SUPPLEMENT TO "ON THE INFORMATIVENESS OF DESCRIPTIVE STATISTICS FOR STRUCTURAL ESTIMATES"
 (Econometrica, Vol. 88, No. 6, November 2020, 2231-2258)

IsAIAH ANDREWS
Department of Economics, Harvard University and NBER
Matthew Gentzkow
Department of Economics, Stanford University and NBER
Jesse M. Shapiro
Department of Economics, Brown University and NBER

APPENDIX A: SENSITIVITY AND INFORMATIVENESS

PROPOSITION 2 considers the effect of limiting attention to forms of misspecification that do not affect $\hat{\gamma}$. In some cases, however, researchers may be interested in forms of misspecification with a non-zero, but known, effect on $\hat{\gamma}$. In such cases, our assumptions again imply a relationship between the biases in \hat{c} and $\hat{\gamma}$.

This relationship depends on the sensitivity of \hat{c} to $\hat{\gamma}$. This is the natural extension of the sensitivity measure proposed in Andrews, Gentzkow, and Shapiro (2017) to the current setting.

Definition: The sensitivity of \hat{c} with respect to $\hat{\gamma}$ is

$$
\Lambda=\Sigma_{c \gamma} \Sigma_{\gamma \gamma}^{-1}
$$

To build intuition, note that sensitivity characterizes the relationship between \hat{c} and $\hat{\gamma}$ in the asymptotic distribution under the base model. If we assume, as in Section 3, that \hat{c} and $\hat{\gamma}$ are normally distributed in finite samples, then Λ is simply the vector of coefficients from the population regression of \hat{c} on $\hat{\gamma}$. In this case, element Λ_{j} of Λ is the effect of changing the realization of a particular $\hat{\gamma}_{j}$ on the expected value of \hat{c}, holding the other elements of $\hat{\gamma}$ constant.

Andrews, Gentzkow, and Shapiro (2017) showed that for $\hat{c}=c(\hat{\eta}), \hat{\eta}$ a minimum distance estimator based on moments $\hat{g}(\eta)$, and $\hat{\gamma}=\hat{g}\left(\eta_{0}\right)$ the estimation moments evaluated at the true parameter value, under regularity conditions sensitivity translates the effect of misspecification on $\hat{\gamma}$ to the effect on \hat{c}, in the sense that

$$
\bar{c}(S(h, z))-\bar{c}(S(h, 0))=\Lambda(\bar{\gamma}(S(h, z))-\bar{\gamma}(S(h, 0)))
$$

Our next proposition extends this result.
Proposition 4: Suppose that Assumptions 1-4 hold, and let

$$
\mathcal{S}^{\mathrm{RN}}\left(c^{\star}, \bar{\gamma}\right)=\bigcup_{S \in \mathcal{S}^{0}\left(c^{\star}\right)}\{\tilde{S} \in \mathcal{N}(S): \bar{\gamma}(\tilde{S})-\bar{\gamma}(S)=\bar{\gamma}\}
$$

[^0]Provided $\mu(\bar{\gamma})^{2}=\mu^{2}-\bar{\gamma}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma} \geq 0$, the set of possible biases under $S \in \mathcal{S}^{\mathrm{RN}}(\cdot, \bar{\gamma})$ is

$$
\left\{\bar{c}(S)-c^{\star}: S \in \mathcal{S}^{\mathrm{RN}}\left(c^{\star}, \bar{\gamma}\right)\right\}=\left[\Lambda \bar{\gamma}-\mu(\bar{\gamma}) \sigma_{c} \sqrt{1-\Delta}, \Lambda \bar{\gamma}+\mu(\bar{\gamma}) \sigma_{c} \sqrt{1-\Delta}\right]
$$

for any c^{\star} such that $\mathcal{S}^{\mathrm{RN}}\left(c^{\star}, \bar{\gamma}\right)$ is nonempty.
Proposition 4 extends the results of Andrews, Gentzkow, and Shapiro (2017) to the case where $\hat{\gamma}$ need not be a vector of estimation moments, and thus we may have $\Delta<1$. It likewise extends Proposition 2. The resulting set of first-order asymptotic biases for \hat{c} is centered at $\Lambda \bar{\gamma}$ with width proportional to $\sqrt{1-\Delta}$.

Unlike in Proposition 2, the degree of misspecification now enters the width through $\mu(\bar{\gamma})=\sqrt{\mu^{2}-\bar{\gamma}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}}$. Intuitively, $\mu(\bar{\gamma})$ measures the degree of excess misspecification beyond $\sqrt{\bar{\gamma}^{\prime} \sum_{\gamma \gamma}^{-1} \bar{\gamma}}$, which is the minimum necessary to allow $\bar{\gamma}(\tilde{S})-\bar{\gamma}(S)=\bar{\gamma}$. If the degree of excess misspecification is small, then the first-order asymptotic bias of \hat{c} is close to $\Lambda \bar{\gamma}$, while if the degree of excess misspecification is large, then a wider range of biases is possible.

Proof of Proposition 4: The proof is similar to that for Proposition 2 in the main text. By Lemma 1, we again have

$$
c^{\star}(h)=E_{F_{0}}\left[\phi_{c}\left(D_{i}\right) s_{h}\left(D_{i}\right)\right] .
$$

Note, next, that by the definition of $\mathcal{S}^{\mathrm{RN}}\left(c^{\star}, \bar{\gamma}\right)$ and Lemma 1, for any $S \in \mathcal{S}^{\mathrm{RN}}\left(c^{\star}, \bar{\gamma}\right)$ there exist $(h, z) \in \mathcal{H} \times \mathcal{Z}$ with $S=S(h, z), c^{\star}(h)=c^{\star}$, and

$$
E_{F_{0}}\left[\phi_{\gamma}\left(D_{i}\right)\left(s_{h}\left(D_{i}\right)+s_{z}\left(D_{i}\right)\right)\right]-E_{F_{0}}\left[\phi_{\gamma}\left(D_{i}\right) s_{h}\left(D_{i}\right)\right]=E_{F_{0}}\left[\phi_{\gamma}\left(D_{i}\right) s_{z}\left(D_{i}\right)\right]=\bar{\gamma}
$$

Thus, writing $\bar{\gamma}_{z}=E_{F_{0}}\left[\phi_{\gamma}\left(D_{i}\right) s_{z}\left(D_{i}\right)\right]$ and $\bar{c}_{z}=E_{F_{0}}\left[\phi_{c}\left(D_{i}\right) s_{z}\left(D_{i}\right)\right]$ for brevity, our task reduces to showing that

$$
\left\{\bar{c}_{z}: z \in \mathcal{Z}, \bar{\gamma}_{z}=\bar{\gamma}, E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right] \leq \mu^{2}\right\}=\left[\Lambda \bar{\gamma}-\mu(\bar{\gamma}) \sigma_{c} \sqrt{1-\Delta}, \Lambda \bar{\gamma}+\mu(\bar{\gamma}) \sigma_{c} \sqrt{1-\Delta}\right]
$$

Define $s\left(D_{i} ; \bar{\gamma}\right)=\phi_{\gamma}\left(D_{i}\right)^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}$, and

$$
\varepsilon_{z}\left(D_{i}\right)=s_{z}\left(D_{i}\right)-s\left(D_{i} ; \bar{\gamma}_{z}\right) .
$$

Note that $E_{F_{0}}\left[\phi_{\gamma}\left(D_{i}\right) \varepsilon_{z}\left(D_{i}\right)\right]=0$ and $E_{F_{0}}\left[s\left(D_{i} ; \bar{\gamma}_{z}\right) \varepsilon_{z}\left(D_{i}\right)\right]=0$ by construction. We can write

$$
\begin{aligned}
\bar{c}_{z} & =E_{F_{0}}\left[\phi_{c}\left(D_{i}\right) s_{z}\left(D_{i}\right)\right] \\
& =E_{F_{0}}\left[\phi_{c}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)^{\prime}\right] \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}_{z}+E_{F_{0}}\left[\phi_{c}\left(D_{i}\right) \varepsilon_{z}\left(D_{i}\right)\right] \\
& =\Lambda \bar{\gamma}_{z}+E_{F_{0}}\left[\phi_{c}\left(D_{i}\right) \varepsilon_{z}\left(D_{i}\right)\right] .
\end{aligned}
$$

Next, define

$$
\tilde{\phi}_{c}\left(D_{i}\right)=\phi_{c}\left(D_{i}\right)-\Lambda \phi_{\gamma}\left(D_{i}\right)
$$

and note that

$$
E_{F_{0}}\left[\phi_{c}\left(D_{i}\right) \varepsilon_{z}\left(D_{i}\right)\right]=E_{F_{0}}\left[\tilde{\phi}_{c}\left(D_{i}\right) \varepsilon_{z}\left(D_{i}\right)\right] .
$$

The Cauchy-Schwarz inequality then implies that

$$
\begin{aligned}
\left|E_{F_{0}}\left[\tilde{\phi}_{c}\left(D_{i}\right) \varepsilon_{z}\left(D_{i}\right)\right]\right| & \leq \sqrt{E_{F_{0}}\left[\tilde{\phi}_{c}\left(D_{i}\right)^{2}\right]} \sqrt{E_{F_{0}}\left[\varepsilon_{z}\left(D_{i}\right)^{2}\right]} \\
& =\sqrt{\sigma_{c}^{2}-\Lambda \Sigma_{\gamma \gamma} \Lambda^{\prime}} \sqrt{E_{F_{0}}\left[\varepsilon_{z}\left(D_{i}\right)^{2}\right]} \\
& =\sigma_{c} \sqrt{1-\Delta} \sqrt{E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]-\bar{\gamma}_{z}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}_{z}} .
\end{aligned}
$$

Combining these results, we see that for z such that $\bar{\gamma}_{z}=\bar{\gamma}$ and $E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right] \leq \mu^{2}$,

$$
\bar{c}_{z} \in\left[\Lambda \bar{\gamma}-\sigma_{c} \sqrt{1-\Delta} \sqrt{\mu^{2}-\bar{\gamma}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}}, \Lambda \bar{\gamma}+\sigma_{c} \sqrt{1-\Delta} \sqrt{\mu^{2}-\bar{\gamma}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}}\right]
$$

which are the bounds stated in the proposition. In particular,

$$
0 \leq E_{F_{0}}\left[\varepsilon_{z}\left(D_{i}\right)^{2}\right] \leq \mu^{2}-\bar{\gamma}_{z}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}_{z},
$$

so if $\bar{\gamma}_{z}=\bar{\gamma}$, we must have $\bar{\gamma}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma} \leq \mu^{2}$ in order that $E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right] \leq \mu^{2}$. Hence, if $\mu^{2}-$ $\bar{\gamma}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}<0$, there exists no z with $\bar{\gamma}_{z}=\bar{\gamma}$ and $E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right] \leq \mu^{2}$.

To complete the proof, it remains to show that these bounds are tight, so that for any $(\bar{c}, \bar{\gamma}, \mu)$ with

$$
\begin{equation*}
\bar{c} \in\left[\Lambda \bar{\gamma}-\sigma_{c} \sqrt{1-\Delta} \sqrt{\mu^{2}-\bar{\gamma}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}}, \Lambda \bar{\gamma}+\sigma_{c} \sqrt{1-\Delta} \sqrt{\mu^{2}-\bar{\gamma}^{\prime} \sum_{\gamma \gamma}^{-1} \bar{\gamma}}\right] \tag{16}
\end{equation*}
$$

there exists $z \in \mathcal{Z}$ with $\bar{c}_{z}=\bar{c}, \bar{\gamma}_{z}=\bar{\gamma}$, and $E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right] \leq \mu^{2}$. If $\Delta<1$, define

$$
s^{*}\left(D_{i} ; \bar{c}, \bar{\gamma}\right)=s\left(D_{i} ; \bar{\gamma}\right)+\tilde{\phi}_{c}\left(D_{i}\right) \frac{\bar{c}-\Lambda \bar{\gamma}}{\sigma_{c}^{2}(1-\Delta)}
$$

Note that

$$
E_{F_{0}}\left[\phi_{\gamma}\left(D_{i}\right) s^{*}\left(D_{i} ; \bar{c}, \bar{\gamma}\right)\right]=\bar{\gamma}
$$

while

$$
E_{F_{0}}\left[\phi_{c}\left(D_{i}\right) s^{*}\left(D_{i} ; \bar{c}, \bar{\gamma}\right)\right]=\Lambda \bar{\gamma}+E_{F_{0}}\left[\tilde{\phi}_{c}\left(D_{i}\right)^{2}\right] \frac{\bar{c}-\Lambda \bar{\gamma}}{\sigma_{c}^{2}(1-\Delta)}=\bar{c}
$$

Moreover,

$$
\begin{aligned}
E_{F_{0}}\left[s^{*}\left(D_{i} ; \bar{c}, \bar{\gamma}\right)^{2}\right] & =E_{F_{0}}\left[s\left(D_{i} ; \bar{\gamma}\right)^{2}\right]+E_{F_{0}}\left[\tilde{\phi}_{c}\left(D_{i}\right)^{2}\right] \frac{(\bar{c}-\Lambda \bar{\gamma})^{2}}{\sigma_{c}^{4}(1-\Delta)^{2}} \\
& =\bar{\gamma}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}+\frac{(\bar{c}-\Lambda \bar{\gamma})^{2}}{\sigma_{c}^{2}(1-\Delta)}
\end{aligned}
$$

However, by (16), we know that

$$
|\bar{c}-\Lambda \bar{\gamma}| \leq \sigma_{c} \sqrt{1-\Delta} \sqrt{\mu^{2}-\bar{\gamma}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}}
$$

and thus that

$$
\frac{(\bar{c}-\Lambda \bar{\gamma})^{2}}{\sigma_{c}^{2}(1-\Delta)} \leq\left(\mu^{2}-\bar{\gamma}^{\prime} \Sigma_{\gamma \gamma}^{-1} \bar{\gamma}\right)
$$

so $E_{F_{0}}\left[s^{*}\left(D_{i} ; \bar{c}, \bar{\gamma}\right)^{2}\right] \leq \mu^{2}$. By Assumption 4 , however, there exists $z \in \mathcal{Z}$ with

$$
E_{F_{0}}\left[\left(s_{z}\left(D_{i}\right)-s^{*}\left(D_{i} ; \bar{c}, \bar{\gamma}\right)\right)^{2}\right]=0
$$

and thus z yields $\bar{c}_{z}=\bar{c}, \bar{\gamma}_{z}=\bar{\gamma}$, and $E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right] \leq \mu^{2}$ as desired. In cases with $\Delta=1$, on the other hand, we can use $s^{*}\left(D_{i} ; \bar{c}, \bar{\gamma}\right)=s\left(D_{i} ; \bar{\gamma}\right)$.
Q.E.D.

APPENDIX B: Asymptotic Divergence

This section studies the asymptotic behavior of the divergence

$$
\begin{equation*}
r_{h, z}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)=E_{F_{h, z}\left(t_{h}, 0\right)}\left[\psi\left(\frac{f_{h, z}\left(D_{i} ; \frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)}{f_{h, z}\left(D_{i} ; \frac{1}{\sqrt{n}}, 0\right)}\right)\right] \tag{17}
\end{equation*}
$$

as $n \rightarrow \infty$, where, as in the main text, we assume that $\psi(1)=0$ and $\psi^{\prime \prime}(1)=2$. To derive our results, we impose the following assumption.

ASSUMPTION 6: For $t=\left(t_{h}, t_{z}\right) \in \mathbb{R}^{2}$ and $f_{h, z}\left(D_{i} ; t\right)=f_{h, z}\left(D_{i} ; t_{h}, t_{z}\right), f_{h, z}\left(D_{i} ; t\right)$ is twice continuously differentiable in t at 0 , and there exists an open neighborhood \mathcal{B} of zero such that

$$
\left.\left.\left.\begin{array}{l}
E_{F_{0}}\left[\operatorname { s u p } _ { t \in \mathcal { B } } \left(\left|\frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; t\right)\right|+\left|\frac{\partial^{2}}{\partial t_{z}^{2}} f_{h, z}\left(D_{i} ; t\right)\right|\right.\right. \\
\quad+\left\lvert\, \frac{f_{h, z}\left(D_{i} ; t_{h}, 0\right)}{f_{h, z}\left(D_{i} ; 0\right)} \psi^{\prime}\left(\frac{f_{h, z}\left(D_{i} ; t\right)}{f_{h, z}\left(D_{i} ; t\right)}\right) \frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; t\right)\right. \\
f_{h, z}\left(D_{i} ; t\right)
\end{array}\right)\right], \text {, } \begin{array}{l}
E_{F_{0}}\left[\sup _{\left.(t, \tilde{t}) \in \mathcal{B}^{2}\right)} \frac{f_{h, z}\left(D_{i} ; t_{h}, 0\right)}{f_{h, z}\left(D_{i} ; 0\right)} \psi^{\prime}\left(\frac{f_{h, z}\left(D_{i} ; \tilde{t}\right)}{f_{h, z}\left(D_{i} ; t\right)}\right) \frac{\partial^{2}}{\partial t_{z}} f_{h, z}\left(D_{i} ; \tilde{t}\right)\right. \\
f_{h, z}\left(D_{i} ; t\right)
\end{array}\right],
$$

and

$$
E_{F_{0}}\left[\sup _{(t, \tilde{t}) \in \mathcal{B}^{2}}\left|\frac{f_{h, z}\left(D_{i} ; t_{h}, 0\right)}{f_{h, z}\left(D_{i} ; 0\right)} \psi^{\prime \prime}\left(\frac{f_{h, z}\left(D_{i} ; \tilde{t}\right)}{f_{h, z}\left(D_{i} ; t\right)}\right)\left(\frac{\frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; \tilde{t}\right)}{f_{h, z}\left(D_{i} ; t\right)}\right)^{2}\right|\right]
$$

are finite.
Under this assumption, we obtain the asymptotic approximation to divergence discussed in the main text.

Proposition 5: Under Assumptions 3 and 6,

$$
\lim _{n \rightarrow \infty} n \cdot r_{h, z}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)=E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right] .
$$

Proof of Proposition 5: Recall that $r_{h, z}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$ can be written as in (17). Assumption 6 and Leibniz's rule imply that for n sufficiently large, we can exchange integration and differentiation twice, so by Taylor's theorem with a mean-value residual, ${ }^{1}$ we have that $n \cdot r_{h, z}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$ is equal to

$$
\left.\left.n \cdot E_{F_{0}}\left[\begin{array}{c}
\frac{f_{h, z}\left(D_{i} ; t_{n}\right)}{f_{h, z}\left(D_{i} ; 0\right)}\left(\psi\left(\frac{f_{h, z}\left(D_{i} ; t_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right)+\psi^{\prime}\left(\frac{f_{h, z}\left(D_{i} ; t_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right) \frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; t_{n}\right)\right. \\
f_{h, z}\left(D_{i} ; t_{n}\right) \\
\frac{1}{\sqrt{n}} \\
+\frac{1}{2}\left(\psi^{\prime}\left(\frac{f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right) \frac{\partial^{2}}{\partial t_{2}} f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)\right. \\
f_{h, z}\left(D_{i} ; t_{n}\right)
\end{array}+\psi^{\prime \prime}\left(\frac{f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right)\left(\frac{\frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right)^{2}\right) \frac{1}{n}\right)\right]
$$

for $t_{n}=\left(\frac{1}{\sqrt{n}}, 0\right), \tilde{t}_{n}=\left(\frac{1}{\sqrt{n}}, \tilde{t}_{z, n}\right)$, and $\tilde{t}_{z, n} \in\left[0, \frac{1}{\sqrt{n}}\right]$. Thus, since $\psi(1)=0$ by assumption, we have that $n \cdot r_{h, z}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$ is equal to

$$
E_{F_{0}}\left[\begin{array}{c}
\sqrt{n} \psi^{\prime}(1) \frac{\frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; t_{n}\right)}{f_{h, z}\left(D_{i} ; 0\right)} \\
+\frac{1}{2} \frac{f_{h, z}\left(D_{i} ; t_{n}\right)}{f_{h, z}\left(D_{i} ; 0\right)}\left(\psi^{\prime}\left(\frac{f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right) \frac{\partial^{2}}{\partial t_{z}^{2}} f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)\right. \\
f_{h, z}\left(D_{i} ; t_{n}\right) \\
\left.+\psi^{\prime \prime}\left(\frac{f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right)\left(\frac{\frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right)^{2}\right)
\end{array}\right] .
$$

Assumption 6 and Leibniz's rule imply that for n sufficiently large,

$$
\begin{aligned}
E_{F_{0}}\left[\frac{\frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; t_{n}\right)}{f_{h, z}\left(D_{i} ; 0\right)}\right] & =\int \frac{\partial}{\partial t_{z}} f_{h, z}\left(d ; \frac{1}{\sqrt{n}}, 0\right) d \nu(d) \\
& =\frac{\partial}{\partial t_{z}} \int f_{h, z}\left(d ; \frac{1}{\sqrt{n}}, 0\right) d \nu(d)=0 .
\end{aligned}
$$

Hence, we see that $n \cdot r_{h, z}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$ is equal to

$$
\begin{aligned}
& E_{F_{0}} {\left[\frac { 1 } { 2 } \frac { f _ { h , z } (D _ { i } ; t _ { n }) } { f _ { h , z } (D _ { i } ; 0) } \left(\psi^{\prime}\left(\frac{f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right) \frac{\frac{\partial^{2}}{\partial t_{z}^{2}} f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right.\right.} \\
&\left.\left.+\psi^{\prime \prime}\left(\frac{f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right)\left(\frac{\frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right)^{2}\right)\right] .
\end{aligned}
$$

${ }^{1}$ Specifically, note that for $q\left(t_{h}, t_{z}\right)=r_{h, z}\left(t_{h}, t_{z}\right)$, we can write

$$
q\left(t_{h}, t_{z}\right)=q\left(t_{h}, 0\right)+\frac{\partial}{\partial t_{z}} q\left(t_{h}, 0\right) t_{z}+\frac{1}{2} \frac{\partial^{2}}{\partial t_{z}^{2}} q\left(t_{h}, \tilde{t}_{z}\right) t_{z}^{2}
$$

with $\tilde{t}_{z} \in\left[0, t_{z}\right]$.

Since $\psi^{\prime \prime}(1)=2$, the dominated convergence theorem and Assumption 6 imply that

$$
\begin{aligned}
E_{F_{0}}[& \frac{1}{2} \frac{f_{h, z}\left(D_{i} ; t_{n}\right)}{f_{h, z}\left(D_{i} ; 0\right)}\left(\psi^{\prime}\left(\frac{f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right) \frac{\frac{\partial^{2}}{\partial t_{z}^{2}} f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right. \\
& \left.\left.+\psi^{\prime \prime}\left(\frac{f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right)\left(\frac{\frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; \tilde{t}_{n}\right)}{f_{h, z}\left(D_{i} ; t_{n}\right)}\right)^{2}\right)\right] \\
\rightarrow & \frac{1}{2} E_{F_{0}}\left[\psi^{\prime}(1) \frac{\frac{\partial^{2}}{\partial t_{z}} f_{h, z}\left(D_{i} ; 0\right)}{f_{h, z}\left(D_{i} ; 0\right)}+\psi^{\prime \prime}(1)\left(\frac{\frac{\partial}{\partial t_{z}} f_{h, z}\left(D_{i} ; 0\right)}{f_{h, z}\left(D_{i} ; 0\right)}\right)^{2}\right] \\
= & E_{F_{0}}\left[\frac{1}{2} \psi^{\prime}(1) \frac{\frac{\partial^{2}}{\partial t_{z}^{2}} f_{h, z}\left(D_{i} ; 0\right)}{f_{h, z}\left(D_{i} ; 0\right)}+s_{z}\left(D_{i}\right)^{2}\right] .
\end{aligned}
$$

However, Assumption 6 and Leibniz's rule imply that

$$
E_{F_{0}}\left[\frac{\frac{\partial^{2}}{\partial t_{z}^{2}} f_{h, z}\left(D_{i} ; 0\right)}{f_{h, z}\left(D_{i} ; 0\right)}\right]=\int \frac{\partial^{2}}{\partial t_{z}^{2}} f_{h, z}(d ; 0) d \nu(d)=\frac{\partial^{2}}{\partial t_{z}^{2}} \int f_{h, z}(d ; 0) d \nu(d)=0,
$$

so

$$
\lim _{n \rightarrow \infty} n \cdot r_{h, z}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)=E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]
$$

as we wanted to show.
Q.E.D.

APPENDIX C: Asymptotic Distinguishability

In Section 4.3 of the paper, and Section B above, we discuss that the neighborhoods studied in our local asymptotic analysis correspond to bounds on the asymptotic CressieRead divergence between $F_{h, z}\left(\frac{1}{\sqrt{n}}, 0\right)$ and $F_{h, z}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$. In this section, we show that they also correspond to bounds on the asymptotic power of tests to distinguish $S(h, z)$ and $S(h, 0)$.

Proposition 6: Under Assumption 3, the most powerful level- α test of the null hypothesis

$$
H_{0}:\left(D_{1}, \ldots, D_{n}\right) \sim{\underset{i}{X}}_{n}^{n} F_{h, z}\left(\frac{1}{\sqrt{n}}, 0\right)
$$

against

$$
H_{1}:\left(D_{1}, \ldots, D_{n}\right) \sim{\underset{X}{i=1}}_{n} F_{h, z}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)
$$

has power converging to $1-F_{N(0,1)}\left(v_{\alpha}-\sqrt{E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]}\right)$ for v_{α} the $1-\alpha$ quantile of the standard normal distribution.

The proof of Proposition 6 shows that the most powerful test corresponds asymptotically to a z-test, where the z-statistic has mean $\sqrt{E_{F_{0}}\left[S_{z}\left(D_{i}\right)^{2}\right]}$ under H_{1}.

Proof of Proposition 6: By the Neyman-Pearson lemma (see Theorem 3.2.1 in Lehmann and Romano (2005)), the most powerful level- α test of $H_{0}:\left(D_{1}, \ldots, D_{n}\right) \sim$ $\times_{i=1}^{n} F_{h, z}\left(\frac{1}{\sqrt{n}}, 0\right)$ against $H_{1}:\left(D_{1}, \ldots, D_{n}\right) \sim X_{i=1}^{n} F_{h, z}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$ rejects when the log likelihood ratio

$$
\log \left(d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right) / d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, 0\right)\right)
$$

exceeds a critical value $v_{\alpha, n}$ chosen to ensure rejection probability α under H_{0} (and may randomize when the log likelihood ratio exactly equals the critical value). Here we again abbreviate $X_{i=1}^{n} F=F^{n}$.

By Assumption 3 and the quadratic expansion of the likelihood in the proof of Lemma 1, however, we see that under $S(0,0)$, for $g\left(D_{i} ; h, z\right)=s_{h}\left(D_{i}\right)+s_{z}\left(D_{i}\right)$,

$$
\begin{aligned}
& \left(\log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, 0\right)}{d F_{0}^{n}}\right) \log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)}{d F_{0}^{n}}\right)\right)^{\prime} \\
& \rightarrow{ }_{d} N\left(\binom{-\frac{1}{2} E_{F_{0}}\left[g\left(D_{i} ; h, 0\right)^{2}\right]}{-\frac{1}{2} E_{F_{0}}\left[g\left(D_{i} ; h, z\right)^{2}\right]}, \tilde{\Sigma}\right)
\end{aligned}
$$

for

$$
\tilde{\Sigma}=\left(\begin{array}{cc}
E_{F_{0}}\left[g\left(D_{i} ; h, 0\right)^{2}\right] & E_{F_{0}}\left[g\left(D_{i} ; h, 0\right) g\left(D_{i} ; h, z\right)\right] \\
E_{F_{0}}\left[g\left(D_{i} ; h, 0\right) g\left(D_{i} ; h, z\right)\right] & E_{F_{0}}\left[g\left(D_{i} ; h, z\right)^{2}\right]
\end{array}\right) .
$$

Le Cam's third lemma thus implies that under $S(h, 0)$,

$$
\begin{aligned}
& \left(\log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, 0\right)}{d F_{0}^{n}}\right) \log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)}{d F_{0}^{n}}\right)\right)^{\prime} \\
& \rightarrow{ }_{d} N\left(\binom{\frac{1}{2} E_{F_{0}}\left[g\left(D_{i} ; h, 0\right)^{2}\right]}{-\frac{1}{2} E_{F_{0}}\left[g\left(D_{i} ; h, z\right)^{2}\right]+E_{F_{0}}\left[g\left(D_{i} ; h, 0\right) g\left(D_{i} ; h, z\right)\right]}, \tilde{\Sigma}\right),
\end{aligned}
$$

while under $S(h, z)$,

$$
\left.\left.\begin{array}{l}
\left(\log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, 0\right)}{d F_{0}^{n}}\right) \log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)}{d F_{0}^{n}}\right)\right)^{\prime} \\
\rightarrow{ }_{d} N\left(\left(-\frac{1}{2} E_{F_{0}}\left[g\left(D_{i} ; h, 0\right)^{2}\right]+E_{F_{0}}\left[g\left(D_{i} ; h, 0\right) g\left(D_{i} ; h, z\right)\right]\right.\right. \\
\frac{1}{2} E_{F_{0}}\left[g\left(D_{i} ; h, z\right)^{2}\right]
\end{array}\right), \tilde{\Sigma}\right) .
$$

Since

$$
\log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)}{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, 0\right)}\right)=\log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)}{d F_{0}^{n}}\right)-\log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, 0\right)}{d F_{0}^{n}}\right)
$$

and $s_{z}(d)=s_{h}(d)=0$ when $h=z=0, g\left(D_{i} ; h, 0\right)-g\left(D_{i} ; h, z\right)=-g\left(D_{i} ; 0, z\right)$, we see that

$$
\begin{aligned}
& \log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)}{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, 0\right)}\right) \\
& \quad \rightarrow_{d}\left\{\begin{array}{l}
N\left(-\frac{1}{2} E_{F_{0}}\left[g\left(D_{i} ; 0, z\right)^{2}\right], E_{F_{0}}\left[g\left(D_{i} ; 0, z\right)^{2}\right]\right) \\
N\left(\frac{1}{2} E_{F_{0}}\left[g\left(D_{i} ; 0, z\right)^{2}\right], E_{F_{0}}\left[g\left(D_{i} ; 0, z\right)^{2}\right]\right)
\end{array} \quad \text { under } S(h, 0),\right.
\end{aligned}
$$

Hence, since $E_{F_{0}}\left[g\left(D_{i} ; 0, z\right)^{2}\right]=E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]$ and $v_{\alpha, n}$ corresponds to the $1-\alpha$ quantile of the \log likelihood ratio under the null, we have that

$$
\frac{\log \left(\frac{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)}{d F_{h, z}^{n}\left(\frac{1}{\sqrt{n}}, 0\right)}\right)-v_{\alpha, n}}{\sqrt{E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]}} \rightarrow_{d} \begin{cases}N\left(-v_{\alpha}, 1\right) & \text { under } S(h, 0), \\ N\left(\sqrt{E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]}-v_{\alpha}, 1\right) & \text { under } S(h, z),\end{cases}
$$

for v_{α} the $1-\alpha$ quantile of a standard normal distribution, from which the result follows.

APPENDIX D: Non-Local Misspecification

This section develops our informativeness measure based on probability limits, rather than first-order asymptotic bias.

Under Assumptions 1, 3, and 4, provided the estimators \hat{c} and $\hat{\gamma}$ are regular in the sense discussed in Newey (1994), Theorem 2.1 of Newey (1994) implies that the probability limits $\tilde{c}(\cdot)$ and $\gamma(\cdot)$ are asymptotically linear functionals, in the sense that

$$
\begin{array}{ll}
\lim _{t_{z} \rightarrow 0}\left\|\tilde{c}\left(F_{0, z}\left(0, t_{z}\right)\right)-c\left(\eta_{0}\right)-t_{z} E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right\| / t_{z}=0 & \text { for all } z \in \mathcal{Z}, \\
\lim _{t_{z} \rightarrow 0}\left\|\gamma\left(F_{0, z}\left(0, t_{z}\right)\right)-\gamma\left(F_{0}\right)-t_{z} E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]\right\| / t_{z}=0 & \text { for all } z \in \mathcal{Z} . \tag{18}
\end{array}
$$

Assumption 2 would be implied by an assumption that $(\hat{c}, \hat{\gamma})$ are regular in the base model, so the assumption of regularity of $(\hat{c}, \hat{\gamma})$ in the nesting model can be understood as a strengthening of Assumption 2. See Newey (1994) and Rieder (1994) for discussion.

Since (18) only restricts behavior as $t_{z} \rightarrow 0$ for fixed z, rather than studying $\tilde{\Delta}(\bar{r})$ as defined in the main text let us instead consider an analogue defined using finite collections of paths. Specifically, continuing to define $r_{h, z}\left(t_{h}, t_{z}\right)=E_{F_{h, z}\left(t_{h}, 0\right)}\left[\psi\left(\frac{f_{h, z}\left(D_{i} ; t_{h}, t_{z}\right)}{f_{h, z}\left(D_{i} ; t_{h}, 0\right)}\right)\right]$, for each $z \in \mathcal{Z}$ let

$$
\bar{t}(z, \mu)=\inf \left\{t_{z} \in \mathbb{R}_{+}: r_{0, z}\left(0, t_{z}\right) \geq \mu\right\}
$$

denote the largest value of t such that $r_{0, z}\left(0, t_{z}\right)<\mu$ for all $t_{z}<\bar{t}(z, \mu)$. Let $\mathcal{Z}_{+} \subset \mathcal{Z}$ denote the set of $z \in \mathcal{Z}$ with $E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]>0$.

Let $Q \subset \mathcal{Z}_{+}$denote a finite subset of \mathcal{Z}_{+}, and let \mathcal{Q} denote the set of all such finite subsets. Finally, let

$$
\tilde{b}_{N}(\mu, Q)=\sup \left\{\left|\tilde{c}\left(F_{0, z}\left(0, t_{z}\right)\right)-c\left(\eta_{0}\right)\right|: z \in Q, t_{z}<\bar{t}(z, \mu)\right\}
$$

denote the analogue of $\tilde{b}_{N}(\mu)$ based on the finite set of paths Q, and for $\varepsilon>0$ let $\tilde{b}_{\mathrm{RN}, \varepsilon}(\mu, Q)$, defined as

$$
\sup \left\{\left|\tilde{c}\left(F_{0, z}\left(0, t_{z}\right)\right)-c\left(\eta_{0}\right)\right|: z \in Q, t_{z}<\bar{t}(z, \mu),\left\|\gamma\left(F_{0, z}\left(0, t_{z}\right)\right)-\gamma\left(F_{0}\right)\right\| \leq \varepsilon \sqrt{\mu}\right\}
$$

denote the analogue of $\tilde{b}_{\mathrm{RN}}(\mu, Q)$ based on Q which allows the probability limit of $\hat{\gamma}$ to change by at most $\varepsilon \sqrt{\mu}$. Because $\tilde{b}_{\mathrm{RN}, 0}(\mu, Q)$ may equal 0 even for large μ due to the approximation error in (18), we consider limits as $\varepsilon \downarrow 0$ (i.e., as $\varepsilon \rightarrow 0$ from above). Based on these objects, we define the analogue of $\tilde{\Delta}(\mu)$ as

$$
\tilde{\Delta}(\mu, \mathcal{Q})=\sup _{Q_{1} \in \mathcal{Q}} \inf _{Q_{2} \in \mathcal{Q}} \lim _{\varepsilon \downarrow 0} \frac{\tilde{b}_{\mathrm{RN}, \varepsilon}\left(\mu, Q_{1}\right)}{\tilde{b}_{N}\left(\mu, Q_{2}\right)}
$$

provided the limit exists.
Proposition 7: Suppose Assumptions 1, 3, and 4 hold, that the estimators \hat{c} and $\hat{\gamma}$ are regular, and that Assumption 6 holds for $h=0$ and all $z \in \mathcal{Z}_{+}$. For $\psi(\cdot)$ twice continuously differentiable and $\psi(1)=0, \psi^{\prime \prime}(1)=2$,

$$
\sup _{Q_{1} \in \mathcal{Q}} \inf _{Q_{2} \in \mathcal{Q}} \lim _{\varepsilon \downarrow 0} \lim _{\mu \downarrow 0} \frac{\tilde{b}_{\mathrm{RN}, \varepsilon}\left(\mu, Q_{1}\right)}{\tilde{b}_{N}\left(\mu, Q_{2}\right)}=\sqrt{1-\Delta}
$$

It is important that we take the limit as $\mu \downarrow 0$ inside the limit as $\varepsilon \downarrow 0$ and the sup and inf, since this order of limits allows us to take advantage of the approximation result (18).

Proof of Proposition 7: Note, first, that our Assumptions 1, 3, and 4 imply the conditions of Theorem 2.1 of Newey (1994) other than regularity of $(\hat{c}, \hat{\gamma})$. Specifically, conditions (i) and (ii) of Theorem 2.1 in Newey (1994) follow from our Assumptions 3 and 4. Condition (iii) is implied by our Assumption 1. Regularity of ($\hat{c}, \hat{\gamma}$) is assumed, so Theorem 2.1 of Newey (1994) implies (18).

Note, next, that for any $z \in \mathcal{Z}_{+}$, the proof of Proposition 5 implies that

$$
\lim _{t_{z} \downarrow 0} r_{0, z}\left(0, t_{z}\right) / t_{z}^{2}=E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]
$$

Hence, as $\mu \downarrow 0, \bar{t}(z, \mu) / \sqrt{\mu} \rightarrow E\left[s_{z}\left(D_{i}\right)^{2}\right]^{-\frac{1}{2}}$. For all $z \in \mathcal{Z}_{+}$, (18) implies that

$$
\begin{aligned}
& \lim _{\mu \downarrow 0} \sup _{t_{z} \leq \bar{i}(z, \mu)}\left\|\tilde{c}\left(F_{0, z}\left(0, t_{z}\right)\right)-c\left(\eta_{0}\right)-t_{z} E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right\| / t_{z}=0, \\
& \lim _{\mu \downarrow 0} \sup _{t_{z} \leq \bar{i}(z, \mu)}\left\|\gamma\left(F_{0, z}\left(0, t_{z}\right)\right)-\gamma\left(F_{0}\right)-t_{z} E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]\right\| / t_{z}=0,
\end{aligned}
$$

and thus that

$$
\begin{aligned}
& \left\{\frac{1}{\sqrt{\mu}}\left(\tilde{c}\left(F_{0, z}\left(0, t_{z}\right)\right)-c\left(\eta_{0}\right), \gamma\left(F_{0, z}\left(0, t_{z}\right)\right)-\gamma\left(F_{0}\right)\right): t_{z} \leq \bar{t}(z, \mu)\right\} \\
& \quad \rightarrow\left\{\tilde{t}_{z}\left(E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right], E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]\right): \tilde{t}_{z} \leq E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{-\frac{1}{2}}\right\}
\end{aligned}
$$

in the Hausdorff sense as $\mu \downarrow 0$. Correspondingly, for any $Q \in \mathcal{Q}$,

$$
\begin{aligned}
& \left\{\frac{1}{\sqrt{\mu}}\left(\tilde{c}\left(F_{0, z}\left(0, t_{z}\right)\right)-c\left(\eta_{0}\right), \gamma\left(F_{0, z}\left(0, t_{z}\right)\right)-\gamma\left(F_{0}\right)\right): z \in Q, t_{z} \leq \bar{t}(z, \mu)\right\} \\
& \quad \rightarrow\left\{\tilde{t}_{z}\left(E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right], E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]\right): z \in Q, \tilde{t}_{z} \leq E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{-\frac{1}{2}}\right\} .
\end{aligned}
$$

Hence, for any nonempty $Q \in \mathcal{Q}$,

$$
\frac{1}{\sqrt{\mu}} \tilde{b}_{N}(\mu, Q) \rightarrow \max \left\{\frac{\left|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right|}{E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{\frac{1}{2}}}: z \in Q\right\} \quad \text { as } \mu \downarrow 0 .
$$

Matters are somewhat more delicate for $\tilde{b}_{\mathrm{RN}, \varepsilon}(\mu, Q)$. Note, in particular, that for $\varepsilon>0$, as $\mu \downarrow 0$ we have

$$
\begin{aligned}
& \frac{1}{\sqrt{\mu}} \tilde{b}_{\mathrm{RN}, \varepsilon}(\mu, Q) \\
& \quad \rightarrow \sup \left\{\tilde{t}_{z} E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]: z \in Q, \tilde{t}_{z} \leq E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{-\frac{1}{2}}, \tilde{t}_{z}\left\|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]\right\| \leq \varepsilon\right\} \\
& \quad=\sup \left\{\tilde{t}_{z} E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]: z \in Q\right. \\
& \left.\quad \tilde{t}_{z} \leq \min \left\{E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{-\frac{1}{2}}, \frac{\varepsilon}{\left\|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]\right\|}\right\}\right\},
\end{aligned}
$$

where we define $\varepsilon / 0=\infty$ for $\varepsilon>0$. Consequently,

$$
\begin{aligned}
& \frac{1}{\sqrt{\mu}} \tilde{b}_{\mathrm{RN}, \varepsilon}(\mu, Q) \\
& \quad \rightarrow \sup \left\{\tilde{t}_{z}\left|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right|: z \in Q\right. \\
& \left.\quad \tilde{t}_{z} \leq \min \left\{E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{-\frac{1}{2}}, \frac{\varepsilon}{\left\|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]\right\|}\right\}\right\}
\end{aligned}
$$

Note, however, that by the Cauchy-Schwarz inequality and $E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]<\infty$, $E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]$ is finite for all $z \in \mathcal{Z}$, so for any z with $E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right] \neq 0$,

$$
\frac{\varepsilon}{\left\|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]\right\|} E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right] \rightarrow 0
$$

as $\varepsilon \downarrow 0$. Hence, as $\varepsilon \downarrow 0$,

$$
\begin{aligned}
& \sup \left\{\tilde{t}_{z}\left|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right|: z \in Q, \tilde{t}_{z} \leq \min \left\{E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{-\frac{1}{2}}, \frac{\varepsilon}{\left\|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]\right\|}\right\}\right\} \\
& \quad \rightarrow \max \left\{\frac{\left|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right|}{E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{\frac{1}{2}}}: z \in Q_{0}\right\}
\end{aligned}
$$

for $Q_{0}=\left\{z \in Q: E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]=0\right\}$, where we define this max to be zero if Q_{0} is empty.

This immediately implies that

$$
\lim _{\varepsilon \downarrow 0} \lim _{\mu \downarrow 0} \frac{\tilde{b}_{\mathrm{RNN}, \varepsilon}\left(\mu, Q_{1}\right)}{\tilde{b}_{N}\left(\mu, Q_{2}\right)}=\frac{\max \left\{\left|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right| / E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{\frac{1}{2}}: z \in Q_{1,0}\right\}}{\max \left\{\left|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right| / E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{\frac{1}{2}}: z \in Q_{2}\right\}}
$$

for $Q_{1,0}=\left\{z \in Q_{1}: E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]=0\right\}$, provided the denominator on the right-hand side is non-zero. ${ }^{2}$

To complete the proof, note that for \mathcal{Q}_{0} the set of possible Q_{0},

$$
\sup _{Q_{1} \in \mathcal{Q}} \inf _{Q_{2} \in \mathcal{Q}} \lim _{\varepsilon \downarrow 0} \lim _{\mu \downarrow 0} \frac{\tilde{b}_{R N, \varepsilon}\left(\mu, Q_{1}\right)}{\tilde{b}_{N}\left(\mu, Q_{2}\right)}=\frac{\sup _{Q_{0} \in \mathcal{Q}_{0}} \max \left\{\left|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right| / E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{\frac{1}{2}}: z \in Q_{0}\right\}}{\sup _{Q \in \mathcal{Q}} \max \left\{\left|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right| / E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{\frac{1}{2}}: z \in Q\right\}} .
$$

The proof of Proposition 2 shows, however, that

$$
\max _{z \in \mathcal{Z}_{+}}\left|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right| / E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{\frac{1}{2}}=\sigma_{c}
$$

and

$$
\max _{z \in \mathcal{Z}_{+}: E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{\gamma}\left(D_{i}\right)\right]=0}\left|E_{F_{0}}\left[s_{z}\left(D_{i}\right) \phi_{c}\left(D_{i}\right)\right]\right| / E_{F_{0}}\left[s_{z}\left(D_{i}\right)^{2}\right]^{\frac{1}{2}}=\sigma_{c} \sqrt{1-\Delta} .
$$

Hence,

$$
\sup _{Q_{1} \in \mathcal{Q}} \inf _{Q_{2} \in \mathcal{Q}} \lim _{\varepsilon \downarrow 0} \lim _{\mu \downarrow 0} \frac{\tilde{b}_{\mathrm{RN}, \varepsilon}\left(\mu, Q_{1}\right)}{\tilde{b}_{N}\left(\mu, Q_{2}\right)}=\sqrt{1-\Delta}
$$

as we wanted to show.
Q.E.D.

[^1]
APPENDIX E: Accounting for Richer DEpendence of \hat{c} On The Data

In Section 5, for cases where the function $c(\theta)$ depends on the distribution of the data other than through θ, we effectively fix the distribution of the data at the empirical distribution for the purposes of estimating Δ and Λ. Here we discuss how to allow for uncertainty about the distribution of data in a special case, and present corresponding calculations for our applications.

Suppose in particular that

$$
\begin{equation*}
\hat{c}=\frac{1}{n} \sum_{i} c\left(\hat{\theta} ; D_{i}\right) \tag{19}
\end{equation*}
$$

for some function $c(\cdot)$. In contrast to the setup in Section 5, here we allow that \hat{c} depends on the data directly, and not only through the dependence of \hat{c} on $\hat{\theta}$.

In this case, one can show that the recipe in Section 5 applies, with the modification that

$$
\begin{equation*}
\hat{\phi}_{c}\left(D_{i}\right)=c\left(\hat{\theta} ; D_{i}\right)+\hat{\Lambda}_{c g} \phi_{g}\left(D_{i} ; \hat{\theta}\right) \tag{20}
\end{equation*}
$$

where $\phi_{g}\left(D_{i} ; \hat{\theta}\right)$ and $\hat{\Lambda}_{c g}$ are as defined in Section 5, and \hat{C} in the definition of $\hat{\Lambda}_{c g}$ is now given by the gradient of $\frac{1}{n} \sum_{i} c\left(\theta ; D_{i}\right)$ with respect to θ at $\hat{\theta}$.

The proof of this result, which we omit, proceeds by noting that we can augment the GMM parameter vector as (c, θ), and correspondingly augment the moment equation as $\left(c\left(\theta ; D_{i}\right)-c, \phi_{g}\left(D_{i} ; \theta\right)\right.$), following which we can derive the estimated influence function for \hat{c} as we would for any element of $\hat{\theta}$.

In the cases of Attanasio, Meghir, and Santiago (2012) and Gentzkow (2007), we can represent the calculation of \hat{c} in the form given in (19) and thus calculate $\hat{\Delta}$ using the modified estimated influence function in (20). In the case of Attanasio, Meghir, and Santiago (2012), the estimates in Table I change from $0.283,0.227$, and 0.056 , respectively, to $0.277,0.221$, and 0.055 . In the case of Gentzkow (2007), the estimates in Table II change from $0.514,0.009$, and 0.503 , respectively, to $0.517,0.008$, and 0.507 .

REFERENCES

Andrews, I., M. Gentzkow, and J. M. Shapiro (2017): "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," Quarterly Journal of Economics, 132 (4), 1553-1592. [1,2]
Attanasio, O. P., C. Meghir, and A. Santiago (2012): "Education Choices in Mexico: Using a Structural Model and a Randomized Experiment to Evaluate PROGRESA," Review of Economic Studies, 79 (1), 37-66. [12]
Gentzkow, M. (2007): "Valuing New Goods in a Model With Complementarity: Online Newspapers," American Economic Review, 97 (3), 713-744. [12]
Lehmann, E. L., and J. P. Romano (2005): Testing Statistical Hypotheses. New York: Springer. [7]
NEWEY, W. K. (1994): "The Asymptotic Variance of Semiparametric Estimators," Econometrica, 62 (6), 13491382. [8,9]

Rieder, H. (1994): Robust Asymptotic Statistics. New York: Springer. [8]

[^2]Manuscript received 23 October, 2018; final version accepted 19 May, 2020; available online 12 August, 2020.

[^0]: Isaiah Andrews: iandrews@fas.harvard.edu
 Matthew Gentzkow: gentzkow@stanford.edu
 Jesse M. Shapiro: jesse_shapiro_1@brown.edu

[^1]: ${ }^{2}$ If the denominator on the right-hand side is zero, we define the limit as $+\infty$.

[^2]: Co-editor Ulrich K. Müller handled this manuscript as an invited Fisher-Schultz lecture. The invitation to deliver the Fisher-Schultz lecture is also an invitation to publish a suitable version of the lecture in Econometrica.

