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THROUGHOUT THIS SUPPLEMENT, we refer often to sections, results, and equations in
the main text and its appendix using the numbering established there. The numbers of
sections, results, and equations in this supplemental online appendix are all prefixed by
OA to distinguish them.

A Note on Notation. Throughout this appendix, when i appears as the index of sum-
mation without further specification, the summation runs over the set N of nodes. When
� appears as the index of summation, the summation runs over the set �= 1� � � � � n.

OA1. ADDITIONAL PROOFS

PROOF OF PROPOSITION 3: Using expression (9), we can write the dependence of
E[W (b;G)] on intervention By as follows:

E
[
W (b;G)

] = w
∑
�

α�

({
E[b̂�] + y

�

}2 + Var[b�]
)
�

Choosing y to maximize this is identical to the problem analyzed in the deterministic
setting in the proof of Theorem 1. Thus, defining x� = y

�
/b�, with b� = E[B̂�], it satisfies

the same conditions at the optimum as those derived in Theorem 1. Q.E.D.

PROOF OF PROPOSITION 4: Given Assumption 5, without loss of generality we can nor-
malize b̄ = 0. Using expression (9) and normalization, we obtain that if the optimal solu-
tion is B∗, the expected welfare obtained is

E
[
W

(
b∗;G)] =w

∑
�

α� Var
(
b∗
�

)
�

Note that the random variable B∗ can be written as UTB∗, and so the variance–covariance
matrix of the random variable B∗ is ΣB∗ =UTΣB∗U , where recall that ΣB∗ is the variance–
covariance matrix of the random variable B∗.

Andrea Galeotti: agaleotti@london.edu
Benjamin Golub: bgolub@fas.harvard.edu
Sanjeev Goyal: sg472@cam.ac.uk

© 2020 The Authors. Econometrica published by John Wiley & Sons Ltd on behalf of The Econometric Society.
Sanjeev Goyal is the corresponding author on this paper. This is an open access article under the terms of
the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

https://www.econometricsociety.org/suppmatlist.asp
mailto:agaleotti@london.edu
mailto:bgolub@fas.harvard.edu
mailto:sg472@cam.ac.uk
https://creativecommons.org/licenses/by/4.0/


2 A. GALEOTTI, B. GOLUB, AND S. GOYAL

We consider the case of w > 0 and β > 0; the proof of the other cases is analogous
and therefore omitted. The expected welfare is a weighted sum of the variances of the
principal components, Var(b∗

�) = Var(u�(G) · b∗), and the weight α� on the variance of
principal component � of G is an increasing function of its eigenvalue λ�, because β> 0.

Suppose that the claim in the proposition is violated, that is, there exist an �� �′ such
that � < �′ and Var(b∗

�) < Var(b∗
�′). We construct an alternative intervention that has the

same cost and does strictly better. Take the permutation matrix (and therefore an orthog-
onal matrix) P such that Pkk = 1 for all k /∈ {�� �′} and P��′ = P�′� = 1. Define B∗∗ = OB∗

with O = UPUT. Clearly, O is orthogonal, as U and P are both orthogonal. Hence, by
Assumption 5, K(B∗)= K(B∗∗). Furthermore, the matrix

ΣB∗∗ = PΣB∗P T

and so Var(b∗∗
k )= Var(b∗

k) for all k /∈ {�� �′} and Var(b∗∗
� )= Var(b∗

�′) > Var(b∗∗
�′ )= Var(b∗

�).
Since α� > α�′ , intervention B∗∗ does strictly better than B∗, a contradiction to our initial
hypothesis that B∗ was optimal. Q.E.D.

OA2. DISCUSSION

We discuss the relation of principal components of the matrix of interactions with other
related networks statistics (Section OA2.1). We then provide a different economic exam-
ple, which complements those in our main text, inspired by beauty contest games (Sec-
tion OA2.2).

OA2.1. Principal Components and Other Network Measures

First Principal Component and Eigenvector Centrality

For ease of exposition, let the network be connected, that is, let G be irreducible. By
the Perron–Frobenius theorem, u1(G) is entry-wise positive; indeed, this vector is the Per-
ron vector of the matrix, also known as the vector of individuals’ eigenvector centralities.
Thus, our results of Section 4 imply that, under strategic complementarities, interven-
tions that aim to maximize the aggregate utility should change individuals’ incentives in
proportion to their eigenvector centralities.

It is worth comparing this result with results that highlight the importance of Bonacich
centrality. Under strategic complements, equilibrium actions are proportional to the in-
dividuals’ Bonacich centralities in the network (Ballester, Calvó-Armengol, and Zenou,
2006).1 Within the Ballester, Calvó-Armengol, and Zenou (2006) framework, it can easily
be verified that if the objective of the planner is linear in the sum of actions, then under a
quadratic cost function the planner will target individuals in proportion to their Bonacich
centralities (see also Demange (2017)). Bonacich centrality converges to eigenvector cen-
trality as the spectral radius of βG tends to 1; otherwise, the two vectors can be quite
different (see, e.g., Calvó-Armengol, Martí, and Prat (2015) or Golub and Lever (2010)).

The substantive point is that the objective of our planner when solving the intervention
problem (IT) is to maximize the aggregate equilibrium utility, not the sum of actions,
and that explains the difference in the targeting strategy. Indeed, our planner’s objective

1For a different economic context in which eigenvector centrality reflects equilibrium outcomes, see also
Elliott and Golub (2019).
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(under Property A) can be written as follows (introducing a different constant factor for
convenience):

∑
i

ui ∝ 1
n

∑
i

a2
i = ā2 + σ2

a�

where σ2
a is the variance of the action profile and a is the mean action. Thus, our planner

cares about the sum of actions and also their diversity, simply as a mathematical conse-
quence of her objective. This explains the reason why her policies differ from those that
would be in effect if just the mean action were the focus. To reiterate this point, we finally
note that if we consider problem (IT) but we assume that the cost of intervention is linear,
that is, K(b� b̂) = ∑

i |bi − b̂i|, then the optimal intervention will target only one individual
(see the discussion in Section OA3.3 of this supplement); note that the targeted individual
is not necessarily the individual with the highest Bonacich centrality.

Last Principal Component

We have shown that in games with strategic substitutes, for large budgets interventions
that aim to maximize the aggregate utility target individuals in proportion to the eigen-
vector of G associated to the lowest eigenvalue of G, the last principal component.

There is a connection between this result and the work of Bramoullé, Kranton, and
d’Amours (2014). Bramoullé, Kranton, and d’Amours (2014) studied the set of equilib-
ria of a network game with linear best replies and strategic substitutes. They observed
that such a game is a potential game, and they derived the potential function explicitly.
From this, they deduced that the lowest eigenvalue of G is crucial for whether the equilib-
rium is unique, and it is also useful for analyzing the stability of a particular equilibrium.2

The basic intuition is that the magnitude of the lowest eigenvalue determines how small
changes in individuals’ actions propagate, via strategic substitutes, in the network. When
these amplifications are strong, multiple equilibria can emerge. Relatedly, when these
amplifications are strong around an equilibrium, that equilibrium will be unstable.

Our study of the strategic substitutes case is driven by different questions, and delivers
different sorts of characterizations. We assume that there is a stable equilibrium which
is unique at least locally, and then we characterize optimal interventions in terms of the
eigenvectors of G. In general, all the eigenvectors—not just the one associated to the
lowest eigenvalue—can matter. Interventions will focus more on the eigenvectors with
smaller eigenvalues. When the budget is sufficiently large, the intervention will (in the
setting of Section 4) focus on only the lowest-eigenvalue eigenvector. As discussed in
Section 4, the network determinants of whether targeting is simple can be quite subtle.
To the best of our knowledge, these considerations are all new in the study of network
games.

Nevertheless, at an intuitive level, there are important points of contact between our
intuitions and those of Bramoullé, Kranton, and d’Amours (2014). In our context, as dis-
cussed earlier, our planner likes to move the incentives of adjacent individuals in opposite
directions. The eigenvector associated to the lowest eigenvalue emerges as the one iden-
tifying the best way to do this at a given cost, and the eigenvalue itself measures how

2For stability of equilibrium, what is relevant is the magnitude of the lowest eigenvalue of an appropriately
defined subgraph of G.
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intensely the strategic effects amplify. This “amplification” property involves forces sim-
ilar to those that make the lowest eigenvalue important to stability and uniqueness in
Bramoullé, Kranton, and d’Amours (2014).

Spectral Approaches to Variance Control

Acemoglu, Ozdaglar, and Tahbaz-Salehi (2016) gave a general analysis of which net-
work statistics matter for volatility of network equilibria. Baqaee and Farhi (2019) de-
veloped a rich macroeconomic analysis relating network measures to aggregate volatility.
Though both papers note the importance of eigenvector centrality in (their analogues
of) the case of strategic complements, their main focus is on how the curvature of best
responses changes the volatility of an aggregate outcome, and which “second-order”
(curvature-related) network statistics are important. We use the principal components
of the network to understand which first-order shocks are most amplified, and how this
depends on the nature of strategic interactions.

OA2.2. Beauty Contest With Local Interactions

This example is inspired by Morris and Shin (2002) and Angeletos and Pavan (2007).
Individuals trade off the returns from effort against the costs, as in the first example,
but also care about coordinating with others. These considerations are captured in the
following payoff:

Ui(a�G)= ai

(
b̃i + β̃

∑
j

gijaj

)
− 1

2
a2
i − γ

2

∑
j

gij[aj − ai]2�

where we assume that β̃ > 0 and γ > 0 and that
∑

j gij = 1 for all i, so the total interaction
is the same for each individual. This formulation also relates to the theory of teams and
organizational economics (see, e.g., Dessein, Galeotti, and Santos (2016), Marschak and
Radner (1972), and Calvó-Armengol, Martí, and Prat (2015)). We may interpret individ-
uals as managers in different divisions within an organization. Each manager selects the
action that maximizes the output of the division, given by the first term, but the manager
also cares about coordinating with other divisions’ actions.3 This is a game of strategic
complements; moreover, an increase in j’s action has a positive effect on individual i’s
utility if and only if aj < ai. It can be verified that the first-order condition for individual i
is given by

ai = b̃i

1 + γ
+ b̃i + γ

1 + γ

∑
gijaj�

By defining β = β̃+γ

1+γ
and b = 1

1+γ
b̃, we obtain a best-response structure exactly as in con-

dition (2). Moreover, the aggregate equilibrium utility is W (b�g) = 1
2(a

∗)Ta∗. Hence, this
game satisfies Property A.

3A similar analysis can be adapted to a standard (local) beauty contest game in which Ui(a�G) = −(ai −
b̃i)

2 − γ
∑

j gij[aj − ai]2. Here, we focus on a modification of the standard beauty contest game that makes the
mapping to our formulation easier to present.
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OA3. EXTENSIONS

We now extend our basic model to study settings where (a) Property A is not satis-
fied (Section OA3.1), (b) the matrix G is non-symmetric (Section OA3.2), (c) the exact
quadratic cost specification does not hold (Section OA3.3), and (d) the interventions oc-
cur via monetary incentives for activity (Section OA3.4).

OA3.1. General Non-Strategic Externalities

Section 4 characterizes optimal interventions for network games that satisfy Property A.
We now relax this assumption. Recall that player i’s utility for action profile a is

Ui(a�G)= Ûi(a�G)+ Pi(a−i�G�b)�

where Ûi(a�G)= ai(bi + ∑
j gijaj)− 1

2a
2
i .

At an equilibrium a∗, it can be checked that
∑

i Ûi(a
∗�G) ∝ (a∗)Ta∗. Therefore, a suffi-

cient condition for Property A to be satisfied is that
∑

i Pi(a
∗
−i�G�b) is also proportional

to (a∗)Ta∗. Examples 1 and 2, as well as the example presented in Section OA2.2, satisfy
this property. However, as the next example shows, there are natural environments in
which it is violated.

EXAMPLE OA1—Social Interaction and Peer Effects: Individual decisions on smoking
and alcohol consumption are susceptible to peer effects (see Jackson, Rogers, and Zenou
(2017) for references to the extensive literature on this subject). For example, an increase
in smoking among an adolescent’s friends increases her incentives to smoke and, at the
same time, has negative effects on her welfare. These considerations are reflected in the
following payoff function:

Ui(a�G)= Ûi(a�G)− γ
∑
j �=i

aj�

where β> 0 and γ is positive and sufficienctly large. It can be checked that the aggregate
equilibrium welfare is

W (b�G)= 1
2
(
a∗)T

a∗ − nγ
∑
i

a∗
i � (OA-1)

with a∗ given by expression (3).4

To extend the analysis beyond Property A, we allow the non-strategic externality
term Pi(a−i�G�b) to take a form that allows for flexible externalities within the linear–
quadratic family:5

Pi(a−i�G)= m1

∑
j

gijaj +m2

∑
j

gija
2
j +m3

∑
j �=i

aj +m4

(∑
j �=i

aj

)2

+m5

∑
j �=i

a2
j �

We also make the following assumption on the matrix G:

4In this specification, the last (externality) term is a global term. We can easily accommodate local negative
externalities by replacing that term with

∑
j gijaj .

5We can also accommodate externalities that depend directly on the bi , but we omit this for brevity.
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ASSUMPTION OA1: The total interaction is constant across individuals, that is,
∑

j gij = 1
for all i ∈N .

Using equation (3) and Assumption OA1, we can rewrite the expression for the aggre-
gate equilibrium utility as follows:

W (b�G)=w1

(
a∗)T

a∗ + w2

n

(∑
i

a∗
i

)2

+ w3√
n

∑
i

a∗
i �

where w1 = 1 +m2 +m5 + (n− 1)m4, w2 = nm5(n− 2), and w3 = √
n[m1 + (n− 1)m3].

Observe that Property A clearly holds when w2 = w3 = 0. On the other hand, if (say)
w1 = w2 = 0, then the planner’s objective is to maximize the sum of the equilibrium ac-
tions, which is a fairly different type of objective. A characterization of the optimal inter-
vention when the planner’s objective is to maximize the sum of the equilibrium actions
can be found in Corollary OA1 below. Under Assumption OA1, the sum of the equilib-
rium actions is proportional to the sum of the standalone marginal returns. Because u1 is
proportional to the all-ones vector 1, this sum in turn is equal to b1.

Together, these facts allow us to extend our earlier analysis to the case of general w2

and w3. First, we can still express the objective function simply in terms of the singular
value decomposition; the only difference is that now b1 will enter both in a quadratic term
and in a linear term. In view of this, we first solve the problem (exactly analogously to the
previous solution) for a given value of b1, and then we optimize over b1.

We maintain Assumption 1 and Assumption 2. Recall that player i’s utility for action
profile a is

Ui(a�G)= Ûi(a�G)+ Pi(a−i�G�b)�

where Ûi(a�G) = ai(bi + ∑
j gijaj) − 1

2a
2
i and Pi(a−i�G�b) is a non-strategic externality

term that takes the following form:

Pi(a−i�G)= m1

∑
j

gijaj +m2

∑
j

gija
2
j +m3

∑
j �=i

aj +m4

(∑
j �=i

aj

)2

+m5

∑
j �=i

a2
j �

Here we have taken local and global externality terms given by second-order polynomials
in actions. (We could also accommodate externalities that depend directly on the bi in the
same sort of way, as will become clear in the proof, but we omit this for brevity.)

The implication of Assumption OA1 for our analysis is summarized next.

LEMMA OA1: Assumption OA1 implies that:
1. for any a ∈R

n,
∑

i

∑
j gijaj = ∑

i ai and
∑

i

∑
j gija

2
j = ∑

i a
2
i ,

2. λ1(G) = 1 and u1
i (G)= √

n for all i,
3.

∑
i a

∗
i = 1

1−β

∑
bi =

√
n

1−β
b1 = √

nα1b1, where a∗ is equilibrium action profile.6

The proof of Lemma OA1 is immediate. Using part 1 of Lemma OA1, and that indi-
viduals play an equilibrium (actions satisfy expression (3)), we obtain

W (b�G)=w1

(
a∗)T

a∗ + w2

n

(∑
i

a∗
i

)2

+ w3√
n

∑
i

a∗
i �

6The last equality follows because α1 = 1/(1 −βλ1)
2, and Assumption OA1 implies that λ1 = 1.
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with

w1 = 1 +m2 +m5 + (n− 1)m4�

w2 = nm5(n− 2)�

w3 = √
n
[
m1 + (n− 1)m3

]
�

Using the decomposition G = UΛUT, together with part 2 and part 3 of Lemma OA1,
we obtain

W (b�G)=w1a
∗Ta∗ +w2α1b

2
1 +w3

√
α1b1�

The intervention problem reads

max
b

w1a
∗Ta∗ +w2α1b

2
1 +w3

√
α1b1

subject to a∗
� = √

α�b��∑
�

(b� − b̂�)
2 ≤ C�

Using the expression for equilibrium actions, we obtain

max
b

w1

∑
�=1

α�b
2
� +w2α1b

2
1 +w3

√
α1b1

subject to
∑
�

(b� − b̂�)
2 ≤ C�

Recalling the definition x� = b�−b̂�
b̂�

for every �, we finally rewrite the problem as

max
x

w1

∑
�=1

α�b̂
2

�(1 + x�)
2 +w2α1b̂

2

1(1 + x1)
2 +w3

√
α1b̂1(1 + x1)

subject to
∑
�

b̂
2

�x
2
� ≤ C�

Theorem OA1 characterizes optimal interventions for two cases: (i) w1 ≥ 0 and (ii)

w1 < 0 and
∑

�=2 b̂
2

� > C . The extension of the analysis for the remaining case w1 < 0 and∑
�=2 b̂

2

� < C is explained in Remark OA1, which is presented after the proof of Theo-
rem OA1. Taken together, Theorem OA1, and Remark OA1 following it, constitute our
extension of Theorem 1 to games that do not satisfy Property A.

THEOREM OA1: Suppose Assumptions 1, 2, and OA1 hold. Suppose that either (i) w1 ≥ 0

or that (ii) w1 < 0 and
∑

�=2 b̂
2

� > C . The optimal intervention is characterized as follows:
1.

x∗
1 = α1

μ− (w1 +w2)α1

[
w1 +w2 + w3

2
√
α1b̂1

]
�
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and, for all �≥ 2,

x∗
� = w1α�

μ−w1α�

�

The shadow price of the planner’s budget, μ > (w1 + w2)α1, is uniquely determined as
the solution of

∑
�=2

b̂
2

�

(
w1α�

μ−w1α�

)2

+ b̂
2

1

(
α1

μ− (w1 +w2)α1

)2[
w1 +w2 + w3

2
√
α1b̂1

]2

= C�

2. a. For all � �= 1, x∗
� > 0 if and only if w1 > 0;

b. x∗
1 > 0 if and only if w1 +w2 + w3

2√
α1b̂1

> 0. 2b. If the game has strategic complements,
β> 0, then |x∗

2| > |x∗
3|> · · ·> |x∗

n|. If the game has strategic substitutes, β< 0, then
|x∗

2|< |x∗
3|< · · ·< |x∗

n|.
3. Suppose w1 �= 0. In the limit as C → 0, μ→ ∞ and:

x∗
�

x∗
�′

→ α�

α�′
for all �� �′ �= 1�

x∗
1

x∗
�

→ α1

α�

[
w1 +w2 + w3

2
√
α1b̂1

]
for all � �= 1�

4. Suppose the game has strategic complements, β > 0. In the limit as C → ∞, μ →
max{w1α2� (w1 +w2)α1}, and
a. If w1α2 > (w1 +w2)α1, then

x∗
1 → α1

w1α2 − (w1 +w2)α1

[
w1 +w2 + w3

2b̂1

√
α1

]
�

∣∣x∗
2

∣∣ → ∞�∣∣x∗
�

∣∣ → α�

α2 − α�

for all � > 2�

b. If w1α2 < (w1 +w2)α1, then∣∣x∗
1

∣∣ → ∞�

x∗
� → w1α�

(w1 +w2)α1 −w1α�

for all �≥ 2�

5. Suppose the game has strategic substitutes, β < 0. In the limit as C → ∞, μ →
max{w1αn� (w1 +w2)α1}. Hence:
a. If w1αn > (w1 +w2)α1, then:

x∗
1 → α1

w1αn − (w1 +w2)α1

[
w1 +w2 + w3

2b̂1

√
α1

]
�

∣∣x∗
�

∣∣ → α�

αn − α�

for all � ∈ {2� � � � � n− 1}�∣∣x∗
n

∣∣ → ∞�
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b. If w1αn < (w1 +w2)α1, then∣∣x∗
1

∣∣ → ∞�

x∗
� → w1α�

(w1 +w2)α1 −w1α�

for all �≥ 2�

Before the proof, we briefly explain the sense in which this extends Theorem 1 and
associated results in the basic model. The formula for x∗

� in part 1 is a direct generalization
of equation (5), with the shadow price characterized by an equation analogous to (6). The
monotonicity relations on x∗

� in part 2 correspond to Corollary 1. The small-C analysis of
part 3 corresponds to Proposition 1. The large-C analysis in parts 4 and 5 corresponds to
the limits studied in Section 4.2.

PROOF OF THEOREM OA1: Part 1. For a given x ∈ R
n, define

K(x1) = (w1 +w2)α1b̂
2

1(1 + x1)
2 +w3

√
α1b̂1(1 + x1)�

C(x1) = C − b̂
2

1x
2
1�

The maximization problem can be rewritten as

max
x

w1

∑
�=2

α�b̂
2

�(1 + x�)
2 +K(x1)

subject to
∑
�=2

b̂
2

�x
2
� ≤ C(x1)�

We solve this problem in two steps.
First Step. We fix x1 so that C(x1)≥ 0; that is, x1 ∈ [−C/b̂1�C/b̂1]. We then solve

max
x−1

w1

∑
�=2

α�b̂
2

�(1 + x�)
2

subject to
∑
�=2

b̂
2

�x
2
� ≤ C(x1)�

In the case in which w1 = 0, we skip this first step. If w1 �= 0, then we argue in a way exactly
analogous to the proof of Theorem 1 that, for all � �= 1,

x∗
� = w1α�

μ−w1α�

�

where, for all � �= 1, μ≥ w1α� and it solves

∑
�=2

b̂
2

�

(
w1α�

μ−w1α�

)2

= C(x1)�

Note that, for all �≥ 2, x∗
� > 0 if w1 > 0 and x∗

� < 0 if w1 < 0.
Note also that if w1 < 0, the constraint binds: the bliss point (x∗

� = −1 for all � �= 1)

cannot be achieved because C <
∑n

�=2 b̂
2

� .
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Second Step. Substituting into the objective function the expression for x∗
� , for all �≥ 2,

we obtain

max
x1

W = w1

∑
�=2

α�b̂
2

�

(
μ

μ−w1α�

)2

+K(x1)

subject to
∑
�=2

b̂
2

�

(
w1α�

μ−w1α�

)2

= C(x1)�

x1 ∈
[
−C

b̂1

�
C

b̂1

]
�

The following lemma is instrumental to the solution of this problem. It characterizes μ,
which is implicitly a function of x1.

LEMMA OA2: From the budget constraint in the above problem, it follows that
1. limx1→−√

C/b̂1
μ= limx1→√

C/b̂1
μ = ∞,

2.

dμ

dx1
= b̂

2

1x1∑
�=2

w2
1b̂

2

1α
2
�

(μ−w1α�)
3

�

3. dμ

dx1
> 0 if x1 > 0 and dμ

dx1
< 0 if x1 < 0,

4. limx1→−√
C/b̂1

dμ

dx1
= −∞ and limx1→√

C/b̂1

dμ

dx1
= ∞.

PROOF OF LEMMA OA2: The proof of part 1 of Lemma OA2 follows directly by in-
spection of the budget constraint. Expression 2 in part 2 of Lemma OA2 is derived by
implicit differentiation of the budget constraint. Part 3 and part 4 of Lemma OA2 follow
by inspection of the expression in part 2, and the fact that μ > w1α�. This concludes the
proof of Lemma OA2. Q.E.D.

Lemma OA2 implies that μ as a function of x1 ∈ [−C/b̂1�Cb̂1] is U-shaped; the slope
is −∞ at x1 = −C/b̂1 and +∞ at x1 = C/b̂1; and it reaches a minimum at x1 = 0.

For w1 �= 0, taking the derivative of the objective function W in expression (OA-2) with
respect to x1, we obtain

dW

dx1
= −2μ

∑
�=2

w2
1b̂

2

1α
2
�

(μ−w1α�)
3

dμ

dx1
+ 2(w1 +w2)α1b̂

2

1(1 + x1)+w3
√
α1b̂1�

Plugging in expression for dμ

dx1
in part 2 of Lemma OA2, we obtain that

dW

dx1
= −2μb̂

2

1x1 + 2(w1 +w2)α1b̂
2

1(1 + x1)+w3
√
α1b̂1�

Part 1 of Lemma OA2 implies that dW
dx1

→ ∞ when x1 → −√
C/b̂1, whereas dW

dx1
→ −∞

when x1 → √
C/b̂1. Hence, the optimal x1 must be interior, which implies that dW

dx1
= 0 or,
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equivalently,

x∗
1 = α1

μ− (w1 +w2)α1

[
w1 +w2 + w3

2
√
α1b̂1

]
�

Substituting x∗
1, in the budget constraint

∑
�=2

b̂
2

�

(
w1α�

μ−w1α�

)2

= C
(
x∗

1

)
�

we obtain that the Lagrange multiplier μ must solve

∑
�=2

b̂
2

�

(
w1α�

μ−w1α�

)2

+ b̂
2

1

(
α1

μ− (w1 +w2)α1

)2[
w1 +w2 + w3

2
√
α1b̂1

]2

= C�

The conclusion for w1 = 0 is obtained by taking the limits as w1 → 0 of the expression x∗
1

and the expression determining μ. This concludes the proof of part 1 of Theorem OA1.
Part 2. We have already proved that, for all � ≥ 2, x∗

� > 0 if and only if w1 > 0. We now
claim that x∗

1 > 0 if and only if w1 +w2 + w3
2b̂1

√
α1

> 0. Suppose, toward a contradiction, that
x∗

1 < 0. Suppose, toward a contradiction, that x∗
1 < 0. By inspection of the maximization

problem

max
x

w1

∑
�=2

α�b̂
2

�(1 + x�)
2 +K(x1)

subject to
∑
�=2

b̂
2

�x
2
� ≤ C(x1)�

note that if w1 +w2 + w3
2b̂1

√
α1

> 0 and x∗
1 < 0, then, by flipping the sign of x∗

1, K(x1) increases
and the constraint is unaltered; this is a contradiction to our initial assumption that x∗

1 was
optimal.

We have just established that x∗
1 > 0. Now, by (OA3.1) above, x∗

1 > 0 if and only if
w1 +w2 + w3

2b̂1
√
α1

> 0. And since

x∗
1 = α1

μ− (w1 +w2)α1

[
w1 +w2 + w3

2
√
α1b̂1

]
�

it follows that μ> α1(w1 +w2). Finally, if the game has strategic complements, then α2 >
· · · > αn and so |x∗

2| > |x∗
3| > · · · > |x∗

n|, and if the game has strategic substitutes, then
α2 < · · ·<αn and so |x∗

2|< |x∗
3|< · · ·< |x∗

n|.
Part 3. This follows by using the characterization in part 1 and by noticing that if C → 0,

then μ → ∞.
Part 4 and Part 5. Both parts follow by using the characterization together with the

following fact, which we will now establish:

lim
C→∞

μ= max
{
w1 max{α2�αn}� (w1 +w2)α1

}
�
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To show this, recall from above that we have the following equation for the Lagrange
multiplier:

∑
�=2

b̂
2

�

(
w1α�

μ−w1α�

)2

+ b̂
2

1

(
α1

μ− (w1 +w2)α1

)2[
w1 +w2 + w3

2
√
α1b̂1

]2

= C�

If C tends to ∞, it must be that either the first denominator (μ − w1α�) or the second
denominator (μ − (w1 + w2)α1) tends to zero. Concerning the first one, this is true if
either w1α2 or w1αn (depending on which one is positive) approaches μ. The second
denominator tends to 0 if (w1 + w2)α1 tends to μ. Both denominators are positive by
definition of the Lagrange multiplier, so it will be the greater of w1 max{α2�αn} and (w1 +
w2)α1 which tends to μ. This concludes the proof of Theorem OA1. Q.E.D.

A special case of Theorem OA1 is one where the planner wants to maximize the sum of
equilibrium actions. This occurs when w1 =w2 = 0. In this case, we obtain the following.

COROLLARY OA1: Suppose Assumptions 1, 2, and OA1 hold. Suppose that w1 = w2 = 0
and w3 > 0, that is, the planner wants to maximize the sum of equilibrium actions. Then the
optimal intervention is b∗ = b̂+ u1

√
C .

REMARK OA1: Suppose w1 < 0 and
∑

�=2 b
2
� < C , in contrast to what was assumed in

the theorem. If x1 is sufficiently small, the solution in Step 1 in the proof of Theorem OA1
entails x� = −1 for all � ≥ 2. That is, fixing x1, the bliss point can be achieved with the
remaining budget after the cost of implementing x1, namely, C(x1), is paid. Thus, when
we move to Step 2 and optimize over x1, we need to take into account that, for small values
of x1, Step 1 yields a corner solution. Hence, the analysis of how the network multiplier
changes when x1 changes will need to be adapted accordingly.

EXAMPLE OA1—Social Interaction and Peer Effects (Continued): We conclude this
section by applying Theorem OA1 to Example OA1 from Section OA3.1 of this supple-
ment. In this example, w1 = 1, w2 = 0 and w3 = −γ

√
n(n− 1).

COROLLARY OA2: The optimal intervention in Example OA1 is characterized by

x∗
1 = α1

μ− α1

[
1 − γ

√
n(n− 1)

2
√
α1b̂1

]
�

and, for all �≥ 2,

x∗
� = α�

μ− α�

�

where the Lagrange multiplier μ solves

∑
�=2

b̂
2

�

(
α�

μ− α�

)2

+ b̂
2

1

(
α1

μ− α1

)2[
1 − γ

√
n(n− 1)

2
√
α1b̂1

]2

= C�

COROLLARY OA3: Consider the optimal intervention in Example OA1. It has the follow-
ing properties.
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1. x∗
2 > · · ·> x∗

n > 0; x∗
1 > 0 if and only γ <

2√
α1b̂1√

n(n−1) .
2. If C → 0,

x∗
�

x∗
�′

→ α�

α�′
� for all �� �′ �= 1�

x∗
1

x∗
�

→ α1

α�

[
1 − γ

√
n(n− 1)

2
√
α1b̂1

]
� for all � �= 1�

3. If C → ∞, then |x∗
1| → ∞ and x∗

� → α�
(α1−α�)

for all � ≥ 2.

OA3.2. Beyond Symmetric and Non-Negative G

In this subsection, we relax the assumption that G is symmetric. Recall that equilibrium
actions are determined by

a∗ = [I −βG]−1b�

When G is not symmetric, we employ the singular value decomposition (SVD) of the matrix
M = I − βG. This allows us to obtain an orthogonal decomposition of an intervention
useful for examining welfare, analogous to the diagonalization. An SVD of M is defined
to be a tuple (U�S�V ) satisfying

M =USV T� (OA-2)

where:
(1) U is an orthogonal n× n matrix whose columns are eigenvectors of MMT;
(2) V is an orthogonal n× n matrix whose columns are eigenvectors of MTM ;
(3) S is an n × n matrix with all off-diagonal entries equal to zero and non-negative

diagonal entries Sll = sl, which are called singular values of M . As a convention, we
order the singular values so that s� > s�+1.

It is a standard fact that an SVD exists.7 For expositions of the SVD, see Golub and Van
Loan (1996) and Horn and Johnson (2012). The �th left singular vector of M corresponds
to the �th principal component of M . When G is symmetric, the SVD of M = I −βG can
be taken to have U = V , and the SVD basis is one in which G is diagonal.

Let a = V Ta and b= UTb; then the equilibrium condition implies that

a∗
� = 1

s�
b2
��

and therefore the objective function is

W (b�G)= w
(
a∗)T

a∗ =wa∗Ta∗�

It is now apparent that the analysis of the optimal intervention can be carried out in the
same way as in Section 4. Theorem 1 applies, with the only difference that now α� = 1/s2

� .
We can also extend Proposition 1 and Proposition 2. As the budget tends to 0, r∗

� /r
∗
�′ tends

to α�/α�′ ; on the other hand, when C is very large, the optimal intervention is proportional

7The decomposition is uniquely determined up to a permutation that (i) reorders the singular values of M
and correspondingly reorders the columns of U and V , and (ii) flips the sign of any column of U and V .
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to the first principal component of M , and a simple intervention that focuses on the first
principal component performs (nearly) as well as the optimal intervention. When G is
symmetric, the nature of strategic interactions (determined by β) pins down the principal
component that most amplifies an intervention. If G is non-symmetric, the singular values
sl of M are not equal to 1 − βλl, where λl are the eigenvalues of G; the singular vectors
of M are not the eigenvectors of G; and the left and right singular vectors need not be the
same.

OA3.3. More General Costs of Intervention

In Section 4, we solved the optimal intervention problem under a specific cost function.
This section discusses some natural properties on a cost function. We then show that our
analysis of the optimal intervention extends to the general class of cost functions defined
by these properties, as long as the budget is small.

We begin by developing properties that a reasonable cost function (b� b̂) �→ K(b; b̂)
must satisfy.

ASSUMPTION OA2:
(1) Translational invariance: For any z ∈ R

n, we have K(b+ z; b̂+ ẑ) = K(b; b̂), that is,
there is a function κ :Rn → R such that K(b; b̂) = κ(b− b̂).

(2) Symmetry: For any permutation σ of {1� � � � � n}, it is true that κ(yσ(1)� yσ(2)� � � � � yσ(n))=
κ(y1� y2� � � � � yn).

(3) Non-negativity: κ is non-negative, and κ(0) = 0.
(4) Local separability: ∂2κ(y)

∂yi∂yj
= 0 evaluated at 0 whenever i �= j.

(5) Well-behaved second derivative at 0: κ is twice differentiable with ∂2κ

∂y2
i

(0) > 0 for all i.

Translational invariance says that there is no dependence on the starting point. Sym-
metry across players implies that names do not matter for costs. Non-negativity implies
that the planner cannot extract money from the system: κ(0) = 0 is the definition of the
status quo b̂: it does not cost anything to enact b̂. Local separability across individuals
requires that there are no spillovers in the costs of interventions. This is reasonable, as it
ensures that the complementarities we study come from the benefits side and not from
the costs of interventions. Finally, the twice-differentiability of the function is a technical
assumption to facilitate the analysis, while the positive value of the second derivative at 0
rules out cost functions such as κ(y) = ∑

i y
4
i in which the increase in marginal costs at 0

is too slow.
Consider an example of a cost function that satisfies Assumption OA2: κ(y)= ∑

i κ̃(yi),
where κ̃(y) = y2 + c|y|3ey + c′y4, with c and c′ being arbitrary constants. Our main result
is that the structure of interventions identified in Section 3.1 carries over to such cost
functions as long as the budget is small.

PROPOSITION OA1: Consider the intervention problem (IT) with the modification that the
cost function satisfies Assumption OA2. Suppose Assumptions 1 and 2 hold and the network
game satisfies Property A. At the optimal intervention, as C → 0, we have r∗�

r∗
�′

→ α�
α�′

.

PROOF OF PROPOSITION OA1: First, we state and prove a lemma.
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LEMMA OA3: Under the conditions of Assumption OA2, on any compact set the function
C−1κ(C1/2z) converges uniformly to k‖z‖2, as C ↓ 0, where k > 0 is some constant. We call
the limit G.

PROOF: Consider the Taylor expansion of κ around 0 (κ is defined by part (1) of the
assumption). We will now study its properties under parts (2) to (5) of Assumption OA2.
Part (5) ensures that the Taylor expansion exists. Local separability (4) says that there are
no terms of the form yiyj . Non-negativity (3) (κ is non-negative and κ(0)= 0) implies that
all first-order terms are zero. Also, (5) says that terms of the form y2

i must have positive
coefficients, and symmetry (2) says that their coefficients must all be the same. Q.E.D.

Write y := b − b̂. Let �(y) denote the change in welfare from the status quo. Fix all
parameters of the problem, and recall the main optimization problem:

max
b

�(y)

s.t. κ(y)≤ C� (IT(C))

We maintain, but do not explicitly write, that welfare is evaluated at a∗(y), where a∗ =
[I −βG]−1(b̂+ y).

Let y(C) be the solution of problem (IT(C)), which is unique for small enough C. Then
we claim that, as C ↓ 0, we have

r∗
�

r∗
�′

→ α�

α�′
�

where the similarity ratios are defined at the optimum y(C).
We will prove the result by studying an equivalent problem using Berge’s theorem of

the maximum. Let y̌ = C−1/2y. We will now define a re-scaled version of the problem,
( ˇIT(C)):

max
b

C−1�
(
C1/2y̌

)
s.t. C−1κ

(
C1/2y̌

) ≤ 1� ( ˇIT(C))

This is clearly equivalent to the original problem. Let y̌∗
(C) be the (possibly set-valued)

solution for C.
The problem ( ˇIT(C)) is not yet defined at C = 0, but we now define it there. Let the

objective at C = 0 be the limit of C−1�(C1/2y̌) as C ↓ 0, which we call F . Let the constraint
be G(y̌)≤ 1, where G is from Lemma OA3.

Let us restrict ˇIT(C) to a compact set K such that the constraint set {y : C−1κ(C1/2y̌) ≤
1} is contained in K for all small enough C. Now we claim that the conditions of Berge’s
theorem of the maximum are satisfied: The constraint correspondence is continuous at
C = 0 because C−1κ(C1/2y̌) converges uniformly to G, while the objective function is
jointly continuous in its two arguments.

The theorem of the maximum therefore implies that the maximized value is continuous
at C = 0. Because the convergence of the objective is actually uniform on K by the lemma,
this is possible if and only if y̌ approaches the solution of the problem

max
b

F(y̌)

s.t. ‖y̌‖2 ≤ 1�
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By the same argument, the same point is the limit of the solutions to

max
b

C−1�
(
C1/2y̌

)
s.t. ‖y̌‖2 ≤ 1�

By Proposition 1, in that limit this satisfies

r∗
�

r∗
�′

→ α�

α�′
�

Q.E.D.

We next impose an additional restriction on the structure of the costs of intervention
and we show that this new restriction together with Assumption OA2 fully characterizes
the cost functions that we used in our main analysis.

ASSUMPTION OA3: There is a function f :R+ → R+ so that κ(sy) = f (s)κ(y).

PROPOSITION OA2: Consider a cost function that satisfies Assumptions OA2 and OA3.
There is a function f :R+ → R+ such that

κ(y)= f
(‖y‖)�

Proposition OA2 implies that the cost of intervention y is the same as the cost of an
intervention obtained as an orthogonal transformation of y; that is, κ(y) = κ(Oy) with
O being an orthogonal matrix. This allows to rewrite the intervention problem using the
orthogonal decomposition of welfare and costs that we employ in Section 4, and all the
results developed there extend to this more general environment.

We conclude by taking up the implication of linear costs of intervention. The main
result is that with a linear cost function, that is, K(b� b̂) = ∑

i |bi − b̂i|, the optimal inter-
vention will target a single individual. For ease of exposition, we will restrict attention to
Example 1. The analysis can be easily extended to general network games.

We consider the following intervention problem:

max
b

(
a∗)T

a∗

s.t. a∗ = [I −βG]−1b� (IT-Linear Cost)

K(b; b̂) =
∑
i∈N

|bi − b̂i| ≤ C�

PROPOSITION OA3: The solution to problem (IT-Linear Cost) has the property that there
exists i∗ such that b∗

i �= b̂i∗ and b∗
i = b̂i for al i �= i∗.

PROOF OF PROPOSITION OA3: Define W (b) = a(b)Ta(b). Let F be the set of feasible
b, those satisfying the budget constraint K(b; b̂) ≤ C. Suppose the conclusion does not
hold and let b∗ be the optimum, with W ∗ =W (b∗). Then, because by hypothesis the opti-
mum is not at an extreme point, F contains a line segment L such that b∗ is in the interior
of L.8

8Formally, for some z > 0, there is a linear map ϕ : [−z� z] → F such that ϕ(0) = b∗.
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Now restrict attention to a plane P containing this L and the origin. Note that L is
contained in a convex set

E = {
b :W (b) ≤W ∗}�

The point b∗ is contained in the interior of L; thus, b∗ is in the interior of E. On the
other hand, b∗ must be on the (elliptical) boundary of E because U is strictly increasing in
each component (by irreducibility of the network) and continuous. This is a contradiction.

Q.E.D.

We now characterize the optimal target for the case of strategic complements, that is,
β > 0. Remark OA2 explains how to extend the analysis for the case of strategic substi-
tutes.

In the case of strategic complements, it is clear that the planner uses all the budget C
to increase the standalone marginal benefit of i∗, that is, b∗

i = b̂i +C; reducing someone’s
effort can never help. Thus, the planner changes the status quo b̂ into b = b̂+C1i∗ where
1i∗ is a vector of 0 except for entry i∗ that takes value 1. Let a(1i) be the Nash equilibrium
when all individuals have bj = 0 and bi = 1, that is, a(1i)= [I−βG]−11i. It is easy to verify
that the solution to problem (IT-Linear Cost) is

i∗ = argmax
i

{
a(b̂+C1i)

Ta(b̂+C1i)− a(b̂)Ta(b̂)
}
�

This is equivalent to

i∗ = argmax
i

{
C

∥∥a(1i)
∥∥[

2
∥∥a(b̂)∥∥ρ(

a(1i)�a(b̂)
) +C

∥∥a(1i)
∥∥]}

� (OA-3)

where recall that ρ(a(1i)�a(b̂)) is the cosine similarity between vectors a(1i) and a(b̂).
There are two characteristics of a player that determine whether the player is a good
target.

The first characteristic is ‖a(1i)‖. This is the square root of the aggregate equilibrium
utility in the game with b = 1i, that is, the squared root of a(1i)

Ta(1i). So, a player with
a high ‖a(1i)‖ is a player who induces a large welfare in the game in which he is the only
player with positive standalone marginal benefit. We call this the welfare centrality of an
individual. It is convenient to express the welfare centrality of individual i in terms of
principal components of G. Note that

∥∥a(1i)
∥∥ = ∥∥a(1i)

∥∥ =
√∑

�

α�

(
u�
i

)2
�

Recall that under strategic complement α1 > α2 > · · · > αn and so an individual with a
high welfare centrality is one that is highly represented in the main principal components
of the network.

The second factor is ρ(a(1i)�a(b̂)). This measures the vector similarity between (i) the
equilibrium action profile in the game with b = 1i and (ii) the status quo equilibrium
action profile. A player with a large ρ(a(1i)�a(b̂)) is a player that, in the game in which
he is the only player with positive standalone marginal benefit, leads a distribution of
effort similar to the distribution of effort in the status quo.
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Small C. Suppose C ≈ 0. Then the optimal target is selected based on the first term of
expression (OA-3); that is,

i∗ = argmax
i

∥∥a(1i)
∥∥ρ(

a(1i)�a(b̂)
)

For small budgets, the optimal intervention focuses on the player who has a large welfare
centrality and that, at the same time, leads to a distribution of effort not too different
from the status quo equilibrium effort.

Large C. For C sufficiently large, the last term of expression (OA-3) dominates and
therefore the player that is targeted is the player with the highest welfare centrality.

REMARK OA2—Extension to the Case of Strategic Substitutes: In the case of strategic
substitutes, we know for the targeted player i∗, b∗

i∗ = b̂i ± C, but we cannot say, a priori,
which (positive or negative), and indeed it is easy to provide examples that both can hap-
pen. Under this qualification, the analysis developed for the case of strategic complements
extends

OA3.4. Intervention Through Monetary Incentives

In the basic model presented in Section 2, an intervention alters incentives for individ-
ual action through a direct change in marginal benefits/marginal costs. The convexity in
the cost of changing these marginal benefits plays a key role in the analysis. In this section,
we provide a demonstration of how our approach can be applied beyond this cost setting.
We do this by using our methods to solve the problem of offering monetary incentives to
individuals for choosing between two actions.

Let us reinterpret a node i as a population; thus, N = {1�2� � � � � n} is the set of pop-
ulations. Within population i, there is a continuum of individuals distributed uniformly
in I = [0� τ]. Each individual in population i chooses whether to take action 1 or to take
action 0. A strategy of an individual in population i is a function qi : [0� τ] → [0�1] that
describes the probability that an individual of type τi ∈ [0� τ] chooses action 1. Without
loss of generality, we focus on equilibria in which all the players within a population have
the same strategy.

The payoff to an individual who chooses action 0 is normalized to 0. If individual τi
takes action 1, then he incurs a cost τi and gets a benefit that depends on his population’s
standalone marginal benefit of action 1, bi, and the number of other individuals he meets
who have also taken action 1. We assume that the interaction between populations takes
the form of random matching, with the following specification: An individual τi in popu-
lation i meets someone from population j with probability gij , and, within population j, τi
meets an individual selected uniformly at random. Suppose τi meets type τj , and let qj be
the strategy of individuals in population j. Then individual τi’s payoff for the interaction
with the random partner τj is

β̃qj(τj)+ bi − τi�

In this expression, β̃qj(τj) represents the payoffs from interacting with peers that have
also taken action 1.

First, we show that the conditions for an equilibrium are isomorphic to those of the
games we studied in Section 3.1. It is immediate to see that the best reply of each individ-
ual in population i is a cutoff strategy: there exists a cutoff ai ∈ I so that q(τi) = 1 for all
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τi ≤ ai and q(τi)= 0 otherwise. The equilibrium condition for these cutoffs is that, for all
i ∈N ,

β̃
∑
j

gijP
[
τj ≤ a∗

j

] + bi − a∗
i = 0 ⇐⇒ ai = bi + β̃

τ

∑
j

gija
∗
j �

Denoting by β= β̃/τ, the equilibrium threshold profile a∗ solves

[I −βG]a∗ = b�

The equilibrium expected payoff to group i is

Ui

(
a∗�b

) =
∫ a∗

i

0

(
β

∑
j

gija
∗
j + bi − τi

)
dτi

=
∫ a∗

i

0

(
a∗
i − τi

)
dτi = 1

2
a∗2
i �

where the second equality follows by using the best response of each population. So ag-
gregate equilibrium utility is

W (b�G)= 1
2
(
a∗)T

a∗�

Suppose the planner, before the players choose their action, commits to a subsidy
scheme. The subsidy scheme depends on realized actions, which are taken after the
scheme is announced. More precisely, the planner selects a vector y ∈ R

n and offers the
following scheme:

Subsidizing action 1. If yi > 0, then the planner gives a subsidy of s1
i (τi)= τi − [ai(y)−

yi] to all population i’s types τi ∈ [ai(y)− yi� ai(y)] who take action 1.
Subsidizing action 0. If yi < 0, then the planner gives a subsidy of s0

i (τi) = [ai(y) +
|yi|] − τi to all τi ∈ [ai(y)�ai(y)+ |yi|] who do not adopt the new technology (take action
0).

We make three observations. First, under intervention y, the profile of thresholds a(y)
is a Nash equilibrium. Furthermore, the planner does not waste resources in the sense that
she uses the minimum amount of resources to implement a(y). To see this, note that, by
construction, the planner provides monetary payments to take action 1 or to take action
0 only to types who need such transfers to satisfy their incentive-compatibility constraint.
The monetary payments make these incentive-compatibility constraints just bind for the
marginal types. Finally, let 1yi>0 be an indicator function that takes value 1 if yi > 0 and 0
otherwise, then note that the cost of intervention y is

K(y) = 1
2

∑
i

1yi>0

∫ ai(y)

ai(y)−yi

s1
i (τi) dτi +

∑
i

(1 − 1yi>0)

∫ ai(y)+|yi|

ai(y)

s0
i (τi) dτi

= 1
2

∑
i

y2
i �

We then consider a planner who intervenes in the system. The planner has complete in-
formation about the type of each individual in each population and can subsidize types to
take action 1 or to take action 0, in a perfectly targeted manner. In doing this, the planner



20 A. GALEOTTI, B. GOLUB, AND S. GOYAL

effectively shifts the bi of some individuals in some populations. The cheapest individuals
to influence are those who are close to being indifferent between the two actions, so that
they do not need to be paid very much to change their behavior. Indeed, the payment
to an individual is proportional to his distance x from the marginal type in equilibrium:
integrating across all the individuals whose actions are changed gives

∫ yi
0 xdx, a cost that

is quadratic in the magnitude of the change. The intervention problem turns out to be
mathematically equivalent to (IT), and so all our results apply.

We can now define the intervention problem of the planner as follows. Starting from
the status quo b̂, the planner chooses intervention y to maximize aggregate equilibrium
utility under the constraint that individuals play according to equilibrium and that the cost
of the intervention cannot exceed C. Formally,

max
y∈Rn

1
2
aTa

s.t. [I −βG]a = b̂+ y� (IT-P)

K(y)= 1
2

∑
i

y2
i ≤ C�

Intervention problem (IT-P) is equivalent to the intervention problem (IT) defined in
Section 2.

Note that the specific payoff functions we have taken here make the problem isomor-
phic to the setting of Example 1, but by suitably modifying the payoffs, we could capture
more general externalities, along the lines of Section OA3.1 of this supplement.

We focus throughout on maximizing aggregate utility, but we note that the results have
applications to other kinds of objectives, such as implementing Pareto improvements. In
some cases, interventions will make everyone better off without modification, when posi-
tive externalities are strong enough to overcome any negative welfare impacts. However,
even when this is not the case, the planner may be able to achieve Pareto improvements.
For example, consider a planner who is able to make lump sum transfers—for example,
award or take away discretionary compensation—in addition to any targeted incentives
or contingent payments. In such cases, if an improvement in aggregate utility is possible,
then the planner can use such transfers to compensate individuals (for instance, those
harmed by negative externalities), and achieve a Pareto improvement. In the setting dis-
cussed in this subsection, combining lump sum and action-contingent transfers would then
implement a range of Pareto improvements. Even beyond the monetary-incentives setting
under consideration here, lump sum transfers may be available to the planner in addition
to whatever incentive-targeting scheme is being used, and in such a setting our comments
here would apply also.
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