities is satisfied for all y∗:

− 1
εDw

(
y∗)y∗fY

(
y∗) +

∫
R+
γ
(
y� y∗)yfY (y)dy = 0� (23)

where we define γ(y(θ)� y(θ′)) ≡ (y ′(θ′))−1γ(θ�θ′). Equivalently, this can be expressed in
terms of the resolvent cross-wage elasticities:

− 1
εDw

(
y∗)y∗fY

(
y∗) +

∫
R+

�
(
y� y∗)

1 + εSw(y)/εDw(y)
yfY (y)dy = 0	 (24)

PROOF OF LEMMA 2: Constant returns to scale imply 1
εDw(θ

′) y(θ
′)f (θ′) = ∫

Θ
γ(θ�θ′) ×

y(θ)dF(θ) for all θ′. Changing variables from types θ to incomes y(θ) leads to (23). Now
this equation implies that

∫
Θ

ŵ(θ)

w(θ)
y(θ)f (θ)dθ=

∫
Θ

[
− 1
εDw(θ)

l̂(θ)

l(θ)
+

∫
Θ

γ
(
θ�θ′) l̂(θ′)

l
(
θ′) dθ′

]
y(θ)f (θ)dθ

= −
∫
Θ

[
1

εDw(θ)
y(θ)f (θ)+

∫
Θ

γ
(
θ′� θ

)
y
(
θ′)f (θ′)dθ′

]
l̂(θ)

l(θ)
dθ= 0	

We can use equation (13) to substitute for ŵ(θ)

w(θ)
in the previous equality, and then equation

(9) to substitute for l̂(θ)

l(θ)
. Applying the formula to the elementary tax reform T̂ ′(y)= δ(y−

y∗) and changing variables from skills to incomes leads to

0 =
∫
R+

1
εSw(y)

[
εSr (y)

δ
(
y − y∗)

1 − T ′(y)
−

(
εr(y)

δ
(
y − y∗)

1 − T ′(y)
+ εw(y)�

(
y� y∗)εr(y∗)
1 − T ′(y∗)

)]
yf (y)dy	

This easily leads to formula (24). Q.E.D.
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Formulas for CES Technology. Wages are w(θ) = a(θ)(L(θ))−
1
σ [∫

Θ
a(x) ×

(L(x))
σ−1
σ dx] 1

σ−1 , so that the cross-wage and own-wage elasticities are given by

γ
(
θ�θ′) = 1

σ

a
(
θ′)(L(

θ′)) σ−1
σ∫

Θ

a(x)
(
L(x)

) σ−1
σ dx

and
1

εDw(θ)
= 1
σ
	 (25)

This implies in particular, for all θ ∈ Θ,
∫
Θ
γ(θ�θ′)dθ′ = 1

σ
. Applying Euler’s homoge-

neous function theorem to rewrite expression (25) for γ(θ�θ′) and changing variables
leads to

γ
(
y� y ′) = 1

σ

y ′fY
(
y ′)∫

R+
xfY(x)dx

	 (26)

Assume in addition that the disutility of labor is isoelastic with parameter e and that the
initial tax schedule is CRP with parameter p. The labor supply elasticities (7) and the
equilibrium labor elasticities (introduced in Lemma 1) are then all constant and given by
εSr (y)= e

1+pe , εSw(y)= (1−p)e
1+pe , εr(y)= e

1+pe+(1−p) eσ
, εw(y)= (1−p)e

1+pe+(1−p) eσ
.

Relationship with Scheuer and Werning (2016, 2017). These papers analyze a general
equilibrium extension of Mirrlees (1971) and prove a neutrality result: in their model, the
optimal tax formula is the same as in partial equilibrium, even though they consider a
more general production function than Mirrlees (1971).33 The key modeling difference
between our framework and theirs is the following. In theirs, all the agents produce the
same input with different productivities θ. Denoting by η(θ)= θl(θ) the agent’s produc-
tion of that input (i.e., the efficiency units of labor), the aggregate production function
then maps the distribution of η into output. In equilibrium, a nonlinear price (earnings)
schedule p(·) emerges such that an agent who produces η units earns income p(η), ir-
respective of the underlying productivity θ. Hence, when an (atomistic) individual θ pro-
vides more effort l(θ), income moves along the nonlinear schedule l �→ p(θ × l); for
example, in their superstars model with a convex equilibrium earnings schedule, income
increases faster than linearly. By contrast, in our framework, different values of θ index
different inputs in the aggregate production function; for each of these inputs, there is one
specific price (wage) w(θ), and hence a linear earnings schedule l �→w(θ)× l. Therefore,
when an individual θ provides more effort l(θ), income increases linearly, as the wage
remains constant (since the sector θ doesn’t change). In their framework, Scheuer and
Werning show that the general equilibrium effects exactly cancel out at the optimum tax
schedule, even though they would of course be nonzero in the characterization of the inci-
dence effects of tax reforms around a suboptimal tax code. In our framework, as in those
of Stiglitz (1982), Rothschild and Scheuer (2014), Ales, Kurnaz, and Sleet (2015), these
general equilibrium forces are also present at the optimum.34

33The policy implications can nevertheless be different. For instance, in Scheuer and Werning (2017), the
relevant earnings elasticity in the formula written in terms of the observed income distribution is higher due to
the superstar effects.

34Another perspective to understand the distinction between our two papers is as a difference in the utility
function. In Scheuer–Werning, individuals can pick one element within the set of effective labor H = R

∗
+. In

our setting, each element of H corresponds to one type θ, different types of individuals supply different kinds
of effective labor and choose the quantity with which they supply this variety. We are grateful to an anonymous
referee for suggesting this interpretation.
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A.2. Microfoundation of the Production Function

Our microfoundation of the production function Y = F({L(θ)}θ∈Θ) extends the
Costinot and Vogel (2010) model of endogenous assignment of skills to tasks to incorpo-
rate endogenous labor supply choices by agents and nonlinear labor income taxes. There
is a continuum of mass one of agents indexed by their skill θ ∈ Θ = [θ� θ̄] and a contin-
uum of tasks (e.g., manual, routine, abstract, etc.) indexed by their skill intensity, ψ ∈Ψ =
[ψ� ψ̄]. Let A(θ�ψ) be the product of a unit of labor of skill θ employed in task ψ. We
assume that high-skill workers have a comparative advantage in tasks with high skill in-
tensity, that isA(θ�ψ) is strictly log-supermodular:A(θ′�ψ′)A(θ�ψ) >A(θ�ψ′)A(θ′�ψ)
for all θ′ > θ and ψ′ >ψ.

Individuals. Agents with skill θ earn wagew(θ) which they take as given. Labor supply
satisfies (1). We denote by c(θ) the agent’s consumption of the final good.

Final Good Firm. The final good Y is produced using as inputs the output Y(ψ) of
each task ψ ∈Ψ with the following CES production function:

Y =
{∫ ψ̄

ψ

B(ψ)
[
Y(ψ)

] σ−1
σ dψ

} σ
σ−1

	

The final good firm chooses the quantities of inputs Y(ψ) of each type ψ to maximize its
profit Y − ∫

Ψ
p(ψ)Y(ψ)dψ, where p(ψ) is the price of task ψ which the firm takes as

given. The first-order conditions read: ∀ψ ∈Ψ ,

Y(ψ)= [
p(ψ)

]−σ[
B(ψ)

]σ
Y	 (27)

Intermediate Good Firms. The output of task ψ is produced linearly by intermediate
firms that hire the labor L(θ |ψ) of skills θ ∈Θ that they hire, so that

Y(ψ)=
∫
Θ

A(θ�ψ)L(θ |ψ)dθ	

The intermediate good firm of type ψ chooses its demand for labor L(θ) of each skill θ to
maximize its profit p(ψ)Y(ψ)− ∫

Θ
w(θ)L(θ | ψ)dθ taking the wage w(θ) as given. The

first-order condition implies that this firm is willing to hire any quantity of labor that is
supplied by the workers of type θ as long as their wage is given by

w(θ)= p(ψ)A(θ�ψ)� if L(θ |ψ) > 0	 (28)

Moreover, the wage of any skill θ that is not employed in task ψ must satisfy

w(θ)≥ p(ψ)A(θ�ψ)� if L(θ |ψ)= 0	 (29)

Market Clearing. We first impose that the market for the final good market clears.
This condition reads Y = ∫

Θ
c(θ)f (θ)dθ+ R, where f the density of skills θ ∈Θ in the

population and R ≡ ∫
Θ
T(w(θ)l(θ))f (θ)dθ is the government revenue which is used to

buy the final good. Using the agents’ and the government budget constraints, this can be
rewritten as

Y =
∫
Θ

w(θ)l(θ)f (θ)dθ	 (30)
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Second, we impose that the market for each intermediate good ψ ∈ Ψ clears. For sim-
plicity, we assume at the outset that there is a one-to-one matching function M :Θ→Ψ
between skills and tasks—we show below that it is indeed the case in equilibrium. Let-
ting ψ = M(θ) be the task assigned to skill θ, we must then have

∫ M(θ)

ψ
Y(ψ)dψ =∫ θ

θ
A(θ′�M(θ′))L(θ′ |M(θ′))dθ′, or simply Y(ψ)dψ=A(θ�M(θ))L(θ |M(θ))dθ. This

implies: ∀θ ∈Θ,

Y
(
M(θ)

)
M ′(θ)=A(

θ�M(θ)
)
L

(
θ |M(θ))	 (31)

Formally, this condition is obtained by substituting forL(θ |ψ)= δ{ψ=M(θ)} in the equation
Y(ψ)= ∫

Θ
A(θ�ψ)L(θ |ψ)dθ, where δ is the dirac delta function, and changing variables

from skills to tasks to compute the integral. Third, we impose that the market for labor of
each skill θ ∈Θ clears: ∀θ ∈Θ,

l(θ)f (θ)=L(
θ |M(θ))	 (32)

Competitive Equilibrium. Given a tax function T :R+ → R, an equilibrium consists of a
schedule of labor supplies {l(θ)}θ∈Θ, labor demands {L(θ |ψ)}θ∈Θ�ψ∈Ψ , intermediate goods
{Y(ψ)}ψ∈Ψ , final good Y , wages {w(θ)}θ∈Θ, prices {p(ψ)}ψ∈Ψ , and a matching function
M :Θ→Ψ such that equations (1), (27), (28), (29), (30), (31), (32) hold.

Equilibrium Assignment. The first part of the analysis consists of proving the existence
of the continuous and strictly increasing one-to-one matching function M :Θ→ Ψ with
M(θ) = ψ and M(θ̄) = ψ̄. That is, there is positive assortative matching. The proof is
identical to that in Costinot and Vogel (2010). The second part of the analysis consists of
characterizing the matching function and the wage schedule. We find

M ′(θ)= A
(
θ�M(θ)

)
l(θ)f (θ)[

p
(
M(θ)

)]−σ[
B

(
M(θ)

)]σ
Y

(33)

with M(θ) = ψ and M(θ̄) = ψ̄, and where Y is given by (30) and p(M(θ)) is given by
(28).

w′(θ)
w(θ)

= A′
1

(
θ�M(θ)

)
A

(
θ�M(θ)

) 	 (34)

Equation (33), which characterizes the equilibrium matching as the solution to a nonlin-
ear differential equation, is a direct consequence of the market clearing equation (31),
in which we use (27) to substitute for Y(M(θ)). Equation (34), which characterizes the
equilibrium wage schedule, is a consequence of the firms’ profit maximization conditions
(28) and follows the same steps as Costinot and Vogel (2010).

Reduced-Form Production Function. Equilibrium assignment of skills to tasks is en-
dogenous to taxes. We denote by M(· | T) : Θ → Ψ the matching function with T as
an explicit argument. The main result, for our purposes, is that the tax schedule T af-
fects the equilibrium assignment only through its effect on agents’ labor supply choices
L ≡ {l(θ)f (θ)}θ∈Θ. Indeed, note that none of the equations (27)–(32), which define the
equilibrium for given labor supply levels {l(θ)}θ∈Θ, depend directly on T . This implies that
if two distinct tax schedules lead to the same equilibrium labor supply choices L , they will
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also lead to the same assignment of skills to tasks M . Therefore, the matching function
M(· | T) can be rewritten as M(· | L ). This result implies that the model can be summa-
rized by a reduced-form production function F(L ) over the labor supplies of different
skills in the population. To see this, note that the production function (over tasks) of the
final good can be written as

Y =
{∫ ψ̄

ψ

B(ψ)
[
Y(ψ)

] σ−1
σ dψ

} σ
σ−1

=
{∫ θ̄

θ

B
(
M(θ)

)[
Y

(
M(θ)

)] σ−1
σ M ′(θ)dθ

} σ
σ−1

=
{∫ θ̄

θ

a(θ�M)
[
l(θ)f (θ)

] σ−1
σ dθ

} σ
σ−1

� (35)

where a(θ�M)≡ B(M(θ))[A(θ�M(θ))] σ−1
σ [M ′(θ)] 1

σ .35

The second equality follows from a change of variables from tasks to skills using the
one-to-one map M between the two variables, and the third equality uses the market
clearing conditions (31) and (32) to substitute for Y(M(θ)). Equation (35) defines a pro-
duction function over skills θ ∈ Θ. This production function inherits the CES structure
of the original production function, except that the technological coefficients a(θ�M) are
now endogenous to taxes since they depend on the matching function M . We can write
(35) as a function F̃({l(θ)f (θ)}θ∈Θ�M)≡ F̃(L �M). Now, using the result proved above
that the function M ≡ M(· | L ) depends on taxes only through the equilibrium labor
supplies L , we finally obtain the following reduced-form production function:

Y =F(L )	 (36)

Using the reduced-form production function (36), all of the results we have derived
go through. We can still define wages and the cross-wage elasticities as w(θ) = ∂F(L )

∂[l(θ)f (θ)]
and γ(θ�θ′) ≡ ∂ lnw(θ)

∂ ln[l(θ′)f (θ′)] . These cross-wage elasticities are defined as the impact of an
exogenous shock to the supply of labor of type θ′ (e.g., an immigration inflow) on the
wage of type θ, keeping everyone’s labor supply constant otherwise, but allowing for the
endogenous re-assignment of skills to tasks following this exogenous shock. Indeed, the
reduced-form production function F accounts for the dependence of the matching func-
tion on agents’ labor supplies .

APPENDIX B: PROOFS OF SECTION 2

PROOF OF LEMMA 1 AND COROLLARY 2: Denote the perturbed tax function by T̃ (y)=
T(y)+μT̂ (y) and by l̂(θ) the Gateaux derivative of the labor supply of type θ in response
to this perturbation. The labor supply response of type θ is given by the solution to the
perturbed first-order condition

0 = v′(l(θ)+μl̂(θ))
− {

1 − T ′[w̃(θ)× (
l(θ)+μl̂(θ))]

−μT̂ ′[w̃(θ)× (
l(θ)+μl̂(θ))]}w̃(θ)� (37)

35Note that, of course, this reduced-form production function is consistent with the wage schedule derived
above. We find that w(θ) = B(M(θ))A(θ�M(θ))[ Y

Y(M(θ))
]1/σ by combining (28) and (27). Differentiating the

reduced-form production function (35) with respect to l(θ)f (θ) and using (31) leads to the same expression.
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where w̃(θ) is the perturbed wage schedule, which satisfies

w̃(θ)−w(θ)
μ

= 1
μ

{
F ′

θ

({(
l
(
θ′) +μl̂(θ′))f (θ′)}

θ′∈Θ
) − F ′

θ

({
l
(
θ′)f (θ′)}

θ′∈Θ
)}

=
μ→0

F ′
θ

∫
Θ

L
(
θ′)F ′′

θ�θ′

F ′
θ

l̂
(
θ′)
l
(
θ′) dθ′

= w(θ)

[
− 1
εDw(θ)

l̂(θ)

l(θ)
+

∫
Θ

γ
(
θ�θ′) l̂(θ′)

l
(
θ′) dθ′

]
	 (38)

Taking a first-order Taylor expansion of the perturbed first-order conditions (37) around
the baseline allocation, using (38) to substitute for w̃(θ)−w(θ), and solving for l̂(θ) yields{

1 + 1 − T ′(y(θ)) − y(θ)T ′′(y(θ))
1 − T ′(y(θ)) + v′(l(θ))

l(θ)v′′(l(θ))y(θ)T ′′(y(θ))
v′(l(θ))

l(θ)v′′(l(θ)) 1
εDw(θ)

}
l̂(θ)

l(θ)

= 1 − T ′(y(θ)) − y(θ)T ′′(y(θ))
1 − T ′(y(θ)) + v′(l(θ))

l(θ)v′′(l(θ))y(θ)T ′′(y(θ))
v′(l(θ))

l(θ)v′′(l(θ))
∫
Θ

γ
(
θ�θ′) l̂(θ′)

l
(
θ′) dθ′

− 1

1 − T ′(y(θ)) + v′(l(θ))
l(θ)v′′(l(θ))y(θ)T ′′(y(θ))

v′(l(θ))
l(θ)v′′(l(θ)) T̂ ′(y(θ))�

which leads to equation (8). Equation (13) follows easily from (38). Substituting into
(8) leads to formula (13). Equation (14) follows by taking the Gateaux derivative of the
agent’s indirect utility and using the first-order condition (1). Q.E.D.

PROOF OF PROPOSITION 1: Equation (8) is a Fredholm integral equation of the second
kind. Assume that the condition

∫
Θ2 |εw(θ)γ(θ�θ′)|2 dθdθ′ < 1 holds. Theorem 2.3.1 in

Zemyan (2012) gives the unique solution (9) to this equation. Q.E.D.

PROOF OF EQUATION (12): Suppose that the cross-wage elasticities are multiplicatively
separable, that is, of the form γ(θ�θ′)= γ1(θ)γ2(θ

′). Theorem 1.3.1 in Zemyan (2012) (or
4.9.1 in Polyanin and Manzhirov (2008)) gives the solution to the integral equation (9).
If the production function is CES, we have γ1(θ)= 1 and γ2(θ)= 1

σEy
y(θ)fY (y(θ))y

′(θ).
A change of variables from skills θ to incomes y(θ) easily leads to (12). Note that this
solution is well-defined if 1

σEy
E[yεw(y)]< 1. Q.E.D.

SUFFICIENT CONDITIONS ENSURING THE CONVERGENCE OF THE RESOLVENT (10):
Suppose that the production function is CES with parameter σ , that the disutility of labor
is isoelastic with parameter e, and that the initial tax schedule is CRP with parameter
p< 1. Corollary 1 implies that the resolvent series converges if

1
σEy

E
[
yεw(y)

] = (1 −p)e
1 +pe+ (1 −p) e

σ

< 1�
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where we used the expression for εw(y) derived in Section A.1 above. Since (1 −p)e > 0,
this condition is satisfied if 1 +pe > 0. Recall that this condition is the second-order con-
dition of the individual problem, which is satisfied by Assumption 1 above. In particular,
in the calibration to the U.S. economy, we have p = 0	15 > 0 > − 1

e
≈ −3 so this clearly

holds. Q.E.D.

APPENDIX C: PROOFS OF SECTION 3

Elementary Tax Reforms. Suppose that the tax reform T is the step function T(y) =
I{y≥y∗}, so that T ′(y) = δ(y − y∗) is the Dirac delta function, that is, marginal tax rates
are perturbed at income y∗ only. To apply formula (9) to this nondifferentiable per-
turbation, construct a sequence of smooth funtions ϕy∗�ε(y) such that δ(y − y∗) =
limε→0ϕy∗�ε(y), in the sense that for all continuous functions ψ with compact support,
ψ(y∗)= limε→0

∫
R
ϕy∗�ε(y)ψ(y)dy = lim

∫
Θ
ϕy∗�ε(y(θ

′)){ψ(y(θ′))y ′(θ′)}dθ′, where the sec-
ond equality follows from a change of variables in the integral. This can be obtained by
defining an absolutely integrable and smooth function ϕy∗(y) with compact support and∫
R
ϕy∗(y)dy = 1, and letting ϕy∗�ε(y)= ε−1ϕy∗(

y

ε
). Letting �y∗�ε be such that �′

y∗�ε = ϕy∗�ε,
we then have, for all ε > 0, the following labor supply incidence formula:

l̂(θ��y∗�ε)= −εr(θ)
ϕy∗�ε

(
y(θ)

)
1 − T ′(y(θ)) − εw(θ)

∫
Θ

�
(
θ�θ′)εr(θ′) ϕy∗�ε(y(θ′))

1 − T ′(y(θ′)) dθ′	

Letting ε→ 0, we obtain the incidence of the elementary tax reform at y∗:

l̂(θ)= −εr(θ)
δy∗

(
y(θ)

)
1 − T ′(y(θ)) − εw(θ)

�
(
θ�θ∗)
y ′(θ∗) εr(θ∗) 1

1 − T ′(y(θ∗))
= −εr(y) δy∗(y)

1 − T ′(y)
− εw(y)�

(
y� y∗)εr(y∗) 1

1 − T ′(y∗) � (39)

where in the last equality we let y = y(θ) and y∗ = y(θ∗), and we use the change of vari-
ables �(y� y∗)= �(θ�θ∗)

y′(θ∗) .

PROOF OF PROPOSITION 2 AND COROLLARY 3: The first-order effects of a tax reform
T̂ on individual θ’s tax payment are given by T̂ (y(θ))+ [ ŵ(θ)

w(θ)
+ l̂(θ)

l(θ)
]y(θ)T ′(y(θ)) so that

the first-order effects of the tax reform T̂ on government revenue are given by (changing
variables from types θ to incomes y(θ))

R̂=
∫
T̂ (y)fY (y)dy

+
∫
T ′(y)

[
εSr (y)

εSw(y)

T̂ ′(y)
1 − T ′(y)

+
(

1 + 1
εSw(y)

)
l̂(y)

l(y)

]
yfY (y)dy� (40)

where l̂(y) is the change in labor supply of agents with income initially equal to y . Using
formula (9), this implies that the effect of the elementary tax reform at income y∗ is given
by

R̂
(
y∗) = 1 + T ′(y∗)

1 − T ′(y∗) ε
S
r

(
y∗)

εSw
(
y∗) y∗fY

(
y∗)

1 − FY
(
y∗) +

∫
R+
T ′(y)

(
1 + 1

εSw(y)

)
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×
[
−εr(y)

δ
(
y − y∗)

1 − T ′(y)
− 1

1 − T ′(y∗)εw(y)�(
y� y∗)εr(y∗)] yfY (y)

1 − FY
(
y∗) dy

= R̂ex

(
y∗) + T ′(y∗)

1 − T ′(y∗)εr(y∗) y∗fY
(
y∗)

1 − FY
(
y∗)(

1 + εSw
(
y∗)) 1

εDw
(
y∗)

− εr
(
y∗)

1 − T ′(y∗)
∫
R+
T ′(y)

(
1 + εSw(y)

) �
(
y� y∗)

1 + εSw(y)/εDw(y)
yfY (y)

1 − FY
(
y∗) dy	 (41)

Using Euler’s theorem (24) easily leads to equation (17). If the disutility of labor is isoe-
lastic and the initial tax schedule is linear, then the marginal tax rate T ′(y) and the
elasticity εSw(y) are constant. Applying equation (17) immediately implies that R̂(y∗) =
R̂ex(y

∗). Q.E.D.

PROOF OF COROLLARY 4: If the disutility of labor is isoelastic, the initial tax sched-
ule is CRP, the elasticities εSw�ε

D
w are constant and the integral in equation (41) can be

simplified. The resulting expectation E[T ′(y) y�(y�y
∗)

y∗fY (y∗)
] can be rewritten as

Cov
(
T ′(y); y�

(
y� y∗)

y∗fY
(
y∗)

)
+ 1
y∗fY

(
y∗)E[

T ′(y)
]
E
[
y�

(
y� y∗)]	

But by Euler’s theorem (equation (24)), we have 1
1+εSw/εDw E[y�(y� y∗)] = 1

εDw
y∗fY (y∗). Sub-

stituting into the previous expression easily leads to (18). Now suppose in addition that
the production function is CES, so that the elasticities εr� εw are constant and �(y� y∗) is
given by formula (12) with γ(y� y∗)= 1

σEy
y∗fY (y∗). Substituting into (41) implies

R̂
(
y∗) = R̂ex

(
y∗) + εr

(
1 + εSw

)[ T ′(y∗)
1 − T ′(y∗) 1

σ

y∗fY
(
y∗)

1 − FY
(
y∗)

−
∫
R+

T ′(y)

1 − T ′(y∗)γ(
y� y∗) yfY (y)dy

1 − FY
(
y∗)

]
	

Suppose first that p = 0, that is, the initial tax schedule is linear. In this case, we have
T ′(y∗) = T ′(y) for all y , so that the term in the square brackets is equal to 0 by Euler’s
homogeneous function theorem. More generally, with a nonlinear tax schedule, we can
use expression (26) for γ(y� y∗) to rewrite the term in square brackets as

1
1 − T ′(y∗) 1

σ

y∗fY
(
y∗)

1 − FY
(
y∗)

[
T ′(y∗) −

∫
R+
T ′(y)

y

Ey
fY (y)dy

]
	

Using the fact that (1 + εSw)
εr
σ

= 1+εSw
σ+εSw ε

S
r leads to equation (19). Note that we can also

derive this result from equation (18): substituting for �(y� y∗)= 1
σEy
(1 + εSw

σ
)y∗fY (y∗) into

Cov(T ′(y); y�(y� y∗)) and using 1
Ey

Cov(T ′(y); y)= 1
Ey
E[yT ′(y)]−E[T ′(y)] easily leads to

(19). Q.E.D.
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Incidence on Social Welfare. The first-order effect of a tax reform T̂ on the government
objective G = 1

λ

∫
G(U(θ))f (θ)dθ is given by

Ĝ = −
∫
T̂ (y)g(y)fY (y)dy +

∫ (
1 − T ′(y)

)
y
ŵ(y)

w(y)
g(y)fY (y)dy�

where g(y)= G′(U(θ))
λ

denotes the marginal social welfare weight at income y , and where
ŵ(y) is the change in labor supply of agents with income initially equal to y . Therefore,
we obtain that the tax reform affects social welfare by

Ŵ = R̂+ Ĝ =
∫ (

1 − g(y))T̂ (y)fY (y)dy −
∫

T ′(y)
1 − T ′(y)

εSr (y)T̂
′(y)yfY (y)dy

+
∫ [(

1 + εSw(y)
)
T ′(y)+ g(y)(1 − T ′(y)

)] ŵ(y)
w(y)

yfY (y)dy	

Using equations (13) and (9), and applying this formula to the elementary tax reform at
y∗, we get

Ŵ
(
y∗) =

∫ ∞

y∗

(
1 − g(y)) fY (y)

1 − FY
(
y∗) dy − εSr

(
y∗) T ′(y∗)

1 − T ′(y∗) y∗fY
(
y∗)

1 − FY
(
y∗)

+

εr
(
y∗)

εD
(
y∗)

1 − T ′(y∗)ψ(
y∗) y∗fY

(
y∗)

1 − FY
(
y∗)

− εr
(
y∗)

1 − T ′(y∗)
∫
ψ(y)

�
(
y� y∗)

1 + εSw(y)

εDw(y)

yfY (y)

1 − FY
(
y∗) dy� (42)

where ψ(y) is defined by ψ(y) = (1 + εSw(y))T
′(y) + g(y)(1 − T ′(y)). Assume for sim-

plicity that the production function is CES, the disutility of labor is isoelastic, and the tax
schedule is CRP. The labor supply and demand elasticities are then constant, and we have
�(y� y∗)= γ(y�y∗)

1−εw/σ = 1
1−εw/σ

y∗fY (y∗)
σEy

. It follows that the second line in the previous expression
can be rewritten as

εr/σ

1 − T ′(y∗)
[
ψ

(
y∗) −

∫
R+
ψ(y)

y

Ey
fY (y)dy

]
y∗fY

(
y∗)

1 − FY
(
y∗) 	

Thus, the variable T ′(y)(1 + εSw(y)) in equation (17), which measures the total impact of
a wage adjustment ŵ(y) on the government budget, is now replaced by the more general
expression ψ(y). Its second term comes from the fact that the share 1 − T ′(y) of the
income gain due to the wage adjustment ŵ(y) is kept by the individual; this in turn raises
social welfare in proportion to the welfare weight g(y).

APPENDIX D: GENERALIZATIONS: PREFERENCES WITH INCOME EFFECTS

In this section, we extend the model of Section 1 to a general utility function over con-
sumption and labor supply U(c� l), where Uc�Ucc > 0 and Ul�Ull < 0. This specification
allows for arbitrary substitution and income effects.
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Elasticity Concepts. The first-order condition of the agent reads r(θ)w(θ)Uc(θ) +
Ul(θ)= 0, where Uc(θ) is a short-hand notation for Uc(y(θ)− T(y(θ))� l(θ)) and r(θ)=
1 −T ′(y(θ)) is the agent’s retention rate. Differentiating this equation allows us to define
the compensated (Hicksian) elasticity of labor supply with respect to the retention rate,
eSr (θ)≡ r(θ)

l(θ)
	 ∂l(θ)
∂r(θ)

|ucst, and the income effect, eR(θ)≡ r(θ)w(θ)∂l(θ)
∂R

, as follows:

ecr (θ)= Ul(θ)/l(θ)

Ull(θ)+
(
Ul(θ)

Uc(θ)

)2

Ucc(θ)− 2
(
Ul(θ)

Uc(θ)

)
Ucl(θ)

�

eR(θ)=
−

(
Ul(θ)

Uc(θ)

)2

Ucc(θ)+
(
Ul(θ)

Uc(θ)

)
Ucl(θ)

Ull(θ)+
(
Ul(θ)

Uc(θ)

)2

Ucc(θ)− 2
(
Ul(θ)

Uc(θ)

)
Ucl(θ)

	

(43)

The labor supply elasticity with respect to the wage is given by eSw(θ) = (1 − p(y(θ)))×
ecr (θ)+ eR(θ). As in Sections 1.2 and 2.1, we then normalize ec�Sr (θ)� e

S
R(θ)� e

S
w(θ) by 1 +

p(y(θ))ecr (θ) to get the corresponding elasticities along the nonlinear budget constraint
εc�Sr (θ)�ε

S
R(θ)�ε

S
w(θ), and further by 1 + εSw(θ)/εDw(θ) to get the elasticities of equilibrium

labor εcr (θ)�εR(θ)�εw(θ). The cross-wage and own-wage elasticities γ(θ�θ′)�1/εDw(θ) are
defined as in (5) and (6). Finally, the resolvent cross-wage elasticity �(θ�θ′) is defined as
in (10).

PROPOSITION 4—Generalization of Proposition 1: The incidence of an arbitrary tax re-
form T̂ on individual labor supply is given by the following formula, which generalizes (9):

l̂(θ)= l̂pe(θ)+ εw(θ)
∫
Θ

�
(
θ�θ′)l̂pe

(
θ′)dθ′� (44)

where εw(θ), and �(θ�θ′) are given by their generalized definitions above, and where

l̂pe(θ)≡ −εr(θ)
T̂ ′(y(θ))

1 − T ′(y(θ)) + εR(θ)
T̂

(
y(θ)

)
(
1 − T ′(y(θ)))y(θ) 	

The incidence on wages, utilities and government revenue are derived as the corresponding
formulas in Section 2.2.

The interpretation of this formula is identical to that of (9), except that the partial-
equilibrium impact of the reform l̂pe(θ) is modified: in addition to the substitution effect
already described in the quasilinear model, labor supply now also rises by an amount
proportional to εR(θ) due to an income effect induced by the higher total tax payment
T̂ (y(θ)) of agent θ. Note that the partial-equilibrium formula for l̂pe(θ) is identical to
that derived in models with exogenous wages by Saez (2001) and Golosov, Tsyvinski, and
Werquin (2014), except that that now the elasticities εr(θ) and εR(θ) take into account
the own-wage effects εDw(θ).

PROOF OF PROPOSITION (4): Consider a tax reform T̂ . The perturbed first-order con-
dition reads (letting wθ =w(θ), etc. for conciseness):

0 = [
1 − T ′((wθ +μŵθ)(lθ +μl̂θ)

) −μT̂ ′(wθlθ)
]
(wθ +μŵθ) 	 	 	
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×Uc

[
(wθ +μŵθ)(lθ +μl̂θ)− T (

(wθ +μŵθ)(lθ +μl̂θ)
) −μT̂ (wθlθ)� lθ +μl̂θ

]
+Ul

[
(wθ +μŵθ)(lθ +μl̂θ)− T (

(wθ +μŵθ)(lθ +μl̂θ)
) −μT̂ (wθlθ)� lθ +μl̂θ

]
	

A first-order Taylor expansion implies

l̂θ

lθ
= eR(θ)+ (

1 −p(yθ)
)
ecr (θ)

1 +p(yθ)ecr (θ)
ŵθ

wθ

− ecr (θ)

1 +p(yθ)ecr (θ)
T̂ ′(yθ)

1 − T ′(yθ)
− eR(θ)

1 +p(yθ)ecr (θ)
T̂ (yθ)(

1 − T ′(yθ)
)
yθ
�

where the first-order change in the wage w(θ) is given by equation (38). This leads to an
integral equation for l̂θ/ lθ which can be solved following the same steps as in Proposition
1 to obtain equation (44). Q.E.D.

COROLLARY 6—Generalization of Corollary 4: Assume that the production function is

CES, the tax schedule is CRP, and the utility function has the form U(c� l)= c1−η
1−η − l1+ 1

ε

1+ 1
ε

. The
revenue effect of the elementary tax reform at income y∗ is then given by

R̂
(
y∗) = R̂ex

(
y∗) +φεSr

T ′(y∗) − T̄ ′

1 − T ′(y∗) y∗fY
(
y∗)

1 − FY
(
y∗)

−φεSr (1 −p)ηE
[
T ′(y)− T̄ ′

1 − T ′(y)
|y > y∗

]
� (45)

where T̄ ′ = E[yT ′(y)]/Ey is the income-weighted average marginal tax rate in the economy
and whereφ= 1+εSw

σ+εSw .36 If in addition top incomes are Pareto distributed with parameterΠ, we

have R̂(y∗) > R̂ex(y
∗) as y∗ → ∞ if an only if Π >p+η−pη. In this case, the theoretical

insights of Section 3.2 remain qualitatively valid with income effects.

PROOF OF COROLLARY 6: Under the assumed functional form assumptions, the la-
bor supply and demand elasticities are constant and we have εc�Sr = e

ηe(1−p)+pe+1 , εSR =
−(1 − p)ηεc�Sr (θ), and εSw = (1 − p)(1 − η)εc�Sr . Since the production function is CES,
the integral equation for l̂(θ)/l(θ) has a multiplicatively separable kernel and its solution
for an elementary tax reform at income y(θ∗) is given by

l̂(θ)= − εr(θ)

1 − T ′(y(θ∗)) δ
(
y(θ)− y(θ∗))
1 − F(

θ∗) + εR(θ)

(1 − T ′(y(θ))y(θ) I{θ>θ∗}
1 − F(

θ∗)

+
1

1 − F(
θ∗)εw(θ)

1 −
∫
Θ

εw
(
θ′)γ(

θ�θ′)dθ′

[
−γ(

θ�θ∗) εr
(
θ∗)

1 − T ′(y(θ∗))

36Note that for η = 0, this formula reduces to equation (19). If η > 0 and the baseline tax schedule is
progressive, then the first and second general-equilibrium contributions have opposite signs.
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+
∫ θ

θ∗
γ
(
θ�θ′) εR

(
θ′)

(1 − T ′(y(θ′))y(θ′) dθ′
]
	

Therefore, the effect of the tax reform on government revenue, R̂ = ∫
T̂ dF + ∫

T ′y(l̂+
ŵ)dF , is given by

R̂
(
y
(
θ∗)) = R̂ex

(
y
(
θ∗))

+
1

1 − F(
θ∗)εSr

1 − T (
y
(
θ∗))

(
1
εDw

1 + εSw
1 + εSw

εDw

T ′(y(θ∗))y(θ∗)f (θ∗)

−
∫
T ′(y(θ))y(θ)γ

(
θ�θ∗) 1 + εSw

1 + εSw/εDw
1

1 + εSw/εDw
1 −

∫
εwγ(x�x)dx

dF(θ)

)

+
∫ θ

θ∗

1
1 − F(

θ∗)εSR
(1 − T ′(y(θ′))y(θ′)

(
1
εDw

1 + εSw
1 + εSw

εDw

T ′(y(θ′))y(θ′)f (θ′)

−
∫
T ′(y(θ))y(θ)γ

(
θ�θ′) 1 + εSw

1 + εSw/εDw
1

1 + εSw/εDw
1 −

∫
εwγ(x�x)dx

dF(θ)

)
dθ′	

This expression easily leads to (45). Now, since the tax schedule is CRP, we have T ′(y)−T̄ ′
1−T ′(y) =

yp

ȳ
E[y1−p] − 1 = 1−T̄ ′

1−T ′(y) − 1. If incomes above y(θ∗) are Pareto distributed with tail param-
eter Π, we have E[yp|y > y∗] = Π

Π−py
∗p, and hence

R̂
(
y∗) = R̂ex

(
y∗) +φεSr

[
Π

(
1 − T̄ ′

1 − T ′(y∗) − 1
)

−η(1 −p)
(

Π

Π −p
1 − T̄ ′

1 − T ′(y∗) − 1
)]
	 (46)

The term in square brackets is positive for y large enough if and only ifΠ >η(1−p) Π
Π−p ,

that is, Π >η+p(1 −η), because T ′(y)→ 1 as y → ∞. Q.E.D.

Equation (46) leads to simple calculations of the additional general equilibrium effect
on government revenue. To illustrate this, we consider a parameterization that is based on
the empirical literature that estimates the impact of lottery wins on labor supply (Imbens,
Rubin, and Sacerdote (2001), Cesarini et al. (2017)). Using these wealth shocks, they find
that a one dollar increase in wealth leads to a decrease in life-cycle labor income (in net
present value) of 10–11 cents. Thus, we calibrate our (static) model such that an increase
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in unearned income of 1 dollar implies a decrease in earnings of 10–11 cents. Further,
we set εc�Sr (θ) = 0	33 Chetty (2012). As in our benchmark calibration in the main body,
we assume that p= 0	15. To target the value of the lottery papers, we set εSR(θ)= −0	08,
which captures approximately a 10–11 cents decrease in gross income if the marginal
tax rate is around 25%. The relationship εSR(θ) = −(1 − p)ηεc�Sr then yields a value of
η≈ 0	29. Finally, the value for e that is consistent with εc�Sr = 0	33 is e= 0	38. Evaluating
the second term on the right-hand side of (46) for these numbers reveals that it becomes
positive for income levels where the marginal tax rate is above 27.6%, a number that
is slightly higher than the income-weighted average marginal tax rate, which is equal to
26%. The income levels that correspond to these tax rates are approximately $85,000
and $77,000. A last simple exercise is then to evaluate general equilibrium revenue effect
at a higher income level and compare it to the value that is obtained in the absence of
income effects. We do this comparison for the income level of $200,000 and find that the
additional revenue effect coming from the endogeneity of wages is reduced by 28% (32%,
resp.) if the elasticity of substitution is σ = 0	66 (σ = 3	1, resp.).

APPENDIX E: NUMERICAL SIMULATIONS

CALIBRATION OF THE MODEL: We assume that incomes are log-normally distributed
apart from the top, where we append a Pareto distribution for incomes above $150,000.
To obtain a smooth hazard ratio 1−Fy(y)

yfy (y)
, we decrease the thinness parameter of the Pareto

distribution linearly between $150,000 and $350,000 and let it be constant at 1.5 after-
wards (Diamond and Saez (2011)). In the last step, we use a standard kernel smoother
to ensure differentiability of the hazard ratios at $150,000 and $350,000. We set the mean
and variance of the lognormal distribution at 10 and 0	95, respectively. The mean param-
eter is chosen such that the resulting income distribution has a mean of $64,000, that is,
approximately the average US yearly earnings. The variance parameter was chosen such
that the hazard ratio at level $150,000 is equal to that reported by Diamond and Saez
(2011, Figure 2).

CES Production Function with Exogenous Assignment. Denote by θy the type of an agent
who earns income y given the current tax system. Our first step is then the same as in Saez
(2001): we use the individual’s first-order condition 1 − T ′(y)= v′( y

w
) 1
w

and the observed
income and marginal tax rate in the data, to back out the wage. As in Saez (2001), this
gives us both the wage w(θy) as well as the labor supply l(θy)= y

w(θy )
that correspond to

that income level y , given the current tax schedule. Assume that the production function is
CES with a given parameter σ . Once we know the wage w(θy), the labor supply l(θy), and
the density of incomes fY (y), we can back out the primitive parameters a(θy) of the CES
production function (3) using the formula w(θy) = a(θy)[l(θy)fY (y)y ′(θy)/F (L )]1/σ ,
where we know everything but a(θy) and y ′(θy) ≡ dy(θ)

dθ
|θy . We can without loss of gen-

erality assume that θ is uniformly distributed in the unit interval. This pins down y ′(θy),
since we observe the income percentiles in the data. We can therefore infer the parameter
a(θy) for each y .

Microfoundation with Endogenous Assignment. Now consider the model of Section A.2.
Ales, Kurnaz, and Sleet (2015, p. 30) calibrate the following relation A′

1(θ�M(θ))

A(θ�M(θ))
= α1 +

α2M(θ) with α1 = 0	41 and α2 = 3	01. The parameter α1 represents the pure returns to
skill and α2 represents the complementarity with tasks. We extend this functional form
as follows: A′

1(θ�M(θ))

A(θ�M(θ))
= α1(θ)+ α2M(θ). That is, we keep the linearity assumption as well

as the value of the complementarity parameter α2. But we replace the constant α1 with
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FIGURE 5.—Alternative specification of the baseline tax schedule. Bold curve: CRP tax schedule. Dashed
curve: Gouveia–Strauss approximation with additional distortions due to means-tested transfers. Left panel:
Right panel: Revenue gains of elementary tax reforms. Bold curve: exogenous wages. Dashed curve: CES
production function with σ = 3	1.

a function α1(θ) that ensures that the empirical wage distribution is exactly matched.
Crucially, this allows us to depart from the restriction of a bounded income distribution
(which leads to inverse-U-shaped optimal tax rates) and to capture instead the Pareto tail
of the distribution. To estimate the relevant parameters α1(θ), we start by calibrating the
wage distribution using the same method as Saez (2001), as explained in the main body of
the paper. We then plug the parameters of the Cobb–Douglas function estimated by Ales,
Kurnaz, and Sleet (2015, p. 27) into equation (33). Solving this equation gives us M(θ)
for the current allocation. We can then find the function α1(θ) such that the following
equation holds: w′(θ)

w(θ)
= α1(θ) + α2M(θ), where the left-hand side is the empirical wage

distribution.
Robustness: Alternative Baseline Tax Function. We propose several robustness exercises

for our tax incidence results. First, we depart from the assumption that the initial tax
schedule is CRP and consider an alternative calibration that differs in two ways: (i) we
use a Gouveia–Strauss approximation for the income tax, taken from Guner, Kaygusuz,
and Ventura (2014); (ii) we also account for the phasing-out of means-tested transfer
programs that increase effective marginal tax rates, in particular for low incomes. The
Gouveia–Strauss specification we use is the third to last column in Table 12 of Guner, Kay-
gusuz, and Ventura (2014). For the phasing-out of transfers, we use parametric estimates
from Guner, Rauh, and Ventura (2017), namely, T(I)= exp(−1	816)exp(−4	29I)I−0	006

where I is expressed in multiples of average income (we use a CPI deflator and express ev-
erything in terms of year 2000 dollars). Figure 5 shows the resulting schedule of marginal
tax rates (left panel) and the normalized revenue gains of elementary tax reforms for a
CES parameter σ = 3	1 (right panel). The additional general-equilibrium revenue effects
due to the endogeneity of wages are naturally smaller in magnitude than for a CRP ini-
tial tax schedule because of the very large bottom marginal tax rates. Nevertheless, the
general insight of Figure 2 is unchanged.

Robustness: Incidence on Social Welfare. Second, we depart from our focus on revenue
effects (i.e., Rawlsian welfare) and consider alternative concave social welfare functions
G(u) = u1−κ

1−κ . The CES parameter in Figure E.6 is σ = 3	1. Welfare gains are expressed
in terms of public funds. For a low taste for redistribution (κ= 1, left panel), the welfare
gains of raising tax rates on high incomes are reversed due to general equilibrium. For
a stronger taste for redistribution (κ= 3, right panel), general equilibrium effects imply
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FIGURE E.6.—Welfare effect of elementary tax reforms for the social welfare function G(u) = u1−κ
1−κ . Left

panel: κ= 1. Right panel: κ= 3.

that raising the top tax rates is more desirable. On the one hand, general equilibrium
effects raise tax revenue (as in thee main body of the paper). On the other hand, the
implied wage decreases for the working poor make them worse-off. In case of very strong
redistributive tastes (i.e., when the social marginal welfare weights decrease sufficiently
fast with income, the extreme case being the Rawlsian welfare criterion), the tax revenue
gain gets a higher weight (since these gains are used for lump-sum redistribution). If
relatively richer workers (for whom the lump-transfer is less important relative to the
very poor) still have significant welfare weights, the wage effects dominates. Q.E.D.

APPENDIX F: OPTIMAL TAXATION

In the model with exogenous wages (Diamond (1998)), the optimum schedule T ′
pe(·) is

characterized by

T ′
pe

(
y∗)

1 − T ′
pe

(
y∗) = 1

εSr
(
y∗)(

1 − ḡ(y∗))1 − FY
(
y∗)

y∗fY
(
y∗) 	

COROLLARY 7—Optimal Tax Schedule in General Equilibrium: The welfare-
maximizing tax schedule T satisfies: for all y∗ ∈ R+,

T ′(y∗)
1 − T ′

pe

(
y∗) = 1

εSr
(
y∗) 1 − FY

(
y∗)

y∗fY
(
y∗)

{
1 − ḡ(y∗) + εr

(
y∗) 	 	 	

×
∫
R+

[
ψ

(
y∗) −ψ(y)] �

(
y� y∗)

1 + εSr
(
y∗)

εDr
(
y∗)

yfY (y)

1 − FY
(
y∗) dy

}
� (47)

where ψ(y) = (1 + εSw(y))T
′(y) + g(y)(1 − T ′(y)). This optimal tax formula (47) can be

straightforwardly transformed into an integral equation in T ′(·), which can then be solved
using similar techniques as in Section 2.1.
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PROOF OF COROLLARY 7: The impact of the elementary tax reforms on social welfare
is given by (42). Using Euler’s theorem (24), imposing Ŵ(y∗)= 0 for all y∗ and rearrang-
ing the terms leads to

T ′(y∗)
1 − T ′(y∗) = 1

εSr
(
y∗)(

1 − ḡ(y))1 − FY
(
y∗)

y∗fY
(
y∗)

+ εr
(
y∗)

εSr
(
y∗) 1

1 − T ′(y∗)
∫
R+

[
ψ

(
y∗) −ψ(y)] �

(
y� y∗)

1 + εSw(y)

εDw(y)

yfY (y)

y∗fY
(
y∗) dy	

Multiplying this equation by 1 − T ′(y∗) and solving for T ′(y∗) easily leads to (47). Q.E.D.

PROOF OF PROPOSITION 3: If the production function is CES, we have εDw(y)= σ and
�(y� y∗)= y∗fY (y∗)

σE[(1+ 1
σ ε

S
w(x))

−1x] . Using these expressions, formula (47) can then be rewritten as

[
1 + 1

σ

(
g
(
y∗) − 1

)]
T ′(y∗) =1 − T ′(y∗)

εr
(
y∗) (

1 − ḡ(y∗))1 − FY
(
y∗)

y∗fY
(
y∗) + 1

σ
g
(
y∗) − A

σ
�

where A is a constant (independent of y∗) equal to

A≡ 1

E

[
y

1 + 1
σ
εSw(y)

] ∫
g(y)+ [(

1 − g(y)) + εSw(y)
]
T ′(y)

1 + 1
σ
εSw(y)

yfY (y)dy	 (48)

The previous equation can then be rewritten as

T ′(y∗) =
1

εr
(
y∗)(

1 − ḡ(y∗))1 − FY
(
y∗)

y∗fY
(
y∗) + 1

σ

(
g
(
y∗) −A)

1 + 1
εr

(
y∗)(

1 − ḡ(y∗))1 − FY
(
y∗)

y∗fY
(
y∗) + 1

σ

(
g
(
y∗) − 1

) 	 (49)

We now show that A = 1, which easily leads to expression (21). Consider the following
tax reform:

T̂2(y)= − εr
(
y∗)

1 − T ′(y∗)γ(
y� y∗)(1 − T ′(y)

)
y�

T̂ ′
2(y)= − εr

(
y∗)

1 − T ′(y∗)γ(
y� y∗)(1 − T ′(y)− yT ′′(y)

)
�

where γ(y� y∗)= 1
σ

y∗fY (y∗)∫
xfY (x)dx

is independent of y since the production function is CES. (It
is easy to show that this is the tax reform that cancels out the general equilibrium effects
on individual labor supply of the elementary reform at y∗.) Tedious but straightforward
algebra shows that the incidence of this counteracting tax reform T̂2 on social welfare is
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given by

Ŵ(T̂2)=
∫

Ŵ
(
y∗)T̂ ′

2

(
y∗)(1 − FY

(
y∗))dy∗

= − 1
σ

εr
(
y∗)

1 − T ′(y∗) y∗fY
(
y∗)∫

xfY(x)dx

{∫ (
1 − g(y))(1 − T ′(y)

)
yfY (y)dy 	 	 	

−
∫
εw(y)

([
1 + 1

σ

(
g(y)− 1

)]
T ′(y)− 1

σ
g(y)

)
yfY (y)dy

− 1
σ

∫
εw(y)y dFY(y)

E

[
x

1 + 1
σ
εSw(x)

]

×
∫

1

1 + 1
σ
εSw(x)

[(
1 − g(x)+ εSw(x)

)
T ′(x)+ g(x)]xdFY(x)

}
	

Using expression (48) for A and imposing that Ŵ(T̂2)= 0 leads to

∫ (
1 − g(y)) + εSw(y)

1 + 1
σ
εSw(y)

T ′(y)yfY (y)dy =
∫ (

1 − g(y)) + 1 −A
σ

εSw(y)

1 + 1
σ
εSw(y)

yfY (y)dy	 (50)

Now compare expressions (48) and (50). These two equations imply

∫ [(
1 − g(y)) + εSw(y)

]
T ′(y)

1 + 1
σ
εSw(y)

yfY (y)dy = E

[
A− g(y)

1 + 1
σ
εSw(y)

y

]

=
∫ (

1 − g(y)) + 1 −A
σ

εSw(y)

1 + 1
σ
εSw(y)

yfY (y)dy	

Solving for A implies A= 1. Q.E.D.

PROOF OF COROLLARY 5: Suppose that in the data (i.e., given the current tax schedule
and constant top tax rate), the income distribution has a Pareto tail, so that the (observed)
hazard rate 1−FY (y∗)

yfY (y
∗) converges to a constant. We show that under these assumptions, the

income distribution at the optimum tax schedule is also Pareto distributed at the tail with
the same Pareto coefficient. We have

1 − FY
(
y(θ)

)
y(θ)fY

(
y(θ)

) = 1 − F(θ)
y(θ)

y ′(θ)
f (θ)

= 1 − F(θ)
θf (θ)

θy ′(θ)
y(θ)

= 1 − F(θ)
θf (θ)

εy�θ� (51)
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where we define the income elasticity εy�θ ≡ d ln y(θ)/d lnθ. To compute this elasticity,
use the individual first-order condition (1) with isoelastic disutility of labor to get l(θ)=
r(θ)ew(θ)e, where r(θ) is agent θ’s retention rate. Thus we have εl�θ ≡ d ln l(θ)

d lnθ = ed ln r(θ)
d lnθ +

ed lnw(θ)
d lnθ . But since the production function is CES, we have

d lnw(θ)
d lnθ

=d lna(θ)
d lnθ

− 1
σ

d ln l(θ)
d lnθ

− 1
σ

d ln f (θ)
d lnθ

= θa′(θ)
a(θ)

− 1
σ
εl�θ − 1

σ

θf ′(θ)
f (θ)

	

Using this expression, we obtain

εl�θ =e
[
θa′(θ)
a(θ)

− 1
σ
εl�θ − 1

σ

θf ′(θ)
f (θ)

+ θr ′(θ)
r(θ)

]
	

Since we assume that the second derivative of the optimal marginal tax rate, T ′′(y), con-
verges to zero for high incomes, we have limθ→∞ r ′(θ)= 1. Moreover, the variables θa′(θ)

a(θ)

and θf ′(θ)
f (θ)

are primitive parameters that do not depend on the tax rate. Assuming that
they converge to constants as θ→ ∞, we obtain that limθ→∞ εl�θ is constant, and hence
εy�θ = εl�θ + εw�θ = (1 + 1

e
)εl�θ converges to a constant independent of the tax rate. There-

fore, the hazard rate of the income distribution at the optimum tax schedule, given by
(51), converges to the same constant as the hazard rate of incomes observed in the data.
Now let y∗ → ∞ in equation (21), to obtain an expression for the optimal top tax rate
τ∗ = limy∗→∞ T ′(y∗). We have seen that limy∗→∞ εr(y∗)= e

1+e/σ . Furthermore, assume that
limy∗→∞ g(y∗)= ḡ, so that limy∗→∞ ḡ(y∗)= ḡ. Therefore, (21) implies

τ∗

1 − τ∗ =1 + e/σ
e

(1 − ḡ) 1
Π

+ ḡ− 1
σ

= 1 − ḡ
Πe

+ 1 − ḡ
Πσ

+ ḡ− 1
σ

�

where Π is the Pareto parameter. Solving for τ∗ leads to (22). Q.E.D.
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