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This supplement to “Matching With Complementary Contracts” gives supporting
material for Example 3 in the main text, including an alternative numerical example
where firms produce complementary products; shows that bundling preserves comple-
mentarity in both TU and NTU environments; and provides a lemma supporting the
proof of Proposition 5 in the main text.

APPENDIX A: EXAMPLES

DERIVATION OF EQUILIBRIUM FIRM PROFIT IN EXAMPLE 3 We have
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EXAMPLE A.1—Patent Licensing Among Competing Licensees: As in Example 3, con-
sider a Bertrand–Nash model of differentiated product competition with linear demand.
There are three firms: I = {1�2�3}. Each firm i ∈ I sells a single product. Demand for the
firms’ products is linear, and given by Q(p) = a+ Sp, where

a=
⎡
⎣

100
100
100

⎤
⎦ � S =

⎡
⎣

−2 1 1
1 −2 −1
1 −1 −2

⎤
⎦ �

Thus, firms 2 and 3 produce complementary products which are each substitutes for the
products for firm 1. Each firm has constant marginal cost ci, and sets prices to maximize
profits (pi − ci)Q(p)i given the pricing decisions of the other firms. As in Example 3,
firm i’s equilibrium profit is given by (a + Sc)′(S + S̄)−1ei(S̄ii)e

′
i(S + S̄)−1(a + Sc); here,

S̄ = −2I. Now suppose that each firm owns patents on technologies that would lower the
costs of firms 2 and 3, if they were to adopt them. In particular, if firm i ∈ {2�3} licenses
the technology of firm j �= i, their costs will be reduced by θij .
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We can represent patent license agreements between these firms using the set of prim-
itive contracts Ω = {ω21�ω23�ω31�ω32}, where ωij represents the license of firm i’s tech-
nology to firm j and N(ωij)= {i� j}. Then in a transferable utility environment, we have

vi(Ψ)= (
a+ Sc(Ψ)

)′
(S − 2I)−12eie′

i(S − 2I)−1
(
a+ Sc(Ψ)

)
�

where ci(Ψ)= c0
i −

∑
j:ωij∈Ψ

θij�

Since patent licenses only lower the cost of firms 2 and 3, vi is supermodular in Ωi and
has increasing differences in (Ωi�Ω−i)—and hence agent i’s demand correspondence for
primitive contracts satisfies the gross complements condition—if and only if (a+Sc)′(S−
2I)−12eie′

i(S − 2I)−1(a+ Sc) is convex and has positive cross-partial derivatives in c2 and
c3. The Hessian matrix of this expression is given by Ŝi = S(S − 2I)−12eie′

i(S − 2I)−1S; for
agents i ∈ {1�2�3}, these are

Ŝ1 = 1
81

⎡
⎣

32 −8 −8
−8 2 2
−8 2 2

⎤
⎦ � Ŝ2 = 1

81

⎡
⎣

2 −8 −2
−8 32 8
−2 8 2

⎤
⎦ �

Ŝ3 = 1
81

⎡
⎣

2 −8 −2
−8 2 8
−2 8 32

⎤
⎦ �

It follows that each agent’s demand correspondence for primitive contracts satisfies the
gross complements condition, and we can apply Theorem 2 using Lemma 7.

Now we solve for the largest conditionally efficient set of primitive contracts, Ω∗. Let

c0
1 = 30� c0

2 = 60� c0
3 = 40� θ21 = 20� θ23 = 5� θ31 = 5� θ32 = 5�

We have

F∨(Ω) = F∨
({ω21�ω23�ω31�ω32}

) = {ω23�ω31�ω32}
F∨

({ω23�ω31�ω32}
) = {ω23�ω31�ω32}

⇒ Ω∗ = {ω23�ω31�ω32}�
There are no gains from trade between firms 1 and 2, even when each firm anticipates that
all licenses between the other firms will transact. Hence, firm 1 does not license its tech-
nology to firm 2. However, Ω∗ is inefficient: Because firms 2 and 3 produce complemen-
tary products, firm 3 would be willing to subsidize firm 2’s license of firm 1’s technology.
Hence, externalities produce deadweight loss in this example.

Alternatively, let

c0
1 = 30� c0

2 = 60� c0
3 = 40� θ21 = 20� θ23 = 1� θ31 = 5� θ32 = 1�

Then we have

F∨(Ω) = F∨
({ω21�ω23�ω31�ω32}

) = {ω23�ω31�ω32}
F∨

({ω23�ω31�ω32}
) = {ω23�ω32}
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F∨
({ω23�ω32}

) = {ω23�ω32}
⇒ Ω∗ = {ω23�ω32}�

This time, there are gains from trade between firms 1 and 3 when firm 3 takes as given that
firm 2 will license firm 1’s technology, as it does in the first two rounds of the algorithm.
But these gains from trade disappear after the second round of the algorithm, when firm
1 fails to license its technology to firm 2. Once again, Ω∗ is inefficient—but this time it
contains too many contracts instead of too few: Firm 1 would be willing to pay firms 2 and
3 not to license their technologies to one another.

APPENDIX B: BUNDLING RESULTS

Lemma B.1 shows that bundling preserves complementarity in both the ordinal and
cardinal sense.

LEMMA B.1—Bundling Preserves Complementarity: Suppose that α : Ω̂ → Ω is surjec-
tive.

i. If ûi : 2Ω̂ → R∪ {−∞} is quasisupermodular, so is ûi ◦ α−1.
ii. If v̂i : 2Ω̂ →R∪ {−∞} is supermodular, so is v̂i ◦ α−1.

PROOF: Recall that since α is a function, α−1(Y ∩Z) = α−1(Y)∩ α−1(Z) and α−1(Y ∪
Z) = α−1(Y)∪ α−1(Z).

(i) Let Y , Z be two subsets of X with ûi(α
−1(Y)) − ûi(α

−1(Y ∩ Z)) ≥ 0 or equiva-
lently ûi(α

−1(Y))− ûi(α
−1(Y)∩α−1(Z))≥ 0. By quasisupermodularity of ûi, ûi(α

−1(Y)∪
α−1(Z))− ûi(α

−1(Z))≥ 0 and hence ûi(α
−1(Y ∪Z))− ûi(α

−1(Z))≥ 0, as desired.
(ii) Let Ψ , 	 be two subsets of Ω. Since v̂i is supermodular,

v̂i
(
α−1(Y)∪ α−1(Z)

) − v̂i
(
α−1(Z)

) ≥ v̂i
(
α−1(Y)

) − v̂i
(
α−1(Y)∩ α−1(Z)

)

⇔ v̂i
(
α−1(Y ∪Z)

) − v̂i
(
α−1(Z)

) ≥ v̂i
(
α−1(Y)

) − v̂i
(
α−1(Y ∩Z)

)
�

as desired. Q.E.D.

Lemma B.2 can be thought of as three sets of results. The first (parts (i) through (v))
can be thought of as set-theoretic accounting, showing that the local bijectivity of α on
a set of primitive contracts Ψ makes subsets of Ψ equivalent to their images under α,
and subsets of α(Ψ) equivalent to their preimages. In particular, the subset relation is
preserved (parts (iii) and (iv)), as are the primitive contracts which name an agent (parts
(ii) and (v)). The second (parts (vi) through (ix)) show that this implies that optimization
works equivalently on Ψ and α(Ψ): In NTU environments, choice (part (vi)), acceptance
(part (vii)), and aggregate acceptance (part (viii)) are equivalent on Ψ and α(Ψ), and in
TU environments, the solutions to the conditional social planner’s problem are identical
when the available sets of primitive contracts are Ψ and α(Ψ) (part (ix)). Finally, parts
(x) and (xi) show the relationship between solutions to the conditional social planner’s
problem in the two environments.

LEMMA B.2—Properties of Locally Bijective Bundling Maps: Suppose that M =
〈I�Ω� {Tω}ω∈Ω�N� {ui}i∈I〉 is more bundled than M̂ = 〈I� Ω̂� {T̂ ω}ω∈Ω̂� N̂� {ûi}i∈I〉 with
bundling map α. Let {Ci}i∈I and {Ĉi}i∈I represent the agents’ choice functions in M and
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M̂ , respectively; {Ai}i∈I and {Âi}i∈I represent their acceptance functions in M and M̂ , respec-
tively; and A and Â represent their aggregate acceptance functions in M and M̂ , respectively.

If α−1(α(ω)) =ω for all ω ∈ Ψ ⊆ Ω̂, then
i. For Υ ⊆ Ω, α(α−1(Υ)) = Υ ; for 	⊆Ψ , α−1(α(	))=	.

ii. For 	 ⊆ Ψ , α(	i) = α(	)i and 	i = α−1(α(	)i); α(	−i) = α(	)−i and 	−i =
α−1(α(	)−i).

iii. For Υ ⊆ Ω, Υ ′ ⊆ Υ ⇔ α−1(Υ ′)⊆ α−1(Υ).
iv. For 	⊆Ψ , 	′ ⊆ 	⇔ α(	′)⊆ α(	).
v. For Υ ⊆ α(Ψ), α−1(Υi) = α−1(Υ)i and Υi = α(α−1(Υ)i); α−1(Υ−i) = α−1(Υ)−i and

Υ−i = α(α−1(Υ)−i).
vi. If M and M̂ are NTU environments, Ci(α(Ψ)i|α(Ψ)−i)= {α(Y)|Y ∈ Ĉi(Ψi|Ψ−i)}.

vii. If M and M̂ are NTU environments, Ai(α(Ψ)) = α(Âi(Ψ)).
viii. If M and M̂ are NTU environments, A(α(Ψ)) = α(Â(Ψ)).

ix. If M and M̂ are TU environments with valuations {vi}i∈I and {v̂i}i∈I , respectively,
then max	̂⊆Ψ

∑
i∈I v̂i(	̂i ∪ Ψ−i) = max	⊆α(Ψ)

∑
i∈I vi(	i ∪ α(Ψ)−i) and α−1(	) ∈

arg max	̂⊆Ψ

∑
i∈I v̂i(	̂i ∪Ψ−i)⇔	 ∈ arg max	⊆α(Ψ)

∑
i∈I vi(	i ∪ α(Ψ)−i).

x. If M and M̂ are TU environments with conditional optimizer correspondences F and
F̂ , respectively; supermodular valuations {vi}i∈I and {v̂i}i∈I , respectively; and α(Ψ) ∈
F(α(Ψ)), then there exists 	̂ ∈ F̂(Ψ) with 	̂ ⊇Ψ .

xi. If M and M̂ are TU environments with conditional optimizer correspondences F

and F̂ , respectively; supermodular valuations {vi}i∈I and {v̂i}i∈I , respectively; and
Ψ ∈ F̂(Ψ), then there exists 	 ∈ F(α(Ψ)) with 	 ⊇ α(Ψ).

PROOF: (i) The first conclusion follows from surjectivity of α. Now ω ∈ α−1(α(	)) ⇔
α(ω) ∈ α(	) and ω ∈ 	 ⇒ α(ω) ∈ α(	) are immediate. For α(ω) ∈ α(	) ⇒ ω ∈ 	, sup-
pose α(ω) ∈ α(	). Then there exists ω′ ∈	 with α(ω) = α(ω′). Then ω�ω′ ∈ α−1(α(ω));
since ω = α−1(α(ω)), ω =ω′ ∈	.

(ii) For ω̂ ∈ Ψ , letting ω = α(ω̂) in part (i) of the “more bundled than” definition
yields N(α(ω̂)) = N̂(ω̂). It follows that for each i and ω̂ ∈ Ψ , ω̂ ∈ Ω̂i ⇔ α(ω̂) ∈ Ωi.
Then α(	i) = {ω|ω = α(ω̂) for some ω̂ ∈ 	 ∩ Ω̂i} = {ω|ω = α(ω̂) for some ω̂ ∈ 	�ω ∈
Ωi} = α(	)i. Then from (i), 	i = α−1(α(	i)) = α−1(α(	)i). Similarly, α(	−i) = α(	)−i

and 	−i = α−1(α(	−i))= α−1(α(	)−i).
(iii) The implication follows from preservation of the subset relation under preimages.

The reverse implication follows from preservation of the subset relation under images
and (i).

(iv) The implication follows from preservation of the subset relation under images.
The reverse implication follows from preservation of the subset relation under preimages
and (i).

(v) By (iii), α−1(Υ) ⊆ α−1(α(Ψ)); by (i), α−1(Υ) ⊆ Ψ . Then letting 	 = α−1(Υ) in
(ii) yields 	i = α−1(Υ)i = α−1(α(α−1(Υ))i) and α(α−1(Υ)i) = α(α−1(Υ)) ∩ Ωi; by (i),
α−1(Υ)i = α−1(Υi) and α(α−1(Υ)i) = Υi. Similarly, α−1(Υ)−i = α−1(Υ−i) and
α(α−1(Υ)−i)= Υ−i.

(vi) Z ∈ Ci(α(Ψ)i|α(Ψ)−i)⇔ Z ⊆ α(Ψ)i and ui(Z∪α(Ψ)−i)≥ ui(S∪α(Ψ)−i) for each
S ⊆ α(Ψ)i ⇔ Z ⊆ α(Ψ)i and ûi(α

−1(Z ∪ α(Ψ)−i)) ≥ ûi(α
−1(S ∪ α(Ψ)−i)) for each S ⊆

α(Ψ)i ⇔ Z ⊆ α(Ψ)i and ûi(α
−1(Z)∪ α−1(α(Ψ)−i)) ≥ ûi(α

−1(S)∪ α−1(α(Ψ)−i)) for each
S ⊆ α(Ψ)i. From (iii), this is equivalent to α−1(Z) ⊆ α−1(α(Ψ)i) and ûi(α

−1(Z) ∪Ψ−i) ≥
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ûi(α
−1(S) ∪ Ψ−i) for each S ⊆ α(Ψ)i. From (ii), this is equivalent to α−1(Z) ⊆ Ψi and

ûi(α
−1(Z)∪Ψ−i)≥ ûi(α

−1(S)∪Ψ−i) for each S ⊆ α(Ψi).
Now suppose this last statement holds. For any Ŝ ⊆ Ψ , choose S = α(Ŝ); by (iv), we

have α−1(Z) ⊆ Ψi and so ûi(α
−1(Z) ∪ Ψ−i) ≥ ûi(α

−1(α(Ŝ)) ∪ Ψ−i) = ûi(Ŝ ∪ Ψ−i). Then
α−1(Z) ∈ Ĉi(Ψi|Ψ−i).

Conversely, suppose α−1(Z) ∈ Ĉi(Ψi|Ψ−i). Then ûi(α
−1(Z) ∪ Ψ−i) ≥ ûi(Ŝ ∪ Ψ−i) for

each Ŝ ⊆Ψi. For any S ⊆ α(Ψi), choose Ŝ = α−1(S); by (i), S = α(Ŝ), and so by (iv), Ŝ ⊆Ψi.
Then ûi(α

−1(Z)∪Ψ−i)≥ ûi(α
−1(S)∪Ψ−i) for each S ⊆ α(Ψi)⇔Z ∈Ci(α(Ψ)i|α(Ψ)−i).

(vii) From (vi), we have Ai(α(Ψ)) = ⋃
Z∈Ci(α(Ψ)i|α(Ψ)−i)

Z = ⋃
Y∈Ĉi(Ψi|Ψ−i)

α(Y) =
α(

⋃
Y∈Ĉi(Ψi|Ψ−i)

Y ) = α(Âi(Ψ)).
(viii) From (ii), A(α(Ψ)) = ⋂

i∈I(Ai(α(Ψ)) ∪ α(Ψ)−i) = ⋂
i∈I(Ai(α(Ψ)) ∪ α(Ψ−i)).

Then from (vii), A(α(Ψ)) = ⋂
i∈I(α(Âi(Ψ)) ∪ α(Ψ−i)) = ⋂

i∈I α(Âi(Ψ) ∪ Ψ−i). Then by
(i), A(α(Ψ)) = α(α−1(A(α(Ψ)))) = α(α−1(

⋂
i∈I α(Âi(Ψ)∪Ψ−i))). Since preimages pre-

serve intersections, A(α(Ψ)) = α(
⋂

i∈I α
−1(α(Âi(Ψ) ∪ Ψ−i))). Then by (i), A(α(Ψ)) =

α(
⋂

i∈I Âi(Ψ)∪Ψ−i)= α(Â(Ψ)).
(ix) For any 	̂ ⊆Ψ ,

∑
i∈I

v̂i(	̂i ∪Ψ−i)=
∑
i∈I

v̂i
(
α−1

(
α(	̂i ∪Ψ−i)

))
(by (i))

=
∑
i∈I

vi
(
α(	̂i)∪ α(Ψ−i)

)

=
∑
i∈I

vi
(
α(	̂)i ∪ α(Ψ)−i

)
(by (ii))� (1)

Hence, by (ii) and since images preserve unions,

max
	̂⊆Ψ

∑
i∈I

v̂i(	̂i ∪Ψ−i)= max
	̂⊆Ψ

∑
i∈I

vi
(
α(	̂)i ∪ α(Ψ)−i

) ≤ max
	⊆α(Ψ)

∑
i∈I

vi
(
	i ∪ α(Ψ)−i

)
�

and conversely, by (v) and since preimages preserve unions,

max
	⊆α(Ψ)

∑
i∈I

vi
(
	i ∪ α(Ψ)−i

) = max
	⊆α(Ψ)

∑
i∈I

v̂i
(
α−1(	)i ∪Ψ−i

) ≤ max
	̂⊆Ψ

∑
i∈I

v̂i(	̂i ∪Ψ−i)�

Then

max
	⊆α(Ψ)

∑
i∈I

vi
(
	i ∪ α(Ψ)−i

) = max
	̂⊆Ψ

∑
i∈I

v̂i(	̂i ∪Ψ−i)�

which, together with (1), implies that

α−1(	) ∈ arg max
	̂⊆Ψ

∑
i∈I

v̂i(	̂i ∪Ψ−i) ⇔ 	 ∈ arg max
	⊆α(Ψ)

∑
i∈I

vi
(
	i ∪ α(Ψ)−i

)
�

(x) First note that by definition, F(α(Ψ)) = arg max	⊆Ω

∑
i∈I vi(	i ∪ α(Ψ)−i) and

F̂(Ψ) = arg max	̂⊆Ω̂

∑
i∈I v̂i(	̂i ∪Ψ−i). Since α(Ψ) ∈ F(α(Ψ)), it follows that

max
	⊆α(Ψ)

∑
i∈I

vi
(
	i ∪ α(Ψ)−i

) = max
	⊆Ω

∑
i∈I

vi
(
	i ∪ α(Ψ)−i

) =
∑
i∈I

vi
(
α(Ψ)

)
� (2)
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and

	 ∈ arg max
	⊆α(Ψ)

∑
i∈I

vi
(
	i ∪ α(Ψ)−i

) ⇔ 	 ∈ F
(
α(Ψ)

)
and 	⊆ α(Ψ)� (3)

Then from (2) and (ix),
∑
i∈I

vi
(
α(Ψ)

) = max
	⊆Ω

∑
i∈I

vi
(
	i ∪ α(Ψ)−i

) = max
	̂⊆Ψ

∑
i∈I

v̂i(	̂i ∪Ψ−i)�

and from (3) and (ix),

α−1(	) ∈ arg max
	̂⊆Ψ

∑
i∈I

v̂i(	̂i ∪Ψ−i) ⇔ 	 ∈ F
(
α(Ψ)

)
and 	⊆ α(Ψ)� (4)

Now, for each 	̂′ ∈ F̂(Ψ), we have by definition
∑

i∈I v̂i(	̂
′
i∪Ψ−i)≥ max	̂⊆Ψ

∑
i∈I v̂i(	̂i∪

Ψ−i). Since α(Ψ) ∈ F(α(Ψ)), (i) and (4) imply
∑

i∈I v̂i(Ψ) ≥ ∑
i∈I v̂i((Ψ ∩ 	̂′)i ∪ Ψ−i).

Since {v̂i}i∈I are supermodular, it follows that
∑

i∈I v̂i((Ψ ∪ 	̂′)i ∪Ψ−i)≥ ∑
i∈I v̂i(	̂

′
i ∪Ψ−i);

hence 	̂′ ∪Ψ ∈ F̂(Ψ). The result follows.
(xi) Since Ψ ∈ F̂(Ψ), it follows that

∑
i∈I

v̂i(Ψ) = max
	̂⊆Ψ

∑
i∈I

v̂i(	̂i ∪Ψ−i)= max
	̂⊆Ω̂

∑
i∈I

v̂i(	̂i ∪Ψ−i)� (5)

and

	̂ ∈ arg max
	̂⊆Ψ

∑
i∈I

v̂i(	̂i ∪Ψ−i) ⇔ 	̂ ∈ F̂(Ψ) and 	̂⊆Ψ� (6)

Then from (5) and (ix),
∑
i∈I

v̂i(Ψ) = max
	̂⊆Ω̂

∑
i∈I

v̂i(	̂i ∪Ψ−i)= max
	⊆α(Ψ)

∑
i∈I

vi
(
	i ∪ α(Ψ)−i

)
�

and from (6) and (ix),

	 ∈ arg max
	⊆α(Ψ)

∑
i∈I

vi
(
	i ∪ α(Ψ)−i

) ⇔ α−1(	) ∈ F̂(Ψ) and α−1(	) ⊆Ψ� (7)

Now, for each 	′ ∈ F(α(Ψ)), we have
∑

i∈I vi(	
′
i ∪ α(Ψ)−i) ≥ max	⊆α(Ψ)

∑
i∈I vi(	i ∪

α(Ψ)−i). Since Ψ ∈ F̂(Ψ) and by (i), α−1(α(Ψ)) = Ψ , (7) implies α(Ψ) ∈
arg max	⊆α(Ψ)

∑
i∈I vi(	i ∪ α(Ψ)−i) and hence

∑
i∈I vi(α(Ψ)) ≥ ∑

i∈I vi((α(Ψ) ∩ 	′)i ∪
α(Ψ)−i). Since {vi}i∈I are supermodular, it follows that

∑
i∈I vi((α(Ψ)∪	′)i ∪ α(Ψ)−i) ≥∑

i∈I vi(	
′
i ∪ α(Ψ)−i); hence 	′ ∪ α(Ψ) ∈ F(α(Ψ)). The result follows. Q.E.D.
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