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S1. LEMMAS REGARDING Θ

WE FIRST PROVE THREE LEMMAS regarding Θ from (4.1),1 valid under Assumption 2.1.
For M ∈ Sd++ write 0<M <M as the smallest and largest eigenvalues. Additionally, the
bounding constant Ǩ > 0 below may change from line to line.

LEMMA S1.1: There exists K̂ > 0 such that for x ∈ E, y ∈ Rd , (i) Θ(x�y)≥ −K̂(1 + y ′y)
and (ii) |Θ(x� y)| ≤ K̂(1 + x′x+ y ′y).

PROOF: Let 0< δ<M . By part (iii) of Assumption 2.1,

Θ(x� y)≥ −K2

(
1 + |x|2−ε1

) + 1
2
(M − δ)|x|2 + 1

2
δx′x+ x′ζ − x′M̃y�

Clearly, −K2(1 + |x|2−ε1)+ (1/2)(M − δ)|x|2 ≥ −Ǩ. As δx′x− 2x′(M̃y − ζ)≥ −(1/δ)×
(M̃y − ζ)′(M̃ − ζ), the Cauchy–Schwarz inequality implies this may further be bounded
from below by −(2M̃ ′M̃/δ) × y ′y − (2/δ)ζ ′ζ. Part (i) now readily follows. Part (ii) is
obvious from Assumption 2.1 part (ii) and the Cauchy–Schwarz inequality. Q.E.D.

LEMMA S1.2: The maps y → e−γΘ(XT �y) and y → Ψ(XT)e
−γΘ(XT �y) are analytic from Rd

to L1(R) and L1(Rd), respectively.

PROOF: Part (i) of Lemma S1.1 implies e−γΘ(XT �y) ∈ L1(R) for all y ∈ Rd . Next, using
the multidimensional Taylor theorem, for any fixed g ∈ Rd we may write

e−γθ(x�y) = e−γ(Π′Ψ(x)+ 1
2 x

′Mx+x′ζ)eγy
′M̃x =

∑
α

Aα(x�g)(y − g)α�
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where α= (α1� � � � �αd) is a multi-index of nonnegative integers, |α| = α1 + · · · + αd , (y −
g)α = ∏d

i=1(yi − gi)αi , and

Aα(x�g)= e−γ(Π′Ψ(x)+ 1
2 x

′Mx+x′ζ) 1
|α|!Dα

(
eγy

′M̃x)∣∣
y=g = e−γΘ(x�g) 1

|α|!γ
|α|(M̃x)α�

Above, Dαf is the |α|th partial derivative of f , αi times with respect to yi for i= 1� � � � � d.
Since |xα| ≤ |x||α| and |M̃x| ≤ M̃|x|, it follows that

∣∣(M̃x)α∣∣ ≤ |M̃x||α| ≤ (M̃)|α||x||α|�

Let ε0 be from Assumption 2.1 and write M∗ = γM̃/(ε0). If |α| = n, then by part (i) of
Lemma S1.1 and the bound |x|n ≤ eε0|x|(n/ε0)

ne−n,

E
[∣∣Aα(XT�g)

∣∣] ≤ eγK̂(1+g′g) (nM∗)n

n!en E
[
eε0|XT |] ≤ ǨeγK̂(1+g′g) (M∗)n√

n
E
[
eε0|XT |]� (S1.1)

where the last inequality follows from Stirling’s formula. Thus, if there is L> 1 such that
maxi=1�����d |yi − gi| ≤ 1/(LM∗), then for N = 1�2� � � � ,

E

[∣∣∣∣∑
n≥N

∑
|α|=n

Aα(XT �g)(y − g)α
∣∣∣∣
]

≤
∑
n≥N

∑
|α|=n

E
[∣∣Aα(XT�g)

∣∣] d∏
i=1

|yi − gi|αi

≤ ǨeγK̂(1+g′g)E
[
eε0|XT |]∑

n≥N

∑
|α|=n

1√
n
L−n

= ǨeγK̂(1+g′g)E
[
eε0|XT |]∑

n≥N

1√
n
L−n

(
n+ d− 1

n

)

≤ ǨeγK̂(1+g′g)E
[
eε0|XT |]∑

n≥N
L−nnd−

1
2 �

The right hand side of the last inequality goes to 0 as N ↑ ∞, which proves y → e−γΘ(XT �y)

is an analytic map from Rd to L1(R). We next consider y →Ψ(XT)e
−γΘ(XT �y). As Ψ(XT)

does not depend on y , the proof is very similar and we only show the differences. First,
that Ψ(XT)e

−γΘ(XT �y) ∈L1(Rd) follows from Assumption 2.1 and part (i) of Lemma S1.1,
since ∣∣Ψ(XT)

∣∣e−γΘ(XT �y) ≤K1

(
1 +X ′

TXT

)
eγK̂(1+y′y) ≤ Ǩeε0|XT |eK̂(1+y′y)�

where the last inequality uses the estimate

x2 ≤ 2
k2

(
ekx − 1

) ≤ 2
k2 e

kx� x�k > 0� (S1.2)

Next, the analytic convergence proof is the same except in (S1.1) the first line (right hand
side) should have |Ψ(XT)| within the expected value. Then, going from the first to the
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second line, we use, for ε2� δ > 0 such that δ+ ε2 < ε0,

∣∣Ψ(XT)
∣∣|XT |n ≤K1

(
1 +X ′

TXT

)
eδ|XT |

(
n

δ

)n

e−n ≤ Ǩeε0|XT |
(
n

δ

)n

e−n�

From here, the rest of the proof is the same. Q.E.D.

LEMMA S1.3: There exists a constant Ĉ so that

E
[
X ′
TXTe

−γΘ(XT �y)]
E
[
e−γΘ(XT �y)] ≤ Ĉ(

1 +E
[
eε0|XT |] + y ′y

)
�

PROOF: For τ ≥ 0, define f (τ) := −(1/γ) log(E[e−γτΘ(XT �y)]). By part (i) of Lem-
ma S1.1, f (τ) ≥ K̂(1 + y ′y)τ. By Jensen’s inequality, part (ii) of Lemma S1.1, and
(S1.2) we deduce f (τ) ≤ Ǩ(1 + y ′y + E[eε0|XT |])τ, and hence f is linearly bounded. The
dominated convergence theorem shows f is smooth (see Dembo and Zeitouni (1998,
Lemma 2.5)), and Hölder’s inequality shows f is concave. Therefore,

ḟ (1)≤ lim
ε↓0
ḟ (ε)= lim

ε↓0

E
[
Θ(XT� y)e

−γεΘ(XT �y)]
E
[
e−γεΘ(XT �y)] �

Part (i) of Lemma S1.1 readily implies the uniform integrability of {e−γεΘ(XT �y)}ε>0. Parts
(i) and (ii) of Lemma S1.1, along with (S1.2) also imply, for ε < 1,∣∣Θ(x� y)∣∣e−γεΘ(x�y) =Θ(x�y)+e−γεΘ(x�y)1Θ(x�y)≥0 +Θ(x�y)−e−γεΘ(x�y)1Θ(x�y)<0

≤ ∣∣Θ(x�y)∣∣ + K̂(
1 + y ′y

)
eγK̂(1+y′y)

≤ Ǩ(
y ′y + eε0|x|) + K̂(

1 + y ′y
)
eγK̂(1+y′y)�

Thus, by Assumption 2.1 part (i) and dominated convergence we conclude that

ḟ (1)= E
[
Θ(XT� y)e

−γΘ(XT �y)]
E
[
e−γΘ(XT �y)] ≤ E

[
Θ(XT� y)

]
�

Plugging in for Θ gives

E
[
X ′
TMXTe

−γΘ(XT �y)]
2E

[
e−γΘ(XT �y)]

≤ E
[∣∣Θ(XT� y)

∣∣] − E
[(
Π′Ψ(XT)+X ′

T ζ − (XT)
′M̃y

)
e−γΘ(XT �y)]

E
[
e−γΘ(XT �y)] � (S1.3)

We claim Assumption 2.1(iii) implies for δ > 0 there exists a constant Ǩ so that

Π′Ψ(x)+ x′ζ − x′M̃y ≥ −Ǩ(
1 + y ′y

) − δ

2
x′Mx� (S1.4)
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Admitting this, taking δ= 1/2, and using (S1.3), we deduce

1
4
E
[
X ′
TMXTe

−γΘ(XT �y)]
E
[
e−γΘ(XT �y)] ≤ Ǩ(

1 + y ′y
) +E

[∣∣Θ(XT� y)
∣∣] ≤ Ǩ(

1 + y ′y +E
[
eε0|XT |])�

where the last inequality follows from Lemma S1.1 and (S1.2). The result holds since
x′x≤ (1/M)x′Mx. It thus remains to prove (S1.4). First, for δ > 0,

Π′Ψ(x)=Π′Ψ(x)± δ

2
x′Mx≥ −K2

(
1 + |x|2−ε1

) + δM

2T
x′x− δ

2
x′Mx

≥ −Ǩ(δ)− δ

2
x′Mx�

A similar calculation gives a commensurate lower bound for x′ζ. Equation (S1.4) follows
as

−x′M̃y ≥ −x′M̃y + δM

2
x′x− δ

2
x′Mx≥ − M̃ ′M̃

2M2δ2
y ′y − δ

2
x′Mx� Q.E.D.

S2. LEMMAS REGARDING THE FULL COMMUNICATION EQUILIBRIUM

Throughout, we enforce Assumptions 2.1 and A.1. Recall u from (4.5) and (B.2), and
GI from (2.5). The following lemma shows that u governs the conditional laws ofGI given
FB, as well as the Brownian motion Bm under FB ∨ σ(GI).

LEMMA S2.1:
(i) For each t ≤ T , the law ofGI given FB

t has pdf u(t�Xt� ·). Therefore, P[GI ∈ ·|FB
t ] ∼

P[GI ∈ ·] almost surely, with density

p̃
g
t := u(t�Xt� g)

u(0�X0� g)
= E

(∫ ·

0

(
μ̃gu

)′
dBu

)
t

�

μ̃
g
t := a(Xt)

′∇x

(
log

(
u(t�Xt� g)

))
�

(S2.1)

(ii) The filtration Fm = FB ∨ σ(GI) is right-continuous, 1/p̃GI is a (P�Fm) martingale,
and the martingale-preserving measure takes the form

dP̃GI

dP
= 1

p̃
GI
T

; p̃GI· = E
(∫ ·

0

(
μ̃GIu

)′
dBu

)
·
� (S2.2)

(iii) The process B is a (̃PGI �Fm) Brownian motion with the predictable representation
property (PRP), and Bm· := B· −

∫ ·
0 μ̃

GI
u du is a (P�Fm) Brownian motion on [0�T ]

with the PRP.

PROOF: Let φ ∈ C∞
c (R

d), t ≤ T , and set YI = 1/
√
T

√
CIW

I for a d-dimensional Brow-
nian motion independent ofB, and note thatYI is a Markov process with transition kernel

pCI (τ�x� y)= 1

(2π)d/2
√|CI |

√
T

τ
e− T

2τ (y−x)′C−1
I (y−x)� τ > 0�x� y ∈Rd�
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Similarly to (7.8) set p̂CI (y)= pCI (T�0� y). B,y the tower property,

E
[
φ(GN)|FB

t

] = E
[
E
[
φ

(
XT +YI

T

)|FB�W I

t

]|FB
t

]
�

Using the Markov property yields

E
[
φ

(
XT +YI

T

)|FB�W I

t

] =
∫
φ(x+ y)p(T − t�Xt�x)pCI

(
T − t�Y I

t � y
)
dxdy�

where the integration region is E ×Rd . Therefore, by the independence of B and YI ,

E
[
φ(GN)|FB

t

] =
∫
φ(x+ y)p(T − t�Xt�x)E

[
pCI

(
T − t�Y I

t � y
)]
dxdy

=
∫
φ(x+ y)p(T − t�Xt�x)p̂CI (y)dxdy

=
∫
φ(g)

(∫
p(T − t�Xt�x)p̂CI (g− x)dx

)
dg

=
∫
φ(g)u(t�Xt� g)dg�

Above the second equality holds by the Chapman–Kolmogorov equations. This shows
that given FB

t , GI has pdf u(t�Xt� ·). As FB
0 is trivial, the Jacod equivalence condition

and the first equality in (S2.1) follow. The second equality in (S2.1) follows from (B.3)
and Ito’s formula, finishing (i). As for (ii), the right-continuity of Fm and that 1/p̃GI is
a (P�Fm) martingale follow from Lemma S4.3, while the second equality in (S2.2) fol-
lows from Proposition S4.6. Last, the statement regarding B in part (iii) follows from
Fontana (2018, Proposition 2.9) and the statement regarding Bm follows from Fontana
(2018, Corollary 2.10). Q.E.D.

S3. LEMMAS REGARDING THE PARTIAL COMMUNICATION EQUILIBRIUM

We first prove lemmas in the Markovian noise setting. Assumptions 2.1, 7.1, 7.2, and
A.1 are in force. Recall the signal H and market filtration Fm from Assumption 7.2,
and the function � from (4.5) and (7.2). The first lemma collects facts about Fm and the
martingale-reserving measure P̃H of (7.4).

LEMMA S3.1:
(i) For each t ≤ T , the law ofH given FB

t has pdf �(t�Xt� ·). In particular, P[H ∈ ·|FB
t ] ∼

P[H ∈ ·] almost surely, with density

pht := �(t�Xt�h)

�(0�X0�h)
= E

(∫ ·

0

(
μhu

)′
dBu

)
t

�

μht := a(Xt)
′∇x

(
log

(
�(t�Xt�h)

))
�

(S3.1)

(ii) The filtration Fm is right-continuous, 1/pH is a (P�Fm)martingale, and the martingale-
reserving measure takes the form

dP̃H

dP
= 1
pHT
� pH· = E

(∫ ·

0

(
μHu

)′
dBu

)
·
�
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(iii) The process B is a (̃PH�Fm) Brownian motion with the PRP, and Bm· := B· −
∫ ·

0 μ
H
u du

is a (P�Fm) Brownian motion with the PRP.

PROOF: For (i), let φ ∈ C∞
c (R

d) and t ≤ T . By the tower property,

E
[
φ(H)|FB

t

] = E
[
E
[
φ

(
H

(
XT +YI

T � τN
(
XT +YI

T

) +YN
T

))|FB�W I�W N

t

]|FB
t

]
�

Using the Markov property yields

E
[
φ

(
H

(
XT +YI

T � τN
(
XT +YI

T

) +YN
T

))|FB�W I �W N

t

]
=

∫
φ

(
H

(
x+ y� τN(x+ y)+ ỹ))p(T − t�Xt�x)pI

(
t�Y I

t � T� y
)

×pN
(
t�YN

t �T� ỹ
)
dxdy dỹ�

where we integrate over E × Rd × Rd . The independence of (Y I�YN�B), along with the
Chapman–Kolmogorov equations imply

E
[
p(T − t�Xt�x)pI

(
t�Y I

t � T� y
)
pN

(
t�YN

t �T� ỹ
)|FB

t

] = p(T − t�Xt�x)p̂I(y)p̂N(ỹ)�

Therefore,

E
[
φ(H)|FB

t

] =
∫
φ

(
H

(
x+ y� τN(x+ y)+ ỹ))p(T − t�Xt�x)p̂I(y)p̂N(ỹ) dxdy dỹ�

With x and ỹ fixed, letting g= x+ y gives∫
φ

(
H(g�τNg+ ỹ))p(T − t�Xt�x)p̂I(g− x)p̂N(ỹ)dxdgdỹ�

and we are integrating over E ×Rd ×Rd . Next, with x and g fixed, let h=H(g�τNg+ ỹ)
so ỹ =G(g�h)− τNg, dỹ = |JG|(g�h)dh, and, by Assumption 7.2, h takes values in RH

for an integration region of E ×Rd ×RH . This yields∫
φ(h)p(T − t�Xt�x)p̂I(g− x)p̂N

(
G(g�h)− τNg

)∣∣JG∣∣(g�h)dxdgdh
=

∫
φ(h)

(∫
p(T − t�Xt�x)p̂I(g− x)p̂N

(
G(g�h)− τNg

)∣∣JG∣∣(g�h)dxdg)dh
=

∫
φ(h)�(t�Xt�h)dh�

Thus, given FB
t , H has pdf �(t�Xt� ·). As FB

0 is trivial, the Jacod equivalence condition
and first equality in (S3.1) readily follow. The second equality in (S3.1) holds by Ito’s
formula, since the PDE for u in (B.3) implies that for a fixed h, � solves �t + L� = 0 on
(0�T ) × E. This finishes item (i). The statements in parts (ii) and (iii) follow from the
exact same argument used to prove parts (ii) and (iii) in Lemma S2.1. Q.E.D.

We next prove similar results for FI = Fm ∨ s(GI) with GI from Assumption 7.1.
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LEMMA S3.2:
(i) For each t ≤ T , P[GI ∈ ·|Fm

t ] ∼ P[GI ∈ ·] almost surely with density

p
H�g
t := p̂N

(
G(g�H)− τNg

)∣∣JG∣∣(g�H)
�(t�Xt�H)

× u(t�Xt� g)

u(0�X0� g)
� g ∈Rd� (S3.2)

In particular, with p̃g and μ̃g from (S2.1), and pH and μH from (S3.1), we have

p̊
H�g
t := p

H�g
t

p
H�g
0

= u(t�Xt� g)

u(0�X0� g)
× �(0�X0�H)

�(t�Xt�H)

= p̃
g
t

pHt
= E

(∫ ·

0

(
μ̃gu −μHu

)′
dBmu

)
t

� (S3.3)

(ii) The filtration FI is right-continuous, 1/pH�GI is a (P�FI) martingale, and the (Fm to
FI) martingale-preserving measure P̃H�GI for GI is defined by

dP̃H�GI

dP
:= 1

p
H�GI
T

� pH�GI· = pH�GI0 E
(∫ ·

0

(
μH�GIu

)′
dBmu

)
·
�

μH�g· := μ̃g· −μH· �
(S3.4)

(iii) The process Bm is a (̃Pm�GI �FI) Brownian motion with the PRP, and BI· := Bm· −∫ ·
0 μ

H�GI
u du= B· −

∫ ·
0 μ̃

GI
u du is a (P�FI) Brownian motion with the PRP.

PROOF: We start with part (i). As these calculations are similar to those in Lemmas
S2.1 and S3.1 we will typically omit explanations. Let φ�ψ ∈ C∞

c (R
d) and At ∈ FBt for

t ≤ T . First

E
[
1Atφ(GI)ψ(H)

]
= E

[
1AtE

[
φ

(
XT +YI

T

)
ψ

(
H

(
XT +YI

T � τN
(
XT +YI

T

) +YN
T

))|FB�W I�W N

t

]]
�

Next,

E
[
φ

(
XT +YI

T

)
ψ

(
H

(
XT +YI

T � τN
(
XT +YI

T

) +YN
T

))|FB�W I�W N

t

]
=

∫
φ(x+ y)ψ(

H
(
x+ y� τN(x+ y)+ ỹ))p(T − t�Xt�x)p̂I(y)p̂N(ỹ) dxdy dỹ

=
∫
φ(g)ψ

(
H(g�τNg+ ỹ))p(T − t�Xt�x)p̂I(g− x)p̂N(ỹ)dxdgdỹ

=
∫
φ(g)ψ

(
H(g�τNg+ ỹ))u(t�Xt� g)p̂N(ỹ)dgdỹ�

With g fixed, set h=H(g�τNg+ ỹ) so that ỹ =G(g�h)− τNg, dỹ = |JG|(g�h)dh. Addi-
tionally multiplying by 1At and taking expectations yields

E
[
1Atφ(GI)ψ(H)

]
= E

[
1At

∫
φ(g)ψ(h)p̂N

(
G(g�h)− τNg

)∣∣JG∣∣(g�h)u(t�Xt� g)dgdh

]
�

(S3.5)
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By Lemma S3.1 we know that given FB
t , H has pdf �(t�Xt� ·). Therefore, for any suitably

measurable and integrable function χ,

E
[
1Atχ(t�Xt�H)ψ(H)

] = E

[
1At

∫
ψ(h)χ(t�Xt�h)�(t�Xt�h)dh

]
�

Thus, with

χ(t�x�h)= 1
�(t�x�h)

×
∫
φ(g)p̂N

(
G(g�h)− τNg

)∣∣JG∣∣(g�h)u(t�x�g)dg�
we see that E[1Atφ(GI)ψ(H)] = E[1Atχ(t�Xt�H)ψ(H)] for all At , ψ, and hence

E
[
φ(GI)|Fm

t

] = χ(t�Xt�H)=
∫
φ(g)

p̂N
(
G(g�H)− τNg

)∣∣JG∣∣(g�H)u(t�Xt� g)

�(t�Xt�H)
dg�

so that given Fm
t , GI has pdf

p̂N
(
G(g�H)− τNg

)∣∣JG∣∣(g�H)u(t�Xt� g)

�(t�Xt�H)
�

This shows that pH�gt is the density of P[GI ∈ ·|Fm
t ] with respect to P[GI ∈ ·] since GI has

unconditional pdf u(0�X0� ·). The statement in (S3.3) follows from (S2.1), (S3.1), and part
(iii) of Lemma S3.1. The statements in (ii) follow from Lemma S4.3 and Proposition S4.6.
The statements in (iii) follow from Fontana (2018, Proposition 2.9 and Corollary 2.10).

Q.E.D.

Continuing, we prove results about the filtration FN = Fm ∨ s(GN) for GN from As-
sumption 7.2. To state the lemma, recall the pdf for GN given in (C.1).

LEMMA S3.3:
(i) For each t ≤ T , P[GN ∈ ·|Fm

t ] ∼ P[GN ∈ ·] almost surely with density

p
H�g
N�t := u

(
t�Xt� Ǧ(g�H)

)∣∣JǦ∣∣(g�H)p̂N(
g− τNǦ(g�H)

)
�(t�Xt�H)uN(g)

� (S3.6)

In particular, with pH�g from (S3.2),

p
H�GI
t

p
H�GN
N�t

= p
GI�H
0

p
GN�H
N�0

=
∣∣JG∣∣(GI�H)uN(GN)∣∣JǦ∣∣(GN�H)u(0�X0�GI)

� (S3.7)

(ii) We have FN = FI .

PROOF: We start with (i). These calculations are very similar to those in Lemma S3.2
and as such, we will not include all the steps. Let φ�ψ ∈ C∞

c (R
d) and At ∈ FBt for t ≤ T .
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First

E
[
φ(GN)ψ(H)|FB�W I �W N

t

]
= E

[
φ

(
τN

(
XT +YI

T

) +YN
T

)
ψ

(
H

(
XT +YI

T � τN
(
XT +YI

T

) +YN
T

))|FB�W I�W N

t

]
=

∫
φ(τNg+ ỹ)ψ(

H(g�τNg+ ỹ))p(T − t�Xt�x)p̂I(g− x)p̂N(ỹ)dxdgdỹ

=
∫
φ(τNg+ ỹ)ψ(

H(g�τNg+ ỹ))u(t�Xt� g)p̂N(ỹ)dgdỹ

=
∫
φ(z)ψ

(
H(g�z)

)
u(t�Xt� g)p̂N(z− τNg)dgdz�

For z fixed, set h=H(g�z) so that g= Ǧ(z�h) and dg= |JǦ|(z�h)dh. This leads to∫
φ(z)ψ(h)u

(
t�Xt� Ǧ(z�h)

)∣∣JǦ∣∣(z�h)p̂N(
z− τNǦ(z�h)

)
dz dh�

Therefore,

E
[
1Atφ(GN)ψ(H)

]
= E

[
1At

∫
φ(z)ψ(h)u

(
t�Xt� Ǧ(z�h)

)∣∣JǦ∣∣(z�h)p̂N(
z− τNǦ(z�h)

)
dz dh

]
�

Repeating the analogous steps as in Lemma S3.2, we deduce that

E
[
φ(GN)|Fm

t

] =
∫
φ(z)

u
(
t�Xt� Ǧ(z�H)

)∣∣JǦ∣∣(z�H)p̂N(
z− τNǦ(z�H)

)
�(t�Xt�H)

dz�

so that given Fmt , GN has pdf (replacing g with z)

u
(
t�Xt� Ǧ(g�H)

)∣∣JǦ∣∣(g�H)p̂N(
g− τNǦ(g�H)

)
�(t�Xt�H)

and hence (S3.6) follows, as uN is the pdf for GN . The identity in (S3.7) is immediate.
Last, FN = FI follows because H(x�y) is invertible in both x and y . Q.E.D.

With all the preparatory lemmas in place, we prove Theorem 7.3. Note that by Assump-
tion 7.1, p̂I , and hence u, is bounded from above. Similarly, Assumptions 7.1 and 7.2, and
Lemma S3.1 imply � is bounded from above, and thus we deduce∫

Rd

(
log

(
u(0�X0� g)

))+(
u(0�X0� g)+ uN(g)

)
dg <∞�

∫
Rd×RH

(
log

(
u
(
0�X0�G(g�h)

)))+
u(0�X0� g)�(0�X0�h)dgdh <∞�

∫
RH

(
log

(
�(0�X0�h)

))+
�(0�X0�h)dh <∞�

(S3.8)
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PROOF OF THEOREM 7.3: We start by collecting facts regarding Q̌. First, BQ̌
· := B· +∫ ·

0 ν̌u du is a (Q̌�Fm) Brownian motion with the PRP. Next, S is a (Q̌�Fm) martingale by
construction, with dSt = σt dBQ̌

t = σt(ν̌t + dBt). Last,

ZQ̌
t = dQ̌

dP̃

∣∣∣∣
Fm
t

× dP̃

dP

∣∣∣∣
Fm
t

= Žt

pHt
= Žt�(0�X0�H)

�(t�Xt�H)
= E

(
−

∫ ·

0
ν′
u dB

m
u

)
t

(S3.9)

for t ≤ T . Indeed, the second equality follows from (7.4) and (C.2), the third equal-
ity follows from (S3.1), and the fourth equality follows from (S3.1), (C.2), and dBmt =
dBt −μht dt. Now consider the uninformed investor’s value function. Clearly, Q̌ ∈ M̃ and,
in fact, we claim Q̌ ∈ M̃m. First, ZQ̌

0 = 1 so ZQ̌ = Z̊Q̌. Second, as �(0�X0�H) is Fm
0 mea-

surable, Ẽ[ŽT |Fm
0 ] = 1, P̃ = P on σ(H), and H ∼ �(0�X0� ·), then

E
[
Z̊Q̌

T log
(
Z̊Q̌

T

)] ≤ Ẽ
[
ŽT log(ŽT )

] +
∫
h∈RH

(
log

(
�(0�X0�h)

))+
�(0�X0�h)dh

+ Ẽ
[
ŽT log

(
�(T�XT �H)

)−]
<∞� (S3.10)

where the last inequality holds from (S3.8), (C.3), and (C.4)(a). Thus, H0(Q̌|P) <∞ al-
most surely so Q̌ ∈ M̃m. Next, we claim that for all Q ∈Mm,

ZQ
· =ZQ

0 Z̊
Q̌
· � (S3.11)

so Z̊Q = Z̊Q̌. Indeed, from Lemma S3.1 part (iii), we can write ZQ

T =ZQ

0 E(
∫ ·

0 θ
′
t dB

m
t )T for

some θ ∈P(Fm). Girsanov’s theorem and (7.6) imply S has dynamics

dSt = σt
(
(νt + θt)dt + dBQ

t

)
� BQ

· = Bm· −
∫ ·

0
θu du�

That Q ∈ Mm implies
∫ ·

0 σu(νu + θu)du is a continuous (Q�Fm) local martingale of finite
variation, and hence is identically zero. This gives θ= ν Leb[0�T ] × P almost surely, which
in light of (S3.9) verifies (S3.11).

By duality, for each π ∈Am, Q ∈ M̃m, and Fm
0 -measurable λ > 0,

E

[
− 1
γU
e−γUWπ

T

∣∣∣Fm
0

]
≤ E

[
1
γU

(
λZQ

T

)(
log

(
λZQ

T

) − 1
) + λZQ

TWπ
T

∣∣∣Fm0
]

≤ 1
γU
λ̊(log(λ̊)− 1)+ 1

γU
λ̊E

[
ŽT

pHT
log

(
ŽT

pHT

)∣∣∣Fm
0

]
�

where we have set λ̊ = λZQ

0 and used (S3.11). The infimum above over λ̊ is achieved at
log(λ̊)= −E[(ŽT /pHT ) log(ŽT /pHT )|Fm

0 ], and plugging this in yields

E

[
− 1
γU
e−γWπ

T

∣∣∣Fm
0

]
≤ − 1

γU
e

−E[ ŽT
pH
T

log( ŽT
pH
T

)|Fm
0 ]
�
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Furthermore, there is equality if and only if

Wπ
T = 1

γU
E

[
ŽT

pHT
log

(
ŽT

pHT

)∣∣∣Fm
0

]
− 1
γU

log
(
ŽT

pHT

)
(S3.12)

and E[(ŽT /pHT )Wπ
T |Fm

0 ] = 0, but this latter equality is immediate. By (S3.9), (S3.10), and
|x log(x)| ≤ x log(x)+ 2/e, x > 0, we know that

MU
· := − 1

γU
EQ̌

[
log

(
ŽT

pHT

)∣∣∣Fm
·

]

is a (Q̌�Fm) martingale. Thus, by PRP there is a θU ∈ P(Fm) such that
∫ T

0 |θUu |2 du <∞
and MU

· = MU
0 + ∫ ·

0(θ
U
u )

′ dBQ̌
u . As σ is invertible and dSt = σt dB

Q̌
t , if we set π̂U· :=

(σ ′
· )

−1θU· , then W π̂U

· =MU
· −MU

0 is a (Q̌�Fm) martingale verifying (S3.12). Using (S3.1)
and (S3.9), noting that �(0�X0�H) is Fm

0 measurable, and using Ẽ[ŽT |Fm
0 ] = 1, we sim-

plify (S3.12) to deduce the existence of an optimal strategy π̂U ∈Am such that

W π̂U

T = 1
γU

Ẽ

[
ŽT log

(
ŽT

�(T�XT �H)

)∣∣∣Fm
0

]
− 1
γU

log
(

ŽT

�(T�XT �H)

)

W π̂U is a
(
Q̌�Fm

)
martingale�

(S3.13)

We next consider the noise trader’s value function for a fixed g ∈ Rd . Since p̊H�g from
(S3.3) is a strictly positive (P�Fm) martingale (see (S3.3) and Lemma S4.3), the identity
in (S3.3) implies that Pg from (2.8) is well defined. We have already shown Q̌ ∈ M. Fur-
thermore, from (B.3), (S3.3), and (S3.9) we know that

Z
Q̌�g
T := dQ̌

dPg

∣∣∣∣
Fm
T

= dQ̌

dP

∣∣∣∣
Fm
T

× dP

dPg

∣∣∣∣
Fm
T

= ŽT

pHT p̊
H�g
T

= ŽTu(0�X0� g)

p̂I(g−XT)
� (S3.14)

As ZQ̌�g
0 = 1,

EPg
[
Z̊

Q̌�g
T log

(
Z̊

Q̌�g
T

)] = EQ̌

[
log

(
ŽT

pHT p̊
H�g
T

)]
= Ẽ

[
ŽT log

(
ŽTu(0�X0� g)

p̂I(g−XT)

)]

≤ Ẽ
[
ŽT log(ŽT )

] + (
log

(
u(0�X0� g)

))+ + Ẽ
[
ŽT

(
log

(
p̂I(g−XT)

))−]
<∞� (S3.15)

Above, the finiteness follows from (C.3) and (C.4)(b). ThusH0(Q̌|Pg) <∞ and M̃m�g �= ∅.
Now, let Q ∈ M̃m�g. From (S3.11) we know ZQ

· = ZQ

0 Ž·/pH· . Thus, with respect to Pg,
ZQ�g

· =ZQ

0 Ž·/(pH· p̊
H�g
· ). Therefore, repeating the duality argument, a strategy πN�g is op-

timal if and only if

WπN�g

T = 1
γN

EPg

[
ŽT

pHT p̊
H�g
T

log
(

ŽT

pHT p̊
H�g
T

)∣∣∣Fm
0

]
− 1
γN

log
(

ŽT

pHT p̊
H�g
T

)
� (S3.16)
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By (S3.15) and |x log(x)| ≤ x log(x)+ 2/e, x > 0, we know that

MN�g
· := − 1

γN
EQ̌

[
log

(
ŽT

pHT p̊
H�g
T

)∣∣∣Fm
·

]

is a (Q̌�Fm) martingale. Thus, there is θN�g ∈P(Fm) so that MN�g
· =MN�g

0 + ∫ ·
0(θ

N�g
u )′ dBQ̌

u .
If we set

π̂N�g· := (
σ ′

·
)−1
θN�g· � (S3.17)

then W π̂N�g

· =MN�g · −MN�g
0 is a (Q̌�Fm) martingale verifying (S3.16). Using (S3.14) and

(S3.15), this simplifies to

W π̂N�g

T = 1
γN

Ẽ

[
ŽT log

(
ŽT

p̂I(g−XT)

)∣∣∣Fm
0

]
− 1
γN

log
(

ŽT

p̂I(g−XT)

)
�

where the last equality follows as u(0�X�g) is constant and Ẽ[ŽT |Fm
0 ] = 1. Thus, we have

shown the existence of an optimal strategy π̂N�g ∈AN�g which satisfies

W π̂N�g

T = 1
γN

Ẽ

[
ŽT log

(
ŽT

p̂I(g−XT)

)∣∣∣Fm
0

]
− 1
γN

log
(

ŽT

p̂I(g−XT)

)
�

W π̂N�g is a
(
Q̌�Fm

)
martingale�

(S3.18)

We next turn to the informed investor. Equation (S3.9) implies that Ž/pH is a (P�Fm)
martingale starting at 1. Thus, if we define Q̌I through dQ̌I/dP = ŽT /(p

H
T p

H�GI
T ), then

Lemma S4.8 part (ii) implies that Q̌I ∈MI , while calculation shows Z̊Q̌I = Ž/(pHp̊H�GI ).
Furthermore, BQ̌ is a (Q̌I�FI) Brownian motion with the PRP (Fontana (2018, Propo-
sition 2.9) and Remark S4.4). Now Q̌I ∈ M̃I will follow if E[Z̊Q̌I

T log(Z̊Q̌I

T )|F I
0 ] <∞. To

show this, we first claim (note the presence of Z̊Q̌I )

EQ̌I
[∣∣log

(
Z̊Q̌I

T

)∣∣] = E

[
ŽT

pHT p
H�GI
T

∣∣∣∣log
(

ŽT

pHT p̊
H�GI
T

)∣∣∣∣
]
<∞� (S3.19)

Since (x/y)| log(x)| ≤ (1/y)(x log(x)+ 2/e) for x� y > 0, we see (for x = ŽT /(p
H
T p̊

H�GI
T )

and y = pH�GI0 )

E

[
ŽT

pHT p
H�GI
T

∣∣∣∣log
(

ŽT

pHT p̊
H�GI
T

)∣∣∣∣
]

≤ E

[
ŽT

pHT p
H�GI
T

log
(

ŽT

pHT p̊
H�GI
T

)
+ 2

ep
H�GI
0

]
� (S3.20)

By definition of pH�GI and since GI ∼ u(0�X0� ·),

E

[
1

p
H�GI
0

]
= E

[∫
g∈Rd

1

p
H�g
0

p
H�g
0 u(0�X0� g)dg

]
= 1� (S3.21)
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Next,

E

[
ŽT

pHT p
H�GI
T

log
(

ŽT

pHT p̊
H�GI
T

)]

= E

[
ŽT

pHT

∫
Rd

log
(

ŽT

pHT p̊
H�g
T

)
u(0�X0� g)dg

]

=
∫
Rd

Ẽ

[
ŽT log

(
ŽTu(0�X0� g)

p̂I(g−XT)

)]
u(0�X0� g)dg

≤ Ẽ
[
ŽT log(ŽT )

] +
∫
g∈Rd

Ẽ
[
ŽT

(
log

(
p̂I(g−XT)

))−]
u(0�X0� g)dg

+
∫
g∈Rd

(
log

(
u(0�X0� g)

))+
u(0�X0� g)dg <∞� (S3.22)

Above, the first equality follows by conditioning on Fm
T and using part (i) of Lemma S3.2,

the second equality using (B.3), (S3.1), and (S3.3), and the second inequality follows from
(C.3), (S3.8), and (C.4)(c). Therefore, (S3.19) follows from (S3.20), (S3.21), and (S3.22).
But (S3.19) implies E[Z̊Q̌I

T log(Z̊Q̌I

T )|F I
0 ]<∞ since

0 ≤ E
[
Z̊Q̌I

T log
(
Z̊Q̌I

T

)|F I
0

] ≤ 1

ZQ̌I

0

E
[
ZQ̌I

T

∣∣log
(
Z̊Q̌I

T

)∣∣|F I
0

]
�

Next, we claim that any Q ∈ M̃I has density process ZQ
· = ZQ

0 Z̊
Q̌I

· . Indeed, using part
(iii) of Lemma S3.2, we deduce the existence of θ ∈P(FI) so that ZQ

T =ZQ

0 E(
∫ ·

0 θ
′
t dB

I
t )T .

Using Girsanov, along with dBIt = dBmt −μH�GIt dt and (7.6), we see S has dynamics dSt =
σt(νt + μ

H�GI
t + θt)dt + σt dB

Q�I
t , where BQ�I

· = BI· − ∫ ·
0 θu du. As S, BQ�I are continuous

(Q�FI)local martingales, ν+μH�GI + θ≡ 0 from whence

ZQ
t =ZQ

0 E
(

−
∫ ·

0

(
νu +μH�GIu

)′
dBIu

)
t

=ZQ

0

Žt

pHt p̊
H�GI
t

�

To obtain the last equality we use the steps

Žt

pHt p̊
H�GI
t

= Žtu(0�X0�GI)

u(t�Xt�GI)
=

E
(

−
∫ ·

0
ν̌′
u dBu

)
t

E
(∫ ·

0

(
μ̃GIu

)′
dBu

)
t

= E
(

−
∫ ·

0

(
ν̌u + μ̃GIu

)′(
dBu − μ̃GIu du

))
t

= E
(

−
∫ ·

0

(
νu +μH�GIu

)′(
dBmu −μH�GIu du

))
t

= E
(

−
∫ ·

0

(
νu +μH�GIu

)′
dBIu

)
t

�
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The first equality follows from (S3.3), the second from (S2.2) and part (iii) of Lemma S3.2,
the fourth from ν = ν̌ + μH , dBmt = dBt − μHt dt, and (S3.4), and the fifth also from part
(iii) of Lemma S3.2. This proves the assertion.

The duality argument shows πI is optimal if and only if

WπI

T = 1
γI

E

[
ŽT

pHT p̊
H�GI
T

log
(

ŽT

pHT p̊
H�GI
T

)∣∣∣F I
0

]
− 1
γI

log
(

ŽT

pHT p̊
H�GI
T

)
�

By (S3.19) we know that

MI
· := − 1

γI
EQ̌I

[
log

(
ŽT

pHT p̊
H�GI
T

)∣∣∣F I
·

]
�

is a (Q̌I�FI) martingale. Thus, there is a θI ∈ P(FI) such that MI
t =MI

0 + ∫ t

0 (θ
I
u)

′ dBQ̌
u .

Thus, if we set π̂I· := (σ ′
· )

−1θI· , then W π̂I

· =MI
· −MI

0 is a (Q̌I�FI) martingale, and using
the conditional Bayes rule,

W π̂I

T = 1
γI

EQ̌I

[
log

(
ŽT

pHT p̊
H�GI
T

)∣∣∣F I
0

]
− 1
γI

log
(

ŽT

pHT p̊
H�GI
T

)

= 1
γI

E

[
ŽT

pHT p̊
H�GI
T

log
(

ŽT

pHT p̊
H�GI
T

)∣∣∣F I
0

]
− 1
γI

log
(

ŽT

pHT p̊
H�GI
T

)
�

proving optimality of π̂I . To simplify this expression note that as above pHT p̊
H�GI
T =

p̂I(GI −XT)/u(0�X0�GI), and since u(0�X0�GI) is F I
0 -measurable, it disappears from

the expression for W π̂I

T . Furthermore, Lemma S4.8 implies

EQ̌I

[
log

(
ŽT

p̂I(GI −XT)

)∣∣∣F I
0

]
=

(
Ẽ

[
ŽT log

(
ŽT

p̂I(g−XT)

)∣∣∣Fm
0

])∣∣∣∣
g=GI

= Ẽ
[
ŽT log(ŽT )|Fm

0

]
− (

Ẽ
[
ŽT log

(
p̂I(g−XT)

)|Fm
0

])∣∣
g=GI �

We conclude for the optimal trading strategy π̂I that

W π̂I

T = 1
γI

(
Ẽ
[
ŽT log(ŽT )|Fm

0

] − (
Ẽ

[
ŽT log

(
p̂I(g−XT)

)|Fm
0

])∣∣
g=GI

)

− 1
γI

log
(

ŽT

p̂I(GI −XT)

)
� (S3.23)

W π̂I is a
(
Q̌I�FI

)
martingale�

Having identified the optimal wealth processes for each investor, we now put them to-
gether. We have already shown that W π̂I is a (Q̌�FI) martingale, and from Amendinger
(2000, Proposition 3.4), Fm ⊆ FI , we know π̂U is both FI-predictable and S-integrable
under Q̌I . Furthermore, the semi-martingales Fm −W π̂U and FI −W π̂U have a common
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version. Thus, as (S3.13) implies W π̂U is a (Q̌�Fm) martingale, Amendinger (2000, Theo-
rem 3.2) shows W π̂U is a (Q̌I�FI) martingale. As for the noise trader, Lemma S3.4 below
proves

π̂N�GN is well defined�FI-predictable, and S-integrable under
(
Q̌I�FI

)
�

W π̂N�GN is a
(
Q̌I�FI

)
martingale, and W π̂N�GN = (

W π̂N�g
)∣∣
g=GN �

(S3.24)

Therefore, we use (S3.13), (S3.23), and (S3.18) to obtain

∫ T

0

(
ωUπ̂

U
t +ωIπ̂

I
t +ωNπ̂

N�GN
t

)′
dSt

=ωUW π̂U

T +ωIW π̂I

T +ωNW π̂N�GN
T

= αU
(
Ẽ

[
ŽT log(ŽT )|Fm

0

] − Ẽ
[
ŽT log

(
�(T�XT �H)

)|Fm
0

] − log
(

ŽT

�(T�XT �H)

))

+ αI
(
Ẽ

[
ŽT log(ŽT )|Fm

0

] − (
Ẽ
[
ŽT log

(
p̂I(g−XT)

)|Fm
0

])
g=GI

− log
(

ŽT

p̂I(GI −XT)

))

+ αN
(
Ẽ

[
ŽT log(ŽT )|Fm

0

] − (
Ẽ
[
ŽT log

(
p̂I(g−XT)

)|Fm
0

])
g=GN

− log
(

ŽT

p̂I(GN −XT)

))
�

Furthermore,

M :=
∫ ·

0

(
ωUπ̂

U
t +ωIπ̂

I
t +ωNπ̂

N�GN
t

)′
dSt is a

(
Q̌I�FI

)
martingale�

Recalling the definition of γ in (2.2), the above simplifies to

MT = 1
γ

(
Ẽ
[
ŽT log(ŽT )|Fm

0

] − log(ŽT )
)

− αU
(
Ẽ
[
ŽT log

(
�(T�XT �H)

)|Fm
0

] − log
(
�(T�XT �H)

))
− αI

((
Ẽ
[
ŽT log

(
p̂CI (g−XT)

)|Fm
0

])
g=GI − log

(
p̂CI (GI −XT)

))
− αN

((
Ẽ

[
ŽT log

(
p̂CI (g−XT)

)|Fm
0

])
g=GN − log

(
p̂CI (GN −XT)

))
�

Now assume a PCE exists. Then ωUπ̂
U
t +ωIπ̂

I
t +ωNπ̂

N�GN
t =Π and (7.7) follows. Next

assume (7.7). This gives MT =Π′(Ψ(XT)− S0)= ∫ T

0 Π
′ dSt . By construction in (7.6), we

know S is a (Q̌�Fm) martingale, hences a (Q̌I�FI) martingale. Thus, we see for all t ≤ T
that 0 = M̌t :=

∫ t

0 (ωUπ̂
U
u +ωIπ̂

I
u +ωNπ̂

N�GN
u −Π)′ dSu. Thus, M̌ is a continuous martin-
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gale with quadratic variation

0 = 〈M̌〉t =
∫ t

0

∣∣σ ′
u

(
ωUπ̂

U
u +ωIπ̂

I
u +ωNπ̂

N�GN
u −Π)∣∣2

du�

As σ ′ is nondegenerate Leb[0�T ] ×P almost surely, we haveωUπ̂
U
t +ωIπ̂

I
t +ωNπ̂

N�GN
t =Π,

and hence a PCE exists, finishing the proof. Q.E.D.

LEMMA S3.4: The statements in (S3.24) hold.

PROOF: Recall (S3.15), which states

EPg
[
Z̊

Q̌�g
T log

(
Z̊

Q̌�g
T

)] = EQ̌

[
log

(
ŽT

pHT p̊
H�g
T

)]
<∞�

The inequality x| log(x)| ≤ x log(x) + 2/e implies EQ̌[| log(ŽT /(pHT p̊
H�g
T ))|] < ∞, which

in turn identifies the processes θN�g and π̂N�g from (S3.17). In light of Lemma S3.3 and
the above integrability condition, we may apply Proposition S4.6 (with F = Fm, P = Q̌,
and B = BQ̌ therein). Part (i) implies θN�GN , π̂N�GN are P(FN)-measurable, and hence
P(FI)-measurable, as Lemma S3.3 shows FI = FN . To ease notation, set F as the common
filtration. Next define the measure Q̌N by

dQ̌N

dP
= ŽT

pHT p
H�GN
N�T

� (S3.25)

The filtration Q̌N is the (Fm to F) martingale-preserving measure for Q̌ and GN . As such,
BQ̌ is a (Q̌N�F) Brownian motion, and from parts (iii) and (iv) of Proposition S4.6 we
know that QN almost surely

∫ T

0

∣∣θN�GNt

∣∣2
dt <∞� sup

t≤T

∣∣∣∣
∫ t

0

(
θN�GNu

)′
dBQ̌

u −
(∫ t

0

(
θN�gu

)′
dBQ̌

u

)∣∣∣∣
g=GN

∣∣∣∣ = 0�

As QI is equivalent to QN on FT , it follows that π̂N�GN is S-integrable under QI , and from
the right equality above that W π̂N�GN = (W π̂N�g)|g=GN under QI .

The last thing to show is that W π̂N�GN is a (Q̌I�F) martingale. To this end, we first show
that it is a (Q̌N�F) martingale. Indeed,

EQ̌N

[∣∣∣∣log
(

ŽT

pHT p̊
H�GN
T

)∣∣∣∣
]

=
∫
Rd

EQ̌

[∣∣∣∣log
(

ŽT

pHT p̊
H�g
T

)∣∣∣∣
]
uN(g)dg� (S3.26)

where uN(g) from (C.1) is the pdf of GN . To evaluate this expression set χ(g�H) :=
EQ̌[| log(ŽT /(pHT p̊

H�g
T ))||Fm

0 ]. As Ž0/(p
H
0 p̊

H�g
0 ) = 1, x| log(x)| ≤ x log(x) + 2/e, and
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Ẽ[ŽT |Fm
0 ] = 1, calculations similar to (S3.15) show

χ(g�H)≤ 2
e

+ Ẽ

[
ŽT log

(
ŽTu(0�X0� g)

p̂I(g−XT)

)∣∣∣Fm
0

]

≤ 2
e

+ Ẽ
[
ŽT log(ŽT )|Fm

0

] + (
log

(
u(0�X0� g)

))+

+ Ẽ
[
ŽT

(
log

(
p̂I(g−XT)

))−|Fm
0

]
� (S3.27)

Using this in (S3.26),

EQ̌N

[∣∣∣∣log
(

ŽT

pHT p̊
H�GN
T

)∣∣∣∣
]

≤ 2
e

+ Ẽ
[
ŽT log(ŽT )

] +
∫
Rd

(
log

(
u(0�X0� g)

))+
uN(g)dg

+
∫
Rd

Ẽ
[
ŽT

(
log

(
p̂I(g−XT)

))−]
uN(g)dg <∞�

(S3.28)
where the last inequality follows from (S3.8), (C.3), and (C.4)(c).

From (S3.28), and Lemma S4.8 we know W π̂N�GN is a (Q̌N�F)martingale. Let us assume
for now that

EQ̌I
[∣∣W π̂N�GN

t

∣∣]<∞� t ≤ T� (S3.29)

The (Q̌I�F) martingale property follows from that under (Q̌N�F) and Lemma S3.3. In-
deed, from part (i) of Lemma S3.3 for t ≤ T ,

dQ̌N

dQ̌I

∣∣∣∣
F̄t

= dQ̌N

dP

∣∣∣∣
F̄t

× dP

dQ̌I

∣∣∣∣
F̄t

= p
H�GI
t

p
H�GN
N�t

= p
H�GI
0

p
H�GN
N�0

� (S3.30)

As this does not change with t, the martingale property is clear. The last thing to show is
(S3.29). Using (S3.30) and that W π̂N�GN is a (Q̌N� F̄) martingale, we find EQ̌I [|W π̂N�GN

t |] ≤
EQ̌I [|W π̂N�GN

T |] so (S3.29) will hold for t ≤ T provided it holds at T . To show this, we use
(S3.30), Lemma S4.8, and GI = Ǧ(GN�H) to obtain

EQ̌I
[∣∣W π̂N�GN

T

∣∣] = EQ̌N

[
u
(
0�X0� Ǧ(GN�H)

)∣∣JǦ∣∣(GN�H)

uN(GN)
∣∣JG∣∣(Ǧ(GN�H)�H

) ∣∣W π̂N�GN
T

∣∣]

= EQ̌

[∫
Rd

u
(
0�X0� Ǧ(g̃�H)

)∣∣JǦ∣∣(g̃�H)∣∣JG∣∣(Ǧ(g̃�H)�H) ∣∣W π̂N�g̃

T

∣∣dg̃]�
From (S3.16) we deduce

∣∣W π̂N�g̃

T

∣∣ ≤ 1
γN

(
EQ̌

[∣∣∣∣log
(

ŽT

pHT p̊
g̃�H
T

)∣∣∣∣∣∣∣Fm
0

]
+

∣∣∣∣log
(

ŽT

pHT p̊
g̃�H
T

)∣∣∣∣
)
�

Thus, by first conditioning on Fm
0 , we obtain, using χ(g�H) from above (see (S3.27)),

EQ̌I
[∣∣W π̂N�GN

T

∣∣] ≤ 2
γN

EQ̌

[∫
Rd

u
(
0�X0� Ǧ(g̃�H)

)∣∣JǦ∣∣(g̃�H)∣∣JG∣∣(Ǧ(g̃�H)�H) χ(g̃�H)dg̃

]
�
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Q̌ = P on σ(H) and H ∼ �(0�X0� ·) under P. Thus,

EQ̌I
[∣∣W π̂N�GN

T

∣∣] ≤ 2
γN

∫
Rd×RH

u
(
0�X0� Ǧ(g̃�h)

)∣∣JǦ∣∣(g̃�h)∣∣JG∣∣(Ǧ(g̃�h)�h) χ(g̃�h)�(0�X0�h)dg̃ dh�

Now, for any appropriately measurable and integrable function f , for g̃ fixed, the substi-
tution h=H(g� g̃) yields∫

Rd×Rd

f
(
g� g̃�H(g� g̃)

)
dgdg̃=

∫
Rd×RH

f
(
Ǧ(g̃�h)� g̃�h

)∣∣JǦ∣∣(g̃�h)dg̃ dh�
At f (g� g̃�h)= u(0�X0� g)χ(g̃�h)�(0�X0�h)/|JG|(g�h), we deduce

EQ̌I
[∣∣W π̂N�GN

T

∣∣] ≤ 2
γN

∫
Rd×Rd

u(0�X0� g)∣∣JG∣∣(g�H(g� g̃))χ
(
g̃�H(g� g̃)

)
�
(
0�X0�H(g� g̃)

)
dg̃ dg�

Keeping g fixed, set h=H(g� g̃) so that g̃=G(g�h) with dg̃= |JG|(g�h). This gives

EQ̌I
[∣∣W π̂N�GN

T

∣∣] ≤ 2
γN

∫
Rd×RH

u(0�X0� g)χ
(
G(g�h)�h

)
�(0�X0�h)dgdh

= 2
γN

EQ̌

[∫
Rd

χ
(
G(g�H)�H

)
u(0�X0� g)dg

]
�

By first conditioning on Fm
0 and using (S3.27), then using Ẽ[ŽT |Fm

0 ] = 1, H
P̃∼ �(0�X�·),

and u(0�X0� ·) is a pdf, we see that

EQ̌I
[∣∣W π̂N�GN

T

∣∣] ≤ 4
eγN

+ 2
γN

Ẽ
[
ŽT log(ŽT )

]
+ 2
γN

∫
Rd×RH

(
log

(
u
(
0�X0�G(g�h)

)))+
u(0�X0� g)�(0�X0�h)dgdh

+ 2
γN

∫
Rd

Ẽ
[(
Ẽ
[
ŽT

(
log

(
p̂I(g̃−XT)

))−|Fm
0

])∣∣
g̃=G(g�H)

]
u(0�X0� g)dg

<∞� (S3.31)

Above, the second inequality follows from (C.3), (S3.8), and (C.4)(d). This verifies (S3.29)
and hence W π̂N�GN is a (Q̌I�FI) martingale. Thus, all statements in (S3.24) hold. Q.E.D.

S4. ON INITIAL ENLARGEMENTS

In this section, we collect a number of results for parameter-dependent Brownian
stochastic integrals in initially enlarged filtrations. Many of these results may be either
found in, or deduced from, Stricker and Yor (1978), Amendinger (2000), Gasbarra,
Valkeila, and Vostrikova (2006), Esmaeeli and Imkeller (2018), and especially Fontana
(2018). We present them for ease of reference.

We take a complete filtered probability space (Ω�F�F�P), where F satisfies the usual
conditions. There is a d-dimensional (P�F) Brownian motion B, which has the predictable
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representation property, but we do not mandate F= FB. Next, let Y ⊆ Rm be an open set,
with Borel sigma-algebra B(Y). Write P(F) and O(F) for the F-predictable and optional
sigma algebras. Last, for ease of terminology, we use the following definition.

DEFINITION S4.1: The relationship θ : [0�T ] ×Ω× Y → Rd is Y-predictable (respec-
tively, Y-optional) if θ is P(F)⊗B(Y) (resp. O(F)⊗B(Y)) measurable.

Let Y be a random variable taking values in Y and make the following assumption.

ASSUMPTION S4.2: For t ≤ T , P[Y ∈ ·|Ft] ∼ P[Y ∈ ·] almost surely. Denote by pyt =
p(t� ·� y) the resultant density and by λ the unconditional law of Y .

Define G := F∨ s(Y). The first lemma contains three results from Fontana (2018).

LEMMA S4.3: Let Assumption S4.2 hold. Then (i) p is Y-optional, (ii) G satisfies the
usual conditions of right-continuity and saturation of P-null sets in G0, and (iii) both pY0 /p

Y

and 1/pY are strictly positive (P�G) martingales with constant expectation 1.

PROOF: Parts (i), (ii), and (iii) for 1/pY follow directly from Lemma 2.3, Lemma 4.2,
and Proposition 4.4, respectively, in Fontana (2018). As for pY0 /p

Y , let 0 ≤ s < t ≤ T ,
A ∈Fs, and H ∈ B(Y). Recalling that λ is the law of Y ,

E

[
1As1Y∈H

pY0
pYt

]
= E

[
1As

∫
H

p
y
0λ(dy)

]
= E

[
1As1Y∈H

pY0
pYs

]
�

The first equality follows by conditioning on t and the (reverse) second follows by con-
ditioning on s. Taking As =Ω and H = Y , and using Fontana (2018, Equation (4.1)) at
f ≡ 1 shows that E[∫Y p

y
0λ(dy)] = 1, which finishes the result. Q.E.D.

REMARK S4.4: Given Lemma S4.3, it follows from Jacod (1985, Section 1) and Gas-
barra, Valkeila, and Vostrikova (2006, Lemma 4.2) that θ= θy is Y-predictable if and only
if θY ∈P(G). Additionally, by part (iii) above, we may define the martingale=preserving
measure P̃Y by either dP̃Y0 /dP = 1/pYT or dP̃Y/dP = pY0 /p

Y
T . Note that if F0 is P-trivial,

then P̃Y0 = P̃Y . Next, Fontana (2018, Proposition 2.9) proves that B is a (̃PY0 �G) Brownian
motion with the predictable representation property. Similarly, Fontana (2018, Propo-
sition 4.4) implies B is a (̃P�G) Brownian motion. As dP̃Y0 /dP̃

Y |GT = pY0 , which is G0

measurable, it follows that B has the predictable representation property under (̃P�G)
as well. For technical integrability reasons, it is more convenient for us to work with P̃Y

rather than P̃Y0 .

The first main result concerns martingale representation. To state it, make the following
assumption.

ASSUMPTION S4.5: We have that φ=φ(ω�y) is a FT ⊗B(Y)-measurable function such
that E[|φ(·� y)|]<∞ for each y ∈Y .

Next, denote by θ= θy the process θy ∈P(F) for each y ∈Y and such that

My
· := E

[
φ(·� y)|Ft

] =My
0 +

∫ ·

0

(
θyu

)′
dBu� (S4.1)

We then have the following intuitive result and corollary.
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PROPOSITION S4.6: Let Assumptions S4.2 and S4.5 hold, and let θ be from (S4.1). Then
(i) θ is Y-predictable, hence P(G) measurable, (ii) the stochastic integral

∫ ·
0(θ

y
u)

′ dBu is Y-
predictable, (iii) the stochastic integral

∫ ·
0(θ

Y
u )

′ dBu is well defined, and (iv)
∫ ·

0(θ
Y
u )

′ dBu and
(
∫ ·

0(θ
y
u)

′ dBu)|y=Y are indistinguishable.

COROLLARY S4.7: If additionally θ is strictly positive almost surely, then the same conclu-
sions hold for ν = νy defined by

φ(·� y)
E
[
φ(·� y)] = E

(∫ ·

0

(
νyu

)′
dBu

)
T

�

PROOF OF PROPOSITION S4.6: For (i), it follows from Stricker and Yor (1978, Proposi-
tion 3) that we can takeM =My in (S4.1) to be a cadlag and B(Y)-measurable version of
the F-optional projection of φ(·� y) (see also the proof of Fontana (2018, Lemma 4.2)).
The result then follows from Fontana (2018, Proposition A.1).

Part (ii) is proved in Stricker and Yor (1978, Proposition 5) when E[(∫ T

0 |θ(t� ·�
y)|2 dt)1/2] < ∞ (and noting the integral sample paths are continuous). For the gen-
eral case, set θn = θ1|θ|≤n and write Mn as the resultant Y-predictable map. Clearly, we
have P- limn�m→∞

∫ T

0 |θn(t� ·� y) − θm(t� ·� y)|2 dt = 0, and hence by Karatzas and Shreve
(1991, Proposition 3.2.26) we know P- limn�m→∞ supt≤T |Mn(t� ·� y)−Mm(t� ·� y)| = 0. The
result follows using Stricker and Yor (1978, Proposition 1) with F , P therein being P(F)
and P × Leb[0�T ], respectively. For part (iii), we first note that by part (i), θY ∈ P(G).
Next, as B is a (̃PY �G) Brownian motion, hence it is (P�G) semi-martingale. Thus,
the result will follow if P[∫ T

0 |θYu |2 du <∞] = 1. By Fubini, we know that 1∫ T
0 |θYu |2 du<∞ =

(1∫ T
0 |θyu|2 du<∞)|y=Yand that (ω�g)→ 1(∫ T0 |θyu|2 du)(ω)<∞ is FT ⊗B(Y)-measurable. Thus, from

Fontana (2018, Equation (4.1)) we conclude

P

[∫ T

0

∣∣θYu ∣∣2
du <∞

]
=

∫
Y
E
[
p
y
T1∫ T

0 |θyu|2 du<∞
]
λ(dy)=

∫
Y
E
[
p
y
T

]
λ(dy)= 1� (S4.2)

where the last equality follows from Fontana (2018, Equation (4.1)) applied to f ≡ 1.
That part (iv) holds is stated in the proof of Fontana (2018, Proposition 4.10) as fol-

lowing from (a) an application of the monotone convergence theorem and (b) Stricker
and Yor (1978, Proposition 5) combined with the dominated convergence theorem for
stochastic integrals (see Protter (2005, Chapter IV, Theorem 32)). Part (iv) is also im-
plicitly used in the proof of Amendinger, Imkeller, and Schweizer (1998, Corollary 2.10).
However, for the sake of clarity, we will offer a detailed sketch.

First, assume θ(t�ω� y) = ψ(t�ω)h(y), where ψ ∈ P(F) and h ∈ B(Y) are bounded.
Considering integration with respect to the (P�F)Brownian motion B, it follows that
(
∫ ·

0(θ
y
u)

′ dBu)|y=Y = h(Y) ∫ ·
0 ψ(u� ·)′ dBu. Next, considering integration with respect to the

(̃PY �G) Brownian motion B, we have
∫ t

0 (θ
Y
u )

′ dBu = h(Y)
∫ ·

0 ψ(u� ·)′ dBu. The result fol-
lows by path continuity. Next, let bounded {θn} converge (boundedly) to a bounded θ.
Write the associated integrals as Mn, M . For each t ≤ T .

EP̃Y

[(
M(t� ·�Y)−

∫ t

0
θ(u� ·�Y)′ dBu

)2]

≤ 2EP̃Y
[(
M(t� ·�Y)−Mn(t� ·�Y)

)2] + 2EP̃Y

[(∫ t

0

(
θn(u� ·�Y)− θ(u� ·�Y))′

dBu

)2]
�



ASYMMETRIC INFORMATION EQUILIBRIA 21

First,

EP̃Y
[(
M(t� ·�Y)−Mn(t� ·�Y)

)2] = E

[
1
pYt

(
M(t� ·�Y)−Mn(t� ·�Y)

)2
]

= E

[∫
Y

(
M(t� ·� y)−Mn(t� ·� y)

)2
λ(dy)

]

= E

[∫
Y

(∫ t

0

∣∣θ(u� ·� y)− θn(u� ·� y)
∣∣2
du

)
λ(dy)

]

= EP̃Y

[∫ t

0

∣∣θ(u� ·�Y)− θn(u� ·�Y)
∣∣2
du

]
�

Above we have used the definition of pY and the Ito isometry. Similarly

EP̃Y

[(∫ t

0

(
θn(u� ·�Y)− θ(u� ·�Y))′

dBu

)2]
= EP̃Y

[∫ t

0

∣∣θ(u� ·�Y)− θn(u� ·�Y)
∣∣2
du

]
�

The bounded convergence theorem implies almost surely for t ≤ T that M(t� ·�Y) −∫ t

0 θ(u� ·�Y)′ dBu = 0. As θ is bounded,
∫ ·

0 θ(u� ·�Y)′ dBu is a (̃PY �G) martingale. But
this implies M(t� ·�Y) is also a (̃PY �G) martingale. As martingale representation holds
with respect to B, we deduce M(·� ·�Y) has continuous paths, and hence M(·� ·�Y) and∫ ·

0 θ(u� ·�Y)′ dBu are indistinguishable. The monotone class theorem gives the result for
bounded θ. We now extend to θ such that

∫ T

0 |θ(u� ·�Y)|2 du <∞. For each t, n,

M(t� ·�Y)−
∫ t

0
θ(u� ·�Y)′ dBu =

(∫ t

0

(
θ(u� ·� y)1|θ(u�·�y)|≥n

)′
dBu

)∣∣∣∣
y=Y

−
∫ t

0

(
θ(u� ·�Y)1|θ(u�·�Y)|≥n

)′
dBu� (S4.3)

We first handle the rightmost term above. By construction of pY , for each ε > 0,

P̃Y
[∫ T

0

∣∣θ(u� ·�Y)∣∣2
1|θ(u�·�Y)|≥n du≥ ε

]
=

∫
Y
E[1∫ T

0 |θ(u�·�y)|21|θ(u�·�y)|≥n du≥ε]λ(dy)�

Since for each y ∈Y ,
∫ T

0 |θ(u� ·� y)|21|θ(u�·�y)|≥n du→ 0 almost surely as n ↑ ∞, two applica-
tions of the dominated convergence theorem allow us to conclude that limn↑∞

∫ T

0 |θ(u� ·�
Y)|21|θ(u�·�Y)|≥n du= 0 in P̃Y probability. Therefore, by Karatzas and Shreve (1991, Propo-
sition 3.2.26) we know that in P̃Y probability,

lim
n↑∞

sup
t≤T

∣∣∣∣
∫ t

0

(
θ(u� ·�Y)1|θ(u�·�Y)|≥n

)′
dBu

∣∣∣∣ = 0�

As for the first term on the right side of (S4.3), set Mn(t� ·� y) := ∫ t

0 (θ(u� ·� y)×
1|θ(u�·�y)|≥n)′ dBu. Since for each y ∈ Y ,

∫ T

0 |θ(u� ·� y)|21|θ(u�·�y)|≥n du converges to 0 almost
surely, we again deduce from Karatzas and Shreve (1991, Proposition 3.2.26) that in P



22 J. DETEMPLE, M. RINDISBACHER, AND S. ROBERTSON

probability supt≤T |Mn(t� ·� y)| → 0. As Mn is Y-optional,

P̃Y
[
sup
t≤T

∣∣Mn(t� ·�Y)
∣∣ ≥ ε

]
=

∫
Y

E[1supt≤T |Mn(t�·�y)|≥ε]λ(dy)�

so that supt≤T |Mn(t� ·�Y)| → 0 in P̃Y probability. Thus, by taking subsequences where
the convergence takes place almost surely QG and hence P, we deduce from (S4.3) that
supt≤T |M(t� ·�Y)− ∫ t

0 θ(u� ·�Y)′ dBu| = 0 almost surely, finishing the result. Q.E.D.

PROOF OF COROLLARY S4.7: It is clear that ν = θ/M . Thus, by the results on θ above
(in particular, the connection to the proof of (iv) which proved indistinguishability for
general θ), it suffices to prove that

∫ T

0 |νYu |2 du <∞ almost surely. But this will follow pro-
vided inft≤T MY

t > 0 almost surely. But this latter fact follows using the same calculations
as in (S4.2), but now for the random variable 1inft≤T My

t >0, which is almost surely 1 for all y
since My has continuous paths. Q.E.D.

Last, we relate (QG�G) and (Q�F) conditional expectations, where Q is a measure on
FT , and QG is built from Q in a similar manner to how P̃Y was built from P.

LEMMA S4.8: Let Z be a strictly positive (P�F) martingale with E[Z0] = 1. Define Q

via dQ/dP := ZT and ZG
· := Z·/pY· . Then ZG is a (P�G) martingale. Next, define QG by

dQG/dP = ZG
T . Let 0 ≤ s < t ≤ T , let φ be Ft-measurable, taking values in G ⊆ Rn, and

let f : G × Y → R be a measurable function such that either (a) f is nonnegative or (b)
EQ[|f (φ�y)|]<∞ for each y ∈Y as well as

∫
Y EQ[|f (φ�y)|]λ(dy) <∞. Then

EQG[
f (φ�Y)|Gs

] = (
EQ

[
f (φ�y)|Fs

])∣∣
y=Y �

PROOF: Let 0 ≤ s < t ≤ T , As ∈Fs, H ∈ B(Y) and denote by λ the law of Y . We have

E
[
1As1Y∈HZG

t

] = E

[
1As1Y∈HZt

1
pYt

]
=

∫
H

E[1AsZt1]λ(dy)

=
∫
H

E[1AsZs]λ(dy)= E
[
1As1Y∈HZG

s

]
�

Taking the above for As = Ω and H = Y , we see E[ZG
t ] = ∫

Y E[Zt]λ(dy) = ∫
Y E[Z0]×

λ(dy) = 1. Here, we have used the martingale property for Z and E[Z0] = 1. The
martingale property readily follows. As for the conditional expectation equality, if f is
not nonnegative, the condition

∫
Y EQ[|f (φ�y)|]λ(dy) <∞ implies EQG[|f (φ�Y)|] <∞,

so the conditional expectation is well defined. Next, let As ∈ Fs and H ∈ B(Y). Set
χts(y) := EQ[f (φ�y)|FB

s ]. Note that (ω�y)→ χts(y) is Fs ×B(Y)-measurable, and hence
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χts(Y) is Gs-measurable. As ZG is a (P�G) martingale,

EQG[
1As1Y∈Hχts(Y)

] = E

[
1As1Y∈Hχts(Y)

Zs

pYs

]
= E

[
1AsZsE

[
1Y∈Hχts(Y)

1
pYs

|FB
s

]]

= E

[
1AsZs

∫
H

χts(y)1λ(dy)
]

=
∫
H

E
[
1AsZsχ

t
s(y)

]
λ(dy)

=
∫
H

E
[
1AsZtf (φ� y)

]
λ(dy)= E

[
1AsZt

∫
H

1
p
y
t

p
y
t f (φ� y)λ(dy)

]

= E

[
1As1Y∈H

Zt

pYt
f (φ�Y)

]
= EQG[

1As1Y∈Hf (φ�Y)
]
�

Q.E.D.
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