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APPENDIX B: DETAILED ESTIMATION RESULTS

Positive Crossmatch Probability

NOT ALL ACCEPTED OFFERS RESULT IN TRANSPLANTATION because additional testing
may yield a positive crossmatch indicating that the patient is likely to develop an immune
response to the donor’s kidney. These transplants are not carried out, and if possible the
organ is placed with another patient. To account for positive crossmatches when com-
puting value functions and conducting counterfactual simulations, we estimate a probit
model to predict the probability that a patient has a positive crossmatch with an organ
they have accepted. The specification includes interactions between the patient’s CPRA
and the number of HLA mismatches with the donor, in addition to controls for patient
age and number of years on dialysis. We use a subset of the variables included in the
CCP model to avoid overfitting. Coefficient estimates and standard errors are displayed
in Table B.I. The results are intuitive and consistent with medical knowledge. For exam-
ple, higher CPRA is associated with a higher positive crossmatch probability, as are more
tissue-type dissimilarities (as measured by DR or HLA mismatches). This is consistent
with the view that patients with more sensitized immune systems may be more likely to
test positive against foreign antibodies, even if they have not tested positive in the past.

Maximum Number of Offers and Discards

Some organs are not offered to all compatible patients in NYRT. This usually occurs
either because an organ becomes unsuitable for transplantation or because the organ is
accepted by a patient in another OPO. We call these events “timeouts.”
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TABLE B.I

POSITIVE CROSSMATCH MODEL

CPRA 1�025 (0�152)
0 or 1 HLA Mismatches −1�374 (0�474)
2 or 3 HLA Mismatches 0�199 (0�0856)
0 DR Mismatches −0�449 (0�0930)
CPRA × 1{0 or 1 HLA Mismatches} −0�590 (0�684)
CPRA × 1{2 or 3 HLA Mismatches} −0�477 (0�169)
CPRA 0 −0�587 (0�0827)
CPRA − 0.8 if CPRA > 0.8 −3�389 (0�811)
Log Dialysis Time at Registration (Years) −0�0325 (0�00846)
Log Dialysis Time at Registration × 1{Over 5 Years} 1�035 (0�0812)
Patient Age at Registration (Years) 0�0108 (0�00490)
Age at Registration − 35 if Age > 35 −0�0272 (0�00628)
Constant −0�254 (0�170)
Observations 3876

We model the maximum number of offers that can be made for a given organ using a
censored exponential hazards model. Duration is the number of observed offers. Censor-
ing occurs if the organ is placed, or if it is discarded after being offered to all compatible
NYRT patients. The hazard function is

λo(z)= λo exp(zβ)� (B.1)

where z are characteristics of the donor, β is a vector of coefficients, and λ0 is the con-
stant baseline hazard rate. We allow the hazard to depend on geography and indicators
of donor quality. Specifically, we control for whether the donor is an expanded criteria
donor (ECD), the donor’s cause of death (DCD), and whether the donor was recovered
in NYRT, as well as interactions among these variables. The estimated timeout hazards
are inputs in the counterfactual exercises.

Kidneys that reach the maximum number of offers can be discarded or allocated to a
patient outside NYRT. We model the probability that a donor’s unallocated kidneys are
discarded using a probit model that includes the same set of covariates used to estimate
the maximum number of potential offers. This part of the model does not influence allo-
cation and incentives for patients in NYRT. It is used to properly account for changes in
discards for kidneys not allocated to patients in NYRT.

Detailed CCP Estimates

See Table B.III.

APPENDIX C: COUNTERFACTUALS

C.1. Computation Details

C.1.1. Counterfactual Scoring Mechanisms

The algorithm to compute steady state equilibria for counterfactual scoring mecha-
nisms uses a discrete time grid t = t0� � � � � tl� tl+1� � � � �T , arbitrary initial beliefs π0, and a
sample of patients and donors as inputs (Algorithm 1). In the baseline results, the type
space is given by a random sample of 300 patients and 500 donors drawn from our dataset.
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TABLE B.II

SURVIVAL MODEL ESTIMATES

Gompertz Weibull Cox
(1) (2) (3)

Diabetic Patient 0�0812 0�0739 0�0850
(0�0336) (0�0336) (0�0336)

Bloodtype A Patient 0�159 0�127 0�165
(0�0437) (0�0436) (0�0438)

Bloodtype O Patient 0�00394 0�00400 0�00385
(0�0392) (0�0392) (0�0392)

Calculated Panel Reactive Antibodies (CPRA) −0�000126 −0�000211 −0�000275
(0�00150) (0�00150) (0�00150)

CPRA = 0 0�190 0�179 0�181
(0�0738) (0�0738) (0�0739)

CPRA − 80 if CPRA ≥ 80 −0�0230 −0�0204 −0�0225
(0�00650) (0�00650) (0�00650)

Age (at Registration) −0�0418 −0�0363 −0�0361
(0�0150) (0�0151) (0�0151)

Age − 18 if Age ≥ 18 0�0399 0�0356 0�0348
(0�0184) (0�0186) (0�0186)

Age − 35 if Age ≥ 35 −0�00988 −0�0121 −0�0104
(0�00966) (0�00966) (0�00966)

Age − 50 if Age ≥ 50 0�0236 0�0231 0�0242
(0�00729) (0�00728) (0�00729)

Age − 65 if Age ≥ 65 0�0241 0�0233 0�0238
(0�00927) (0�00926) (0�00929)

Prior Transplant 0�0513 0�0590 0�0546
(0�0552) (0�0550) (0�0552)

Body Mass Index (BMI) −0�0155 −0�0145 −0�0156
(0�00639) (0�00639) (0�00640)

Missing BMI −0�0680 0�0736 −0�104
(0�199) (0�199) (0�200)

BMI ≥ 18.5 −0�0382 −0�0450 −0�0356
(0�106) (0�106) (0�106)

BMI ≥ 25 0�00882 0�00346 0�00918
(0�0492) (0�0492) (0�0492)

BMI ≥ 30 0�0509 0�0429 0�0513
(0�0595) (0�0595) (0�0595)

Total Serum Albumin −0�163 −0�160 −0�156
(0�0549) (0�0550) (0�0548)

Missing Total Serum Albumin −0�533 −0�461 −0�490
(0�189) (0�189) (0�189)

Total Serum Albumin ≥ 3.7 −0�0645 −0�0630 −0�0681
(0�0591) (0�0592) (0�0591)

Total Serum Albumin ≥ 4.4 0�0512 0�0405 0�0505
(0�0510) (0�0509) (0�0510)

On Dialysis at Registration −0�149 −0�169 −0�142
(0�113) (0�113) (0�113)

Log Years on Dialysis at Registration −0�00139 0�00451 −0�00291
(0�0185) (0�0185) (0�0185)

Log Years on Dialysis at Registration × 1{Over 5 Years} 0�187 0�181 0�181
(0�110) (0�110) (0�110)

Constant −5�870 −5�308
(0�342) (0�352)

(Continues)
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TABLE B.II—Continued

Gompertz Weibull Cox
(1) (2) (3)

Gompertz Shape Parameter 0�0000922
(0�0000210)

Weibull Shape Parameter −0�0785
(0�0143)

Observations 9623 9623 9623

We discretize time into quarters for the first 15 years after registration, then every 2 years
until year 25, and every 25 years thereafter. These results are not sensitive to a larger set
of patient and donor types or finer time partitions. Details are provided in Section D.

An equilibrium is computed by iterating through the following steps until convergence:
1. Compute the value function V k

x (tl), given beliefs πk−1, via backwards induction from
V k
x (tl+1). This calculation also yields patient strategies σk

x (�� t) = 1{� ≥ V k
x (t)} and

departure rates κk
x(t).

2. Compute the queue composition mk given departure rates κk
x(t).

3. Compute πk(t;x�z) using the queue composition and the accept/reject strategies
σk

x (�� t).
4. For step k > 1: Terminate if the largest change in value functions and queue

length/composition between iterations – supx�l |V k
x (tl)− V k−1

x (tl)|, supx�l |mk
x(tl;x)−

mk−1
x (tl)|, and Nk −Nk−1 – are uniformly below a tolerance level. Otherwise, repeat

steps 1–4.
If this algorithm terminates, the resulting accept/reject rules yield an equilibrium (up to
the threshold tolerance). Because the equilibrium we compute may not be unique, we
tried different starting values for π0. Our experiments at the estimated parameters did
not find multiple equilibria. The pseudocode is provided below.

Value Function Computation (Backwards Induction). For a small h, the value function
derived in equation (3) can be approximated as

(
ρ+ δx(t)

)
Vx(t)≈ λ

∫
πx(t;z)

∫
max

{
0��(t;x�z)+ ε− Vx(t)

}
dGdF

+ Vx(t + h)− Vx(t)

h
�

Because the right-hand side is monotonically decreasing in Vx(t), there is a unique value
of Vx(t) that satisfies the equation. We will use this expression to obtain the value function
by backwards induction. At iteration k, given V k

x (tl+1) we use the bisection method to
calculate the value of v that solves

(
ρ+ δx(tl)

)
v = λ

∫
πk

x (tl;z)
∫

max
{
0��(tl;x�z)+ ε− v

}
dGdF

+ V k
x (tl+1)− v

tl+1 − tl
(C.2)
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TABLE B.III

CONDITIONAL CHOICE PROBABILITY OF ACCEPTANCE (DETAILED)

Base Specification Unobserved Heterog. Waiting Time + UH

(1) (2) (3)

Constant −3�70 (0.02) −4�47 (0.03) −4�49 (0.05)
Patient Diabetic −0�06 (0.01) −0�05 (0.02) −0�03 (0.02)
Calculated Panel Reactive Antibody (CPRA) 0�60 (0.05) 0�68 (0.06) 0�58 (0.09)
CPRA ≥ 0.8 0�27 (0.05) 0�10 (0.06) 0�12 (0.08)
CPRA = 0 −0�10 (0.02) −0�02 (0.03) −0�02 (0.03)
CPRA − 0.8 if CPRA ≥ 0.8 −0�37 (0.37) −0�37 (0.48) −0�56 (0.50)
Patient had Prior Transplant 0�38 (0.02) 0�36 (0.02) 0�14 (0.03)
Donor Age < 18 0�27 (0.10) −0�09 (0.19) −0�04 (0.20)
Donor Age 18–35 0�59 (0.12) −0�06 (0.19) 0�02 (0.19)
Donor Age 50+ −0�83 (0.16) −0�77 (0.21) −0�87 (0.22)
Donor Cause of Death Anoxia −0�04 (0.02) −0�12 (0.06) −0�10 (0.06)
Donor Cause of Death Stroke 0�01 (0.02) 0�02 (0.06) 0�04 (0.07)
Donor Cause of Death CNS 0�17 (0.09) −0�16 (0.32) −0�16 (0.36)
Donor Creatinine 0.5–1.0 −0�06 (0.03) 0�02 (0.11) −0�01 (0.11)
Donor Creatinine 1.0–1.5 0�01 (0.03) 0�00 (0.11) −0�04 (0.10)
Donor Creatinine ≥ 1.5 −0�13 (0.03) −0�21 (0.11) −0�23 (0.11)
Donor Pancreas Offered 0�36 (0.03) 0�54 (0.09) 0�56 (0.09)
Expanded Criteria Donor (ECD) −0�14 (0.02) −0�53 (0.08) −0�53 (0.10)
Donation from Cardiac Death (DCD) −0�10 (0.02) −0�51 (0.06) −0�50 (0.09)
Donor Male 0�01 (0.01) 0�05 (0.05) 0�06 (0.04)
Donor History of Hypertension 0�01 (0.02) −0�01 (0.05) −0�01 (0.05)
Perfect Tissue Type Match 2�33 (0.31) 2�92 (0.43) 2�89 (0.44)
2 A Mismatches −0�08 (0.02) 0�00 (0.02) 0�00 (0.02)
2 B Mismatches 0�06 (0.02) 0�02 (0.03) 0�03 (0.03)
2 DR Mismatches −0�06 (0.02) −0�05 (0.02) −0�05 (0.02)
ABO Compatible −0�35 (0.05) −0�40 (0.09) −0�41 (0.09)
Regional Offer −1�38 (0.06) −2�90 (0.19) −2�92 (0.19)
National Offer −1�54 (0.04) −3�05 (0.12) −3�11 (0.11)
Non-NYRT Donor, NYRT Match Run 1�23 (0.02) 2�02 (0.05) 2�08 (0.05)
Patient Blood Type A −0�17 (0.02) −0�28 (0.07) −0�28 (0.07)
Patient Blood Type O −0�32 (0.02) −0�38 (0.06) −0�39 (0.06)
Patient on Dialysis at Registration −0�02 (0.02) −0�10 (0.02) −0�09 (0.02)
Patient Age at Registration 0�04 (0.01) 0�10 (0.01) 0�10 (0.01)
Patient Age − 18 if Age ≥ 18 −0�05 (0.01) −0�11 (0.01) −0�11 (0.01)
Patient Age − 35 if Age ≥ 35 0�01 (0.00) 0�02 (0.01) 0�02 (0.01)
Patient Age − 50 if Age ≥ 50 0�00 (0.00) 0�00 (0.00) 0�00 (0.00)
Patient Age − 65 if Age ≥ 65 −0�01 (0.00) 0�00 (0.01) −0�01 (0.01)
Log Waiting Time (years) 0�09 (0.06)
Log Waiting Time × 1{Over 1 Year} −0�15 (0.07)
Log Waiting Time × 1{Over 2 Years} −0�13 (0.12)
Log Waiting Time × 1{Over 3 Years} 0�30 (0.11)
Patient BMI at Departure −0�07 (0.03)
Patient BMI − 18.5 if BMI ≥ 18.5 0�03 (0.03) 0�07 (0.04) 0�06 (0.04)
Patient BMI − 25 if BMI ≥ 25 0�02 (0.01) 0�02 (0.01) 0�02 (0.01)
Patient BMI − 30 if BMI ≥ 30 −0�01 (0.01) −0�02 (0.01) −0�02 (0.01)
Patient Serum Albumin −0�02 (0.03) −0�01 (0.03) −0�01 (0.03)
Serum Albumin − 3.7 if ≥ 3.7 −0�04 (0.05) −0�07 (0.06) −0�06 (0.06)
Serum Albumin − 4.4 if ≥ 4.4 0�12 (0.05) 0�16 (0.06) 0�16 (0.06)
Log Dialysis Time at Registration (Years) 0�04 (0.00) 0�05 (0.01) 0�05 (0.01)
Log Dialysis Time at Registration × 1{Over 5 years} 0�49 (0.03) 0�44 (0.04) 0�43 (0.04)

(Continues)



6 AGARWAL ET AL.

TABLE B.III—Continued

Unobserved Waiting Time +
Base Specification Heterog. UH

(1) (2) (3)

Perfect Tissue Type Match × Prior Transplant −0�44 (0.19) −0�39 (0.27) −0�29 (0.27)
Perfect Tissue Type Match × Diabetic Patient 0�03 (0.16) 0�06 (0.23) 0�06 (0.23)
Perfect Tissue Type Match × Patient Age −0�01 (0.01) −0�02 (0.01) −0�02 (0.01)
Perfect Tissue Type Match × CPRA 0�85 (0.35) 1�35 (0.48) 1�53 (0.48)
Perfect Tissue Type Match × 1{CPRA above 80%} −0�50 (0.30) −0�30 (0.40) −0�38 (0.41)
Perfect Tissue Type Match × ECD Donor −0�63 (0.16) −0�72 (0.23) −0�72 (0.23)
Perfect Tissue Type Match × DCD Donor −0�46 (0.33) −1�03 (0.47) −1�05 (0.47)
Perfect Tissue Type Match × NYRT Donor 0�44 (0.18) −0�02 (0.26) −0�02 (0.26)
Perfect Tissue Type Match × ABO Compatible 0�02 (0.17) 0�09 (0.24) 0�08 (0.24)
NYRT Donor × 1{2 A Mismatches} 0�16 (0.03) 0�06 (0.04) 0�05 (0.04)
NYRT Donor × 1{2 B Mismatches} −0�02 (0.03) −0�05 (0.04) −0�05 (0.04)
NYRT Donor × 1{2 DR Mismatches} −0�03 (0.03) −0�01 (0.04) −0�01 (0.03)
NYRT Donor × 1{Donor Age < 18} −0�05 (0.06) 0�18 (0.22) 0�19 (0.25)
NYRT Donor × 1{Donor Age 18–35} 0�13 (0.04) 0�24 (0.15) 0�25 (0.15)
NYRT Donor × 1{Donor Age 50+} −0�45 (0.03) −0�69 (0.13) −0�68 (0.12)
Patient Age × 1{Donor Age < 18} −0�01 (0.00) 0�00 (0.00) 0�00 (0.00)
Patient Age × 1{Donor Age 18–35} −0�02 (0.00) 0�00 (0.01) 0�00 (0.01)
Patient Age × 1{Donor Age 50+} 0�02 (0.00) 0�02 (0.01) 0�02 (0.01)
Patient Age − 35 if Age ≥ 35 × 1{Donor Age 18–35} 0�02 (0.01) 0�00 (0.01) 0�00 (0.01)
Patient Age − 35 if Age ≥ 35 × 1{Donor Age 50+} −0�01 (0.01) 0�00 (0.01) −0�01 (0.01)
Log Waiting Time × Prior Transplant 0�23 (0.02)
Log Waiting Time × Patient Diabetic −0�03 (0.02)
Log Waiting Time × Patient Age 0�00 (0.00)
Log Waiting Time × CPRA 0�08 (0.05)
Log Waiting Time × 1{CPRA ≥ 80} 0�00 (0.05)
Log Waiting Time × Patient Serum Albumin −0�01 (0.01)
Log Waiting Time × Patient BMI at Departure 0�00 (0.00)
Log Waiting Time × 1{Patient Blood Type A} 0�01 (0.03)
Log Waiting Time × 1{Patient Blood Type O} −0�01 (0.03)
Patient BMI Missing −1�27 (0.61)
Patient Serum Albumin Missing −0�05 (0.12)
Donor Unobservable Std. Dev. 1�02 (0.03) 1�04 (0.04)
Idiosyncratic Shock Std. Dev. 1�00 1�00 1�00
Acceptance Rate 0.140% 0.140% 0.140%
Number of Offers 2,713,043 2,713,043 2,713,043
Number of Donors 5642 5642 5642
Number of Patients 9494 9494 9494

Because this problem can be written as finding v = f (v) where f (·) is strictly decreasing,
we can take any initial guess v0 and set the lower bound to min(v0� f (v0)) and the upper
bound to max(v0� f (v0)). We use the initial guess v0 = V k

x (tl+1).

Offer Probabilities, πx�z(t). Section C.1.2 derives a computationally tractable approxi-
mation to offer probabilities given a scoring rule s, a large waitlist N∗, and an acceptance
policy function. The expression in equation (C.5) below can be simplified and solved for
analytically. We use that solution in our algorithm.
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TABLE B.IV

OUT-OF-SAMPLE MODEL VALIDATIONa

Relative Mean-Squared Prediction Error of CCP Estimator

Estimation Sample Validation Sample

Sparse Specification 87% 88%
Baseline Specification 81% 86%
Richer Specification 77% 89%
Richest Specification 73% 136%

aValidation sample includes offers made between January 1, 2014 and June 30, 2014. The relative mean squared error normalizes
the MSE relative to a baseline estimator that predicts a constant CCP in each period. The sparse specification reduces the interactions
and knots in the piecewise linear terms included in χ(·) from our baseline specification so that we estimate about one fourth of the
coefficients. The richer specification increases the number of interactions and knots in the piecewise linear terms by a factor of four
from the baseline, and the last specification further increases the number of terms by another factor of three.

Waitlist Size/Composition, m, N . We use κx(t) and γx to update the queue composi-
tion. Solving the ODE in Definition 1, part 3(a), we get that for any h> 0,

mx(t + h)=mx(t)exp
(

−
∫ h

0
κx(t + τ)dτ

)
�

where mx(0)= λx. Approximating κx(t + τ)= κx(t + h) for all τ ∈ (0�h), we have that

mx(tl+1)= mx(tl)exp
(−κx(tl+1)(tl+1 − tl)

)
� (C.3)

Finally, we scale the output so that mx(tl) is a probability measure.
The size of the waitlist, N , is determined by part 3(b) of Definition 1.

C.1.2. Approximating Offer Probabilities

Fix a particular agent i with priority score s. Ties are broken randomly, so wlog consider
each agent’s tiebreaker to be drawn from a uniform distribution. Let 1 − αi be the tie-
breaker for agent i.

An offer may be the last one because it may be accepted or because the kidney
may expire after the offer. This model, specified in equation (B.1), yields a probability,
p0 = λo(z), the probability of a timeout before the next offer for an object of type z. For
simplicity, we fix z and drop it from the notation.

An agent receives an offer if the total number of acceptances and timeouts after offers
to agents with a higher priority score than agent i is strictly less than the number of copies
of the object available. Consider waitlists that are composed of N agents randomly drawn
from distribution m. The probability that each drawn agent is ordered above i and that
the kidney is either accepted by the agent or times out is

p(s�α)=mH(s)pH(s)+mE(s)αpE(s)�

The first term represents the case when an agent with a higher priority (group H) is drawn.
The probability of the kidney becoming unavailable conditional on an agent drawn from
a higher priority group is

pH(s)= p0 + (1 −p0)
1

mH(s)

∑
t�x

m(t;x)1{
s(t;x) > s

}
P
(
�(t;x)+ ε > Vx(t)

)
�
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Algorithm 1 Steady State Equilibrium
1: Inputs: Patient and donor characteristics, scoring rule s, parameters �, δ, ρ, and pa-

tient age grid {t0� � � � � tL = T }. Let tl0x be the arrival time for patient of type x.
2: Outputs: V ∗, π∗, m∗, N∗

3: Initialize k= 0 and beliefs πk
x (t) for all x and t ∈ {t0� � � � � tL}

4: repeat
5: V k ← Backwards Induction(πk)
6: κk

x(tl)← δx(tl)+ λ
∑

z π
k
x�z(tl)P(�(tl;x�z)+ ε > V k

x (tl))

7: mk�Nk ← Forward Simulation(κk) � Waitlist Composition
8: πk ← Compute Offer Probabilities(V k�mk�Nk) � Offer Probabilities
9: k ← k+ 1

10: until k > 1, ‖V k − V k−1‖∞ < ε, ‖mk −mk−1‖∞ < ε, and Nk =Nk−1 � Convergence
11: V ∗ ← V k�m∗ ←mk�N∗ ← Nk�π∗ ← πk

12: function BACKWARDS INDUCTION(π)
13: for all x do
14: Set Vx(T)= 0
15: for all x and tl = tL−1 to tl0x do
16: Compute Vx(tl) by solving for v in equation (C.2)
17: end for
18: end for
19: return Vx(tl) for all x and tl ∈ {tl0x� � � � �T }
20: end function
21: function FORWARD SIMULATION(κ)
22: for all x do
23: mx(tl0x)← λx

24: for all tl = tl0x+1 to T do
25: mx(tl+1)← mx(tl)exp(−κx(tl)(tl+1 − tl))
26: end for
27: end for
28: Nk ← ∑

x�tl
mk

x(tl)κ
k
x(tl) � Waitlist Size: Definition 1, part 3(b)

29: mx(tl)← mx(tl)/N
k for all x and tl

30: return mx(tl) for tl ∈ {tl0x� � � � �T } and Nk

31: end function
32: function COMPUTE OFFER PROBABILITIES(m�V �N)
33: pa(tl;x�z)← P(�(tl;x�z)+ ε > Vx(tl)) for all x� tl
34: for all s = max s(tl;x�z) to min s(tl;x�z) do
35: Compute π using equation (C.5)
36: end for
37: return πk

38: end function

The second term is the probability that an agent with priority score s is drawn. The term
pE(s), representing the case when an agent in the same priority group is drawn, is defined
analogously as pH(s).

Therefore, the number of times a kidney would become unavailable after being offered
to an agent ordered above i is a binomial random variable X with parameters N and
p(s�α). An object is available to agent i if X < q, where q is the number of copies of the
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object. Hence, the probability that i receives an offer is given by
∫ 1

0
P(X < q|s�α)dα� (C.4)

where we have integrated over the tie-breaker α, and explicit conditioning on N is sub-
sumed for simplicity.

For large N and small p(s�α), the distribution of X approaches the distribution of a
Poisson random variable with parameter Np(s�α). Therefore, the expression in equation
(C.4) yields the following expression for πx(t):

πx(t)=
∫ 1

0

∑
q′<q

e−Np(s�α)
(
Np(s�α)

)q′

q′! dα�

where we use the Poisson approximation to re-write P(X < q|s�α). As a reminder, the
object type z is dropped from the notation for simplicity as it is fixed, although the offer
probabilities depend on it. This integral can be solved for in closed form for q ∈ {1�2}:

πx(t) = e−Np(s�0) − e−Np(s�1)

N
(
p(s�1)−p(s�0)

)

+ 1{q = 2}
(
1 +Np(s�0)

)
e−Np(s�0) − (

1 +Np(s�1)
)
e−Np(s�1)

N
(
p(s�1)−p(s�0)

) � (C.5)

C.2. Optimal Assignments and Optimal Offer Rates

The objective functions for these two problems are identical. It is given by

∑ 1
V̄ M0
x (λ0)

[
γx

ρ
Vx(0)+

∑
l

Nmx(tl)(tl+1 − tl)Vx(tl)

]
�

where V̄ M0
x (λ0) is defined in equation (11) and V are choice variables interpreted as in the

rest of the paper. The constraints on the two problems differ and each has a separate, third
choice variable. For the optimal assignment mechanism, we choose assignment policies μ.
For the optimal offer mechanism, we choose offer rates π. We describe these variables
and constraints below. The nonlinear problem is solved using the KNITRO optimizer
interfaced with MATLAB.

C.2.1. Optimal Assignments

This allocation maximizes the objective function above by assigning an object of type
z to agents currently on the list. The social planner knows the payoffs �xzt as well as
the idiosyncratic shocks ε. The planner also knows the steady state distribution of agents
waiting for an assignment but not the future arrivals of objects or agents. The choice
variable is the probability μzxt with which a compatible object of type z is allocated to
an agent of type x who has waited for t periods. Given μ, the assignment is made to
compatible agents of type x that have waited for t periods and have the highest draws
of ε. Choosing μ is equivalent to choosing a cutoff εxzt such that μxzt = P(a(ε;x�z� t) =
1)= ∫

1{ε > εxzt}dG, where the integral is taken with respect to ε.
There are three constraints:
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1. Value Function: The agent’s net present value Vx(·) from the expected stream of
assignments under the policy μzxt is defined by
(

1 +
(
ρ+ δx(tl)+ λ

∑
z

fzμxztl cxz

)
(tl+1 − tl)

)
Vx(tl)= (tl+1 − tl)λwx(tl)+ Vx(tl+1)�

where

wx(t)=
∑
z

fzcxz

∫
(�xzt + ε)1{ε > εxzt}dG�

fz is the probability that the object type is z, integrals are over ε, and cxz is the known
(estimated) compatibility probability. These expressions for V and w are obtained
by solving the value function from following the policy of accepting offers with ε
above εxzt , with offers made whenever an object arrives. The term wx(t) denotes the
expected value to an agent of type x conditional on an object arriving.

2. Feasibility: The total mass of type z objects that are assigned upon arrival must not
exceed the mass of objects that arrive. Specifically, for each z, we impose the con-
straint ∑

x�l

Nmx(tl)(tl+1 − tl)cxzμzxtl ≤ qz�

The left-hand side is the cumulative product of the (discretized) masses of each type
of agent on the waitlist, Nmx(tl)(tl+1 − tl), multiplied by the assignment probabil-
ities cxzμxztl for each agent. This quantity cannot exceed the mass of objects that
arrive, qz .

3. Steady State Composition: The measure of agents of type x that have waited for
t periods is in steady state. This constraint is analogous to equation (C.3) above.
Specifically, for each x and l > 0, we have that

Nmx(tl+1)= Nmx(tl)exp
(

−
(
δx(tl)+ λ

∑
z

fzcxzμxztl

)
(tl+1 − tl)

)
�

Nmx(t0)= γx�

The term λ
∑

z fzcxzμxztl is the cumulative assignment rate across objects for an agent
of type x at time tl. This, when added to δx(tl+1), yields the total departure rate.

In addition, we impose that each μxzt belongs to unit interval.

C.2.2. Optimal Offer Rates

This problem maximizes the objective function above by choosing a probability of of-
fering an object of type z to agents currently on the list. The social planner has full infor-
mation about the payoffs �xzt , but does not know the idiosyncratic shocks ε. She knows
the steady state distribution of agents waiting for an assignment but not the future arrivals
of objects or agents. The choice variable in this problem is the probability πzxt with which
an arriving object of type z is offered to an agent of type x who has waited for t periods.
Agents optimally choose which offers to accept given π.

As before, there are three constraints:
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1. Value Function: The agent’s net present value Vx(·) from the expected stream of
assignments under the policy πzxt is defined by

(
1 + (

ρ+ δx(tl)
)
(tl+1 − tl)

)
Vx(tl)= (tl+1 − tl)λwx(tl)+ Vx(tl+1)�

where

wx(t)=
∑
z

fzπxztcxz

∫
max

{
0��xzt + ε− Vx(t)

}
dG�

fz is the probability that the object type is z, and integrals are taken with respect
to ε. As in the optimal assignment problem, wx(t) is the expected value to an agent
of type x conditional on an object arriving. However, in this problem, the agent
makes optimal decisions and offers do not depend on the payoff shocks. Therefore,
an assignment occurs only if the agent is offered the object and the agent accepts.
Acceptance occurs if the payoff shock exceeds Vx(t)− �xzt .

2. Feasibility: The total mass of type z objects assigned must not exceed the mass of
objects that arrive. Specifically, for each z, we impose the constraint

∑
x�l

m̃x(tl)(tl+1 − tl)πzxtl

[
cxz

∫
1
{
�xztl + ε > Vx(tl)

}
dG+p0�z

]
≤ qz�

where the integral is over ε. This constraint is analogous to the feasibility constraint
in the optimal assignment problem. The difference is that the assignment rate cxzμxzt

is replaced by the term

πzxtl

[
cxz

∫
1
{
�xztl + ε > Vx(tl)

}
dG+p0�z

]
�

The term πzxtl denotes the probability that an agent of type x receives an offer for
an object of type z after she has waited for tl periods. The term in brackets is the
probability that any such offer is the last offer for the object that can be made. It is
the sum of the probability that object is compatible and transplanted,

cxz

∫
1
{
�xztl + ε > Vx(tl)

}
dG�

and the probability that no more offers can be made after the current one. This term
arises from the technological constraint on the number of offers that can be made
for an object. The model used to determine p0�z is described in Appendix B.

This constraint only restricts the expected number of assignments. Therefore, the
offer rates πxzt may not be implementable for a specific sequence of donor and pa-
tient arrivals.

3. Steady-State Composition: The measure of agents of type x that have waited for t
periods is in steady state. Specifically, for each x and l > 0, we have

m̃x(tl+1)= m̃x(tl)exp
(

−
(
δx(tl+1)+ λ

∑
z

fzμxztl

)
(tl+1 − tl)

)
�

m̃x(tl)= γx�
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where

μxzt = πxztcxz

∫
1
{
�xzt + ε > Vx(t)

}
dG�

This constraint differs from its analogue in the optimal assignment problem because
here the assignment probability μxzt depends on agents’ acceptance decision.

In addition, we impose that each πxzt belongs to unit interval.

APPENDIX D: ROBUSTNESS AND SUPPLEMENTARY EVIDENCE

D.1. Robustness

Patient Unobserved Heterogeneity

We reestimated the model allowing for two unobserved patient types. Specifically, we
reparametrized the CCPs as follows:

Pijt = G
(
αi +χ(xi� zj� t)θ+ηj

)
�

where αi ∈ {α1�α2} with the parameters α1 and α2 and the share of α1 to be estimated.
This parameterization allows patients to have systematically higher or lower values of all
transplants relative to their outside options. We abstract away from the initial conditions
problem, setting the proportion of each patient type in our sample to the population aver-
age. This latter assumption is appropriate for patients that registered during our sample
period, but ignores selection that should arise for patients that registered prior to the
sample of offers we consider.

Estimating this model requires another data augmentation step. This step draws each
agent i’s type given their observed decisions and the parameters α1, α2, and π1. Condi-
tional on (α1�α2�π1), the posterior probability that αi = α1 is proportional to the likeli-
hood of observing the decisions made by agent i multiplied by π1. This likelihood is the
product of the cumulative density functions of normal distributions. The parameters α1,
α2, and π1 are then updated using conjugate priors. We specify diffuse normal priors for
α1 and α2 and a Dirichlet prior for π1 (see Section 3.4, Gelman, Carlin, Stern, and Ru-
bin (2014)). As recommended in Gelman, Carlin, Stern, and Rubin (2014), we check for
reordering and impose the restriction that α1 >α2.

Table D.I, Panel A presents the results for the steady states of benchmark mechanisms
considered in the main text.

Discount Factor

As discussed in Section 3, the discount faction ρ is not identified and is set to 5% per
year. Here, we evaluate sensitivity of our results to using an annual discount rate of 10%.
Only Steps 3 and 4 in Section 4.2 must be revised to obtain estimates with an alternative
discount rate. Panel B of Table D.I presents the counterfactual results.

Larger Samples

The main text limits the number of types used in counterfactual calculations to 300 pa-
tient types and 500 donor types. To assess whether the results are sensitive to the specific
sample and number of types, we recalculated the counterfactuals involving scoring mech-
anism by drawing 1000 patient types and 1500 donor types. Panel C of Table D.I presents
the results.
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FIGURE D.1.—Offer and acceptance rate by CPRA. Note: Sample includes all offers made to NYRT pa-
tients between 2010 and 2013, including offers that did not meet preset donor screening criteria. Positive cross-
matches are counted as acceptances. In each figure, the black-line plots the mean among offers to patients in
each CPRA bin, and the shaded region represents pointwise 95% confidence intervals.

Unlimited Offers

Our results could be sensitive to the limit on the number of offers, especially if improve-
ments in technology that allow the OPO to make many more offers obviates the need for
finding better mechanisms. Panel D of Table D.I presents results calculated when this
limit is removed.

D.2. Supplementary Evidence

Results analogous to Figure 1 and Table 3 in Agarwal et al. (2018) are presented in
Figures D.1 and Table D.II, respectively.

APPENDIX E: ADDITIONAL THEORETICAL RESULTS

E.1. Existence of Steady State Equilibria

This section proves that a steady state equilibrium exists for sequential offer mecha-
nisms that use a scoring rule. We make the following assumptions.

ASSUMPTION 1: (i) The exogenous arrival rates λ and γx are finite.
(ii) The exogenous departure rate δ(τ;x) is bounded below by δ > 0 and bounded above

by δ̄, uniformly for t ∈ [0�T ) and all x ∈ χ.
(iii) The conditional probability density function f�|t�x�z exists, and is uniformly bounded.
(iv) The conditional moment, E[|�||τ�x� z] = ∫ |�|dF�|τ�x�z where � = �(x�z� τ) + ε, is

uniformly bounded in t, x, z.
(v) The family of functions g(t;x�z� �̄) = F�|t�x�z(�̄) indexed by �̄, x, z is Lipschitz con-

tinuous in t with a common constant.
(vi) The object arrival rate λ is strictly less than the total agent arrival rate

∑
γx.

(vii) The set of scores S = {s(t;x�z) : (t�x� z) ∈ [0�T ] ×χ× ζ} is finite.

Most empirical models will satisfy the continuity and boundedness assumptions above.
The two substantive assumptions are parts (vi) and (vii). Part (vi) assumes that the objects
that need to be assigned are scarce in order to ensure that the queue is unlikely to be
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empty. Part (vii) restricts the mechanisms for which we prove existence. The assumption
is used to ensure that the set of all functions πxz(t) is sufficiently small (more precisely,
compact). Other assumptions that yield this conclusion would also suffice.

Our main result proves existence of a steady state equilibrium.

THEOREM 1: Suppose Assumption 1 is satisfied. Then a steady state equilibrium for a
sequential offer mechanism with a scoring rule exists.

PROOF: The proof proceeds by applying the Brower–Schauder–Tychonoff fixed-point
theorem (Corollary 17.56, Aliprantis and Border (2006)). The proof proceeds in three
parts.

Part 1, Definition of Ω: The equilibrium objects are defined by five types of functions:
1. The conditional choice probabilities, given t and the agent and object characteristics

x and z. We consider these choice probabilities as a function pσ : [0�T ] × χ × ζ →
[0�1].

2. The value function V : χ × [0�T ] → R+. It is convenient to define this function,
although it is somewhat redundant with the choice probabilities above.

3. The offer probabilities π : [0�T ] × χ × ζ → [0�1] where π(t;x�z) = Hz(sxz(t)) ×
P(cij = 1|x�z).

4. The distribution of agent types m : χ× [0�T ] →R+.
5. The queue length N ∈ R.

We denote the tuple of these objects by ω = (pσ�V �π�m�N). We endow each of the
functions in the first four objects with the supremum norm over its domain. The norm
for ω is denoted ‖ω‖ = ‖pσ‖ + ‖V ‖ + ‖π‖ + ‖m‖ + |N|. Therefore, ω is an element of a
Banach space.

We further restrict ω to belong to a subset Ω of this Banach space. Specifically, we
restrict its components as follows:

1. The functions Vx(t) are uniformly bounded by λT supτ�x�z

∫ |�|dF�|τ�x�z and are Lips-
chitz continuous with a common constant (1 + ρ+ δ̄)λ supτ�x�z

∫ |�|dF�|τ�x�z .
Note that the optimal value of Vx(t) satisfies this property. To see this, observe that

d
dt Vx(t)= −λexp(−ρ(τ− t))p(τ|t� x)L(t)+λ

∫ T

t
(−ρ−δx(t))L(τ)dτ where L(τ) =∫

πij(τ)
∫

max{0��ij(τ) − Vi(τ)}dGdF . The result follows since L(τ) is bounded by
supτ�x�z

∫ |�|dF�|τ�x�z .
2. The functions pσ(t;x�z) are uniformly bounded by 1 and Lipschitz continuous with

a common constant K, where

K = (1 + ρ+ δ̄)λ sup
τ�x�z

(∫
|�|dF�|τ�x�z sup

�

f�|τ�x�z(�)
)

+ sup
�̄�x�z�t�t′

∣∣F�|t�x�z(�̄)− F�|t′�x�z(�̄)
∣∣/∣∣t − t ′

∣∣�
Note that Assumption 1 implies that K is finite. That the equilibrium value satisfies
this assumption can be seen from part 1.

3. The functions πx�z(t) such that πx�z(t)= πx�z(t
′) if sxz(t)= sxz(t

′) with range [0�1].
4. The term N ∈ [N�N], where N = (

∑
x γx − λ)/δ̄ and N =

∑
x γx
δ

. These bounds
are obtained by considering the extremal cases in which no agent is assigned and
when every kidney is assigned. Note that N > 0 because Assumption 1 requires that∑

x γx > λ and δ(τ;x) is uniformly bounded above.



EQUILIBRIUM ALLOCATIONS UNDER ALTERNATIVE WAITLIST DESIGNS 17

5. The functions mx(t) are uniformly bounded by supx γx
N

and are Lipschitz continuous
with a common constant supx γx

N
(δ̄+ λ). The steady state value satisfies this require-

ment since Tγx is the maximum mass of agents of type x, and because∣∣ṁx(t)
∣∣ =mx(t)κx(t)≤ mx(t)(δ̄+ λ)�

Part 2, definition of A : Ω → Ω: Denote AV [ω] as the V component of A[ω], where
ω ∈Ω. Likewise, define Aπ , Apσ , Am and AN . This map is defined as follows:

AV [ω](x� t)=
∫ T

t

exp
(−ρ(τ − t)

)
p(τ|t;x)

×
(
λ

∫
π(τ;x�Z)

∫
max

{
0��− V (τ;x)}dF�|τ�x�Z dFZ

)
dτ�

Apσ [ω](x� z� t)=
∫

1
{
�≥ AV [ω](x� t)}dF�|x�z�t�

Am[ω](x� t)= γx exp
(

−
∫ t

0
δ(τ;x)+ λ

∫
π(τ;x�Z)pσ(τ;x�z)dFZ dτ

)
/N�

AN[ω] = max
{
N�min

{
∑
x

γx

∑
x

∫ T

0
mx(t)κx(t)dt

�N

}}
�

Aπ[ω](x� z� t)= Hz

(
sxz(t);Apσ [ω]�Am[ω]�AN[ω]) × P(cij = 1|x�z)�

where

p(τ|t;x)= exp
(

−
∫ τ

t

δ
(
τ′;x)

dτ′
)

is the probability that an agent of type x departs the list prior to τ conditional on being
on the list at t. To ensure that the image is a subset of Ω, we need to show that A[ω] ∈
Ωfor all ω ∈ Ω. We do this for each of the components separately:

1. AV : Since exp(−ρ(τ − t)), p(τ|t;x) and π(τ;x�Z) are in [0�1], and∫
max

{
0��− V (τ;x)}dF�|τ�x�Z ≤

∫
|�|dF�|τ�x�Z�

we have that AV [ω] is uniformly bounded by λT supτ�x�z

∫ |�|dF�|τ�x�z . Further, for
any t� t ′ ∈ [0�T ], with t < t ′, we have that∣∣AV [ω](t)−AV [ω](t ′)∣∣

=
∣∣∣∣
∫ t′

t

exp
(−ρ(τ − t)

)
p(τ|t;x)

×
(
λ

∫
π(τ;x�Z)

∫
max

{
0��− V (τ;x)}dF�|τ�x�Z dFZ

)
dτ

∣∣∣∣
≤ λ

∣∣t ′ − t
∣∣(1 + ρ+ δ̄) sup

τ�x�z

∫
|�|dF�|τ�x�z�



18 AGARWAL ET AL.

Therefore, AV [ω] satisfies the necessary restrictions.
2. Apσ : Note that Apσ [ω] is uniformly bounded by 1. Moreover, for any x and z, and

t� t ′ ∈ [0�T ], we have that
∣∣Apσ [ω](t�x� z)−Apσ [ω](t ′�x� z)∣∣

=
∣∣∣∣
∫

1
{
�≥AV [ω](x� t)}dF�|x�z�t −

∫
1
{
�≥ AV [ω](x� t ′)}dF�|x�z�t′

∣∣∣∣
=

∣∣∣∣
∫ (

1
{
�≥AV [ω](x� t)} − 1

{
�≥ AV [ω](x� t ′)})dF�|x�z�t

∣∣∣∣
+

∣∣∣∣
∫

1
{
�≥AV [ω](x� t ′)}d(F�|x�z�t − F�|x�z�t′)

∣∣∣∣
≤

∣∣∣∣
∫ max{AV [ω](x�t)�AV [ω](x�t′)}

min{AV [ω](x�t)�AV [ω](x�t′)}
1 dF�|x�z�t

∣∣∣∣
+ ∣∣F�|x�z�t′

(
AV [ω](x� t ′)) − F�|x�z�t

(
AV [ω](x� t ′))∣∣

≤ λ(1 + ρ+ δ̄)
∣∣t ′ − t

∣∣ sup
τ�x�z

(∫
|�|dF�|τ�x�z sup

�

f�|τ�x�z(�)
)

+ sup
�̄�x�z

(∣∣F�|t�x�z(�̄)− F�|t′�x�z(�̄)
∣∣/∣∣t − t ′

∣∣)∣∣t − t ′
∣∣

≤
[
λ(1 + ρ+ δ̄) sup

τ�x�z

(∫
|�|dF�|τ�x�z sup

�

f�|τ�x�z(�)
)

+ sup
�̄�x�z�t�t′

(∣∣F�|t�x�z(�̄)− F�|t′�x�z(�̄)
∣∣/∣∣t − t ′

∣∣)]∣∣t − t ′
∣∣�

Therefore, Apσ [ω] satisfies the necessary restrictions.
3. Aπ : Observe that Aπ[ω](x� z� t) ∈ [0�1] and Aπ[ω](x� z� t) = Aπ[ω](x� z� t ′) if

sxz(t)= sxz(t
′) by construction.

4. Am: Since exp(− ∫ t

0 δ(τ;x) + λ
∫
π(τ;x�Z)pσ(τ;x�z)dF�|τ�x�Z dτ) ≤ 1 and N > 0,

we have that Am[ω] is uniformly bounded by supx γx
N

. Further, the derivative at t of
Am[ω](t) is equal to

(
−δ(t;x)− λ

∫
π(t;x�Z)pσ(t;x�z)dFZ

)
Am[ω](t)�

This derivative is bounded in absolute value by (δ̄+ λ) supx γx
N

.

5. AN : By construction, AN[ω] belongs to [N�N], satisfying the necessary restric-
tions.

Part 3, existence of equilibria: It is straightforward to verify that Ω is convex. Lemma 1
implies that the components ΩV , Ωm, and Ωpσ are compact sets. Lemma 2 shows that Ωπ

is compact. Assumption 1(i), (ii), and (vi) imply that N > 0 and N is finite, implying that
ΩN is compact. Therefore, Ω is compact. Lemma 3 shows that A is a continuous map.
Therefore, the Brouwer–Schauder–Tychonoff theorem (Corollary 17.56, Aliprantis and
Border (2006)) implies that there exists ω∗ ∈ Ω such that A[ω∗] = ω∗.
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To complete the proof, we show that any fixed point ω∗ = (p∗
σ�V

∗�π∗�m∗�N∗) corre-
sponds to a steady state equilibrium. Observe that for each x,

V ∗(t;x) =
∫ T

t

exp
(−ρ(τ − t)

)
p(τ|t;x)

×
(
λ

∫
π∗(τ;x�Z)

∫
max

{
0��− V ∗(τ;x)}dF�|τ�x�Z dFZ

)
dτ�

Therefore, V ∗(t;x) is the value of declining an offer and following the optimal strategy
given the offer rate π∗. Therefore,

p∗
σ(x� z� t)= Apσ

[
ω∗](x� z� t) =

∫
1
{
�≥ V ∗(t;x)}dF�|x�z�t �

For each (x� z� t), F−1
�|x�z�t(p

∗
σ(x� z� t)) = V ∗(t;x). Therefore, σ∗(�� t) = 1{� ≥

F−1
�|x�z�t(p

∗
σ(x� z� t))} is an optimal strategy, satisfying requirement 1 in Definition 1.

By construction, π∗(x� z� t)= Aπ[ω∗](x� z� t)=Hz(sxz(t);p∗
σ�m

∗�N∗)×P(cij = 1|x�z)
satisfies requirement 2 of Definition 1 because p∗

σ equals the acceptance probability of a
type z object by an agent of type x at time t.

Finally, m∗ = Am[ω∗] and N∗ = AN[ω∗] together satisfy requirement 3 in Definition 1.
The restriction of AN[ω∗] to [N�N] cannot strictly bind because N and N denote the
smallest and largest possible queue lengths given the exogenous arrival and departure
rates. Q.E.D.

E.2. Lemmata

LEMMA 1: Suppose X ⊂ C([a�b]) is the set of all functions on the bounded interval [a�b]
that are uniformly bounded by K1 and have a common Lipschitz constant K2. Then X is
compact.

PROOF: Note that the set of functions X is uniformly equicontinuous. By the Arzela–
Ascoli theorem, any sequence of functions xn ∈ X has a uniformly convergent subse-
quence xnk . Denote the limit of this sequence by x∗, i.e. for each t, x∗(t)= limk→∞ xnk(t).
Therefore, supt |x∗(t)| ≤ limk→∞ supt |xnk(t)| ≤ K1. Similarly, |x∗(t) − x∗(t ′)| =
limk→∞ |xnk(t) − xnk(t

′)| ≤ K2|t − t ′|. Hence, x∗ ∈ X . Consequently, we have that X is
sequentially compact, which is equivalent to X being compact. Q.E.D.

LEMMA 2: Assumption 1(vii) implies that the set Ωπ consisting of functions π : [0�T ] ×
χ×ζ → [0�1] endowed with the supremum norm such that πxz(t)= πxz(t

′) if sxz(t)= sxz(t
′)

is compact.

PROOF: Assumption 1(vii) and finiteness of χ and ζ imply that the set of scores sxz(t)
over all χ, ζ, and t ∈ [0�T ] is finite. Therefore, π is an element of a finite dimensional
Euclidean space. Further, Ωπ is closed and bounded by definition. By the Heine–Borel
theorem, Ωπ is compact. Q.E.D.

LEMMA 3: Suppose Assumption 1 is satisfied. Then the map A :Ω →Ω is continuous.
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PROOF: We do this for each component of A separately.
AV : Let Ω0 be an arbitrary subset of Ω. Consider ω ∈ Ω̄0, where Ω̄0 is the closure of Ω0.

Since ω ∈ Ω̄0, there exists a sequence ωn ∈ Ω0 such that ‖ωn − ω‖ = εn → 0. Denote
Ṽn =AV [ωn] and drop x from the notation as it belongs to a finite set. Now, consider

∣∣Ṽn(t)− Ṽ (t)
∣∣

=
∣∣∣∣
∫ T

t

exp
(−ρ(τ − t)

)
p(τ|t)λ

(∫
πn(τ;Z)

∫
max

{
0��− Vn(τ)

}
dF�|τ�Z dFZ

)
dτ

−
∫ T

t

exp
(−ρ(τ − t)

)
p(τ|t)λ

(∫
π(τ;Z)

∫
max

{
0��− V (τ)

}
dF�|τ�Z dFZ

)
dτ

∣∣∣∣
≤ Tλ sup

t�z

∣∣∣∣πn(t;z)
∫

max
{
0��− Vn(t)

}
dF�|t�z −π(t;z)

∫
max

{
0��− V (t)

}
dF�|t�z

∣∣∣∣
≤ Tλ sup

t�z

∣∣∣∣πn(t;z)
∫ ∣∣∣∣max

{
0��− Vn(t)

} − max
{
0��− V (t)

}∣∣∣dF�|t�z
∣∣∣

+ Tλ sup
t�z

∣∣∣∣∣∣πn(t;z)−π(τ;z)
∣∣∣∣
∫

max
{
0��− V (t)

}
dF�|t�z

∣∣∣∣
≤ Tλ sup

t�z

∣∣Vn(t)− V (t)
∣∣ + Tλ sup

t�z

∫
|�|dF�|t�z sup

t�z

∣∣πn(t;z)−π(t;z)∣∣

≤ Tλ

(
1 + sup

t�z

∫
|�|dF�|t�z

)
εn�

Since εn → 0, Assumption 1(i) and (iv) imply that the right-hand side converges to zero.
Apσ : Continuity follows by noting that AV is continuous in the sup-norm and F�|t�x�z

is absolutely continuous with respect to Lebesgue measure for each t, x, z (Assump-
tion 1(iii)).
Am: It is sufficient to fix x because χ is a finite set. Lemma 4 implies that the

map defined by Aκ[ω](t)= δ(t;x)+λ
∫
π(t;x�Z)pσ(t;x)dFZ is continuous. Moreover,

supt Aκ[ω](t) is bounded above (Assumption 1(i)). Therefore, Aκ∗ [ω](t)= − ∫ t

0 δ(τ;x)+
λ

∫
π(τ;x�Z)pσ(t;x)dFZ dτ defines a continuous map from Ω to C([0�T ]). Since a com-

position of continuous functions is continuous, and g(a) = γx exp(a)/N is continuous for
all N > 0, Am is continuous.
AN : First, we show that AN[ωn] is continuous. Lemma 4 implies that the map

Aκ[ω](t) = δ(t;x) + λ
∫
π(t;x�Z)pσn(t;x�Z)dFZ is continuous for each x. A simi-

lar argument implies that Aκ̄[ω] = ∑
x

∫ T

0 mx(t)κx(t)dt is continuous because mx(t) is
bounded by γx. Further, Aκ̄[ω] ∈ [δ�∞] since δ(t;x) is uniformly bounded below by δ
(Assumption 1(ii)). Since a composition of real-valued continuous functions is continu-
ous, and the reciprocal function is continuous for all arguments other than 0, AN is a
continuous map.
Aπ : Denote Ã[ω] = (Apσ [ω]�Am[ω]�AN[ω]). We have shown that Ã is continuous

and compact. Note that for any sequence ωn,

sup
x�z�t

∣∣Aπ[ωn](x� z� t)
∣∣ ≤ sup

x�z�t

∣∣Hz

(
sxz(t); Ã[ωn]

)∣∣ ≤ sup
z�s

∣∣Hz

(
s; Ã[ωn]

)∣∣�
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where the first inequality follows from the fact that P(cij = 1|x�z) ∈ [0�1] and the second
inequality follows from set inclusion. Therefore, Lemma 5 and continuity of Ã imply that
for each z, sups |Hz(s; Ã[ωn])−Hz(s; Ã[ω])| → 0 if ωn converges to ω. Since z belongs to
a finite set, we therefore have that supx�z�t |Aπ[ωn](x� z� t)−Aπ[ω](x� z� t)| → 0. Hence,
Aπ is a continuous map. Q.E.D.

LEMMA 4: Fix x. The map Aκ :Ω →L∞([0�T ]), where Aκ[ω](t)= δ(t;x)+λ
∫
π(t;x�

Z)pσ(τ;x�Z)dFZ is continuous if λ is finite, and π and pσ are uniformly bounded by 1.

PROOF: Let Ω0 be an arbitrary subset of Ω. Consider ω ∈ Ω̄0. Since ω ∈ Ω̄0, there
exists a sequence ωn ∈ Ω0 such that ‖ωn − ω‖ = εn → 0. Now, consider Aκ[ωn](t) =
λ

∫
πn(t;x�Z)pn�σ(τ;x�Z)dF�|τ�x�Z .

∥∥Aκ[ωn] −Aκ[ω]∥∥ = λ

∥∥∥∥
∫

πn(t;x�Z)pn�σ(t;x�Z)dFZ −
∫

π(t;x�Z)pσ(t;x�Z)dFZ

∥∥∥∥
≤ λ sup

z�t

∣∣πn(t;x�z)pn�σ(t;x�z)−π(t;x�z)pσ(t;x�z)
∣∣

≤ λ sup
z�t

∣∣πn(t;x�z)
(
pn�σ(t;x�z)−pσ(t;x�z)

)∣∣
+ λ sup

z�t

∣∣(πn(t;x�z)−π(t;x�z))pσ(t;x�z)
∣∣

≤ λ sup
z�t

∣∣pn�σ(t;x�z)−pσ(t;x�z)
∣∣ + λ sup

z�t

∣∣πn(t;x�z)−π(t;x�z)∣∣
≤ 2λεn�

Therefore, Aκ[Ω̄0] ⊂ Aκ[Ω0], implying that Aκ is continuous (Theorem 2.27, Aliprantis
and Border (2006)). Q.E.D.

LEMMA 5: Fix z. The map AH : Ω → L∞(R) defined by AH[ω](s) = Hz(s;pσ�m�N) is
continuous.

PROOF: We omit z from the notation for simplicity as it is fixed. Equation (C.5) derives
the following expression for AH :

AH[ω](t�x� z)=
∫ 1

0

∑
q′<q

e−Np(s�α)
(
Np(s�α)

)q′

q′! dα�

where p(s�α), pH(s), and pE(s) are defined in Section C.1.2. We have P(�(t;x�z)+ ε >
Vx(t)) with the acceptance probabilities pσ(t;x�z). Recall that mH(s) = ∑

t�x m(t;x)×
1{s(t;x) > s} and mE(s) = ∑

t�x m(t;x)1{s(t;x) = s}. We prove continuity of AH by first
proving continuity of the components mH , mE , pH , and pE .

Continuity of mH and mE : Consider a sequence mn that converges in sup norm on x, t
to m:

∣∣mn�H(s)−mH(s)
∣∣ ≤

∑
x

∫ T

0

∣∣mn(t;x)−m(t;x)∣∣1{
s(t;x) > s

}
dt

≤ |χ|T sup
x�t

∣∣mn(t;x)−m(t;x)∣∣�
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Because this bound is independent of s, sups |mn�H(s)−mH(s)| converges to zero. There-
fore, AmH

: Ω → L∞(R) defined by AmH
[ω](s) = mH(s) is a continuous map because

AmH
(Ω̄0) = AmH

(Ω0) for any Ω0 ⊆ Ω (Theorem 2.27, Aliprantis and Border (2006)). An
identical argument shows that AmE

: Ω → L∞(R) defined by AmE
[ω](s) = mE(s) is con-

tinuous.
Continuity of pH and pE : We show the argument only for pH because the argu-

ment for pE is identical. Consider a sequence of ωn that converges to ω, and the map
ApH

: Ω → L∞(R) defined by ApH
[ω](s) = p0 + (1 − p0)

1
mH(s)

∑
t�x m(t;x)1{s(t;x) >

s}pσ(t;x). Since p0 is fixed, we need to show continuity of the map from ω to
1

mH(s)

∑
t�x m(t;x)1{s(t;x) > s}pσ(t;x). For each s,
∣∣∣∣ 1
mn�H(s)

∑
t�x

mn(t;x)1
{
s(t;x) > s

}
pn�σ(t;x�z)

− 1
mH(s)

∑
t�x

m(t;x)1{
s(t;x) > s

}
pσ(t;x)

∣∣∣∣

≤
∣∣∣∣ 1
mn�H(s)

∑
t�x

mn(t;x)1
{
s(t;x) > s

}
pn�σ(t;x)

− 1
mH(s)

∑
t�x

m(t;x)1{
s(t;x) > s

}
pn�σ(t;x)

∣∣∣∣

+
∣∣∣∣ 1
mH(s)

∑
t�x

m(t;x)1{
s(t;x) > s

}
pn�σ(t;x)

− 1
mH(s)

∑
t�x

m(t;x)1{
s(t;x) > s

}
pσ(t;x)

∣∣∣∣

≤
∣∣∣∣ 1
mn�H(s)

∑
t�x

mn(t;x)1
{
s(t;x) > s

}

− 1
mH(s)

∑
t�x

m(t;x)1{
s(t;x) > s

}∣∣∣∣
∣∣pn�σ(t;x)

∣∣

+
∣∣∣∣ 1
mH(s)

∑
t�x

m(t;x)1{
s(t;x) > s

}∣∣∣∣∣∣pn�σ(t;x)−pσ(t;x)
∣∣

≤
∣∣∣∣ 1
mn�H(s)

∑
t�x

mn(t;x)1
{
s(t;x) > s

} − 1
mH(s)

∑
t�x

m(t;x)1{
s(t;x) > s

}∣∣∣∣
+ ∣∣pn�σ(t;x)−pσ(t;x)

∣∣
= ∣∣pn�σ(t;x)−pσ(t;x)

∣∣�
The first inequality follows from the triangle inequality. The second follows from the
fact that |pn�σ(t;x) − pσ(t;x)| is bounded by 1 and mH(s) = ∑

t�x m(t;x)1{s(t;x) > s}
by definition. The third follows from mn�H(s) = ∑

t�x mn(t;x)1{s(t;x) > s} and mH(s) =∑
t�x m(t;x)1{s(t;x) > s} for all s. If ωn converges to ω, then supt�x |pn�σ(t;x)−pσ(t;x)|
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conveges to zero. Therefore, sups |ApH
[ωn](s) − ApH

[ω](s)| converges to zero. Hence,
ApH

is continuous because ApH
(Ω̄0)= ApH

(Ω0) for any Ω0 ⊆Ω (Theorem 2.27, Alipran-
tis and Border (2006)).

Continuity of p(s�α): The map ApH : Ω → L∞(R × [0�1]) defined by Ap[ω](s�α) =
mH(s)pH(s) + mE(s)αpE(s) is continuous because α is bounded by 1, the maps from ω
to mH(s), pH(s), mE(s), pE(s) are continuous.

Continuity of AH : The map from Ω to
∑

q′<q
e−Np(s�α)(Np(s�α))q

′

q′ ! is continuous because
the components are continuous. This term is bounded by 1. Therefore,∫ 1

0

∑
q′<q

e−Np(s�α)(Np(s�α))q
′

q′ ! dα defines a continous map from Ω to the L∞([0�T ]) for
each x. Q.E.D.
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