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APPENDIX A: SENSITIVITY AND INFORMATIVENESS

PROPOSITION 2 considers the effect of limiting attention to forms of misspecification that
do not affect γ̂. In some cases, however, researchers may be interested in forms of mis-
specification with a non-zero, but known, effect on γ̂. In such cases, our assumptions again
imply a relationship between the biases in ĉ and γ̂.

This relationship depends on the sensitivity of ĉ to γ̂. This is the natural extension of the
sensitivity measure proposed in Andrews, Gentzkow, and Shapiro (2017) to the current
setting.

DEFINITION: The sensitivity of ĉ with respect to γ̂ is

Λ= ΣcγΣ−1
γγ �

To build intuition, note that sensitivity characterizes the relationship between ĉ and γ̂
in the asymptotic distribution under the base model. If we assume, as in Section 3, that ĉ
and γ̂ are normally distributed in finite samples, then Λ is simply the vector of coefficients
from the population regression of ĉ on γ̂. In this case, element Λj of Λ is the effect of
changing the realization of a particular γ̂j on the expected value of ĉ, holding the other
elements of γ̂ constant.

Andrews, Gentzkow, and Shapiro (2017) showed that for ĉ = c(η̂), η̂ a minimum dis-
tance estimator based on moments ĝ(η), and γ̂ = ĝ(η0) the estimation moments eval-
uated at the true parameter value, under regularity conditions sensitivity translates the
effect of misspecification on γ̂ to the effect on ĉ, in the sense that

c̄
(
S(h�z)

)− c̄(S(h�0)
)=Λ(γ̄(S(h�z))− γ̄(S(h�0)

))
�

Our next proposition extends this result.

PROPOSITION 4: Suppose that Assumptions 1–4 hold, and let

SRN
(
c�� γ̄

)= ⋃
S∈S0(c�)

{
S̃ ∈N (S) : γ̄(S̃)− γ̄(S)= γ̄}�
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Provided μ(γ̄)2 = μ2 − γ̄′Σ−1
γγ γ̄ ≥ 0, the set of possible biases under S ∈ SRN(·� γ̄) is

{
c̄(S)− c� : S ∈ SRN

(
c�� γ̄

)}= [Λγ̄−μ(γ̄)σc
√

1 −
�Λγ̄+μ(γ̄)σc
√

1 −
]�
for any c� such that SRN(c�� γ̄) is nonempty.

Proposition 4 extends the results of Andrews, Gentzkow, and Shapiro (2017) to the
case where γ̂ need not be a vector of estimation moments, and thus we may have 
 < 1.
It likewise extends Proposition 2. The resulting set of first-order asymptotic biases for ĉ is
centered at Λγ̄ with width proportional to

√
1 −
.

Unlike in Proposition 2, the degree of misspecification now enters the width through
μ(γ̄) =

√
μ2 − γ̄′Σ−1

γγ γ̄. Intuitively, μ(γ̄) measures the degree of excess misspecification

beyond
√
γ̄′Σ−1

γγ γ̄, which is the minimum necessary to allow γ̄(S̃)− γ̄(S)= γ̄. If the degree
of excess misspecification is small, then the first-order asymptotic bias of ĉ is close to Λγ̄,
while if the degree of excess misspecification is large, then a wider range of biases is
possible.

PROOF OF PROPOSITION 4: The proof is similar to that for Proposition 2 in the main
text. By Lemma 1, we again have

c�(h)=EF0

[
φc(Di)sh(Di)

]
�

Note, next, that by the definition of SRN(c�� γ̄) and Lemma 1, for any S ∈ SRN(c�� γ̄) there
exist (h� z) ∈H×Z with S = S(h�z), c�(h)= c�, and

EF0

[
φγ(Di)

(
sh(Di)+ sz(Di)

)]−EF0

[
φγ(Di)sh(Di)

]=EF0

[
φγ(Di)sz(Di)

]= γ̄�
Thus, writing γ̄z = EF0[φγ(Di)sz(Di)] and c̄z = EF0[φc(Di)sz(Di)] for brevity, our task
reduces to showing that{
c̄z : z ∈Z� γ̄z = γ̄�EF0

[
sz(Di)

2
]≤ μ2

}= [Λγ̄−μ(γ̄)σc
√

1 −
�Λγ̄+μ(γ̄)σc
√

1 −
]�
Define s(Di; γ̄)=φγ(Di)

′Σ−1
γγγ, and

εz(Di)= sz(Di)− s(Di; γ̄z)�
Note that EF0[φγ(Di)εz(Di)] = 0 and EF0[s(Di; γ̄z)εz(Di)] = 0 by construction. We can
write

cz =EF0

[
φc(Di)sz(Di)

]
=EF0

[
φc(Di)φγ(Di)

′]Σ−1
γγ γ̄z +EF0

[
φc(Di)εz(Di)

]
=Λγ̄z +EF0

[
φc(Di)εz(Di)

]
�

Next, define

φ̃c(Di)=φc(Di)−Λφγ(Di)

and note that

EF0

[
φc(Di)εz(Di)

]=EF0

[
φ̃c(Di)εz(Di)

]
�
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The Cauchy–Schwarz inequality then implies that

∣∣EF0

[
φ̃c(Di)εz(Di)

]∣∣≤√EF0

[
φ̃c(Di)2

]√
EF0

[
εz(Di)2

]
=
√
σ2
c −ΛΣγγΛ′

√
EF0

[
εz(Di)2

]
= σc

√
1 −


√
EF0

[
sz(Di)2

]− γ̄′
zΣ

−1
γγ γ̄z�

Combining these results, we see that for z such that γ̄z = γ̄ and EF0[sz(Di)
2] ≤ μ2,

c̄z ∈ [Λγ̄− σc
√

1 −

√
μ2 − γ̄′Σ−1

γγ γ̄�Λγ̄+ σc
√

1 −

√
μ2 − γ̄′Σ−1

γγ γ̄
]
�

which are the bounds stated in the proposition. In particular,

0 ≤EF0

[
εz(Di)

2
]≤ μ2 − γ̄′

zΣ
−1
γγ γ̄z�

so if γ̄z = γ̄, we must have γ̄′Σ−1
γγ γ̄ ≤ μ2 in order that EF0[sz(Di)

2] ≤ μ2. Hence, if μ2 −
γ̄′Σ−1

γγ γ̄ < 0, there exists no z with γ̄z = γ̄ and EF0[sz(Di)
2] ≤ μ2.

To complete the proof, it remains to show that these bounds are tight, so that for any
(c̄� γ̄�μ) with

c̄ ∈ [Λγ̄− σc
√

1 −

√
μ2 − γ̄′Σ−1

γγ γ̄�Λγ̄+ σc
√

1 −

√
μ2 − γ̄′Σ−1

γγ γ̄
]
� (16)

there exists z ∈Z with c̄z = c̄, γ̄z = γ̄, and EF0[sz(Di)
2] ≤ μ2. If 
< 1, define

s∗(Di; c̄� γ̄)= s(Di; γ̄)+ φ̃c(Di)
c̄−Λγ̄
σ2
c (1 −
)�

Note that

EF0

[
φγ(Di)s

∗(Di; c̄� γ̄)
]= γ̄�

while

EF0

[
φc(Di)s

∗(Di; c̄� γ̄)
]=Λγ̄+EF0

[
φ̃c(Di)

2
] c̄−Λγ̄
σ2
c (1 −
) = c̄�

Moreover,

EF0

[
s∗(Di; c̄� γ̄)2

]=EF0

[
s(Di; γ̄)2

]+EF0

[
φ̃c(Di)

2
] (c̄−Λγ̄)2

σ4
c (1 −
)2

= γ̄′Σ−1
γγ γ̄+ (c̄−Λγ̄)2

σ2
c (1 −
)�

However, by (16), we know that

|c̄−Λγ̄| ≤ σc
√

1 −

√
μ2 − γ̄′Σ−1

γγ γ̄
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and thus that

(c̄ −Λγ̄)2

σ2
c (1 −
) ≤ (μ2 − γ̄′Σ−1

γγ γ̄
)
�

so EF0[s∗(Di; c̄� γ̄)2] ≤ μ2. By Assumption 4, however, there exists z ∈Z with

EF0

[(
sz(Di)− s∗(Di; c̄� γ̄)

)2]= 0�

and thus z yields c̄z = c̄, γ̄z = γ̄, and EF0[sz(Di)
2] ≤ μ2 as desired. In cases with 
= 1, on

the other hand, we can use s∗(Di; c̄� γ̄)= s(Di; γ̄). Q.E.D.

APPENDIX B: ASYMPTOTIC DIVERGENCE

This section studies the asymptotic behavior of the divergence

rh�z

(
1√
n
�

1√
n

)
=EFh�z(th�0)

⎡
⎢⎢⎣ψ

⎛
⎜⎜⎝
fh�z

(
Di; 1√

n
�

1√
n

)

fh�z

(
Di; 1√

n
�0
)
⎞
⎟⎟⎠
⎤
⎥⎥⎦ (17)

as n→ ∞, where, as in the main text, we assume that ψ(1)= 0 and ψ′′(1)= 2. To derive
our results, we impose the following assumption.

ASSUMPTION 6: For t = (th� tz) ∈ R
2 and fh�z(Di; t)= fh�z(Di; th� tz), fh�z(Di; t) is twice

continuously differentiable in t at 0, and there exists an open neighborhood B of zero such
that

EF0

[
sup
t∈B

(∣∣∣∣ ∂∂tz fh�z(Di; t)
∣∣∣∣+
∣∣∣∣ ∂2

∂t2z
fh�z(Di; t)

∣∣∣∣
+
∣∣∣∣fh�z(Di; th�0)
fh�z(Di;0)

ψ′
(
fh�z(Di; t)
fh�z(Di; t)

) ∂
∂tz
fh�z(Di; t)
fh�z(Di; t)

∣∣∣∣
)]
�

EF0

[
sup
(t�t̃)∈B2

∣∣∣∣fh�z(Di; th�0)
fh�z(Di;0)

ψ′
(
fh�z(Di; t̃)
fh�z(Di; t)

) ∂2

∂t2z
fh�z(Di; t̃)
fh�z(Di; t)

∣∣∣∣
]
�

and

EF0

[
sup
(t�t̃)∈B2

∣∣∣∣fh�z(Di; th�0)
fh�z(Di;0)

ψ′′
(
fh�z(Di; t̃)
fh�z(Di; t)

)( ∂
∂tz
fh�z(Di; t̃)
fh�z(Di; t)

)2∣∣∣∣
]

are finite.

Under this assumption, we obtain the asymptotic approximation to divergence dis-
cussed in the main text.

PROPOSITION 5: Under Assumptions 3 and 6,

lim
n→∞

n · rh�z
(

1√
n
�

1√
n

)
=EF0

[
sz(Di)

2
]
�
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PROOF OF PROPOSITION 5: Recall that rh�z( 1√
n
� 1√

n
) can be written as in (17). Assump-

tion 6 and Leibniz’s rule imply that for n sufficiently large, we can exchange integration
and differentiation twice, so by Taylor’s theorem with a mean-value residual,1 we have
that n · rh�z( 1√

n
� 1√

n
) is equal to

n·EF0

⎡
⎢⎢⎢⎣

fh�z(Di; tn)
fh�z(Di;0)

(
ψ

(
fh�z(Di; tn)
fh�z(Di; tn)

)
+ψ′

(
fh�z(Di; tn)
fh�z(Di; tn)

) ∂
∂tz
fh�z(Di; tn)
fh�z(Di; tn)

1√
n

+ 1
2

(
ψ′
(
fh�z(Di; t̃n)
fh�z(Di; tn)

) ∂2

∂t2z
fh�z(Di; t̃n)
fh�z(Di; tn) +ψ′′

(
fh�z(Di; t̃n)
fh�z(Di; tn)

)( ∂
∂tz
fh�z(Di; t̃n)
fh�z(Di; tn)

)2)1
n

)
⎤
⎥⎥⎥⎦

for tn = ( 1√
n
�0), t̃n = ( 1√

n
� t̃z�n), and t̃z�n ∈ [0� 1√

n
]. Thus, since ψ(1)= 0 by assumption, we

have that n · rh�z( 1√
n
� 1√

n
) is equal to

EF0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
nψ′(1)

∂
∂tz
fh�z(Di; tn)
fh�z(Di;0)

+ 1
2
fh�z(Di; tn)
fh�z(Di;0)

(
ψ′
(
fh�z(Di; t̃n)
fh�z(Di; tn)

) ∂2

∂t2z
fh�z(Di; t̃n)
fh�z(Di; tn)

+ψ′′
(
fh�z(Di; t̃n)
fh�z(Di; tn)

)( ∂
∂tz
fh�z(Di; t̃n)
fh�z(Di; tn)

)2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�

Assumption 6 and Leibniz’s rule imply that for n sufficiently large,

EF0

[ ∂
∂tz
fh�z(Di; tn)
fh�z(Di;0)

]
=
∫

∂

∂tz
fh�z

(
d; 1√

n
�0
)
dν(d)

= ∂

∂tz

∫
fh�z

(
d; 1√

n
�0
)
dν(d)= 0�

Hence, we see that n · rh�z
(

1√
n
� 1√

n

)
is equal to

EF0

[
1
2
fh�z(Di; tn)
fh�z(Di;0)

(
ψ′
(
fh�z(Di; t̃n)
fh�z(Di; tn)

) ∂2

∂t2z
fh�z(Di; t̃n)
fh�z(Di; tn)

+ψ′′
(
fh�z(Di; t̃n)
fh�z(Di; tn)

)( ∂
∂tz
fh�z(Di; t̃n)
fh�z(Di; tn)

)2)]
�

1Specifically, note that for q(th� tz)= rh�z(th� tz), we can write

q(th� tz)= q(th�0)+ ∂

∂tz
q(th�0)tz + 1

2
∂2

∂t2z
q(th� t̃z)t

2
z

with t̃z ∈ [0� tz].
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Since ψ′′(1)= 2, the dominated convergence theorem and Assumption 6 imply that

EF0

[
1
2
fh�z(Di; tn)
fh�z(Di;0)

(
ψ′
(
fh�z(Di; t̃n)
fh�z(Di; tn)

) ∂2

∂t2z
fh�z(Di; t̃n)
fh�z(Di; tn)

+ψ′′
(
fh�z(Di; t̃n)
fh�z(Di; tn)

)( ∂
∂tz
fh�z(Di; t̃n)
fh�z(Di; tn)

)2)]

→ 1
2
EF0

[
ψ′(1)

∂2

∂t2z
fh�z(Di;0)

fh�z(Di;0)
+ψ′′(1)

( ∂
∂tz
fh�z(Di;0)

fh�z(Di;0)

)2]

=EF0

[
1
2
ψ′(1)

∂2

∂t2z
fh�z(Di;0)

fh�z(Di;0)
+ sz(Di)

2

]
�

However, Assumption 6 and Leibniz’s rule imply that

EF0

[ ∂2

∂t2z
fh�z(Di;0)

fh�z(Di;0)

]
=
∫
∂2

∂t2z
fh�z(d;0)dν(d)= ∂2

∂t2z

∫
fh�z(d;0)dν(d)= 0�

so

lim
n→∞

n · rh�z
(

1√
n
�

1√
n

)
=EF0

[
sz(Di)

2
]
�

as we wanted to show. Q.E.D.

APPENDIX C: ASYMPTOTIC DISTINGUISHABILITY

In Section 4.3 of the paper, and Section B above, we discuss that the neighborhoods
studied in our local asymptotic analysis correspond to bounds on the asymptotic Cressie–
Read divergence between Fh�z( 1√

n
�0) and Fh�z( 1√

n
� 1√

n
). In this section, we show that they

also correspond to bounds on the asymptotic power of tests to distinguish S(h�z) and
S(h�0).

PROPOSITION 6: Under Assumption 3, the most powerful level-α test of the null hypothesis

H0 : (D1� � � � �Dn)∼
n×
i=1
Fh�z

(
1√
n
�0
)

against

H1 : (D1� � � � �Dn)∼
n×
i=1
Fh�z

(
1√
n
�

1√
n

)

has power converging to 1 − FN(0�1)(vα − √EF0[sz(Di)2]) for vα the 1 − α quantile of the
standard normal distribution.

The proof of Proposition 6 shows that the most powerful test corresponds asymptoti-
cally to a z-test, where the z-statistic has mean

√
EF0[sz(Di)2] under H1.
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PROOF OF PROPOSITION 6: By the Neyman–Pearson lemma (see Theorem 3.2.1 in
Lehmann and Romano (2005)), the most powerful level-α test of H0 : (D1� � � � �Dn) ∼×n

i=1 Fh�z(
1√
n
�0) againstH1 : (D1� � � � �Dn)∼×n

i=1 Fh�z(
1√
n
� 1√

n
) rejects when the log likeli-

hood ratio

log
(
dFnh�z

(
1√
n
�

1√
n

)/
dFnh�z

(
1√
n
�0
))

exceeds a critical value vα�n chosen to ensure rejection probability α under H0 (and may
randomize when the log likelihood ratio exactly equals the critical value). Here we again
abbreviate×n

i=1 F = Fn.
By Assumption 3 and the quadratic expansion of the likelihood in the proof of

Lemma 1, however, we see that under S(0�0), for g(Di;h�z)= sh(Di)+ sz(Di),⎛
⎜⎜⎝log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�0
)

dFn0

⎞
⎟⎟⎠ log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�

1√
n

)
dFn0

⎞
⎟⎟⎠
⎞
⎟⎟⎠

′

→d N

⎛
⎜⎝
⎛
⎜⎝−1

2
EF0

[
g(Di;h�0)2

]
−1

2
EF0

[
g(Di;h�z)2

]
⎞
⎟⎠ � Σ̃

⎞
⎟⎠

for

Σ̃=
(

EF0

[
g(Di;h�0)2

]
EF0

[
g(Di;h�0)g(Di;h�z)

]
EF0

[
g(Di;h�0)g(Di;h�z)

]
EF0

[
g(Di;h�z)2

] )
�

Le Cam’s third lemma thus implies that under S(h�0),

⎛
⎜⎜⎝log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�0
)

dFn0

⎞
⎟⎟⎠ log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�

1√
n

)
dFn0

⎞
⎟⎟⎠
⎞
⎟⎟⎠

′

→d N

⎛
⎜⎝
⎛
⎜⎝

1
2
EF0

[
g(Di;h�0)2

]
−1

2
EF0

[
g(Di;h�z)2

]+EF0

[
g(Di;h�0)g(Di;h�z)

]
⎞
⎟⎠ � Σ̃

⎞
⎟⎠ �

while under S(h�z),⎛
⎜⎜⎝log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�0
)

dFn0

⎞
⎟⎟⎠ log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�

1√
n

)
dFn0

⎞
⎟⎟⎠
⎞
⎟⎟⎠

′

→d N

⎛
⎜⎝
⎛
⎜⎝−1

2
EF0

[
g(Di;h�0)2

]+EF0

[
g(Di;h�0)g(Di;h�z)

]
1
2
EF0

[
g(Di;h�z)2

]
⎞
⎟⎠ � Σ̃

⎞
⎟⎠ �
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Since

log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�

1√
n

)

dFnh�z

(
1√
n
�0
)
⎞
⎟⎟⎠= log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�

1√
n

)
dFn0

⎞
⎟⎟⎠− log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�0
)

dFn0

⎞
⎟⎟⎠ �

and sz(d) = sh(d) = 0 when h = z = 0, g(Di;h�0) − g(Di;h�z) = −g(Di;0� z), we see
that

log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�

1√
n

)

dFnh�z

(
1√
n
�0
)
⎞
⎟⎟⎠

→d

⎧⎪⎪⎨
⎪⎪⎩
N

(
−1

2
EF0

[
g(Di;0� z)2

]
�EF0

[
g(Di;0� z)2

])
under S(h�0)�

N

(
1
2
EF0

[
g(Di;0� z)2

]
�EF0

[
g(Di;0� z)2

])
under S(h�z)�

Hence, since EF0[g(Di;0� z)2] = EF0[sz(Di)
2] and vα�n corresponds to the 1 − α quantile

of the log likelihood ratio under the null, we have that

log

⎛
⎜⎜⎝
dFnh�z

(
1√
n
�

1√
n

)

dFnh�z

(
1√
n
�0
)
⎞
⎟⎟⎠− vα�n

√
EF0

[
sz(Di)2

] →d

{
N(−vα�1) under S(h�0)�

N
(√
EF0

[
sz(Di)2

]− vα�1
)

under S(h�z)�

for vα the 1 −α quantile of a standard normal distribution, from which the result follows.
Q.E.D.

APPENDIX D: NON-LOCAL MISSPECIFICATION

This section develops our informativeness measure based on probability limits, rather
than first-order asymptotic bias.

Under Assumptions 1, 3, and 4, provided the estimators ĉ and γ̂ are regular in the sense
discussed in Newey (1994), Theorem 2.1 of Newey (1994) implies that the probability
limits c̃(·) and γ(·) are asymptotically linear functionals, in the sense that

lim
tz→0

∥∥c̃(F0�z(0� tz)
)− c(η0)− tzEF0

[
sz(Di)φc(Di)

]∥∥/tz = 0 for all z ∈Z�

lim
tz→0

∥∥γ(F0�z(0� tz)
)− γ(F0)− tzEF0

[
sz(Di)φγ(Di)

]∥∥/tz = 0 for all z ∈Z�
(18)

Assumption 2 would be implied by an assumption that (ĉ� γ̂) are regular in the base
model, so the assumption of regularity of (ĉ� γ̂) in the nesting model can be understood
as a strengthening of Assumption 2. See Newey (1994) and Rieder (1994) for discussion.
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Since (18) only restricts behavior as tz → 0 for fixed z, rather than studying 
̃(r̄) as de-
fined in the main text let us instead consider an analogue defined using finite collections
of paths. Specifically, continuing to define rh�z(th� tz) = EFh�z(th�0)[ψ(fh�z(Di;th�tz)fh�z(Di;th�0) )], for each
z ∈Z let

t̄(z�μ)= inf
{
tz ∈R+ : r0�z(0� tz)≥ μ}

denote the largest value of t such that r0�z(0� tz) < μ for all tz < t̄(z�μ). Let Z+ ⊂ Z
denote the set of z ∈Z with EF0[sz(Di)

2]> 0.
Let Q ⊂ Z+ denote a finite subset of Z+, and let Q denote the set of all such finite

subsets. Finally, let

b̃N(μ�Q)= sup
{∣∣c̃(F0�z(0� tz)

)− c(η0)
∣∣ : z ∈Q� tz < t̄(z�μ)

}
denote the analogue of b̃N(μ) based on the finite set of paths Q, and for ε > 0 let
b̃RN�ε(μ�Q), defined as

sup
{∣∣c̃(F0�z(0� tz)

)− c(η0)
∣∣ : z ∈Q� tz < t̄(z�μ)�

∥∥γ(F0�z(0� tz)
)− γ(F0)

∥∥≤ ε√μ}�
denote the analogue of b̃RN(μ�Q) based on Q which allows the probability limit of γ̂ to
change by at most ε

√
μ. Because b̃RN�0(μ�Q) may equal 0 even for large μ due to the

approximation error in (18), we consider limits as ε ↓ 0 (i.e., as ε→ 0 from above). Based
on these objects, we define the analogue of 
̃(μ) as


̃(μ�Q)= sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

b̃RN�ε(μ�Q1)

b̃N(μ�Q2)
�

provided the limit exists.

PROPOSITION 7: Suppose Assumptions 1, 3, and 4 hold, that the estimators ĉ and γ̂ are
regular, and that Assumption 6 holds for h= 0 and all z ∈ Z+. For ψ(·) twice continuously
differentiable and ψ(1)= 0, ψ′′(1)= 2,

sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

lim
μ↓0

b̃RN�ε(μ�Q1)

b̃N(μ�Q2)
=
√

1 −
�

It is important that we take the limit as μ ↓ 0 inside the limit as ε ↓ 0 and the sup and
inf, since this order of limits allows us to take advantage of the approximation result (18).

PROOF OF PROPOSITION 7: Note, first, that our Assumptions 1, 3, and 4 imply the con-
ditions of Theorem 2.1 of Newey (1994) other than regularity of (ĉ� γ̂). Specifically, con-
ditions (i) and (ii) of Theorem 2.1 in Newey (1994) follow from our Assumptions 3 and 4.
Condition (iii) is implied by our Assumption 1. Regularity of (ĉ� γ̂) is assumed, so Theo-
rem 2.1 of Newey (1994) implies (18).

Note, next, that for any z ∈Z+, the proof of Proposition 5 implies that

lim
tz↓0
r0�z(0� tz)/t2z =EF0

[
sz(Di)

2
]
�
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Hence, as μ ↓ 0, t̄(z�μ)/
√
μ→E[sz(Di)

2]− 1
2 . For all z ∈Z+, (18) implies that

lim
μ↓0

sup
tz≤t̄(z�μ)

∥∥c̃(F0�z(0� tz)
)− c(η0)− tzEF0

[
sz(Di)φc(Di)

]∥∥/tz = 0�

lim
μ↓0

sup
tz≤t̄(z�μ)

∥∥γ(F0�z(0� tz)
)− γ(F0)− tzEF0

[
sz(Di)φγ(Di)

]∥∥/tz = 0�

and thus that{
1√
μ

(
c̃
(
F0�z(0� tz)

)− c(η0)�γ
(
F0�z(0� tz)

)− γ(F0)
) : tz ≤ t̄(z�μ)

}

→ {
t̃z
(
EF0

[
sz(Di)φc(Di)

]
�EF0

[
sz(Di)φγ(Di)

]) : t̃z ≤EF0

[
sz(Di)

2
]− 1

2
}

in the Hausdorff sense as μ ↓ 0. Correspondingly, for any Q ∈Q,{
1√
μ

(
c̃
(
F0�z(0� tz)

)− c(η0)�γ
(
F0�z(0� tz)

)− γ(F0)
) : z ∈Q� tz ≤ t̄(z�μ)

}

→ {
t̃z
(
EF0

[
sz(Di)φc(Di)

]
�EF0

[
sz(Di)φγ(Di)

]) : z ∈Q� t̃z ≤EF0

[
sz(Di)

2
]− 1

2
}
�

Hence, for any nonempty Q ∈Q,

1√
μ
b̃N(μ�Q)→ max

{∣∣EF0

[
sz(Di)φc(Di)

]∣∣
EF0

[
sz(Di)

2
] 1

2

: z ∈Q
}

as μ ↓ 0�

Matters are somewhat more delicate for b̃RN�ε(μ�Q). Note, in particular, that for ε > 0,
as μ ↓ 0 we have

1√
μ
b̃RN�ε(μ�Q)

→ sup
{
t̃zEF0

[
sz(Di)φc(Di)

] : z ∈Q� t̃z ≤EF0

[
sz(Di)

2
]− 1

2 � t̃z
∥∥EF0

[
sz(Di)φγ(Di)

]∥∥≤ ε}
= sup

{
t̃zEF0

[
sz(Di)φc(Di)

] : z ∈Q�

t̃z ≤ min
{
EF0

[
sz(Di)

2
]− 1

2 �
ε∥∥EF0

[
sz(Di)φγ(Di)

]∥∥
}}
�

where we define ε/0 = ∞ for ε > 0. Consequently,

1√
μ
b̃RN�ε(μ�Q)

→ sup
{
t̃z
∣∣EF0

[
sz(Di)φc(Di)

]∣∣ : z ∈Q�

t̃z ≤ min
{
EF0

[
sz(Di)

2
]− 1

2 �
ε∥∥EF0

[
sz(Di)φγ(Di)

]∥∥
}}
�
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Note, however, that by the Cauchy–Schwarz inequality and EF0[sz(Di)
2] < ∞,

EF0[sz(Di)φc(Di)] is finite for all z ∈Z , so for any z with EF0[sz(Di)φγ(Di)] = 0,

ε∥∥EF0

[
sz(Di)φγ(Di)

]∥∥EF0

[
sz(Di)φc(Di)

]→ 0

as ε ↓ 0. Hence, as ε ↓ 0,

sup
{
t̃z
∣∣EF0

[
sz(Di)φc(Di)

]∣∣ : z ∈Q� t̃z ≤ min
{
EF0

[
sz(Di)

2
]− 1

2 �
ε∥∥EF0

[
sz(Di)φγ(Di)

]∥∥
}}

→ max
{∣∣EF0

[
sz(Di)φc(Di)

]∣∣
EF0

[
sz(Di)

2
] 1

2

: z ∈Q0

}

for Q0 = {z ∈ Q : EF0[sz(Di)φγ(Di)] = 0}, where we define this max to be zero if Q0 is
empty.

This immediately implies that

lim
ε↓0

lim
μ↓0

b̃RN�ε(μ�Q1)

b̃N(μ�Q2)
= max

{∣∣EF0

[
sz(Di)φc(Di)

]∣∣/EF0

[
sz(Di)

2
] 1

2 : z ∈Q1�0

}
max

{∣∣EF0

[
sz(Di)φc(Di)

]∣∣/EF0

[
sz(Di)

2
] 1

2 : z ∈Q2

}
for Q1�0 = {z ∈Q1 : EF0[sz(Di)φγ(Di)] = 0}, provided the denominator on the right-hand
side is non-zero.2

To complete the proof, note that for Q0 the set of possible Q0,

sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

lim
μ↓0

b̃RN�ε(μ�Q1)

b̃N(μ�Q2)
=

sup
Q0∈Q0

max
{∣∣EF0

[
sz(Di)φc(Di)

]∣∣/EF0

[
sz(Di)

2
] 1

2 : z ∈Q0

}
sup
Q∈Q

max
{∣∣EF0

[
sz(Di)φc(Di)

]∣∣/EF0

[
sz(Di)

2
] 1

2 : z ∈Q} �

The proof of Proposition 2 shows, however, that

max
z∈Z+

∣∣EF0

[
sz(Di)φc(Di)

]∣∣/EF0

[
sz(Di)

2
] 1

2 = σc

and

max
z∈Z+:EF0 [sz(Di)φγ(Di)]=0

∣∣EF0

[
sz(Di)φc(Di)

]∣∣/EF0

[
sz(Di)

2
] 1

2 = σc
√

1 −
�

Hence,

sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

lim
μ↓0

b̃RN�ε(μ�Q1)

b̃N(μ�Q2)
=
√

1 −
�

as we wanted to show. Q.E.D.

2If the denominator on the right-hand side is zero, we define the limit as +∞.
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APPENDIX E: ACCOUNTING FOR RICHER DEPENDENCE OF ĉ ON THE DATA

In Section 5, for cases where the function c(θ) depends on the distribution of the data
other than through θ, we effectively fix the distribution of the data at the empirical distri-
bution for the purposes of estimating 
 and Λ. Here we discuss how to allow for uncer-
tainty about the distribution of data in a special case, and present corresponding calcula-
tions for our applications.

Suppose in particular that

ĉ = 1
n

∑
i

c(θ̂;Di) (19)

for some function c(·). In contrast to the setup in Section 5, here we allow that ĉ depends
on the data directly, and not only through the dependence of ĉ on θ̂.

In this case, one can show that the recipe in Section 5 applies, with the modification
that

φ̂c(Di)= c(θ̂;Di)+ Λ̂cgφg(Di; θ̂)� (20)

where φg(Di; θ̂) and Λ̂cg are as defined in Section 5, and Ĉ in the definition of Λ̂cg is now
given by the gradient of 1

n

∑
i c(θ;Di) with respect to θ at θ̂.

The proof of this result, which we omit, proceeds by noting that we can augment the
GMM parameter vector as (c�θ), and correspondingly augment the moment equation as
(c(θ;Di)− c�φg(Di;θ)), following which we can derive the estimated influence function
for ĉ as we would for any element of θ̂.

In the cases of Attanasio, Meghir, and Santiago (2012) and Gentzkow (2007), we can
represent the calculation of ĉ in the form given in (19) and thus calculate 
̂ using the
modified estimated influence function in (20). In the case of Attanasio, Meghir, and San-
tiago (2012), the estimates in Table I change from 0�283, 0�227, and 0�056, respectively, to
0�277, 0�221, and 0�055. In the case of Gentzkow (2007), the estimates in Table II change
from 0�514, 0�009, and 0�503, respectively, to 0�517, 0�008, and 0�507.
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