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APPENDIX B: PROOFS

LEMMA B.1: Assumptions 1–3 are satisfied in Examples 1–3. Assumptions 5 and 6 both
hold in Example 1. In Example 2, Assumption 6 holds but Assumption 5 need not. In Exam-
ple 3, Assumptions 4 and 5 hold, but Assumption 6 need not.

PROOF: Example 1

U(a�q�ω) = −(a−ω+ q)2�

The function U(a�q�ω) is strictly concave in q and in a. Complementarity holds because

Uaω(a�q�ω) = 2 > 0�

The single-crossing property holds because

U(a�q�ω)−U
(
a′� q�ω

) = (
a′ −ω+ q

)2 − (a−ω+ q)2

= [(
a′ −ω+ q

) + (a−ω+ q)
][(

a′ −ω+ q
) − (a−ω+ q)

]
= (

a′ + a− 2ω+ 2q
)(
a′ − a

)
�

which is increasing in q when a′ > a.
Finally, Assumptions 5 and 6 both hold in Example 1 because when U(a�q�ω) =

−(a−ω+ q)2 then Uaq = −2 and Ua/Uq = 1.
Example 2

U(a�q�ω) = qaω− 1
2
(qa)2�

The function U(a�q�ω) is strictly concave in q and in a. Complementarity holds because

Uaω(a�q�ω) = q > 0�
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The single-crossing property holds because

U(a�q�ω)−U
(
a′� q�ω

) = q
(
a− a′)ω− 1

2
q2

[
a2 − (

a′)2]
= (

a− a′)q[
ω− 1

2
q
(
a+ a′)]�

The expression in brackets is decreasing in q, and so when a′ > a the entire expression is
increasing in q.

Finally, Assumption 6 holds because Ua/Uq = q/a > 0 for any q > 0.
Example 3

U(a�q�ω)=ω
√
aQ+ (1 − a)q�

The function U(a�q�ω) is concave (actually, linear) in q and strictly concave in a. Com-
plementarity holds because

Uaω(a�q�ω)= 1
2

√
Q√
a
> 0�

The single-crossing property holds because

U(a�q�ω)−U
(
a′� q�ω

) = [
ω

√
aQ+ (1 − a)q

] − [
ω

√
a′Q+ (

1 − a′)q]
= ω

√
Q

(√
a− √

a′) + (
a′ − a

)
q�

When a′ > a this function is increasing in q and so the single-crossing property is satisfied.
Assumption 4 holds because Uq = (1 − a)≥ 0.
Finally, Assumption 5 holds because Uaq = −1. Q.E.D.

LEMMA B.2: If Assumptions 1 and 3 hold, the receiver’s best response a∗
k defined in (3) is

differentiable in (ωk−1�ωk�qR), and increasing in ωk−1 and in ωk.

PROOF: The receiver’s best response to a partition element (b� c) is the a∗(b� c�qR)
that solves

L(a;b� c�qR) :=
∫ c

b

Ua(a�qR�ω)dF(ω)= 0.

Because of Assumption 1 a∗(b� c�qR) is unique. Since U(·� ·� ·) is twice continuously dif-
ferentiable L(a;b� c�qR) is continuously differentiable in all its arguments, and then the
implicit function theorem guarantees that a∗(·� ·� ·) is differentiable in its arguments. Us-
ing the implicit function theorem, and abbreviating a∗(b� c)= a∗, we get

0 = d

db
L

(
a∗;b� c�qR

) = −Ua

(
a∗� qR�b

)
f (b)+ ∂a∗

∂b
·
∫ c

b

Uaa

(
a∗� qR�ω

)
dF(ω)�

whence

∂a∗

∂b
= Ua

(
a∗� qR�b

)
f (b)∫ c

b

Uaa

(
a∗� qR�ω

)
dF(ω)

�
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The denominator is negative because of Assumption 1. The numerator is negative be-
cause, whenever b < c:

0 = L
(
a∗;b� c�qR

)
>

[
min
ω

Ua

(
a∗� qR�ω

)] ·
∫ c

b

dF(ω)

= Ua

(
a∗� qR�b

) · [F(c)− F(b)
]
,

where the first line comes from the definition of a∗(b� c), and the strict inequality comes
from Assumption 3 together with b < c. The proof in the case a = b is trivial. Hence
∂a∗
∂b

> 0.
Following the same steps we get

∂a∗

∂c
= − Ua

(
a∗� qR� c

)
f (c)∫ c

b

Uaa

(
a∗� qR�ω

)
dF(ω)

.

The denominator is negative because of Assumption 1. The numerator is positive because,
whenever b < c:

0 = L
(
a∗;b� c�qR

)
<

[
max

ω
Ua

(
a∗� qR�ω

)] ·
∫ c

b

dF(ω)

= Ua

(
a∗� qR� c

) · [F(c)− F(b)
]
.

Hence ∂a∗
∂c

> 0. Q.E.D.

LEMMA B.3—Well-Definedness of Inverse Demand, and Properties of Expected Pay-
offs: Fix q−i. Suppose the N-partition equilibrium correspondence ΩN(·� q−i) is defined on
the interval (c�d). Then the function V ∗

i (y� q−i;ΩN) is differentiable at every y ∈ (c�d) and
the fundamental theorem of calculus applies. If, moreover, the correspondence ΩN(·� q−i) is
extended continuously to [c�d] then V ∗

i (·� q−i;ΩN) is continuous on [c�d].

PROOF: Fix qS . For any y ∈ (c�d) we have

V ∗
R (y�qS;ΩN)=

N∑
k=1

∫ wk(y�qS)

wk−1(y�qS)

U
(
ak(y�qS)� y�ω

)
dF(ω)�

The functions wk(y�qS) are differentiable at y (refer to Section 2.7). By definition,
ak(y�qS) = a(wk−1(y�qS)�wk(y�qS)� y) where the function a(·� ·� ·) was defined on
page 7. This function was shown to be differentiable in all its arguments in Lemma B.2.
Hence ak(y�qS) is differentiable in y . The function U is differentiable by assumption,
hence U(ak(y�qS)� y�ω) is differentiable in y . Therefore, the function V ∗

R (y�qS;ΩN) is
differentiable at every y ∈ (c�d). Therefore the fundamental theorem of calculus applies,



4 N. ANTIĆ AND N. PERSICO

that is, for any a�b ∈ (c�d) we have

V ∗
R (b�qS;ΩN)− V ∗

R (a�qS;ΩN)=
∫ b

a

∂

∂y
V ∗
R (y�qS;ΩN)dy

=
∫ b

a

DR(y;qS�ΩN)dy�

Continuity of V ∗
R (·� qS;ΩN) at the points c and d holds because if each wk(y�qS) is ex-

tended continuously to the closed interval [c�d], then a(wk−1(y�qS)�wk(y�qS)� y) also
extends continuously, and since the function U is continuous by assumption, it follows
that the function V ∗

R (y�qS;ΩN) also extends continuously.
The argument for the sender’s expected payoff is identical. Q.E.D.

PROOF OF COROLLARY 3: Suppose the interval (c�d) is in the support of Ω(·� q−i).
Consider all the intervals [cτ�dτ) defined in Definition 5 and number them such that
c ∈ [c0� d0) and d ∈ [c1� d1). We have

V ∗
i (d�q−i;Ω)− V ∗

i (c� q−i;Ω) = [
V ∗
i (d0� q−i;Ω0)− V ∗

i (c� q−i;Ω0)
]

+
∑

[cτ�dτ)⊂(c�d)

[
V ∗
i (dτ� q−i;Ωτ)− V ∗

i (cτ� q−i;Ωτ)
]

+ [
V ∗
i (d�q−i;Ω1)− V ∗

i (c1� q−i;Ω1)
]
�

where Ωτ denotes the particular N-partition correspondence associated to the interval
[dτ�dτ) by the equilibrium correspondence Ω. Note that Ω evaluated at dτ is set equal to
Ωτ , using continuity of Ω. By Proposition 1, part 4, the sign of every term in brackets is
determined by the sign of Di. Thus, if the interval (c�d) lies inside the region where Di.
is nonnegative (resp., nonpositive), then each term in brackets has the same sign and the
infinite summation converges. Then V ∗

i (·� q−i;Ω) is nondecreasing (resp., nonincreasing).
Q.E.D.

APPENDIX C: TRADING WITH PRIVATE INFORMATION

There is an entrenched, controlling investor who owns θC share of the company. There
is a continuum of noncontrolling investors, who are essentially noise traders that have
perfectly elastic demand at some price p. An expert investor starts out with a share en-
dowment denoted by t∗, he observes ω and then he trades. The expert investor can sell all
but ε of his endowment, or buy more shares up to a maximum holding of (1 − θC), at the
price set by the non-controlling investors, p. After observing the expert investor’s trade,
the two engage in cheap talk communication and the controlling investor chooses a.

C.1. Model Discussion

In this model, trading takes place under asymmetric information; therefore, trading
serves as a signal of the expert’s information. The assumption of constant price (i.e., noise
traders with perfectly elastic demand) simplifies the analysis, but the analysis would not
break down if we assumed a price function that is increasing in the expert’s net trade.
Finally, this model is most comparable to the entrenched shareholder setting discussed in
Section 6.2, in that the controlling shareholder’s holdings are fixed.
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C.2. Equilibrium Characterization

The equilibrium is characterized by two regions. A low-ω region where the expert in-
vestor acquires less than (1 − θC); in this region the expert investor’s trade fully reveals
ω to the controlling investor. And, for some parameter values, a high-ω region where the
expert investor acquires exactly (1 − θC) shares and then relies on cheap talk to convey
information.

The analysis is inspired by the signaling model in Section 4 of Kartik (2007), where
in our case, the expert investor signals through trading shares. However, in the present
paper the cost/benefit of signaling is endogenous because the share value is a function of
the receiver’s action. So his results cannot be applied directly.

C.3. Fully Separating Region

In the fully-separating region, the controlling investor learns the exact state ω based on
the expert investor’s net trade after he learns the information. Denote the expert’s ex post
position after trading by t(ω). Suppose the expert investor retrades into t(ω̂). If t(ω̂) is
fully separating, upon observing it the controlling investor correctly infers that the state is
ω̂ and she takes action a∗ = ω̂/θC (recall that rC = 1). The expert investor’s utility is then

−σ2
X

2rE

(
rEt(ω̂)

ω̂

θC

−ω

)2

− (
t(ω̂)− t∗

)
p� (17)

where p denotes the price of shares. This is the utility after the expert (and now in-
formed) investor has retraded his position using a separating trading strategy t(·). The
term (t(ω̂)− t∗)p is the amount of money paid to achieve the new position t(ω̂).

We want to show that the trading function described by the following differential equa-
tion:

t ′(ω) = −

(
rE

θC

t(ω)− 1
)
ω(

rE

θC

t(ω)− 1
)
ω2 + θC

σ2
X

p

t(ω) for ω> 0 (18)

represents the separating region of an equilibrium.

LEMMA C.1—Features of the Solution to the Differential Equation: Let t(·) solve the
differential equation (18) with initial condition t(0)= ε, where 0 < ε< θC/rE . Then t ′(0)=
0; t ′(ω) > 0 for all ω> 0; and the function t(ω) achieves θC/rE asymptotically, but not for
finite ω.

PROOF: Denote

f (ω) = rE

θC

t(ω) and k0 = θC

σ2
X

p�

so that equation (18) rewrites as

f ′(ω) =
(
1 − f (ω)

)
ω(

f (ω)− 1
)
ω2 + k0

f (ω). (19)
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The following equation is an implicit solution of equation (19):

2f (ω)+ 2 log
(
1 − f (ω)

) + ω2

k0
f (ω)2 + c0 = 0, (20)

where k0 is fixed by the parameters of the problem, and c0 = −2[log(1 − rE
θC
ε)+ rE

θC
ε] > 0

is chosen to satisfy our initial conditon t(0) = ε. This can be verified by differentiating
(20) with respect to ω.

We now show that f (·) is strictly increasing. Fom (19), this is the case if

− k0

ω2 < f(ω)− 1 < 0. (21)

Let us first focus on the right-hand inequality of (21). Since t(0)= ε < θC/rE , at ω = 0 we
have f (ω)− 1 < 0. Furthermore, for any finite ω it must be f (ω)− 1 < 0; indeed, at any
ω̂ <∞ such that f (ω̂) = 1, equation (20) implies

2 + 2 log(0)+ (ω̂)2

k0
+ c0 = 0,

which is a contradiction since the LHS is infinite. Let us now focus on the left-hand in-
equality of (21). This inequality holds at ω = 0 because f (ω)− 1 > − k0

ω2 = −∞. Further-
more, this inequality holds for any finite ω; indeed, by contradiction, let ω̃ be the smallest
value of ω at which the left-hand inequality of (21) fails:(

f (ω̃)− 1
)
ω̃2 + k0 = 0�

Then equation (20) reads

2
(

1 − k0

ω̃2

)
+ 2 log

(
k0

ω̃2

)
+ ω̃2

k0

(
1 − k0

ω̃2

)2

+ c0 = 0�

Denoting x = k0
ω̃2 > 0, this equation rewrites as

2(1 − x)+ 2 log(x)+ 1
x
(1 − x)2 + c0 = 0�

The above function is decreasing in x (its derivative equals −(1 − x)2/x2), and it equals
c0 > 0 at x= 1. Therefore, the function is positive for all x ∈ (0�1]. But we know that x =
1 − f (ω̃) < 1 because by definition of ω̃, equation (21) holds for all ω ∈ (0� ω̃), whence
f (ω̃) > 0. Therefore, there is no ω̃ that solves equation (20). This establishes that f (·) is
strictly increasing.

We now show that limω→∞ f (ω) = 1, which proves that t(ω) achieves θC/rE asymptot-
ically. Sending ω to infinity in equation (20) causes the term involving ω2 to approach
+∞ which, recalling that f (ω) > 0, requires that the log term converges to −∞. Thus
limω→∞ 1 − f (ω)= 0. Q.E.D.

COROLLARY 5: Let t(·) solve the differential equation (18) with initial condition t(0)= ε.
Then t(1)≤ (θC/rE).
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As t(ω) ↑ θC
rE

the function t ′(ω) goes to zero hence t(ω) becomes very flat. This means
that slight variations in shares convey a lot of information about the expert’s signal. If
θC
rE

< (1−θC) this “efficient signaling”takes place at ownership levels below 1−θC . In this
case, the signaling equilibrium can be perfectly separating (and revealing) for all ω. For
the equilibrium to involve some pooling it must be that

θC

rE
> (1 − θC)�

COROLLARY 6: Since the t(·) that solves the differential equation (18) with initial condi-
tion t(0) = ε is positive and nondecreasing in ω, the product t(ω)ω is strictly increasing for
all ω.

LEMMA C.2—Best Response Property: Let t(·) solve the differential equation (18) with
initial condition t(0)= ε. Suppose the controlling investor expects type ω to play t(ω). Then
any expert type ω prefers t(ω) to t(ω̂) for any ω̂ > 0.

PROOF: Suppose the expert investor who knows the state ω acquires t(ω̂); then his
utility is

u(ω̂;ω) = −σ2
X

2rE

(
rEt(ω̂)

ω̂

θC

−ω

)2

− (
t(ω̂)− t∗

)
p� (22)

Differentiating this utility function with respect to ω̂ yields the following first-order con-
dition:

u1(ω̂;ω) = −
[
σ2

X

θC

(
rEt(ω̂)

ω̂

θC

−ω

)(
∂

∂ω̂
t(ω̂)ω̂

)]
− t ′(ω̂)p = 0� (23)

For ω̂= ω to be a maximum, this first-order condition must hold at ω̂ =ω. We now show
that the condition holds if t(·) solves the differential equation (18). To see this, set ω̂ =ω
and rewrite the first-order condition as follows:

u1(ω;ω) = −
[
σ2

X

θC

(
rEt(ω)

ω

θC

−ω

)(
∂

∂ω
t(ω)ω

)]
− t ′(ω)p

= −
(
rE

θC

t(ω)ω−ω

)[
t ′(ω)ω+ t(ω)

] − θC

σ2
X

t ′(ω)p

= −
[(

rE

θC

t(ω)ω−ω

)
ω+ θC

σ2
X

p

]
t ′(ω)−

(
rE

θC

t(ω)ω−ω

)
t(ω) = 0� (24)

which holds if t(·) solves the differential equation (18). In other words, t(ω) solves the
differential equation (18) for ω ∈ [0�∞) if and only if

u1(ω;ω)= 0 for all ω ∈ [0�∞)� (25)

Now suppose t(ω) solves the differential equation (18), and let us check the second-
order conditions for a maximum. These conditions require that the expert’s utility func-
tion (22) be single-peaked. Denoting this function by u(ω̂�ω), the first-order conditions
(23) can be written as

u1(ω̂�ω)|ω̂=ω = 0�
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Using (23), we can write

u1(ω̂�ω) = u1(ω̂� ω̂)+ σ2
X

θC

(ω− ω̂)

(
∂

∂ω̂
t(ω̂)ω̂

)

= σ2
X

θC

(ω− ω̂)

(
∂

∂ω̂
t(ω̂)ω̂

)
,

where the second equality holds because of (25). Since by Corollary 6 ∂
∂ω̂
t(ω̂)ω̂ > 0, this

expression shows that the first derivative is is positive for ω̂ < ω and negative otherwise.
Hence u(ω̂�ω) is indeed single-peaked as a function of ω̂ and it attains a maximum at
ω̂ =ω. Q.E.D.

LEMMA C.3—Initial Condition of Equilibrium Trading Strategy: There are potentially
many signaling equilibria, each associated with a different value of t(0). The controling in-
vestor is indifferent among them all. The one that is most preferred by the expert investor is the
one with the smallest t(0)= ε.

PROOF: The family of strategies identified by differential equation (18) indexed by its
initial conditions t(0), give rise to a family of signaling equilibria. Higher initial condi-
tions result in a pointwise-higher strategies t(·). Irrespective of the initial condition t(0),
all strategies identified by differential equation (18) induce the same fully informed con-
trolling agent’s action. Therefore, the expert investor’s preferred equilibrium within this
family of signaling equilibria is the one where his holdings t(ω) are closest to the ex-
pert investor’s preferred holdings conditional on the controlling agent being fully informed.
We now show that the expert investor’s preferred holdings conditional on the controlling
agent being fully informed are lower than any equilibrium signaling strategy. To see this,
notice that if the controlling investor knows ω the expert’s problem is

max
t

−σ2
X

2rE

(
rEt

ω

θC

−ω

)2

− (
t − t∗

)
p�

The first-order conditions read

−σ2
X

θC

(
rE

θC

tFI − 1
)
ω2 −p = 0�

where tFI denotes the full-information optimal holdings for the expert investor. A slight
rearrangement yields (

rE

θC

tFI − 1
)
ω2 + θC

σ2
X

p = 0�

From (21), which must hold in equilibrium, we have(
rE

θC

t(ω)− 1
)
ω2 + θC

σ2
X

p > 0�

which in comparison to the previous equation verifies that for any ω, tFI is smaller than
the equilibrium trading level t(ω). Therefore, the equilibrium that is most preferred by
the expert investor is the one with the smallest t(0)= ε. Q.E.D.
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PROPOSITION C.1—Characterization of Fully Separating Equilibrium: Let t(·) solve the
differential equation (18) with initial condition t(0)→ 0.

1. Suppose t(1)≤ 1−θC . Then there is a fully separating equilibrium where all expert types
in [0�1] trade according to t(·). The amount of shares acquired after retrading cannot
exceed θC/rE .

C.4. Comparative Statics for the Fully Separating Equilibrium Strategy

Denote by t(ω; rE� θC�σ
2
X�p) solve the differential equation (18) with initial condition

t(0) = ε. We want to see whether, as the parameters rE� θC�σ
2
X�p change, whether the

effect on t(·) is monotonic. To do this, we will compare two solutions t(ω;p) and t(ω;p′)
with p′ > p. If whenever t(ω;p) = t(ω;p′), we have t ′(ω;p) > t ′(ω;p′) then the two
solutions never cross and we have our monotonicity result.

LEMMA C.4: p′ >p implies t(ω;p) > t(ω;p′).

PROOF: Suppose t(ω;p)= t(ω;p′)= t. Then from differential equation (18), we have

t ′(ω;p)= −

(
rE

θC

t − 1
)
ω(

rE

θC

t − 1
)
ω2 + θC

σ2
X

p

t > −

(
rE

θC

t − 1
)
ω(

rE

θC

t − 1
)
ω2 + θC

σ2
X

p′
t = t ′

(
ω;p′)�

It follows that t(ω;p) > t(ω;p′). Q.E.D.

LEMMA C.5: r ′
E > rE implies t(ω; rE) > t(ω; r ′

E).

PROOF: Since r ′
E > rE , the following inequalities hold for any t > 0:(

rE

θC

t − 1
)

︸ ︷︷ ︸
−

[(
r ′
E

θC

t − 1
)
ω2 + θC

σ2
X

p

]
︸ ︷︷ ︸

+

<

(
r ′
E

θC

t − 1
)

︸ ︷︷ ︸
−

[(
rE

θC

t − 1
)
ω2 + θC

σ2
X

p

]
︸ ︷︷ ︸

+

�

(
rE

θC

t − 1
)
ω(

rE

θC

t − 1
)
ω2 + θC

σ2
X

p

<

(
r ′
E

θC

t − 1
)
ω(

r ′
E

θC

t − 1
)
ω2 + θC

σ2
X

p

�

−

(
rE

θC

t − 1
)
ω(

rE

θC

t − 1
)
ω2 + θC

σ2
X

p

t > −

(
r ′
E

θC

t − 1
)
ω(

r ′
E

θC

t − 1
)
ω2 + θC

σ2
X

p

t�

If t(ω; rE)= t(ω; r ′
E)= t then the above inequality reads

t ′(ω; rE) > t ′
(
ω; r ′

E

)
�

So r ′
E > rE implies that if t(ω; rE) = t(ω; r ′

E) = t then t ′(ω; rE) > t ′(ω; r ′
E). It follows that

t(ω; rE) > t(ω; r ′
E). Q.E.D.
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LEMMA C.6: θ′
C > θC implies t(ω;θC) > t(ω;θ′

C) if and only if t(ω) < θC
2rE

.

PROOF: Suppose t(ω;p)= t(ω;p′)= t. Then in light of differential equation (18) the
following inequalities are equivalent:

t ′(ω;θC) > t ′
(
ω;θ′

C

)
�

−

(
rE

θC

t − 1
)
ω(

rE

θC

t − 1
)
ω2 + θC

σ2
X

p

t > −

(
rE

θ′
C

t − 1
)
ω(

rE

θ′
C

t − 1
)
ω2 + θ′

C

σ2
X

p

t�

(
rE

θC

t − 1
)

(
rE

θC

t − 1
)
ω2 + θC

σ2
X

p

<

(
rE

θ′
C

t − 1
)

(
rE

θ′
C

t − 1
)
ω2 + θ′

C

σ2
X

p

�

(
rE

θC

t − 1
)[(

rE

θ′
C

t − 1
)
ω2 + θ′

C

σ2
X

p

]
<

(
rE

θ′
C

t − 1
)[(

rE

θC

t − 1
)
ω2 + θC

σ2
X

p

]
�

(
rE

θC

t − 1
)

︸ ︷︷ ︸
−

θ′
C <

(
rE

θ′
C

t − 1
)

︸ ︷︷ ︸θC

−

�

1
θC

(
rE

θC

t − 1
)

︸ ︷︷ ︸
−

<
1
θ′
C

(
rE

θ′
C

t − 1
)

︸ ︷︷ ︸
−

�

The inequality holds if

0 <
∂

∂θ

(
rE

θ2 t − 1
θ

)

= − 2
θ3 rEt + 1

θ2 �

which is equivalent to t < θ
2rE

. Q.E.D.

C.5. Pooling Region

The pooling region has the form [ω�1]. On that region all types purchase the maximum
amount of available shares (in our case, 1 − θC) and so no signal is conveyed by share
position. Instead, communication takes place via cheap talk. Type ω has to be indifferent
between buying t(ω) and being perfectly revealed, or buying 1 − θC and pooling with the
lowest interval in the cheap talk equilibrium partition. Given an equilibrium characterized
by a threshold ω, a full-revelation trading function t(·), and a partition {ω�ω1�ω2� � � �} of
the pooling region, type ω’s payoff from buying t(x) for any x <ω is, by (22):

U(x;ω) = −σ2
X

2rE

(
rEt(x)

x

θC

−ω

)2

− (
t(x)− t∗

)
p+ σ2

X

2rE
ω2 for any x <ω�
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whereas type ω’s payoff from pooling at 1 − θC and inducing any action yθC >ωθC is

U(y;ω)= −σ2
X

2rE

(
rE(1 − θC)

y

θC

−ω

)2

− (
1 − θC − t∗

)
p+ σ2

X

2rE
ω2 for any y >ω�

LEMMA C.7—Higher Types Are More Inclined to Pool: Fix x <ω< y . Then U(y;ω)−
U(x;ω) is increasing in ω.

PROOF:

U(y;ω)−U(x;ω)

= −σ2
X

2rE

(
rE(1 − θC)

y

θC

−ω

)2

− (
1 − θC − t∗

)
p

+ σ2
X

2rE

(
rEt(x)

x

θC

−ω

)2

+ (
t(x)− t∗

)
p

= −σ2
X

2rE

(
rE(1 − θC)

y

θC

−ω

)2

+ σ2
X

2rE

(
rEt(x)

x

θC

−ω

)2

+ (
t(x)− 1 + θC

)
p�

The derivative with respect to ω is

σ2
X

rE

(
rE(1 − θC)

y

θC

−ω

)
− σ2

X

rE

(
rEt(x)

x

θC

−ω

)

= σ2
X

rE

(
rE(1 − θC)

y

θC

− rEt(x)
x

θC

)
�

which is positive because (1 − θC) > t(x) and y > x. Q.E.D.

From this, we have that the equilibrium is characterized by a cutoff type, which is indif-
ferent between separating and pooling, that is, a type ω which solves

0 = −σ2
X

2rE

(
rEt(ω)

ω

θC

−ω

)2

− (
t(x)− t∗

)
p

+ σ2
X

2rE

(
rE(1 − θC)

y1(ω)

θC

−ω

)2

+ (
1 − θC − t∗

)
p

= −σ2
X

2rE

[(
rEt(ω)

ω

θC

−ω

)2

−
(
rE(1 − θC)

y1(ω)

θC

−ω

)2]
+ (

1 − θC − t(ω)
)
p. (26)
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