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THIS SUPPLEMENT INCLUDES additional results omitted from the main paper. In Sec-
tion S.1, we provide an algorithm that computes the payoffs for a simple instance of strat-
egyproof protocol in the general setting of Section 4. In Section S.2, we show how to
construct elicitation protocols for information structures involving potentially infinitely
many time periods using menus with random deadlines. Sections S.3–S.5 are relevant to
situations in which expert knowledge is solicited or evaluated for the purpose of help-
ing decision makers. In Section S.3, we show that, subject to regularity conditions, the
knowledge of high-order beliefs elicited by the protocols we study is sufficient to solve
essentially any dynamic decision problem. In Section S.4, we argue that knowledge of
these high-order beliefs is much needed when the decision environment is dynamic: we
ask what decision problems can be solved using the classical methods that elicit only first-
order beliefs, and show they form a degenerate class. Finally, in Section S.5, we illustrate
our results in the context of simple principal–agent problems.

S.1. RANDOMIZATION PROTOCOLS: AN ALGORITHM

While the protocols introduced in the general setting of Section 4 do not have a com-
pact closed-form representation, it is straightforward to compute efficiently the payoffs
for special cases of menu randomizations. In this section, we show how this payoff com-
putation could be done in practice with a simple algorithm.

Throughout, the set of possible outcomes is {1� � � � � n}. In this proposed implementa-
tion, beliefs are represented by a standard tree structure that captures a probability tree
with finite support at every level. So for any belief given in this representation, the “chil-
dren” are the beliefs in the support, and every branch carries a weight which is the prob-
ability for the associated belief in the support. Algorithm S.1 takes as input the number
of periods, the beliefs communicated at every period, and the final outcome. It computes
the individual’s payoff by first drawing a menu at random (Algorithm S.2) and then calcu-
lating the best payoff that can be achieved from the menu by making sequentially optimal
choices given the information communicated (Algorithm S.3). Securities follow the uni-
form distribution, and the number of elements in a menu follows the Poisson distribution
with a given parameter λ. Because this randomization is full support, Theorem 1 guaran-
tees that the protocol is strategyproof.

We stress that this is only one possible implementation, which takes as input the beliefs
given in their “canonical” form—a probability tree. Depending on the context, one may
want to account for other types of inputs in the form of parameters of probability distribu-
tions, information structures that specify the nature of the information to be received and
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Algorithm S.1 Compute the individual’s payoff
Require: T (number of periods minus 1), pt (reported belief in period t), x (realized

outcome)

1: menu ← RANDOMMENU(T)
2: t ← 1
3: while t < T − 1 do
4: choice ← BESTACTION(pt�menu)
5: submenu ← menu[choice]
6: menu ← submenu
7: t ← t + 1
8: end while
9: choice ← BESTACTION(pt�menu)

10: security ← menu[choice]
11: return security[x]

its distribution, or other convenient representations of dynamic forecasts. For instance,
dynamic weather forecasts are more naturally expressed in terms of probability densities
over future measurements and observations rather than high-order beliefs. This adapta-
tion does not pose any particular difficulty, because to compute the payoffs, the algorithm
must simply determine the best menu choices given the input provided.

S.2. GENERAL INFORMATION STRUCTURES

In this section, we work with a more general class of information structures than in
Section 4. The individual may now privately observe information dynamically and con-
tinuously over a unit interval of time. The uncertain outcome of interest materializes at
t = 1. This setup includes two common instances not captured in Section 4.

• Discrete information arrival with random times: The individual is to receive a given
number of signals over the unit time interval, but as opposed to the simpler setup of
Section 4, the times of arrival are random. Both the distribution of arrival times and

Algorithm S.2 Draw a menu of a given level at random
Require: n (number of possible outcomes), λ (average number of submenus in a menu)

1: function RANDOMMENU(level)
2: K← random draw from the Poisson distribution with parameter λ
3: menu ← empty array of K elements
4: for all i ∈ {1� � � � �K} do
5: if level> 1 then
6: menu[i] ← RANDOMMENU(level − 1)
7: else
8: menu[i] ← array of n elements drawn randomly and uniformly on [0�1]
9: end if

10: end for
11: return menu
12: end function



DYNAMIC BELIEF ELICITATION 3

Algorithm S.3 Compute the best choice in a given menu for a given belief
Require: n (number of possible outcomes)

1: function OPTIMALCHOICE(belief �menu)
2: C ← number of possible choices in menu
3: bestChoice ← ∅
4: bestPayoff ← 0
5: for all choice ∈ {1� � � � �C} do
6: payoff ← MENUPAYOFF(belief �menu[choice])
7: if payoff ≥ bestPayoff then
8: bestPayoff ← payoff
9: bestChoice ← choice

10: end if
11: end for
12: return bestChoice
13: end function

14: function MENUPAYOFF(belief � submenu)
15: if submenu is a security then
16: return

∑n

i=1 belief �Pr[i] × submenu[i]
17: else
18: K← number of probability trees in the support of belief
19: payoffs ← empty array of K elements
20: for all i ∈ {1� � � � �K} do
21: choice ← OPTIMALCHOICE(belief �tree[i]� submenu)
22: payoffs[i] ← MENUPAYOFF(belief �tree[i]� submenu[choice])
23: end for
24: return

∑K

i=1 belief �Pr[i] × payoffs[i]
25: end if
26: end function

their realization are private information to the individual. The elicitor now wants to
learn the information that concerns both the signals and the arrival times.

• Information flow that arrives continuously over time: Here the individual tracks a
continuous signal over time modeled as a stochastic process, for example, a price
process modeled as a Brownian motion with varying drift and scale. The elicitor wants
to know the individual’s assessment of the signal process distribution—such as drifts
and diffusions terms—and, at every instant, the up-to-date signal value.

Of course, in principle, one could obtain approximately the information by considering an
environment with a large but fixed number of time periods and then apply the results of
Section 4. Doing so complicates the elicitation unnecessarily. The purpose of this section
is to show that we can obtain the information exactly and efficiently when adding random
deadlines to the menus we consider in Section 4.

S.2.1. Information Structures

Time is continuous and indexed by t ∈ [0�1]. At the beginning of the time interval, and
then during the time interval, the elicitor solicits the individual for information regard-
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ing an uncertain outcome that realizes publicly at t = 1. The outcome takes values in a
compact metrizable space X .

At t = 0, the individual learns his information structure privately. As in the discrete
setup, it includes information on when and how the uncertainty on the outcome resolves
over time. However, instead of working with beliefs and probability trees, we model dy-
namic information as filtered probability spaces. These offer a convenient alternative to
deal with information flows and to handle the two special cases mentioned above.

DEFINITION S.1: An information structure is a tuple (Ω�F�P�X) in which the following
statements hold:

• Ω is a (separable, metrizable) set of states of the world. The state of the world cap-
tures every aspect of the world that is relevant to the individual.

• F = {Ft}t∈[0�1] is a right-continuous filtration.S.1 Ft captures all events that are known
to be either true or false by the individual at time t.

• P is a full prior, described below.
• X :Ω �→ X is a random variable that links (hidden) states of the world to (publicly

observable) outcomes of interest.

We do not assume that the elicitor knows the state spaceΩ and she does not observe the
state of the world. However, she knows the set of all possible outcomes X and observes
the realization of the random variable X . Together with the individual’s declarations, this
data point is the only information she can use in the elicitation procedure.

In the sequel, �(Ω) is the set of all probability measures onΩ, endowed with the weak-∗
topology. The filtration determines, in every state of the world, what the individual will
know and when he will know it. The prior determines the degree of uncertainty over the
various states and events. Specifically, the full prior gives, at every time t and in every state
ω, the individual’s posterior distribution Pωt over states of the world (which, of course,
induces a posterior distribution over final outcomes, but generally also includes more
information), accounting for all information available to the individual at that time and in
that state. Note that the full prior includes information at every time, as opposed to prior
information at t = 0 only. This is required to condition on future events in a consistent
manner.S.2

DEFINITION S.2: Given a state space Ω and a filtration F, a full prior is a stochastic
processS.3 P : (t�ω) �→ Pωt with values in �(Ω) and such that the following statements
hold:

(i) For all ω and all events E, t �→ Pωt (E) is right-continuous.
(ii) For all t and all events E, ω �→ Pωt (E) is Ft-measurable.

S.1Right-continuity of a filtration models the requirement that the individual does not learn anything new
in any upcoming infinitesimal length of time. This is a natural assumption in continuous-time dynamics, and a
large body of the literature requires right-continuous filtrations (see, for example, Section 1.2 of Karatzas and
Shreve, 1991).

S.2It is well known that a prior does not always generate consistent conditional probabilities, and even when
it does, these are generally not unique. Embedding such information in a full prior avoids the need to put overly
restrictive assumptions on the state space, and avoids the problem induced by the multiplicity of conditional
probabilities. Our definition of full prior is similar to the conditional probability systems of Myerson (1991).
For general conditions that ensure systematic existence and coherence of regular conditional probabilities, see
Berti and Rigo (1996).

S.3The second condition implies by Lemma S.1 of Section S.2.5 that the full prior is a well defined stochastic
process.
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The first condition is a technical requirement consistent with the fact that the individual
learns information that is right-continuous (and every conditional probability of an event
has a right-continuous version, for example, see Theorem 1.3.13, of Karatzas and Shreve,
1991). The second condition means that the conditional probability at time t is known
given the information the individual has access to at time t. We lack a condition requiring
consistency of the posteriors over time: such a condition will not be needed for our results.

S.2.2. Payoffs, Strategies, and Strategyproofness

Unlike in Section 4, we do not ask the individual to report his dynamic beliefs, because
there is now an infinite hierarchy of high-order beliefs at every instant. Instead, we con-
sider the more natural protocols in which the elicitor asks the individual to declare his
information structure (at time t = 0) and, at every instant t ≥ 0, the updated posterior
over states. As before, the individual is rewarded at time t = 1 as a function of the data
he communicated and the outcome that obtains.

Every protocol yields a payoff (or an expected payoff if the protocol randomizes) to the
individual that can be written directly as a function of the individual declarations and the
realized outcome of X . For convenience, payoffs are now specified by a family of payoff
rules. There is one payoff rule for every information structure the individual might com-
municate. We encode the flow of posteriors by Q, the space of maps Q : t �→ Qt , from
times to probability measures over states of the world, that are such that for every event
E,Qt(E) is right-continuous in time.S.4 A payoff ruleΠ(Ω�F�P�X) maps Q×X to the interval
of possible payoffs [0�1]. It is required to be measurable. For every declared information
structure (Ω�F�P�X), Π(Ω�F�P�X)({Qt}t∈[0�1]�x) is the payoff to an individual who reports
information structure (Ω�F�P�X) at time t = 0 and, at every instant t, reports the poste-
rior Qt , while X = x materializes.

The individual announces, at the outset, an information structure, and, at every subse-
quent time, an up-to-date posterior over states of the world. Therefore, for an individual
whose (true) information structure is (Ω∗�F∗�P∗�X∗), a reporting strategy consists of two
objects:

• An information structure (Ω�F�P�X) declared at time 0.
• A stochastic process Q : [0�1] ×Ω∗ �→ �(Ω), in which Qω∗

t is the posterior declared
at time t when the true state is ω∗. We require that, for every event E, the pro-
cess (t�ω∗) �→ Qω∗

t (E) be measurable in ω∗ with respect to Ft and that it be right-
continuous in t.

The individual’s time-t value at state ω∗ is the average payoff he anticipates to re-
ceive given what he knows at time t. For an individual with a given information structure
(Ω∗�F∗�P∗�X∗) who plays strategy 〈(Ω�F�P�X)�Q〉, it is defined as

Vω∗
t =

∫
Π(Ω�F�P�X)

({
Qω
s

}
s∈[0�1]�X(ω)

)
dP∗�ω∗

t (ω)�

The individual wants to maximize expected payoffs at every time. The strategy
〈(Ω�F�P�X)�Q〉 is optimal at t = 0 and state ω∗ when, for every alternative strategy
〈(Ω′�F′�P′�X ′)�Q′〉, the time-0 value in state ω∗ for the original strategy is at least as
large as the time-0 value for the alternative strategy. A given strategy 〈(Ω�F�P�X)�Q〉 is
optimal at time t > 0 and state ω∗ when, for every alternative strategy 〈(Ω′�F′�P′�X ′)�Q′〉

S.4The space Q is equipped with the product σ-algebra.
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with (Ω′�F′�P′�X ′)= (Ω�F�P�X) and for all τ < t, Qω∗
τ = Q′ω∗

τ , the time-t value at state
ω∗ of the original strategy is at least as large as the time-t value for the alternative strategy.

Of course, it is generally not possible to motivate the individual to reveal all of his in-
formation about Ω; for instance, the individual may have information that does not even
concern the random variable X . Insofar as the elicitor is exclusively concerned about the
outcome of X , the individual’s information is relevant only to the extent that it impacts
the uncertainty on X . As in the main framework, this relevant information is captured
by probability trees. However, because time is continuous, these trees can now have any
level and can be associated with an arbitrary sequence of intermediate times. For exam-
ple, at t = 0�5, the individual who believes, given his own information at that time, that
states of the world are distributed according to Q, can infer a distribution over the pub-
lic outcomes—a probability tree of level 1. The individual may also receive information
between t = 0�5 and t = 1, say at t = 0�8. Thus, at t = 0�8, his beliefs about the public
outcome are to be updated. At t = 0�5, the individual anticipates the update and forms a
belief about the distribution he is about to infer at t = 0�8—a probability tree of level 2
with 0�8 as time of interim distribution.

More generally, fixing any finite sequence of times corresponding to interim updated
beliefs, and given a posterior distribution over states of the world, we can define the belief
tree induced by the information structure of the individual and the posterior, which cap-
tures a dynamic belief of the individual. Formally, for information structure (Ω�F�P�X),
the induced belief tree of level 1 (a first-order belief) for posterior Q is defined as

ϕ(Q)=Q(X)�S.5

The induced belief tree of level k+ 1 with intermediate times t1 < · · ·< tk (a (k+ 1)th order
belief), is noted ϕt1�����tk : �(Ω) �→ �k+1(X ) and defined recursively as

ϕt1�����tj (Q)=Q(
ϕt2�����tj (Pt1)

)
�

where Pt1 is the random variable of the process P sampled at time t1. (By Lemma S.2 in
Section S.2.5, the induced belief trees are well defined and measurable.)

We continue to assume that the elicitor has interest in the probabilities that can be
inferred from the individual’s private information. Thus, at every time, the elicitor cares
to learn about the individual’s belief trees of all levels. A strategyproof protocol must,
therefore, induce the individual, as a strict best response, to disclose enough information
for the elicitor to learn the individual’s belief trees of all levels and at all times. The indi-
vidual is then induced to communicate all relevant information as a strict best response;
however, as noted earlier, there will be many different information structures that will be
equally relevant to the elicitor.

DEFINITION S.3: A protocol is strategyproof when, for each individual information
structure (Ω∗�F∗�P∗�X∗), the following statements hold:

• The strategy that consists in declaring the true information structure and sending the
truly updated posterior at all times and for all states is optimal.

• If the strategy 〈(Ω�F�P�X)�Q〉 is optimal at a given state ω∗ and at all times t ≤ τ,
then for every t0� � � � � tj with t0 ≤ τ,

ϕt1�����tj
(
Qω∗
t0

) = ϕ∗
t1�����tj

(
Pω

∗
t0

)
�

S.5For a random variable X , we let Q(X) denote the law of X induced by the probability measure Q.
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where the left-hand side of the equality refers to the induced belief tree associated
with the announced information structure, and the right-hand side of the equality
refers to the true information structure.

S.2.3. Temporal Menus

To deal with the richness of the individual’s information structure, we use an extended
menu instrument that we refer to as temporal menus. These are menus with deadlines.

A temporal menu of securities is a pair σ0 = (M0� τ0), where M0 is a collection of secu-
rities and τ0 ∈ [0�1] is a fixed deadline. The owner of a temporal menu σ0 must decide,
at any t ≤ τ0, to get one security among the collection M0 (if t > τ0, the temporal menu
is expired and delivers zero payoff). A temporal menu of securities is a temporal menu of
order 1. Analogously to Section 4, we define in a recursive fashion a temporal menu of
submenus of order k as a pair σk = (Mk�τk), where τk is the menu’s deadline and Mk is
a collection of submenus of order k− 1 whose deadlines are greater than τk. An elicitor
who has a temporal menu σk must select one temporal submenu from Mk at any time
t ≤ τk. A temporal menu is finite when it includes a finite number of submenus, which are
in turn finite. the collection of finite temporal menus of order k is designated Σk. For no-
tational convenience, let Σ0 be the space of securities, that is, the continuous maps from
Ω to [0�1].

For an expected-value maximizer with no discounting whose information structure is
(Ω�F�P�X), we denote by π0(S�Q) the value of the security S when his prior/posterior
over states is Q:

π0(S�Q)=
∫
S
(
X(ω)

)
dQ(ω)�

In a similar fashion we define πk(σk�Q) to be the value of the finite temporal menu
σk = (Mk�τk) of order k whose deadline has not yet passed. Recursively, we have

π1(σ1�Q)=
∫ [

sup
S∈M1

π0

(
S�Pωτ1

)]
dQ(ω)�

πk(σk�Q)=
∫ [

sup
σk−1∈Mk

πk−1

(
σk−1�Pωτk

)]
dQ(ω)�

S.2.4. A Class of Strategyproof Protocols

We now turn to the elicitation procedure. In a preliminary step, the elicitor draws a
random temporal menu of a random order according to a simple procedure detailed be-
low.S.6 That menu is not disclosed to the individual. The elicitor then asks the individual

S.6The σ-algebra of events of finite temporal menus is defined analogously to that of the finite menus of
the main framework of Section 4. Specifically, the space of finite menus of order 1 is equipped with a metric
d, where, if σ ′ = (M ′� τ′) and σ ′′ = (M ′′� τ′′) are two menus of order 1, d(σ ′�σ ′′) = d(M ′�M ′′) + |τ′ − τ′′|
with d(M ′�M ′′) the Hausdorff distance between the sets of securities M ′ and M ′′, respectively. Next, in a
recursive manner, the space of finite menus of order k is equipped with a metric d, where, if σ ′ = (M ′� τ′) and
σ ′′ = (M ′′� τ′′) are two menus of order k, d(σ ′�σ ′′) = d(M ′�M ′′) + |τ′ − τ′′| with d(M ′�M ′′) the Hausdorff
distance between the sets of submenus of order k− 1, M ′ and M ′′, respectively. We can then take the Borel
σ-algebra induced by the metric. As earlier, we note that the σ-algebra of events does not depend on the
particular metric chosen.
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to provide his information structure and to send an update on his posterior at every in-
stant before the outcome realization. Based on the individual’s announcements, the elic-
itor makes decisions optimally on behalf of the individual, under the assumption that the
individual reports truthfully and without revealing her menu choices to the individual.
Eventually, at t = 1, the individual owns a security issued from the last decision made by
the elicitor, and is paid off accordingly.

The formal protocol is detailed below. Let ξK be a full-support distribution on positive
integers, let ξτ�k be a full-support distribution on {t1� � � � � tk : 0 ≤ t1 < · · ·< tk < 1}, and let
ξM�k be a full-support distribution on the set of finite menus of order k.

(a) Preliminary stage: The elicitor draws at random a finite number K from ξK . She
then draws K deadlines τ1� � � � � τK at random from ξτ�K and a finite menu M of
order K at random from ξM�K . A temporal menu of order K is then formed by
taking all the menus and submenus associated with the finite menu M , and respec-
tively associating to each menu and submenu order k the deadline τk. The resulting
temporal menu σ∗

K = (M∗
K� τ

∗
K) is never disclosed to the individual.

(b) The individual’s actions: At t = 0, the individual communicates an information
structure (Ω�F�P�X). Then, at all subsequent times t, the individual communi-
cates a posterior over states, Qt ∈ �(Ω).

(c) The elicitor’s actions: Every time a deadline is reached (i.e., t = τk), the elicitor
privately chooses a temporal submenu σ∗

k−1 = (M∗
k−1� τ

∗
k−1) uniformly at random

from M∗
k , among all the submenus that are optimal assuming the individual has

revealed and will reveal truthful information, that is„ such that under the declared
information structure, πk−1(σ

∗
k−1�Qt)= maxσk−1∈M∗

k
πk−1(σk−1�Qt).

At the time of the last deadline, t = τK , the elicitor selects for the individual a
security S∗ fromM∗

1 (instead of a temporal submenu) following a similar procedure,
that is, uniformly at random among all the securities ofM∗

1 that are optimal for the
individual who has been truthful in the past.

The elicitor keeps all her menu choices private until t = 1, when the outcome
materializes and the individual is offered the security S∗.

The following theorem is the main result of this section.

THEOREM S.1: The elicitation protocol described above is strategyproof.

It is worth pointing out that, as for the protocols of the main paper, this protocol uses
randomization, but is equivalent to a nonrandom protocol that averages payoffs over the
finite menus drawn in the preliminary stage.S.7 In the remainder of this section, we prove
Theorem S.1.

S.7We can write explicitly the payoff Π(Ω�F�P�X)({Qt}t∈[0�1]�x;σ∗) of the protocol for each particular draw of
temporal menu σ∗. For a security S, we let Π(Ω�F�P�X)({Qt}�x;S) = S(x). For a finite temporal menu σk =
(Mk�τk) of order k, we let, recursively,

Π(Ω�F�P�X)({Qt}�x;σk
) = 1

|K|
∑

σk−1∈K
Π(Ω�F�P�X)({Qt}�x;σk−1

)
� with K = arg max

σk−1∈Mk

π(σk−1�Qτk)�

The equivalent deterministic protocol is then defined by the family of payoff rules

Π(Ω�F�P�X)({Qt}�x
) =

∫
⋃
k Σ

[L�U]
k

Π(Ω�F�P�X)({Qt}�x;σ∗)dξ
(
σ∗)�

where ξ is the probability measure associated with the randomized device of the protocol’s preliminary step.
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S.2.5. Proofs

S.2.5.1. Some Auxiliary Lemmas

The existence result requires the use of some technical lemmas.

LEMMA S.1: Let A be a separable metrizable space and let B be a measurable space,
with �(B) the set of probability measures on B equipped with the weak-∗ topology. Both A
and �(B) are given their respective Borel σ-algebras. Let Ψ : a �→ Ψa be a map from A to
�(B). If, for every event E of B, the map a �→Ψa(E) from A to R is measurable, then Ψ is
measurable.

PROOF: Because B is metrizable, standard approximation arguments apply to show
that if a �→ψa(E) is measurable for every event E of B, then the map a �→ ∫

f dψa is also
measurable for every continuous and bounded function f : B �→ R. We remark that the
sets of the form {μ ∈ �(B) | ∫ f dμ ∈ I} for I an open interval and f a continuous bounded
function form a subbase of the weak-∗ topology on �(B). Because �(B) is separable and
metrizable (Theorem 15.12 of Aliprantis and Border (2006)), every open set in �(B) is
a countable union of finite intersections of elements of the subbase. Thus the σ-algebra
generated by the sets {μ ∈ �(B) | ∫ f dμ ∈ I} is the Borel σ-algebra on �(B), which makes
ψ measurable. Q.E.D.

LEMMA S.2: All induced belief trees are well defined and measurable.

PROOF: The proof proceeds by induction. Let us fix an information structure (Ω�F�
P�X). First, Q �→ ϕ(Q) associates, to every probability measure Q over states, the
law of X . It is thus well defined. We also observe that �(Ω) is separable measurable
(Theorem 15.12 of Aliprantis and Border (2006)). Therefore, for every event E of X ,
Q �→Q(X ∈ E) is measurable (Theorem 15.13 of Aliprantis and Border (2006)). Apply-
ing Lemma S.1, we get that Q �→ ϕ(Q) is measurable.

Now take a given k ≥ 0 and suppose that ϕt1�����tk is well defined and measurable for
every t1� � � � � tk. We show thatϕt1�����tk+1 is well defined and measurable for every t1� � � � � tk+1.

It is well defined: By assumption, ω �→ Pωt1(E) is measurable for every event E, which by
Lemma S.1 implies that ω �→ Pωt1 is measurable and so is a well defined random variable
with values in �(Ω). Thus,ω �→ ϕt2�����tk+1(P

ω
t1
) is a well defined random variable with values

in �k+1(X ).
It is measurable: By the induction hypothesis, for every event E of �k+1(X ), the set

{ω ∈Ω : ϕt2�����tk+1(P
ω
t1
) ∈ E} is a well defined event of Ω. Applying again Theorems 15.12

and 15.13 of Aliprantis and Border (2006), we get that Q �→Q(ϕt2�����tk+1(Pt1) ∈E) is mea-
surable, and by Lemma S.1, we get that Q �→Q(ϕt2�����tk+1(Pt1)) is measurable. Q.E.D.

LEMMA S.3: Given an information structure (Ω�F�P�X), every value map πk : Σk ×
�(Ω) �→ R is well defined and jointly measurable for all k≥ 0.

PROOF: The proof proceeds by induction. The map (S�ω) �→ S(X(ω)) is bounded and
measurable, and Ω is separable metrizable, so by Theorem 17.25 of Kechris (1995), the
map π0 : (S�Q) �→ ∫

S(X(ω))dQ(ω) is jointly measurable.
Next suppose that πk is jointly measurable. It implies that πk+1 is well defined, because

for every t, ω �→ Pωt is a well defined random variable with values in �(Ω). We observe
that the map σk+1 �→ Mk+1 from Σk+1 to 2Σk is measurable for the Borel σ-algebra of
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the Hausdorff metric topology on 2Σk . Thus by Theorem 18.10 of Aliprantis and Border
(2006), the correspondence σk+1 � Mk+1 from Σk+1 to Σk is measurable. We then use
the Castaing representation theorem (Corollary 18.14 of Aliprantis and Border (2006))
to generate a sequence {�i : i = 1�2� � � �} of measurable maps �i : Σk+1 → Σk such that
Mk+1 = {�i(σk+1) : i= 1�2� � � �}. Thus, we get

max
σk∈Mk+1

πk(σk�Q)= sup
i=1�2����

πk
(
�i(σk+1)�Q

)
�

Hence, the map (σk+1�Q) �→ maxσk∈Mk+1 π(σk+1�Q) is jointly measurable as the pointwise
supremum of countably many jointly measurable maps. Besides, the right-continuity of
t �→ Pωt for every ω implies the joint measurability of (t�ω) �→ Pωt and thus the joint
measurability of (σk+1�ω) �→ Pωτk+1

, where we have decomposed σk+1 as (Mk+1� τk+1). We
have thus established that the map

(σk+1�ω) �→ max
σk∈Mk+1

π
(
σk+1�Pωτk+1

)
is jointly measurable. It follows that the map

(σk+1�Q) �→
∫ [

max
σk∈Mk+1

πk
(
σk�Pωτk+1

)]
dQ(ω)

is also jointly measurable, again applying Theorem 17.25 of Kechris (1995). Hence, πk+1

is jointly measurable. Q.E.D.

The following lemma ensures that the randomized version of the protocol is well de-
fined. Measurability of the resulting payoff rules follows from the Fubini–Tonelli theorem.

LEMMA S.4: Every map ({Qt}t � x�σk) �→Π(Ω�F�P�X)({Qt}t � x;σk) from Q×X × Σk to R
is jointly measurable.

PROOF: The map ({Qt}t � x� S) �→ Π({Qt}t � x;S) = S(x) is jointly measurable. Let us
suppose that ({Qt}t � x;σk) �→ Π({Qt}t � x;σk) is measurable. Let {�i : i = 1�2� � � �} be a
sequence of measurable maps from Σk+1 to Σk such that Mk+1 = {�i(σk+1) : i= 1�2� � � �},
whose existence was proved in Lemma S.3. Because securities of Σk take values in a
bounded interval, we have that for any σ ′�σ ′′ ∈ Σk, d(σ ′�σ ′′) < D for some constant D
large enough. Let ν be the argmax correspondence (σk+1�Q)� arg maxσk∈Mk+1

π(σk�Q).
We show that ν is weakly measurable. Let δ be the associated distance function: it is a

map from Σk × (Σk+1 × �(Ω)) to R defined by δ(σk� (σk+1�Q))= d(σk� ν(σk+1�Q)). We
remark that for every finite set S of Σk, σk �→ d(σk�S)= minσ ′∈S d(σk�σ ′) is continuous.
Also,

δ
(
σk� (σk+1�Q)

)
= min

i=1�2����

(
d
(
σk��i(σk+1)

)
1g(σk+1�Q)=π(�i(σk+1)�Q) +D1g(σk+1�Q) 
=π(�i(σk+1)�Q)

)
�

where g(σk+1�Q)= maxσk∈Mk+1 πk(σk�Q). It was shown in the proof of Lemma S.3 that g
is jointly measurable. Therefore, (σk+1�Q) �→ δ(σk� (σk+1�Q)) is measurable as the point-
wise infimum of countably many measurable functions.
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We have thus proved that the distance function δ associated to the argmax corre-
spondence ν is a Carathéodory function, which establishes its weak measurability (Theo-
rem 18.5 of Aliprantis and Border (2006)).

The weak measurability of ν implies, in turn, that we can enumerate its elements by a
sequence of measurable selectors {�̃i : i= 1�2� � � �}, where �̃i : Σk+1 ×�(Ω) �→ Σk, in the
sense that ν(σk+1�Q)= {�̃i(σk+1�Q) : i= 1�2� � � �}. We can then write

∣∣arg max
σk∈Mk+1

π(σk�Q)
∣∣ = lim

�→∞

�∑
i=1

1
�∑
j=1

1�̃i(σk+1�Q)=�̃j(σk+1�Q)

�

Thus (σk+1�Q) �→ |arg maxσk∈Mk+1
π(σk�Q)| is measurable as a pointwise limit of a se-

quence of measurable functions whose limit exists. Next we observe that (τ� {Qt}t) �→Qτ

is right-continuous in τ and measurable in {Qt}t , and, therefore, is jointly measurable,
which in turn implies joint measurability of (σk+1� {Qt}t) �→Qτk+1 . Finally, observing that

Π
({Qt}t � x;σk+1

)
= 1∣∣arg max

σk∈Mk+1

π(σk�Qτk+1)
∣∣ lim
�→∞

�∑
i=1

Π
({Qt}t � x; �̃i(σk+1�Qτk+1)

)
�∑
j=1

1�̃i(σk�Qτk+1 )=�̃k(σj�Qτk+1 )

�

we get measurability of ({Qt}t � x�σk+1) �→Π({Qt}t � x;σk+1), again as a pointwise limit of
a sequence of measurable functions. This concludes the proof. Q.E.D.

S.2.5.2. Proof of Theorem S.1

It is clear that because the protocol always works in the best interest of the individual,
reporting the truth is optimal. Thus, an optimal strategy exists. We will show that reporting
the truth is the only optimal strategy. Our proof relies on a density argument applied to
Theorem 1, using the fact that induced belief trees satisfy certain regularity conditions.

Let us fix an information structure of the individual and a strategy, following the nota-
tion of Definition S.3.

We will show that for every {Qt}t ∈ Q, the map (t0� � � � � tj) �→ ϕt1�����tj (Qt0) is right-
continuous in the weak-∗ topology of �j(X ) separately in each variable.

We proceed by induction. For k= 0 and every {Qt}t ∈Q, the map t0 �→ ϕ(Qt0)=Qt0(X)
is right-continuous, because for every event E of Ω, by assumption, t0 �→Qt0(E) is right-
continuous. Now fix k, and suppose that for every {Qt}t ∈ Q, the map (t0� � � � � tk) �→
ϕt1�����tk(Qt0) is separately right-continuous. We have that ϕt1�����tk(Qt0)=Qt0(ϕt2�����tk(Pt1)).
The right-continuity assumption on t0 �→Qt0(E) for every event E ensures again the right-
continuity of t0 �→Qt0(ϕt2�����tk(Pt1)).

Now let f : �k(X ) �→ R be a (bounded) continuous function (with respect to the weak-∗
topology). Saying that the map ti �→Qt0(ϕt2�����tk(Pt1)) is right-continuous is saying that the
map

ti �→
∫
f (q)dQt0

(
ϕt2�����tk(Pt1)= q)
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is right-continuous for every such f . Note that∫
f (q)dQt0

(
ϕt2�����tk(Pt1)= q) =

∫
f
(
ϕt2�����tk

(
Pωt1

))
dQt0(ω)�

By the induction hypothesis, ti �→ ϕt2�����tk(P
ω
t1
) is separately right-continuous, for every ω.

The dominated convergence theorem then yields the right-continuity of

ti �→
∫
f
(
ϕt2�����tk

(
Pωt1

))
dQt0(ω)�

We conclude that for every {Qt}t ∈ Q and every k, the map (t0� � � � � tk) �→ ϕt1�����tk(Qt0) is
separately right-continuous.

Now, consider a strategy that is optimal at state ω∗ and time t0. Since the randomiza-
tion device uses the full-support distribution, it means that for every k, there exists a set of
times T dense in {t0� � � � � tk : 0 ≤ t0 < · · ·< tk ≤ 1} such that for every τ = (τ0� � � � � τk) ∈ T ,
the expected payoff from the protocol that randomizes over menus of Mk according to
ξM�k and uses τ as exercise times is optimal at t0 and for state ω∗. According to Theo-
rem 1, this means that for every τ, the probability tree of level k+ 1, formed at time t0,
with intermediate times t1� � � � � tk, is the same under both the truthful strategy and the
alternative strategy:

ϕt1�����tk
(
Qω∗
t0

) = ϕ∗
t1�����tk

(
Pω

∗
t0

)
�

By density of T and right-continuity of the inference maps with respect to times, we get
that, for every t0 < · · ·< tk,

ϕt1�����tk
(
Qω∗
t0

) = ϕ∗
t1�����tk

(
Pω

∗
t0

)
�

S.3. INFORMATIONAL SUFFICIENCY

The protocols that we study elicit, directly or indirectly, high-order beliefs. When the
information these protocols elicit is used for the purpose of making better informed deci-
sions, a natural question to raise is whether this information is refined enough to enable
the decision maker to optimize as well as if she were as informed as the expert. We study
this question in this section and answer it positively.

We borrow the information structure from Section S.2, and use finitely many fixed times
of signal arrivals as in the multiperiod setting of Section 4. There are N time periods,
t = t1� � � � � tN , t1 < · · ·< tN . In period tN , a random outcome X taking values in a compact
metrizable set X materializes publicly. There is an expert whose information structure is
(Ω�F�P�X). There is also a less informed utility-maximizing decision maker who faces a
dynamic decision problem: at every time tk, the decision maker must choose an action ak
from a collection of possible actions Ak, assumed compact metrizable. In the last period
tN , the decision maker receives utility u(a1� � � � � aN−1�x), where x designates the final
outcome that obtains. The decision maker’s utility function, u :A1 ×· · ·×AN−1 ×X �→ R,
is bounded and jointly continuous.

We demonstrate that if the decision maker and the expert were the same and only
person, then he or she would not be able to get more utility than the decision maker who
only gets to observe the expert’s high-order beliefs induced by his information structure
and subsequent private observations.
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To begin, we show that there always exists a solution to the decision problem: if the
expert gets to decide which actions to take, he can always choose information-contingent
actions that maximize the decision maker’s expected utility. A decision policy for the ex-
pert is summarized by a tuple (α1� � � � �αN−1), where every αk is an Fk-measurable map
from Ω to Ak.S.8 Denote by D(F) the set of all decision policies available to the expert.
The following lemma asserts that an optimal decision policy always exists, and yields an
expected utility that can be computed via a dynamic programming principle.

LEMMA S.5: There exists a decision policy (α∗
1� � � � �α

∗
N−1) ∈D(F) such that

E
[
u
(
α∗

1� � � � �α
∗
N−1�X

)] = sup
(α1�����αN−1)∈D(F)

E
[
u(α1� � � � �αN−1�X)

]

= E
[
sup
a1

E
[
� � � sup

aN−1

E
[
u(a1� � � � � aN−1�X) |FN−1

] · · · ∣∣F1

]]
�

PROOF: We first note that

sup
(α1�����αN−1)∈D(F)

E
[
u(α1� � � � �αN−1�X)

]

≤ E
[
sup
a1

E
[
� � � sup

aN−1

E
[
u(a1� � � � � aN−1�X) |FN−1

] · · · ∣∣F1

]]
�

assuming the suprema are all measurable, which will be shown below. What remains to
be shown is that the right-hand side is attained for at least one decision policy.

Take an arbitrary decision policy (α1� � � � �αN−1). Note that

E
[
u(α1� � � � �αk−1� ak� � � � � aN−1�X) |FN−1

]
is continuous in (ak� � � � � aN−1) by the dominated convergence theorem. Thus, we have
that the supremum supaN−1

E[u(α1� � � � �αk−1� ak� � � � � aN−1�X) | FN−1] is continuous in
(ak� � � � � aN−2) by Berge’s maximum theorem. By the measurable maximum theorem
(Theorem 18.19 of Aliprantis and Border (2006)), it is also FN−1-measurable. An induc-
tive argument yields that, for every k and every decision policy (α1� � � � �αN−1),

E
[
sup
ak+1

E
[
� � � sup

aN−1

E
[
u(α1� � � � �αk−1� ak� � � � � aN−1�X) |FN−1

] · · · ∣∣Fk+1

] ∣∣Fk

]

is continuous in ak and is measurable with respect to Fk (thus is a Cathéodory function).
In particular, taking k= 1, we get that the map

(a1�ω) �→ E
[
sup
a2

E
[
� � � sup

aN−1

E
[
u(a1� � � � � aN−1�X) |FN−1

] · · · ∣∣F2

] ∣∣F1

]
(ω)

S.8Every space is tacitly endowed with its Borel σ-algebra.
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is a Cathéodory function. Because A1 is compact metrizable, by the measurable selection
theorem, there exists a map α∗

1 :Ω→A1, which is F1-measurable, such that

E
[
sup
a2

E
[
� � � sup

aN−1

E
[
u
(
α∗

1� a2� � � � � aN−1�X
) |FN−1

] · · · ∣∣F2

] ∣∣F1

]

= sup
a1

E
[
sup
a2

E
[
� � � sup

aN−1

E
[
u(a1� � � � � aN−1�X) |FN−1

] · · · ∣∣F2

] ∣∣F1

]
�

We define recursively the remaining α∗
ks by noting that, by the above result, having defined

α∗
1� � � � �α

∗
k−1, where each α∗

i is an Fi-measurable map from Ω to Ai, the map

(ak�ω)

�→ E
[
sup
ak

E
[
� � � sup

aN−1

E
[
u
(
α∗

1� � � � �α
∗
k−1� ak� � � � � aN−1�X

) |FN−1

] · · · ∣∣Fk+1

] ∣∣Fk

]
(ω)

is a Cathéodory function, and using the compact metrizable property of Ak, we get that
there exists a map α∗

k :Ω→Ak which is Fk-measurable and such that

E
[
sup
ak+1

E
[
� � � sup

aN−1

E
[
u
(
α∗

1� � � � �α
∗
k� ak+1� � � � � aN−1�X

) |FN−1

] · · · ∣∣Fk+1

] ∣∣Fk

]

= sup
ak

E
[
sup
ak+1

E
[
� � � sup

aN−1

E
[
u
(
α∗

1� � � � �α
∗
k−1� ak� � � � � aN−1�X

) |FN−1

] · · · ∣∣Fk+1

] ∣∣Fk

]
�

Finally, using with the law of iterated expectations to collapse the Fks,

E
[
sup
a1

E
[
� � � sup

aN−1

E
[
u(a1� � � � � aN−1�X) |FN−1

] · · · ∣∣F1

]]

= E
[
sup
a2

E
[
� � � sup

aN−1

E
[
u
(
α∗

1� a2� � � � � aN−1�X
) |FN−1

] · · · ∣∣F2

]]
= · · ·
= E

[
sup
ak

E
[
� � � sup

aN−1

E
[
u
(
α∗

1� � � � �α
∗
k−1� ak� � � � � aN−1�X

) |FN−1

] · · · ∣∣Fk

]]
= · · ·
= E

[
u
(
α∗

1� � � � �α
∗
N−1�X

)]
�

which concludes the proof. Q.E.D.

Now let us assume that the expert does not take actions in place of the decision maker.
Instead, the expert communicates to the decision maker his high-order beliefs at every
time. Let Zk be the random variable taking values in �N−k(X ) (i.e., the space of all prob-
ability trees, all endowed with the Borel σ-algebra generated by the weak-∗ topology)
and defined by Zk(ω)= ϕtk+1�����tN−1(P

ω
t ), where ϕtk+1�����tN−1 is the induced belief tree with

intermediate times tk+1� � � � � tN−1, as defined in Section S.2. The variable Zk represents
the information that the expert communicates to the decision maker. Let Z = {Zk}k be
the filtration generated by the discrete process Zk; Z represents the dynamic information
the decision maker learns from the expert.
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A decision policy for the decision maker is summarized by a tuple (β1� � � � �βN−1), where
every βk is an Zk-measurable map from Ω to Ak. Let D(Z) be the set of all decision
policies available to the decision maker. The same argument as in Lemma S.5 shows that
there exists an optimal policy (β∗

1� � � � �β
∗
N−1), in the sense that

E
[
u
(
β∗

1� � � � �β
∗
N−1�X

)] = sup
(β1�����βN−1)∈D(Z)

E
[
u(β1� � � � �βN−1�X)

]
�

Because the decision maker only cares about information that is relevant to the ran-
dom outcome, it is intuitive that information about the probability trees are enough for
the decision maker to make optimal decisions—decisions that yield an expected utility as
large as if she had direct access to the expert’s information. In the case where the set of
possible states of the world Ω is finite, that intuition can be easily verified. In the general
case, however, one must explicitly define a σ-algebra of events on probability trees, choice
which is not innocuous, as it determines the amount of information that is effectively com-
municated. If the σ-algebra is too coarse, it can be that the information communicated is
not enough for the decision maker to optimize his expected utility.

We show that our choice of σ-algebra contains sufficiently many events so that there
is no loss of relevant information when the expert only communicates his induced belief
trees.

PROPOSITION S.1: The decision maker’s optimal actions that follow from communicating
with the expert yield the same expected utility as if she had delegated the entire problem to the
expert, i.e.,

E
[
u
(
α∗

1� � � � �α
∗
N−1�X

)] = E
[
u
(
β∗

1� � � � �β
∗
N−1�X

)]
�

PROOF: Note that if W : Ω �→ R is σ(X)-measurable, then we obviously have that
E[W | ZN−1] = E[W | FN−1]. However, we also have that if W : Ω �→ R is bounded and
σ(Zk+1)-measurable, then E[W | Zk] = E[W | Fk]. This is a consequence of the fact that
every �k(X ) is separable and metrizable, and that if one knows every weak-∗ event of
the set of all probability measures on a separable metric space, then one can compute the
expectation of every bounded Borel-measurable function on that space (Theorem 15.13
of Aliprantis and Border (2006)).

In particular, we have

E
[
u(a1� � � � � aN−1�X) |FN−1

] = E
[
u(a1� � � � � aN−1�X) |ZN−1

]
and, inductively, from the above observation, for every k,

E
[
sup
ak

E
[
� � �E

[
sup
aN−1

E
[
u(a1� � � � � aN−1�X) |FN−1

] ∣∣FN−2

]
· · · ∣∣Fk

] ∣∣Fk−1

]

= E
[
sup
ak

E
[
� � �E

[
sup
aN−1

E
[
u(a1� � � � � aN−1�X) |ZN−1

] ∣∣ZN−2

]
· · · ∣∣Zk] ∣∣Fk−1

]

= E
[
sup
ak

E
[
� � �E

[
sup
aN−1

E
[
u(a1� � � � � aN−1�X) |ZN−1

] ∣∣ZN−2

]
· · · ∣∣Zk] ∣∣Zk−1

]
�

In particular,

E
[
sup
a1

E
[
� � �E

[
sup
aN−1

E
[
u(a1� � � � � aN−1�X) |FN−1

] ∣∣FN−2

]
· · · ∣∣F1

]]
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= E
[
sup
a1

E
[
� � �E

[
sup
aN−1

E
[
u(a1� � � � � aN−1�X) |ZN−1

] ∣∣ZN−2

]
· · · ∣∣Z1

]]

= E
[
sup
a1

E
[
� � �E

[
sup
aN−1

E
[
u(a1� � � � � aN−1�X) |ZN−1

] ∣∣ZN−2

]
· · · ∣∣Z1

]]
�

We conclude by the dynamic programming principle established in Lemma S.5. Note
that all suprema are measurable by the measurable maximum theorem, as detailed in
the lemma. Q.E.D.

S.4. INFORMATION STRUCTURES AND PROBABILITIES

In the context of a decision maker eliciting an expert’s beliefs to help her make better
decisions, we ask for which type of decision problems learning high-order beliefs is strictly
more valuable than learning, over time, the first-order beliefs that the classical methods
elicit. We argue that high-order beliefs are valuable for all but a degenerate class of dy-
namic decision problems, in which the payoffs are essentially additively separable.

The setup is as follows. There is a decision maker and three time periods t = 0�1�2.
The information structure is borrowed from Section 3.1. In the final period t = 2, a utility-
relevant random variable X realizes, taking values in X defined as {1� � � � � n}. In the in-
terim period t = 1, the decision maker receives information and forms a posterior belief
p ∈ �(X ) on X . In the initial period t = 0, the decision maker forms a second-order be-
lief F ∈ �(�(X )), a distribution over the possible posteriors. In this period, the decision
maker’s prior over outcomes—let us call it μ(F)—is

μ(F)=
∫
pdF(p)�

The decision maker is an expected-utility maximizer who confronts a dynamic choice.
There are two actions to be taken in periods 0 and 1, respectively. If the decision maker
chooses action at ∈ At in period t, she gets utility u(a0� a1�x), where x is the realization
of X and where At is finite.

We define the value function for the decision maker in period 1 as

V (a0�p)= max
a1

∑
x∈X

u(a0� a1�x)p(x)�

We also define the expected continuation payoff in period 0 as a function of the action
taken in that period as

�V (a0�F)=
∫
V (a0�p)dF(p)�

To maximize her overall expected payoff, the decision maker should choose action a0 so
as to maximize �V (a0�F), and then, after updating her belief to posterior p, choose action
a1 so as to maximize ∑

x∈X
u(a0� a1�x)p(x)�

To simplify matters, assume that every action is at least weakly optimal for some poste-
rior which is full support; that is, for every a0, there is p ∈ �(X ) for which p(x) > 0 for
all x and V (a0�p) ≥ V (b�p) for all b ∈ A0. A dynamic decision problem in this section



DYNAMIC BELIEF ELICITATION 17

refers to any tuple (A0�A1�u) satisfying this property. This assumption is without loss
of generality, because any action that violates this requirement is weakly suboptimal for
all posteriors, including those that are not full support, and so no decision maker ever
needs to play this action, which, as a result, can be safely removed from the set of possible
actions.

We are interested in the structure of the dynamic decision problems—here represented
by u(a0� a1�x)—for which the only relevant information for the period-0 decision is the
prior over outcomes μ(F). That is, for any second-order beliefs F1 and F2 such that F1

and F2 yield the same prior over outcomes (i.e., μ(F1)= μ(F2)), we have that any period-0
action optimal under F1 is also optimal under F2. Formally, if

�V (a0�F1)= max
b0

�V (b0�F1)�

then
�V (a0�F2)= max

b0

�V (b0�F2)�

Such a dynamic decision problem will be termed marginal dependent.
Instead of getting a condition on u directly, it is more convenient to get a condition on

the value function V .

PROPOSITION S.2: Let (A0�A1�u) be a marginal dependent dynamic decision problem.
There exists a function u′

1 : A1 ×X → R and for each a ∈ A0, there exists fa ∈ RX such that
V (a�p)= fa ·p+ supa1∈A1

∑
x∈X u

′
1(a1�x)p(x).

The proof is relegated to the end of this section. To better understand Proposition S.2,
it is helpful to introduce two definitions. First, we will call a dynamic decision problem
(A0�A1�u) additively separable if for each i = 0�1, there is ui : Ai × Ω → R for which
we can decompose the decision problem as u(a0� a1�x)= u0(a0�x)+ u1(a1�x). Thus, in
additively separable decision problems, there are no interactions between choices made at
different times: essentially, these combine two static and independent problems. Second,
let us say that two dynamic decision problems (A0�A1�u) and (A′

0�A′
1�u

′) are first-period
payoff isomorphic if the sets {

V (a0� ·) : a0 ∈A0

}
and {

V ′(a′
0� ·

) : a′
0 ∈A′

0

}
coincide. To understand the definition of first-period payoff isomorphism, observe that,
in terms of incentives in period 0, two isomorphic problems are equivalent in that they
present exactly the same set of period-1 value functions.

COROLLARY S.1: Any marginal independent dynamic decision problem (A0�A1�u) is
first-period payoff isomorphic to an additively separable dynamic decision problem.

Corollary S.1 is straightforward: Let A′
0 = A0 and, for any a0 ∈ A0, define u′

0(a0�x) =
fa(x). Let A′

1 = A1 and u′
1 be as in Proposition S.2, so that V ∗(p) = supa′

1∈A′
1

∫
u′

1(a
′
1�

x)dp(x).
Corollary S.1 is an immediate consequence of Proposition S.2, but facilitates its inter-

pretation: probabilities over the final outcome are enough only when the available choice
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in period 0 does not constrain the available choices in period 1, and when the utility in
period 1 does not depend on the utility in period 0.

We emphasize that our notion of dynamic decision problem does not directly incorpo-
rate any type of intertemporal budget constraint; the available decisions in period 1 (the
set A1) do not depend on the decision made in period 0. Rather, our framework allows
intertemporal budget constraints to be captured by modifying the utility function so that
u(a0� a1�ω) = −∞ whenever a1 is not available after having chosen a0. Additive sepa-
rability of course rules out this type of construction. Hence, problems obeying marginal
dependence are very few indeed: marginal dependence requires that period-0 decisions
do not constrain period-1 decisions at all, and further that there is no complementarity
across the two time periods.

S.4.1. Proof of Proposition S.2

Fix a�b ∈A0 and suppose that p∗ is full support. Suppose that a and b are both optimal
for an F∗ putting probability 1 on p∗. In particular, by marginal dependence, we know
that V (a�p∗)− V (b�p∗)= 0.

Define H : �(X )→ R by H(q)= V (a�q)− V (b�q). We claim that H is affine.
First, we establish that for all q1� q2 ∈ �(X ) and all λ1�λ2 ≥ 0 for which λ1 + λ2 = 1, we

have H(λ1q1 + λ2q2)= λ1H(q1)+ λ2H(q2).
To this end, let q∗ = λ1q1 +λ2q2 and suppose first q∗ 
= p∗. Observe that since p∗ is in the

relative interior of �(X ) for α> 0 small, r∗ = p∗ +α(p∗ − q∗) ∈ �(X ). Now let β ∈ (0�1)
for which βq∗ + (1 −β)r∗ = p∗. For example, β= α/(α+ 1). Take G1 which puts weight
βλ1 on q1,βλ2 on q2, and (1−β) on r∗, and takeG2, which puts weightβ on q∗ and (1−β)
on r∗. Observe that μ(G1)= μ(G2)= p∗. Hence, a and b are optimal for each of G1 and
G2. We conclude that βH(q∗)+ (1 −β)H(r∗)= βλ1H(q1)+βλ2H(q2)+ (1 −β)H(r∗),
which implies H(q∗)= λ1H(q1)+ λ2H(q2).

On the other hand, if q∗ = p∗, it follows that, by taking a lottery F∗ that puts probability
1 on p∗, and taking lottery G∗ that puts probability λ1 on q1 and λ2 on q2, that H(p∗)=
λ1H(q1)+ λ2H(q2).

Therefore, for any two actions a and b that are optimal in period 0 under some prior
p∗ in the relative interior of �(X ), V (a�p)− V (b�p) is an affine function of p; hence, it
can be represented as V (a�p)− V (b�p)= w · p for some w (owing to the fact that the
domain p consists of elements of �(X )).

Now, consider any pair of actions a and b. Let pa and pb be posteriors in the relative in-
terior of �(X ), where a and b are weakly optimal, respectively. Consider the line segment
[pa�pb] ⊆ �(X ) connecting pa and pb. Observe that [pa�pb] lies in the relative interior
of �(X ).

Finally, we can also consider the segment [δpa� δpb] ⊆ �(�(X )).S.9 By assumption, a is
optimal for δpa and b is optimal for δpb . Observe that this interval can be divided into a
finite number of subsegments of the form [Fi�Fi+1], where some action ci of A0 is optimal
on (Fi�Fi+1). This owes to the fact that the value function in period 0 (i.e., the function
that gives the decision maker’s expected payoff under optimal decisions and as a function
of F) is the upper envelope of a finite number of linear functions. Hence, ci is also optimal
on (μ(Fi)�μ(Fi+1)). By our first claim, it follows that for each i, V (ci�p)− V (ci+1�p) is
affine in p. Summing over the indexes in i, we get that V (a�p)− V (b�p) is affine in p.

S.9Here δp denotes the Dirac measure on p.
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Finally pick some arbitrary a∗ ∈A1, and define

V ∗(p)= V (
a∗�p

) = sup
a1∈A1

∑
x∈X

u
(
a∗� a1�x

)
p(x)

and fa∗ = 0. Otherwise, fa is such that V (a�p)− V (a∗�p)= fa ·p.

S.5. APPLICATION TO PRINCIPAL–AGENT PROBLEMS

In this section, we apply our framework in a context of contractual design with two
simple models. Throughout, a principal and an agent operate over three time periods
t = 0�1�2. The principal has interest in a random event E whose outcome becomes pub-
licly known in the final period. The associated indicator variable is X . The event occurs
with 50% probability. In the interim period, the agent privately observes a signal S tak-
ing values in {−1�+1}. The signal contains information on the event, with conditional
probabilities Pr[S = +1 |X = 1] = Pr[S = −1 |X = 0] = (1 + γ)/2 ≥ 1/2. The parameter
γ ∈ [0�1] captures the precision of the agent’s signal. After observing S = s, the agent’s as-
sessment of the event likelihood moves from 1/2 to P[X = 1 | S = s] = (1 + γs)/2. Given
a precision γ, the agent’s second-order belief, in the initial period, is therefore captured
by the distribution Fγ that assigns probability 1/2 to posterior assessment (1 + γ)/2 and
probability 1/2 to posterior assessment (1 − γ)/2.

We consider two standard environments. The first environment features adverse se-
lection. The precision γ is exogenous and privately known to the agent. It captures the
agent’s ability. The principal knows the distribution of the ability in the population of
agents and wants to recruit agents with high ability. This environment is directly related
to the one-period version of the model of Deb, Pai, and Said (2018), who study thoroughly
a general multiperiod problem using a different approach.S.10 Here our goal is simply to
illustrate how the revealed-preference approach can be used to characterize the class of
feasible hiring policies and to help identify the optimal policies.

The second environment features moral hazard. The precision of the signal γ is now
endogenous. It is privately chosen by the agent, who incurs a cost increasing with the pre-
cision. The principal faces a decision problem whose value depends on the event E and,
being uninformed, contracts with the agent to buy information. The principal’s objective
is twofold. She wants to find the precision that best balances the benefit of taking a better
action against the cost of employing the agent, and she also wants to minimize labor costs
while ensuring that the agent does the due diligence on acquiring a signal of the desired
precision.

S.5.1. A Principal–Agent Problem With Adverse Selection

Here the agent observes a signal with an exogenously determined precision γ, inter-
preted as the agent’s ability. This ability is known to the agent and unknown to the prin-
cipal, who holds a prior distribution G on γ. The principal must decide whether to hire
the agent. She derives a positive utility for hiring the most capable agents and a disutility

S.10Our results are not implied by the results of Deb, Pai, and Said (2018) because the agent’s precision can
be nonbinary and the principal is allowed to randomize. The combination of these two assumptions makes
it possible to have a rich set of incentive-compatible contracts, even in the special case of a single period of
information acquisition, and to leverage our framework.
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for hiring the least capable agents. Specifically, the principal’s utility u(γ) is continuously
increasing in the agent’s ability γ and u(0) < 0< u(1).

To make her hiring decision, the principal requests that the agent provides the precision
of his signal along with the observed value (or, equivalently, asks the agent to tell which
outcome is most likely). Once the event outcome publicly realizes, the principal hires the
agent with some probability π(γ� s�x), the hiring policy, that may depend on the reported
precision γ, the reported signal s, and the realized outcome x. The principal commits to
a hiring policy and the agent acts so as to maximize the likelihood of being hired. By a
classical revelation principle argument, it is without loss that we can restrict attention to
incentive-compatible policies in which the agent is best off reporting true information.
The principal’s objective is to design a policy that maximizes her expected utility.

Written formally, the principal maximizes expected utility∫ 1

0
u(γ)h(γ)dG(γ)

over policies π, subject to π being incentive compatible and where

h(γ)= 1 + γ
4

(
π(γ�1�1)+π(γ�0�0)

) + 1 − γ
4

(
π(γ�0�1)+π(γ�1�0)

)
is the probability that an agent with ability γ is hired.

In this simple environment, asking the agent to report his information is the same
as asking the agent to assess the event likelihood. Abusing notation, any incentive-
compatible policy π(γ� s�x) corresponds to an incentive-compatible policy π(p�x), with
p= (1 + γs)/2 a probability assessment of the event. Naturally, saying that π is incentive
compatible is simply saying that π is a weakly strategyproof payoff rule, which in this case
reduces to a proper scoring rule. For example, the policy

π(γ� s�x)= 1 −
(

1 + sγ
2

− x
)2

is incentive compatible and corresponds to the quadratic scoring rule 1 − (p− x)2.
Following the methodology of the main text, we construct hiring policies by averaging

over payoffs for elementary decision problems that are menus of securities as in Section 4.
A security is represented as a vector of R2, the first component is the payoff when the
event is false, and the second component is the payoff when the event is true (as opposed
to the securities of Section 4, the range of payoffs is not bounded). Let M be the set of
pairs of securities. This set represents menus of two securities. It is useful to order the
securities: if (x� y) = ((x0�x1)� (y0� y1)) ∈ M, then x0 ≤ y0 and y1 ≤ x1 (this ordering is
without loss of generality). Let us consider the class S of functions s that can be written
as

s(p�0)=
∫
M
(x01(1−p)x0+px1≥(1−p)y0+py1 + y01(1−p)x0+px1<(1−p)y0+py1)dμ(x� y)�

s(p�1)=
∫
M
(x11(1−p)x0+px1≥(1−p)y0+py1 + y11(1−p)x0+px1<(1−p)y0+py1)dμ(x� y)�

where μ is a probability distribution over binary menus. These are the payoff rules gen-
erated by randomizations over the decision problems that require the agent to choose
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between two securities randomly chosen, in the spirit of Section 4. Let C be the set of
payoff rules of S that deliver payoffs in the range [0�1]. This set captures a large class of
incentive-compatible hiring policies—and, in fact, it captures all relevant policies.

Recall that Theorem 2 asserts that, subject to certain regularity conditions, averag-
ing over large enough menus of securities with payoffs in [0�1] approximates arbitrarily
closely any proper scoring rule. The above construction randomizes over menus of two
securities only, but in this simple environment, larger menus are not needed. As long as
the payoffs of the securities of S are not restricted to be in the range [0�1], the value
functions of any incentive-compatible policy can be replicated by a member of C. This is
implied by the Schervish representation (Schervish (1989)). Thus, restricting ourselves to
the policies in the set C is without loss. In richer environments, one may want to consider
larger menus.

The principal’s prior over signals and abilities yields a prior over the agent’s posterior p.
Abusing notation, we continue to use G for the distribution function associated with that
prior, and we continue to denote by u(p) the utility the principal gets when hiring an
agent with posterior p. The principal maximizes

∫ 1

0
u(p)π(p)dG(p) (S.1)

over policies π ∈ C, where π(p) denotes the expected probability of being hired for an
agent whose posterior probability assessment is p. It is the same as the principal maximiz-
ing ∫

M

∫ 1

0
u(p)max

{
(1 −p)x0 +px1� (1 −p)y0 +py1

}
dG(p)dμ(x� y) (S.2)

over all probability distributions μ over binary menus and, subject to the constraints∫
M
x0 dμ(x� y)≥ 0�

∫
M
y0 dμ(x� y)≤ 1�

∫
M
y1 dμ(x� y)≥ 0�

∫
M
x1 dμ(x� y)≤ 1�

capturing the fact that π must take values in [0�1].
Representing policies π as probability distributions μ is a key ingredient in the deriva-

tion of an optimal policy, which illustrates the benefit of the revealed-preference ap-
proach. The principal’s original problem is transformed into a basic linear optimization
problem, easily solved by standard methods.S.11

The solution depends on the signs of E[u(γ) | S = −1�X = 1] and E[u(γ) | S = 1�X =
1]. The first expectation is the expected utility of a principal hiring an agent who makes

S.11Consider, for example, the case E[u(γ) | S = −1�X = 1]< 0<E[u(γ) | S = 1�X = 1]. These inequalities
are the same as ∫ 1/2

0
pu(p)dG(p) < 0 and

∫ 1

1/2
pu(p)dG(p) > 0� (S.3)

Relaxing the linear optimization problem to internalize the constraints, we maximize∫
M

∫ 1

0
u(p)max

{
(1 −p)x0 +px1� (1 −p)y0 +py1

}
dG(p)dμ(x� y)
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the wrong prediction, and the second expectation is the expected utility of a principal
hiring an agent who makes the correct prediction. As E[u(γ) | S = −1�X = 1] ≤ E[u(γ) |
S = 1�X = 1], there are three possible cases. In spite of the rich structure of the incentive-
compatible policies, the optimal policy takes a very simple form, which agrees with and
extends, for the one-period case, the results of Deb, Pai, and Said (2018).

If E[u(γ) | S = −1�X = 1]< 0 and E[u(γ) | S = 1�X = 1]> 0, then the solution to the
constrained linear programming problem with objective (S.2) is a probability measure μ∗

that puts full mass on the binary menu ((0�1)� (1�0)). In words, the optimal contract only
requires the agent to tell which event outcome is most likely. The agent is hired only if
the predicted outcome occurs, independently of the agent’s actual ability.

If E[u(γ) | S = −1�X = 1] > 0 and E[u(γ) | S = 1�X = 1] > 0, then the solution is
probability measure μ∗ that puts full mass on the binary menu ((1�1)� (1�1)): it is opti-
mal to always hire the agent, disregarding any information the agent might report—even
though the principal incurs a disutility for hiring agents with low ability. Conversely, if
instead E[u(γ) | S = −1�X = 1]< 0 and E[u(γ) | S = 1�X = 1]< 0, it is optimal to never
hire any agent—even though the utility of hiring agents with high ability is positive.

S.5.2. A Principal–Agent Problem With Moral Hazard

The principal now faces a decision problem in the interim period. The utility that the
problem generates depends on the event outcome. The exact problem the principal con-
fronts is irrelevant: analogously to Section S.5.1, we simply assume that if the principal
were to observe a signal of precision γ, she would obtain utility u(γ), with u continuously

−
∫
M
(x0 + y1)

∫ 1/2

0
pu(p)dG(p)dμ(x� y)+

∫
M
(x1 + y0)

∫ 1

1/2
pu(p)dG(p)dμ(x� y) (S.4)

over probability distributions over binary menus, without further restrictions. The coefficients
± ∫ 1/2

0 pu(p)dG(p) and ± ∫ 1
1/2pu(p)dG(p) are Lagrange multipliers. By linearity, the problem reduces to

maximizing over (x� y) ∈ M the value∫ 1

0
u(p)max

{
(1 −p)x0 +px1� (1 −p)y0 +py1

}
dG(p)

− (x0 + y1)

∫ 1/2

0
pu(p)dG(p)+ (x1 + y0)

∫ 1

1/2
pu(p)dG(p)� (S.5)

which yields maximizers x0 = y1 = 0 and x1 = y1 = 1, for which (S.5) evaluates to zero. This solution is easily
verified: if 0 ≤ x0 < y0 ≤ 1 and 0 ≤ y1 < x1 ≤ 1, letting q= (y0 − x0)/((x1 − x0)+ (y0 − y1)), (S.4) is equal to∫ q

0
u(p)

(
(1 −p)y0 +py1

)
dG(p)+

∫ 1

q

u(p)
(
(1 −p)x0 +px1

)
dG(p)

− (x0 + y1)

∫ 1/2

0
pu(p)dG(p)+ (x1 + y0)

∫ 1

1/2
pu(p)dG(p)� (S.6)

If, for example, q < 1/2, then (S.6) is equal to

(x0 − y0)

∫ 1/2

q

(1 −p)u(p)dG(p)+ (x1 − y1)

∫ 1/2

q

pu(p)dG(p)�

which is nonpositive by monotonicity of u(p) and (S.3). An analogous conclusion holds for q > 1/2. Thus, a
probability measure μ∗ that puts full mass on the binary menu ((0�1)� (1�0)) maximizes (S.4). The solution of
the relaxed problem solves the original constrained problem, as for every μ associated with a policy in C, the
value of (S.4) is at least as large as the value of (S.1), and the two are equal for μ= μ∗.
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increasing. The principal gets informed via the agent, whose expertise enables the acqui-
sition of a signal of arbitrary precision γ at cost c(γ), with c(·) a nonnegative, strictly
convex, and strictly increasing function. In the initial period, the agent chooses the pre-
cision of the signal that realizes in the interim period. Thus, this decision determines the
agent’s second-order belief.

The principal hires the agent and requests a probability assessment in the interim pe-
riod. She pays the agent π(p�x) when the agent communicates assessment p and X = x.
A contract (γ�π) specifies the desired precision γ of the signal to be observed, and the
payment scheme π. It is incentive compatible when the agent is motivated to acquire a
signal of precision exactly equal to γ and to report truthfully her probability assessment.
The contract is individually rational when, in the initial period, the agent makes a nonneg-
ative expected net utility if he accepts the terms of the contract (the reservation utility is
normalized to zero). Finally, all payments made must be nonnegative.S.12 The principal
commits to a contract in the initial period.

The principal must offer a contract (γ�π) that satisfies incentive compatibility and in-
dividually rationality, and that guarantees nonnegative payments. Let F denote the class
of these feasible contracts. For a payment scheme π, π(p) denotes the expected payment
to the agent, in the interim period, when the agent supplies assessment p truthfully. The
objective for the principal is then to maximize her utility from the decision problem she
confronts minus labor costs,

u(γ)−
∫ 1

0
π(p)dFγ(p)� (S.7)

over feasible contracts (γ�π) ∈ F . If, for every fixed γ ∈ (0�1), an optimal payment
scheme πγ is known, then the principal simply chooses γ so as to maximize (S.7) for
π = πγ .

We begin with a derivation of an optimal payment scheme that induces the agent to
acquire a signal with precision γ ∈ (0�1) at minimal cost for the principal. As in Sec-
tion S.5.1, a key observation is that the relevant class of incentive-compatible payment
schemes π is a subset of class S (as defined in Section S.5.1), whose elements are all the
mixtures of elementary payment schemes. Its boundaries are determined by the constraint
of feasibility.

Having made this observation, the objective of the principal reduces to the choice of
probability measure μ over the set of binary menus M, which yield payment scheme π,
so as to minimize the expected payments to the agent,∫ 1

0
π(p)dFγ(p)=

∫
M

∫ 1

0
max

{
(1 −p)x0 +px1� (1 −p)y0 +py1

}
dFγ(p)dμ(x� y)

=
∫
M

1
4
(
x0 + x1 + y0 + y1 + γ(x1 + y0 − x0 − y1)

)
dμ(x� y)�

and subject to the condition that the payment scheme be feasible, which can be captured
by the linear constraints ∫ 1

0
π(p)dFγ(p)≥ c(γ)� (S.8)

S.12Because we allow for c(0) > 0 (a fixed cost for working for the principal), nonnegative payments do not
imply individual rationality.
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∀δ�
∫ 1

0
π(p)dFγ(p)≥

∫ 1

0
π(p)dFδ(p)� (S.9)

∀p�x� π(p�x)≥ 0� (S.10)

Inequality (S.8) is the individual rationality constraint. Inequality (S.9) makes the con-
tract incentive compatible regarding the precision (note that truthful reporting is already
guaranteed since π ∈ S). Inequality (S.10) ensures payments are nonnegative. The set of
constraints can then be further simplified as

1
4

∫
M

(
x0 + x1 + y0 + y1 + γ(x1 + y0 − x0 − y1)

)
dμ(x� y)≥ c(γ)� (S.11)

1
4

∫
M
(x1 + y0 − x0 − y1)dμ(x� y)= c′(γ)� (S.12)

∫
M
x0 dμ(x� y)≥ 0� (S.13)

∫
M
y1 dμ(x� y)≥ 0� (S.14)

where (S.12) is a first-order condition equivalent to (S.9), and we observe that (S.10)
reduces to the two cases (S.13) and (S.14). As in Section S.5.1, the problem reduces to a
simple linear programming problem that is easily solved. There are two cases to consider,
as a function of how (1 + γ)c′(γ) compares to c(γ).

First, suppose that (1 + γ)c′(γ) > c(γ). This condition means that the normalized cost
c(δ)/(1 + δ) is locally strictly increasing at δ = γ. A solution is then given by the prob-
ability measure μ∗ that puts full mass on the menu of the two securities (0�2c′(γ)) and
(2c′(γ)�0). Therefore, an optimal payment scheme is

π(p�x)=
{

2(1 − x)c′(γ) if p< 1/2�
2xc′(γ) otherwise.

On average the agent earns (1 + γ)c′(γ), which exceeds his cost c(γ). Thus, in this case,
the agent derives a positive rent from working for the principal.

Second, suppose that (1 + γ)c′(γ) ≤ c(γ), so that the normalized cost c(δ)/(1 + δ) is
locally weakly decreasing at δ= γ. A solution is given by the probability measure μ∗ that
puts full mass on the menu of the two securities (c(γ)− (1+γ)c′(γ)� c(γ)+ (1+γ)c′(γ))
and (c(γ)+ (1 + γ)c′(γ)� c(γ)− (1 + γ)c′(γ)). It corresponds to the optimal scheme

π(p�x)= c(γ)− (1 + γ)c′(γ)+
{

2(1 + γ)(1 − x)c′(γ) if p< 1/2�
2(1 + γ)xc′(γ) otherwise.

In this case, the agent earns on average c(γ)—just enough to cover his cost—and the
agent gets his reservation payoff.

Finally, plugging the payment scheme just obtained into the principal’s objective
(S.7), we obtain that the principal chooses precision γ that maximizes u(γ)− max{(1 +
γ)c′(γ)� c(γ)}.
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