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APPENDIX A: CHARACTERIZING THE VC DIMENSION

AS A PRELIMINARY TO OUR TECHNICAL ARGUMENT, we start by reviewing some prac-
tical characterizations of the VC dimension in terms of covering numbers in Ham-
ming distance. For any discrete set of points {X1� � � � �Xm} and any ε > 0, define the ε-
Hamming covering number NH(ε�Π� {X1� � � � �Xm}) as the smallest number of policies
π : {X1� � � � �Xm} → {0�1} (not necessarily contained in Π) required to ε-cover Π under
Hamming distance,

H(π1�π2)= 1
m

m∑
j=1

1
({
π1(Xj) �= π2(Xj)

})
� (48)

Then, define the ε-Hamming entropy of Π as log(NH(ε�Π)), where

NH(ε�Π) = sup
{
NH

(
ε�Π� {X1� � � � �Xm}) :X1� � � � �Xm ∈X ;m ≥ 1

}
(49)

is the number of functions needed to ε-cover Π under Hamming distance for any discrete
set of points. We note that this notion of entropy is purely geometric, and does not depend
on the distribution used to generate the Xi.

As argued in Pakes and Pollard (1989), a class Π has a finite VC dimension if and only
if there is a constant κ for which

log
(
NH(ε�Πn)

)≤ κ log
(
ε−1

)
for all 0 < ε<

1
2
� (50)

Moreover, there are simple quantitative bounds for Hamming entropy in terms of the VC
dimension: If Π is a VC class of dimension VC(Π), then (Haussler (1995))

log
(
NH(ε�Π)

) ≤ VC(Π)
(
log

(
ε−1

)+ log(2)+ 1
)+ log

(
VC(Π)+ 1

)+ 1

≤ 5 VC(Π) log
(
ε−1

)
for all 0 < ε<

1
2

(51)

whenever VC(Π) ≥ 2. Conversely, recall that if Π has VC-dimension d it can shatter a
set of d points, and so we must have NH(1/d�Π) ≥ 2d . Thus, the VC dimension d of any
class whose Hamming entropy satisfies (50) must be bounded via the relationship

d log(2)≤ κ log(d)� (52)
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2 S. ATHEY AND S. WAGER

Whenever we invoke Assumption 3 in our proof, we actually work in terms of the covering
number bound (51) and assume that VC(Π) ≥ 2 (the case with VC(π)= 1, corresponding
to nonpersonalized decision rules, is trivial).

APPENDIX B: ADDITIONAL SIMULATION EXPERIMENTS

We complement our experiments from Section 5 with another simulation example
where, now, the treatment dose Wi ∈ R is continuous. As discussed in Section 2.1, we
consider policies that infinitesimally nudge the treatment dose Wi for select samples; the
value V (π) of a policy π is then

π :X → {0�1}� V (π)= E

[
π(Xi)

([
d

dν
Yi(Wi + ν)

]
ν=0

−C

)]
� (53)

where C is a cost of treatment. We assume Wi to be exogenous. As always, we learn our
policy π̂ via π̂ = argmax{ 1

n

∑n

i=1(2π(Xi)−1)(̂	i −C) : π ∈ Π}, and the 	̂i are appropriate
cross-fit doubly robust scores (15),

	̂i =
[

d

dw
m̂(−i)(Xi�w)

]
w=Wi

− d

dw

[
log

(
f̂ (−i)(w|Xi)

)]
w=Wi

(
Yi − m̂(−i)(Xi�Wi)

)
� (54)

where f (·|x) denotes the conditional density of Wi given Xi = x, and m(x�w) = E[Yi|Xi =
x�Wi = w].

Unlike in our previous examples, the nonparametric regression problems underlying
(54) have not received much attention in the statistical learning literature. First, (54) re-
quires estimating derivatives of conditional response-functions; but many popular ma-
chine learning methods, such as random forests or boosted trees, do not have differen-
tiable predictive surfaces. Second, the problem of estimating a conditional density func-
tion f (·|x) presents its own numerical challenges.

Here, we approach the problem as follows. In order to make sure that the derivatives
of m̂(·) and f̂ (·) are good estimates of m(·) and f (·), respectively, we use penalized series
estimators throughout. We fit m̂(Xi�Wi) by penalized regression on third-order Hermite
polynomials in (Xi�Wi). Meanwhile, we fit the conditional density function f (·|Xi) by
adapting Lindsey’s method, a technique for estimating distribution functions using soft-
ware for generalized linear modeling (Efron and Tibshirani (1996), Lindsey (1974)). In
the case without covariates, Lindsey’s method involves first discretizing the support of Wi

into a union of nonoverlapping equal-length intervals and, as with a histogram, count-
ing the number of samples Wi that fall within each interval. Then these histogram counts
are fit via Poisson regression using a series expansion of Wi. As shown in Efron (2011),
the log-derivative of the estimated density function is well behaved as an estimate of the
log-derivative of the true density. Now, in the case with covariates, we again discretize
the support of Wi into K nonoverlapping intervals. However, instead of making a his-
togram, we now duplicate each sample K times: For each sample i = 1� � � � � n and interval
k = 1� � � � �K we create a datapoint (Xi�wk�Lik), where wk is the mid-point of the kth
interval and Lik is an indicator for whether the Wi is in the kth interval. Finally, we fit this
model by penalized logistic regression on full interactions between third-order Hermite
polynomials in Xi and an appropriate basis expansion b(w) in w discussed further below.
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In all cases, we fit penalized regression via glmnet (Friedman, Hastie, and Tibshirani
(2010)), with the amount of penalization tuned via cross-validation.

We consider the following simulation designs, loosely motivated by a probit choice
model in a pricing application (i.e., where Wi acts as a price and Yi is a choice to pur-
chase). In all cases, we generate independent samples as below, with p = 6:

Xi ∼N (0�Ip×p)� Ui = 5/
(
1 + 3e−(Xi1+Xi2)

)− 0�5�

Wi|Xi ∼Lw(Xi)� Yi|Ui�Wi ∼ Bernoulli
(

(Wi −Ui)

)
�

(55)

where 
(·) is the standard Gaussian cumulative distribution function. We consider two
choices for the conditional distribution Lw of Wi conditionally on Xi:

Gaussian: Wi = 3/
(
1 + 3e−(Xi1+Xi3)

)+ εi� εi|Xi ∼N (0�1)� and (56)

Non-Gaussian: Wi = 3/
(
1 + 3e−(Xi1+Xi3+ηi)

)+ εi� (εi�ηi)|Xi ∼N (0�I2×2)� (57)

In principle, the Gaussian case appears substantially easier than the non-Gaussian case,
because the logistic regression problem underlying Lindsey’s method as above is well
specified with a quadratic expansion in w, that is, b(w) = (1ww2). In the non-Gaussian
case, no similar simplifications apply. In our experiments, we in fact set b(w) to be the
quadratic expansion in the Gaussian case; in the non-Gaussian case, we set b(w) to a
fifth-order natural spline basis.

Before evaluating the accuracy of policy learning in this setting, we present some
performance diagnostics on the associated doubly robust average derivative estimator
θ̂DR =∑n

i=1 	̂i/n as, despite attracting a fair amount of interest in the literature on asymp-
totic estimation (including Chernozhukov, Escanciano, Ichimura, Newey, and Robins
(2016), Chernozhukov, Newey, and Robins (2018), Hirshberg and Wager (2018)), we are
not aware of existing Monte Carlo evaluations of this estimator in the literature.1 We
report bias and root-mean squared error for the doubly robust estimator θ̂DR, the pure
regression estimator θ̂reg = ∑n

i=1 d/dwm̂(−i)(Xi�Wi)/n, and the pure weighting estimator
θ̂weight = ∑n

i=1 d/dw log f̂ (−i)(Xi�Wi)Yi/n. We also report mean-squared standardized er-
ror S = E[(θ̂DR − θ)2/σ̂2]1/2 with σ̂2 = ∑n

i=1 	̂i/(n(n− 1)) which, under the conditions of
Assumption 2, should converge as limn→∞ S = 1.

Table III shows results for both average derivative estimation as described above, and
for policy learning with doubly robust scores. For policy learning, we use a cost of treat-
ment parameter C = 0�2. First, encouragingly, we see that the doubly robust estimator
of the average derivative, θ̂DR, converges with sample size n, and that the value of our
learned policies improves with n. Furthermore, we see that the doubly robust estimator
outperforms the pure regression adjustment and weighting estimators here. However,
even the doubly-robust estimator is still bias-dominated here, and the root-mean squared
standardized error S is much bigger than 1 in all considered settings—especially the chal-
lenging ones with a non-Gaussian distribution of Wi|Xi. This suggests that the simulation
problem considered here is a difficult nonparametric problem where semiparametric ef-
ficiency asymptotics kick in slowly at best. It is plausible that a more carefully tailored

1The closest experiments we are aware from are from Graham and Pinto (2018) and Hirshberg and Wager
(2018), who report results results for doubly robust estimation in a closely related (but more restricted) model
with a conditionally linear specification E[Yi|Xi = x�Wi =w] =m(x)+wτ(x).
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TABLE III

SIMULATION RESULTS IN THE SETTING (55), WITH CONDITIONAL DISTRIBUTION OF Wi|Xi AS IN (56) (SETUP
1) AND (57) (SETUP 2). WE REPORT BIAS AND ROOT-MEAN SQUARED ERROR FOR THE AVERAGE DERIVATE

θ BASED ON THE REGRESSION ESTIMATOR θ̂reg , THE WEIGHTED ESTIMATOR θ̂weighted , AND THE DOUBLY

ROBUST ESTIMATOR θ̂DR. THE ROOT MEAN-SQUARED STANDARDIZED ERROR S CAPTURES THE
ASYMPTOTIC BEHAVIOR OF STANDARD GAUSSIAN CONFIDENCE INTERVALS FOR θ BASED ON θ̂DR. FINALLY,

THE LAST COLUMN REPORTS POLICY VALUE OBTAINED BY LEARNING WITH DOUBLY ROBUST SCORES
OVER THE CLASS Π OF DEPTH-2 TREES

Regression Weighted Doubly Robust

n Bias RMSE Bias RMSE Bias RMSE S Policy Value

Setup 1 600 −0�056 0.058 −0�132 0.133 −0�035 0.037 4.59 0.014
1800 −0�035 0.036 −0�095 0.096 −0�017 0.019 2.97 0.024
5400 −0�022 0.022 −0�081 0.081 −0�010 0.010 2.60 0.028

16�200 −0�012 0.013 −0�073 0.073 −0�006 0.006 2.54 0.029
Setup 2 600 −0�069 0.072 −0�062 0.063 −0�049 0.050 8.01 0.018

1800 −0�040 0.041 −0�052 0.053 −0�026 0.027 6.26 0.033
5400 −0�023 0.024 −0�053 0.054 −0�014 0.014 5.17 0.035

16�200 −0�015 0.015 −0�056 0.056 −0�009 0.009 5.25 0.037

estimator of the weighting function d/dw log f (x�w) following the lines of, for example,
Chernozhukov, Newey, and Robins (2018) or Hirshberg and Wager (2018) could improve
performance here.

APPENDIX C: PROOFS

C.1. Proof of Lemma 2

Our proof of this result follows the outline of the classical chaining argument of Dudley
(1967), whereby we construct a sequence of approximating sets of increasing precision for
Ãn(π) with π ∈ Πλ

n , and then use finite sample concentration inequalities to establish the
behavior of Ãn(π) over this approximation set. The improvements in our results relative
to existing bounds described in the body of the text come from a careful construction
of approximating sets targeted to the problem of doubly robust policy evaluation—for
example, our use of chaining with respect to the random distance measure defined in
(58)—and the use of sharp concentration inequalities.

Given these preliminaries, we start by defining the conditional 2-norm distance between
two policies π1, π2 as

D2
n(π1�π2)=

n∑
i=1

	2
i

(
π1(Xi)−π2(Xi)

)2
/ n∑

i=1

	2
i � (58)

and let NDn(ε�Π
λ
n � {Xi�	i}) be the ε-covering number in this distance. To bound NDn ,

imagine creating another sample {X ′
j}mj=1, with X ′

j contained in the support of {Xi}ni=1,
such that ∣∣∣∣∣∣∣{j ∈ 1� � � � �m :X ′

j =Xi

}∣∣−m	2
i

/ n∑
j=1

	2
j

∣∣∣∣∣≤ 1�
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We immediately see that, for any two policies π1 and π2,

1
m

m∑
j=1

1
({
π1

(
X ′

j

) �= π2

(
X ′

j

)})= D2
n(π1�π2)+O

(
1
m

)
�

Moreover, recall that the Hamming covering number NH as used in (50) does not depend
on sample size, so we can without reservations make m arbitrarily large, and conclude
that

NDn

(
ε�Πn� {Xi�	i}

)≤ NH

(
ε2�Πn

)
� (59)

In other words, we have found that we can bound the Dn-entropy of Πn with respect to
its distribution-independent Hamming entropy, which is controlled via Assumption 3.

Our proof strategy involves a chaining argument with respect to Dn. The lemma below
describes the chaining that we use in our argument; we defer the proof of Lemma 6 to the
end of this section.

LEMMA 6: For any J ≥ 1, there exists a chain of approximators Ψj : Πλ
n → Πλ

n for j =
1� � � � � J, such that the following properties hold for all values of j = 1� � � � � J (we use the
notational shorthand ΨJ+1(π) = π):

• The approximation is accurate, that is, Dn(Ψj(π)�Ψj+1(π)) ≤ 2−j for all π ∈ Πλ
n ;

• There is no branching, such that Ψj(π) =Ψj(Ψj+1(π)) for all π ∈Πλ
n ; and

• The set Πλ
n(j) := {Ψj(π) : π ∈ Πλ

n } of jth order approximating policies has cardinality
at most NDn(2−(j+1)�Πn� {Xi�	i}).

We now move to our main task, that is, bounding the Rademacher complexity
E[Rn(Π

λ
n)]. In order to do so, we use a two-step strategy. We first prove the following

weaker result below, with a bound that depends only on the worst-case variance Sn rather
than the slice-adapted variance Sλ

n ≤ Sn. We then use this bound to sharpen our argument
and prove the desired bound (26).

LEMMA 7: Under the conditions of Lemma 2 and for any λ,

lim sup
n→∞

E
[
Rn

(
Πλ

n

)]/√
Sn VC(Πn)

n
≤ 52� (60)

PROOF: To start, it is helpful to decompose the random variable into several parts using
the chaining established in Lemma 6. In doing so, the following thresholds play a key role:

J0 := 1� J(n) := ⌊
log2(n)(3 − 2β)/8

⌋
� and J+(n) := ⌊

log2(n)(1 −β)
⌋
� (61)

We then apply Lemma 6 to create a chain with J = J+(n) terms and note that

1
n

n∑
i=1

ξi	i

(
2π(Xi)− 1

)
= 1

n

n∑
i=1

ξi	i

(
2ΨJ0(π)(Xi)− 1

)
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+
J(n)∑

j=J0+1

2
n

n∑
i=1

ξi	i

(
Ψj(π)(Xi)−Ψj−1(π)(Xi)

)

+
J+(n)∑

j=J(n)+1

2
n

n∑
i=1

ξi	i

(
Ψj(π)(Xi)−Ψj−1(π)(Xi)

)
+ 2

n

n∑
i=1

ξi	i

(
π(Xi)−ΨJ+(n)(π)(Xi)

)
� (62)

for any π ∈ Πλ
n . Note that, for now, the first threshold J0 = 1 is trivial; however, once we

want to prove the stronger bound (26) instead of (60) we will need a more careful choice
of J0, so we already introduce this flexibility now for notational consistency.

We now proceed to successively control the 1/
√
n-scale behavior of all four terms

above, uniformly over all π ∈ Πλ
n . The result will be that the first term can be charac-

terized directly via Bernstein’s inequality; the second term is controlled to 1/
√
n-scale by

chaining; the third term is shown to stochastically vanish at 1/
√
n-scale by chaining; and

the last term is shown to deterministically vanish at 1/
√
n-scale.

Before embarking on this task, we recall Bernstein’s inequality, which will be frequently
used throughout the proof:

P

[
1√
n

∣∣∣∣∣
n∑

i=1

Ui

∣∣∣∣∣≥ t

]
≤ 2 exp

[
−t2

2

/(
1
n

n∑
i=1

E
[
U2

i

]+ Mt

3
√
n

)]
� (63)

for any independent, mean-zero variables Ui with |Ui| ≤ M , and any constant t > 0. To
make use of this inequality, it is helpful to restrict ourselves to a study of Rn(Π

λ
n) on the

event

Bn =
{
Mn ≤ n

1−2β
16 and V̂ar

[(
2π(Xi)− 1

)
	i

]≥ s2

2
for all π ∈Πλ

n(J0)

}
� (64)

where Mn = maxi=1�����n{|	i|} and 0 < β < 1/2 is the constant from Assumption 3. Recall
that, by assumption, 	i is sub-Gaussian and Var[	i|Xi] > s2, and so a simple calculation
can be used to check that limn→∞ P[Bn] = 1 and, furthermore,

lim
n→∞

√
n
(
E
[
Rn

(
Πλ

n

)]−E
[
Rn

(
Πλ

n

)
1(Bn)

])= 0� (65)

Thus, for the rest of this proof, we will assume that the event Bn has occurred when
convenient.

First Term. Because the chaining created in Lemma 6 has no branching, we see that

sup

{
1
n

n∑
i=1

ξi	i

(
2ΨJ0(π)(Xi)− 1

) : π ∈ Πλ
n

}

= sup

{
1
n

n∑
i=1

ξi	i

(
2π(Xi)− 1

) : π ∈Πλ
n(J0)

}
� (66)
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Then, applying a union bound with Bernstein’s inequality (63) on the event Bn in (64), we
see that, for all large enough n and all t ≤ 2Ŝ0�5

√
log(n)+ log(2|Πλ

n(J0)|)�

1(Bn)P

[√
n sup

{
1
n

n∑
i=1

ξi	i

(
2π(Xi)− 1

) : π ∈Πλ
n(J0)

}
≥ t

∣∣∣{Xi�	i}
]

≤ 2
∣∣Πλ

n(J0)
∣∣exp

[
− t2

2
/
(
Ŝ + tn− 7+2β

16 /3
)]

≤ 2
∣∣Πλ

n(J0)
∣∣exp

[
− t2

4Ŝ

]
� (67)

where Ŝ = ∑n

i=1 	
2
i /n. Now, to bound expectations, we note the following fact: If a non-

negative random variable satisfies X ≤ ck with probability 1−2−k for all k = 1�2� � � �, then
E[X] ≤∑∞

k=1 2−kck. Thus, applying the above bound for the choice

tk = 2Ŝ0�5
√

min
{
k log(2)� log(n)

}+ log
(
2
∣∣Πλ

n(J0)
∣∣)� k= 1�2� � � � �

⌈
log(n)/ log(2)

⌉
we then find that (the last term corresponds to a loose max |	i|/n when all events fail)

1(Bn)E

[√
n sup

{
1
n

n∑
i=1

ξi	i

(
2π(Xi)− 1

) : π ∈Πλ
n(J0)

}∣∣∣{Xi�	i}
]

≤ 2Ŝ0�5

(√
log

∣∣Πλ
n(J0)

∣∣+ ∞∑
k=1

2−k
√
(k+ 1) log(2)

)
+ n− 7+2β

16

≤ 2Ŝ0�5
(√

logNH(1/16�Πn)+ 1�5
)+ n− 7+2β

16

≤ 2Ŝ0�5
(√

5 log(16)VC(Πn)+ 1�5
)+ n− 7+2β

16

≤ 11
√
ŜVC(Πn)+ n− 7+2β

16 � (68)

where for the third line we used Lemma 6 and (59) whereas for the last line we used
Assumption 3 together with (51). Finally, noting that

E[
√
Ŝ] ≤

√
Sn (69)

by concavity of the square-root function, we see that

lim sup
n→∞

E

[
1(Bn)

√
n

Sn VC(Πn)
sup

{
1
n

n∑
i=1

ξi	i

(
2π(Xi)− 1

) : π ∈Πλ
n(J0)

}]
≤ 11� (70)
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Second Term. First, we check that, for any choice of π ∈ Πλ
n , j = 1� � � � � J and t > 0, we

have

P

[∣∣∣∣∣ 1√
n

n∑
i=1

	iξi

(
Ψj(π)(Xi)−Ψj+1(π)(Xi)

)∣∣∣∣∣≥ t2−j
√
Ŝ|{Xi�	i}

]

≤ 2 exp
[−t2

2

(
1 + 1

3
Mnt2j√

nŜ

)−1]
� (71)

where Ŝ = ∑n

i=1 	
2
i /n, Mn = max{|	i| : 1 ≤ i ≤ n}. This can be verified using Bernstein’s

inequality (63), which establishes that, for any choice of t > 0, π ∈ Πλ
n and j = 1�2� � � � � J,

P

[∣∣∣∣∣ 1√
n

n∑
i=1

	iξi

(
Ψj(π)(Xi)−Ψj+1(π)(Xi)

)∣∣∣∣∣≥ t2−j
√
Ŝ|{Xi�	i}

]

≤ 2 exp

[
−t24−jŜ

2

/(
1
n

n∑
i=1

	2
i 1
({
Ψj(π)(Xi) �=Ψj+1(π)(Xi)

})+ Mnt2−j
√
Ŝ

3
√
n

)]

= 2 exp
[−t2

2
4−j Ŝ

/(
D2

n

(
Ψj(π)�Ψj+1(π)

)
Ŝ + Mnt2−j

√
Ŝ

3
√
n

)]
�

Finally recall that, by Lemma 6, D2
n(Ψj(π)�Ψj+1(π)) ≤ 4−j ; thus

4−jŜ/

(
D2

n

(
Ψj(π)�Ψj+1(π)

)
Ŝ + Mnt2−j

√
Ŝ

3
√
n

)
≥
(

1 + 1
3
Mnt2j√

nŜ

)−1

�

and so (71) follows.
Now, or every j ≥ J0 and δ > 1/(2n), define the event

Ej�δ :=
{

sup
π∈Πλ

n

∣∣∣∣∣ 1√
n

n∑
i=1

	iξi

(
Ψj(π)(Xi)−Ψj+1(π)(Xi)

)∣∣∣∣∣≥ 2−jtj�δ
√
Ŝ

}
�

tj�δ := 2

√
7(j + 2)VC(Πn)+ log

(
2j2

δ

)
�

(72)

By (71), we immediately see that

P
[
Ej�δ|{Xi�	i}

]≤ 2
∣∣Πλ

n(j + 1)
∣∣exp

[−t2
j�δ

2

(
1 + 1

3
Mntj�δ2j√

nŜ

)−1]
� (73)

By invoking Assumption 3, Lemma 6 and (59) along with the fact that 5 log(4) < 7, we see
that

log
(∣∣Πλ

n(j + 1)
∣∣) ≤ log

(
NH

(
4−(j+2)�Πn

)) ≤ 7(j + 2)VC(Πn)� (74)
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Moreover, on the event Bn from (64) and recalling Assumption 3 along with the definition
of J(n), we see that

1
3
Mntj�δ2j√

nŜ
≤ 2

3

n
1−2β

16

√
7
(
J(n)+ 2

)
VC(Πn)+ log

(
2nJ(n)2

)
2J(n)√

ns2/2

= exp
[

log(n)
(

1 − 2β
16

+ β

2
+ 3 − 2β

8
− 1

2

)]
· polylog(n)

= n
2β−1

16 · polylog(n)≤ 1

for large enough values of n, simultaneously for all j ≤ J(n) and δ ≥ 1/(2n), because
β < 1/2. Thus, for large enough values of n, the bound (73) simplifies dramatically, and
we get

1(Bn)P
[
Ej�n|{Xi�	i}

]≤ δ

j2 � (75)

Applying this bound simultaneously to j = J0� � � � � J(n)− 1:

1(Bn)P

[
J(n)−1⋃
j=J0

Ej�n

∣∣∣{Xi�	i}
]

≤
J(n)−1∑
j=J0

δ

j2 ≤ 2δ� (76)

Thus, for large enough n, we can directly verify that, with probability at least 1 − 2δ,

√
n1(Bn) sup

π∈Πλ
n

∣∣∣∣∣2
n

n∑
i=1

	iξi

J(n)−1∑
j=J0

(
Ψj+1(π)−Ψj(π)

)
(Xi)

∣∣∣∣∣
≤ 4

√
Ŝ

J(n)−1∑
j=J0

2−j

√
7(j + 2)VC(Πn)+ log

(
2j2

δ

)

≤ 4
√
Ŝ

(√
7 VC(Πn)

J(n)−1∑
j=J0

2−j
√
j + 2 +

J(n)−1∑
j=J0

2−j

√
log

(
2j2

)+ 21−J0

√
log

(
δ−1

))
�

Moreover, we can check by calculus that, for all J0 ≥ 2,

J(n)−1∑
j=J0

2−j
√
j + 2 ≤ 2−J0

∞∑
j=0

2−j

(√
J0 + j + 2

2
√
J0

)
= 2 × 2−J0

√
J0 + 3 × 2−J0�

J(n)−1∑
j=J0

2−j

√
log

(
2j2

)≤ 2−J0

∞∑
j=0

2−j

(√
log

(
2J2

0

)+ 2 log(J0 + j)− 2 log(J0)

2
√

log
(
2J2

0

) )

≤ 2−J0

∞∑
j=0

2−j

(√
log

(
2J2

0

)+ j

J0

√
log

(
2J2

0

))
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= 2 × 2−J0

(√
log

(
2J2

0

)+ 1

J0

√
log

(
2J2

0

))

≤ 4 × 2−J0
√
J0;

moreover, the same final upper bounds can be verified directly for J0 = 1. Thus the above
expression can further be bounded by

· · · ≤ 4
√
Ŝ2−J0

(√
7 VC(Πn)(2

√
J0 + 3)+ 4

√
J0 + 2

√
log

(
δ−1

))
�

Next, we bound expectations as in (68), and apply the above bound separately for the
sequences 2δ= max{2−k�1/n} for k= 1�2� � � � to show that, again for large enough n,

√
nE

[
1(Bn) sup

π∈Πλ
n

∣∣∣∣∣2
n

n∑
i=1

	iξi

J(n)−1∑
j=J0

(
Ψj+1(π)−Ψj(π)

)
(Xi)

∣∣∣∣∣
]

≤ 4 × 2−J0

(√
7 VC(Πn)(2

√
J0 + 3)+ 4

√
J0 + 2

∞∑
k=1

2−k
√
(k+ 1) log(2)

)
E[
√
Ŝ]

≤ 2−J0
√

VC(Πn)(38
√
J0 + 44)E[

√
Ŝ]

≤ 2−J0
√
Sn VC(Πn)(38

√
J0 + 44)� (77)

where we note that the contribution of terms on the residual with-probability-1/n scale as
Mn/n � 1/

√
n on Bn (64), and for the last inequality we also use (69). We thus conclude

that

lim sup
n→∞

√
n

Sn VC(Πn)
E

[
1(Bn) sup

π∈Πλ
n

∣∣∣∣∣1
n

n∑
i=1

	iξi

J(n)−1∑
j=J0

(
Ψj+1(π)−Ψj(π)

)
(Xi)

∣∣∣∣∣
]

≤ 41� (78)

recalling our choice of J0 = 1 from (61).

Third Term. We now verify that terms Ψj(π)(Xi) − Ψj+1(π)(Xi) in (62) with J(n) ≤
j < J+(n) are asymptotically negligible. To do so, we collapse all approximating policies
with J(n) ≤ j < J+(n), and directly compare ΨJ(n)(π) to ΨJ+(n)(π). Because of our “no
branching” construction, we know that ΨJ(n)(π) = ΨJ(n)(ΨJ+(n)(π)) for all policies π ∈ Πλ

n ,
and so

P

[
sup

{∣∣∣∣∣ 1√
n

n∑
i=1

	iξi

(
ΨJ(n)(π)(Xi)−ΨJ+(n)(π)(Xi)

)∣∣∣∣∣ : π ∈ Πλ
n

}
≥ 2 × t2−J(n)

√
Ŝ

]

= P

[
sup

{∣∣∣∣∣ 1√
n

n∑
i=1

	iξi

(
ΨJ(n)(π)(Xi)−π(Xi)

)∣∣∣∣∣ : π ∈ Πλ
n

(
J+(n)

)}≥ 2 × t2−J(n)
√
Ŝ

]

≤ 2
∣∣Πλ

n

(
J+(n)

)∣∣exp
[−t2

2

(
1 + 1

6
Mnt2J(n)√

nŜ

)−1]
�
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where the last inequality follows from Bernstein’s inequality using exactly the same argu-
ments as those used to establish (71). By Lemma 6, Assumption 3 and (51), we get

log
∣∣Πλ

n

(
J+(n)

)∣∣≤ logNDn

(
2−(J+(n)+1)�Πn� {Xi�	i}

)
≤ logNH

(
4−(J+(n)+1)�Πn

)
≤ 5 log(4)

(
J+(n)+ 1

)
nβ� (79)

The next step is to plug t2 = 4J(n)n(2β−1)/4/Ŝ into the previous bound. Given this choice
along with Assumption 3 and (61) we see that, on event Bn from (64),

t2J(n)/
√
n ≥ ×22J(n)n

2β−5
8 n

−1+2β
16 ≥ n

1−2β
16 /4

which grows with n, and so the bound simplifies on event Bn and for large enough n:

P
[
1(Bn)�mid

(
Πλ

n

)
≥ 2n

2β−1
8
]≤ 1(Bn)2

∣∣Πλ
n

(
J+(n)

)∣∣exp
[ −(3/2)t

√
nŜ

2J(n) max{Mn�1}
]

≤ 2 exp
[√

n

(
5 log(4)

(
J+(n)+ 1

)
nβ−1/2 − 3

2
n

6β−3
16

)]
� where

�mid

(
Πλ

n

)= sup

{∣∣∣∣∣ 1√
n

n∑
i=1

	iξi

(
ΨJ(n)(π)(Xi)−ΨJ+(n)(Xi)

)∣∣∣∣∣ : π ∈ Πλ
n

}
�

Thus, noting that β< 1/2, we see that

lim sup
n→∞

n
5+6β

16 log
(
P
[
1(Bn)�mid

(
Πλ

n

)]≥ 2n
2β−1

8
) ≤ −3

2
�

Meanwhile, we also know that 1(Bn)�mid(Π
λ
n)/

√
n ≤ n(1−2β)/16, and so we conclude that

lim
n→∞

E

[
sup

{∣∣∣∣∣ 1√
n

n∑
i=1

	iξi

(
ΨJ(n)(π)(Xi)−ΨJ+(n)(Xi)

)∣∣∣∣∣ : π ∈ Πλ
n

}]
= 0�

meaning that the third group of terms in the chaining (62) in fact do not contribute to the
first-order behavior of the Rademacher complexity.

Fourth Term. Finally, the last term in (62) can be shown to vanish at 1/
√
n-scale de-

terminisitically. By Cauchy–Schwarz,∣∣∣∣∣1
n

n∑
i=1

	iξi

(
π(Xi)−ΨJ+(n)(π)(Xi)

)∣∣∣∣∣≤
√√√√1

n

n∑
i=1

	2
i

(
π(Xi)−ΨJ+(n)(π)(Xi)

)2

=Dn

(
π�ΨJ+(n)(π)

)√
Ŝ

≤ 2−J+(n)
√
Ŝ�
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Furthermore, recalling the definition of J+(n) from (61) and on the event where Mn is
controlled as in (64),

lim
n→∞

√
n2−J+(n)

√
Ŝ ≤ 2

√
nnβ−1n

1−2β
16 = n

14β−7
16 = 0�

because β< 1/2 by Assumption 3.

Wrapping up Lemma 7. Combining (70) with (78) with our above results showing that
the third and fourth terms in (62) are asymptotically negligible, we recover (60). Q.E.D.

We now turn to proving Lemma 2 itself, and specifically the bound (26). In doing so,
we follow the proof of Lemma 7 closely, but with slightly stronger concentration bounds
that are unlocked by the result we already have in Lemma 7. We also replace the choice
J0 = 1 in (61) with

J0 := 9 + ⌊
log4

(
Sn/S

λ
n

)⌋
� (80)

In the resulting new decomposition (62), we note that the third and fourth terms are still
vanishing at the 1/

√
n-scale, so we do not need to revisit those. Thus, our only task is to

sharpen our bounds on the first and second terms.
The main additional work we need to do is in bounding the first term. Starting from

(66) we note that, because the ξi are all mean-zero,

E

[
sup

{
1
n

n∑
i=1

ξi	i

(
2π(Xi)− 1

) : π ∈Πλ
n(J0)

}]

= E

[
sup

{
1
n

n∑
i=1

ξi

(
	i

(
2π(Xi)− 1

)−A∗
n

) : π ∈ Πλ
n(J0)

}]
� (81)

where A∗
n = sup{An(π) : π ∈ Πλ

n }. Then, applying Bernstein’s inequality as in (67), we get
that for all large enough n and all t ≤ 2Ŝ0�5

max

√
log(n)+ log(2|Πλ

n(J0)|),

1(Bn)P

[√
n sup

{
1
n

n∑
i=1

ξi	i

(
2π(Xi)− 1

) : π ∈Πλ
n(J0)

}
≥ t

∣∣∣{Xi�	i}
]

≤ 2
∣∣Πλ

n(J0)
∣∣exp

[
− t2

4Ŝmax

]
�

Ŝmax := sup

{
1
n

n∑
i=1

(
	i

(
2π(Xi)− 1

)−A∗
n

)2 : π ∈ Πλ
n(J0)

}
�

(82)

Then, following (68), we get that

1(Bn)E

[√
n sup

{
1
n

n∑
i=1

ξi	i

(
2π(Xi)− 1

) : π ∈ Πλ
n(J0)

}∣∣∣{Xi�	i}
]

≤ 2Ŝ0�5
max

(√
logNH

(
4−(J0+1)�Πn

)+ 1�5
)+ n− 7+2β

16
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≤ 2Ŝ0�5
max

(√
5 log(4)VC(Πn)(J0 + 1)+ 1�5

)+ n− 7+2β
16

≤ 6
√
Ŝmax VC(Πn)

(
10 + ⌊

log4

(
Sn/Sλ

n

)⌋)+ n− 7+2β
16 � (83)

Now, combining the bound we already have from Lemma 7 with the proof of Lemma 4,
we see that under the conditions of Lemma 2 and provided that Sn VC(Πn)/n → 0, we
have that

lim sup
n

E[
√
Ŝmax]/

√
Sλ
n + 4λ2 ≤ 1;

to check this, we also used the fact that, by (24),

sup
{
E
[(

2
(
π(Xi)− 1

)
	i −A∗

n

)2] : π ∈ Πλ
n

}
= sup

{
Var

[
2
(
π(Xi)− 1

)
	i

]+ (
An(π)−A∗

n

)2 : π ∈ Πλ
n

}≤ Sλ
n + 4λ2� (84)

Thus, we conclude that

lim sup
n→∞

E

[
1(Bn)

√
n(

Sλ
n + 4λ2

)
VC(Πn)

sup

{
1
n

n∑
i=1

ξi	i

(
2π(Xi)− 1

) : π ∈ Πλ
n(J0)

}]
/(

1 + 18
√

1 + ⌊
log4

(
Sn/Sλ

n

)⌋
/9
)≤ 1� (85)

Meanwhile, for the second term, we proceed exactly as before up to (77). Here, however,
we invoke the new (larger) choice of J0 and, noting that

2−8

(
44 + 38

√
9 +

⌊
log4

(
Sn

Sλ
n

)⌋)
≤
√

1 +
⌊

log4

(
Sn

Sλ
n

)⌋
/9�

we get

lim sup
n→∞

√
n

Sλ
n VC(Πn)

E

[
1(Bn) sup

π∈Πλ
n

∣∣∣∣∣1
n

n∑
i=1

	iξi

J(n)−1∑
j=J0

(
Ψj+1(π)−Ψj(π)

)
(Xi)

∣∣∣∣∣
]

/√
1 +

⌊
log4

(
Sn

Sλ
n

)⌋
/9 ≤ 1� (86)

Finally, we establish (26) by combining this bound with (85), and the fact that clipping as
in (64) has an asymptotically negligible effect.

PROOF OF LEMMA 6: We construct the chaining by backwards recursion, as follows.
First, for the largest index J under consideration, we do the following:

1. Let Ψ ′
J : Πn → {X → {0�1}} be an optimal 2−(J+1) covering of Πn, such that the car-

dinality of the set {Ψ ′
J(π) : π ∈ Πn} is at most NDn(2−(J+1)�Πn� {Xi�	i}).

2. For every approximating policy π ′ ∈ {Ψ ′
J(π) : π ∈ Πn}, construct a function

neighbor(·) such that neighbor(π ′) ∈ {π ∈ Πλ
n : Dn(π�π

′) ≤ 2−(J+1)} if this set is
nonempty, and neighbor(π ′)= ∅ else.

3. Define ΨJ :Πλ
n → Πλ

n via ΨJ(π) = neighbor(Ψ ′
j (π)).
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We can see by construction that ΨJ(π) ∈ Πλ
n for all π ∈ Πλ

n (because no element in Πλ
n

can be mapped by Ψ ′
J to an element π ′ with neighbor(π ′)= ∅), and that the cardinality of

the set Πλ
n(J) = {ΨJ(π) : π ∈ Πλ

n } is at most NDn(2−(J+1)�Πn� {Xi�	i}). Furthermore, by
the triangle inequality, Dn(ΨJ(π)�π) ≤ 2−J for all π ∈Πλ

n .
Next, for every 1 ≤ j < J, we first define the mapping Ψj as a 2−j-approximation of

Πλ
n(j+1) using exactly the same construction as above. Thus, Ψj :Πλ

n(j+1)→ Πλ
n(j+1),

Πλ
n(j) = {Ψj(π) : π ∈ Πλ

n(j + 1)} has cardinality at most NDn(2−(j+1)�Πn� {Xi�	i}), and
Dn(Ψj(π)�π) ≤ 2−j for all π ∈ Πλ

n(j + 1). Finally, we extend the mappings Ψj to the
whole domain Πλ

n via the relationship Ψj(π) = Ψj(Ψj+1(π)) for all π ∈ Πλ
n . Note that

this extension does not grow the size of the set Πλ
n(j), and that the mapping Ψj has no

branching by construction. Q.E.D.

C.2. Proof of Corollary 3

First, as argued by Bartlett and Mendelson (2002) in the proof of their Theorem 8,

E
[
sup

{∣∣Ãn(π)−An(π)
∣∣ : π ∈ Πλ

n

}]≤ 2E
[
Rn

(
Πλ

n

)]
� (87)

Then, to check concentration, we need to bound supπ∈Πn
|Ãn(π)−An(π)| in terms of its

expectation. Recall that Ãn(π) = n−1
∑

	i(2π(Xi)−1), and that the 	i are uniformly sub-
Gaussian. Because the 	i are not bounded, it is convenient to define truncated statistics

Ã(−)
n (π) = 1

n

n∑
i=1

	(−)
i

(
2π(Xi)− 1

)
�

	(−)
i = 	i1

({|	i| ≤ log(n)
})
�

Here, we of course have that |	(−)
i | ≤ log(n), and so we can apply Talagrand’s inequality

as described in Bousquet (2002) to these truncated statistics. We see that, for any δ > 0,
with probability at least 1 − δ,

sup
π∈Πλ

n

∣∣Ã(−)
n (π)−A(−)

n (π)
∣∣

≤ E

[
sup
π∈Πλ

n

∣∣Ã(−)
n (π)−A(−)

n (π)
∣∣]+ log(n) log(δ)

3n

+
√

2 log
(
δ−1

)(
sup
π∈Πλ

n

Var
[
Ãn(π)

]+ 2 log(n)
n

E

[
sup
π∈Πλ

n

∣∣Ã(−)
n (π)−A(−)

n (π)
∣∣])�

where we used the shorthand A(−)
n (π) = E[Ã(−)

n (π)]. Moreover, because the 	i are uni-
formly sub-Gaussian, we can immediately verify that

E

[∣∣∣ sup
π∈Πλ

n

∣∣Ã(−)
n (π)−A(−)

n (π)
∣∣− sup

π∈Πn

∣∣Ãn(π)−An(π)
∣∣∣∣∣]

decays exponentially fast in n; similarly, n supπ∈Πλ
n

Var[Ãn(π)] − Sλ
n also decays exponen-

tially fast. Using (87) and noting that, by Lemma 2 and Assumption 3, E[Rn(Π
λ
n)] decays
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polynomially in n, we conclude that with probability at least 1 − δ,

sup
{∣∣Ãn(π)−An(π)

∣∣ : π ∈Πλ
n

}
≤ (

1 + o(1)
)(

E
[
sup

{∣∣Ãn(π)−An(π)
∣∣ : π ∈Πλ

n

}]+
√

2Sλ
n log

(
δ−1

)
n

)
� (88)

thus establishing our second claim.

C.3. Proof of Lemma 4

In the argument below, we omit all n-subscripts for readability, for example, we write
Â(π) instead of Ân(π). For any fixed policy π, we begin by expanding out the difference
of interest as

Â(π)− Ã(π)

= 1
n

n∑
i=1

(
2π(Xi)− 1

)(
Yi −m(Xi�Wi)

)(
ĝ(−k(i))(Xi�Zi)− g(Xi�Zi)

)
+ 1

n

n∑
i=1

(
2π(Xi)− 1

)(
τm̂(−k)(XiWi)− τm(Xi�Wi)

− g(Xi�Zi)
(
m̂(−k(i))(Xi�Wi)−m(Xi�Wi)

))
− 1

n

n∑
i=1

(
2π(Xi)− 1

)(
m̂(−k(i))(Xi�Wi)−m(Xi�Wi)

)
× (

ĝ(−k(i))(Xi�Zi)− g(Xi�Zi)
)
�

Denote these three summands by D1(π), D2(π), and D3(π). We will bound all 3 sum-
mands separately.

To bound the first term, it is helpful separate out the contributions of the K different
folds:

D(k)
1 (π) = 1

n

∑
{i:k(i)=k}

(
2π(Xi)− 1

)(
Yi −m(Xi�Wi)

)(
ĝ(−k(i))(Xi�Zi)− g(Xi�Zi)

)
� (89)

Now, because ĝ(−k)(·) was only computed using data from the K − 1 folds, we can condi-
tion on the value of this function estimate to make the individual terms in the above sum
independent. Moreover, by exogeneity of the instrument and the exclusion restriction, we
see that E[Yi − m(Xi�Wi)|Xi�Zi� ĝ

(−k(i))(·)] = 0, and so the expected second moment of
D(k)

1 (π) reduces to the sum of the variances of its constituent terms.
Next, by Assumption 2, we know that

sup
x∈X

∣∣(ĝ(−k)(x� z)− g(x� z)
)∣∣≤ 1

with probability tending to 1, and so the individual summands in (89) are all ν-sub-
Gaussian with probability tending to 1. Then, writing

Vn(k) = E
[(
ĝ(−k)(Xi�Zi)− g(Xi�Zi)

)2
Var

[
Yi −m(Xi�Wi)|Xi�Zi

]|ĝ(−k)(·)]
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for the variance of D(k)
1 (π) conditionally on the model ĝ(−k)(·) fit on the other K−1 folds,

we can apply Corollary 3 to establish that

n

nk

E

[
sup
π∈Π

∣∣D(k)
1 (π)

∣∣|ĝ(−k)(·)
]

=O
(√

VC(Πn)
Vn(k)

nk

)
� (90)

where nk = |{i : k(i) = k}| denotes the number of observations in the kth fold. Since we
compute our doubly robust scores using a finite number of evenly-sized folds, nk/n →
1/K, we can use our risk bounds in Assumption 2 to check that

E
[
Vn(k)

] ≤ E
[
ν2
E
[(
ĝ(−k)(Xi�Zi)− g(Xi�Zi)

)2|ĝ(−k)(·)]]
=O

(
a

(
K − 1
K

n

)
n−ζg

)
� (91)

Then, applying (90) separately to all K folds and using Jensen’s inequality, we find that

E

[
sup
π∈Π

∣∣D1(π)
∣∣]=O

(
ν

√
VC(Πn)

a
((

1 −K−1
)
n
)

n1+ζg

)
� (92)

thus bounding the first term.
Meanwhile, recall that by the properties of our weighting function (10), we know that

E[τm̃(Xi�Wi) − g(Xi�Zi)m̃(Xi�Wi)|Xi] = 0 for any conditional response function m̃(·),
which in particular means that, by cross-fitting,

E
[
τm̂(−k)(Xi�Wi)− τm(Xi�Wi)

− g(Xi�Zi)
(
m̂(−k(i))(Xi�Wi)−m(Xi�Wi)

)|Xi� m̂
−k(i)(·)]= 0�

Thus, by a similar argument as before, we find that

E

[
sup
π∈Π

∣∣D2(π)
∣∣]=O

(
1
η

√
VC(Πn)

a
((

1 −K−1
)
n
)

n1+ζm

)
� (93)

where η is the uniform “overlap” bound on the weighting function g(·).
It now remains to bound the final term, D3(π). Here, we can use the Cauchy–Schwarz

inequality to verify that

∣∣D3(π)
∣∣ = ∣∣∣∣∣1

n

n∑
i=1

(
2π(Xi)− 1

)(
m̂(−k(i))(Xi�Wi)−m(Xi�Wi)

)
× (

ĝ(−k(i))(Xi�Zi)− g(Xi�Zi)
)∣∣∣∣∣
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≤
√√√√1

n

n∑
i=1

(
m̂(−k(i))(Xi�Wi)−m(Xi�Wi)

)2

×
√√√√1

n

n∑
i=1

(
ĝ(−k(i))(Xi�Zi)− g(Xi�Zi)

)2
�

This bound is deterministic and does not depend on π; thus, it also holds as a bound for
the supremum of |D3(π)| over all π. Then, applying Cauchy–Schwarz again to the above
product, we see that

E

[n sup
π∈Π

∣∣D3(π)
∣∣∣∣{i :Wi = 1}∣∣
]

≤
√
E
[(
m̂(−k(i))(Xi�Wi)−m(Xi�Wi)

)2]
×
√
E
[(
ĝ(−k(i))(Xi�Zi)− g(Xi�Zi)

)2]
≤ a

(⌊
K − 1
K

n

⌋)/√⌊
K − 1
K

n

⌋
�

The desired conclusion now follows from combining these three bounds.

C.4. Proof of Theorem 5

Writing VC(Π) = d, we know that there exists a collection of d nonoverlapping sets
Aj for j = 1� � � � � d such that Π shatters this collection of sets, that is, for any vector
v ∈ {0�1}d , there exist a policy πv ∈Π such that πv(x) = vj for all x ∈Aj . Our proof starts
with such a collection of sets {Aj}dj=1 and a distribution P over Xs such that

EP

[
1
({Xi ∈Aj}

) σ2(Xi)

e(Xi)
(
1 − e(Xi)

)]= SP

d
for j = 1� � � � � d� (94)

where SP is as defined in (36). We will establish our result by studying learning over Π
with features drawn from this distribution P .

Now, to lower-bound the minimax risk for policy learning for unknown bounded treat-
ment effect functions τ(·), it is sufficient to bound minimax risk over a smaller class of
policies T , as minimax risk increases with the complexity of the class T . Noting this fact,
we restrict our analysis to treatment functions T such that

τ(x)= σ2(x)cj

e(x)
(
1 − e(x)

)/E

[
σ2(x)1

({Xi ∈Aj}
)

e(Xi)
(
1 − e(Xi)

) ]
for all x ∈ Aj , where cj ∈ R is an unknown coefficient for each j = 1� � � � � d. If we knew
the values of cj for j = 1�2� � � � � d, the optimal policy π∗ ∈ Π would be treat only those
j-groups with a positive cj , that is, π∗(x)= 1({cj > 0}) for all x ∈Aj .

Now, following the argument of Hirano and Porter (2009) (we omit details for brevity),
the minimax policy learner is of the form π̂∗(x) = 1({ĉ∗

j > 0}) for all x ∈ Aj , where ĉ∗
j is

an efficient estimator for cj . Moreover, in this example, we can use (94) to verify that the
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semiparametric efficient variance for estimating cj is SP/d. Thus, the efficient estimator
ĉ∗
j will incorrectly estimate the sign of cj with probability tending to 
(−cj

√
d/SP), where


(·) denotes the standard Gaussian cumulative distribution function. (Recall that, in our
sampling model (35), the signal also decays as 1/

√
n.)

By construction, we suffer an expected utility loss of 2|cj| from failing to accurately
estimate the sign of cj . Thus, by the above argument, given fixed values of cj , the policy
learner will suffer an asymptotic regret

lim
n→∞

√
nE[Rn] =

d∑
j=1

2|cj|

(−|cj|

√
d/SP

)
�

using an efficient estimator ĉ∗
j . Setting |cj| = 0�75

√
SP/d, this limit becomes

lim
n→∞

√
nE[Rn] = 1�5
(−0�75)

√
dSP�

which, noting that 1�5
(−0�75)≥ 0�33, concludes the proof.
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