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APPENDIX A: PROOFS

The proof of Lemma 1 was provided in the text.

PROOF OF PROPOSITION 1: Equations (21) and (22) follow from integrating the linear
ODEs (19) and (20) with the initial conditions Ar(0)= C(0)= 0. Substituting Ar(τ) from
(21) into (23), we find (25). The left-hand side of (25) is increasing in κ∗

r , is zero for κ∗
r = 0,

and converges to infinity when κ∗
r goes to infinity. The right-hand side of (25) is decreasing

in κ∗
r , exceeds κr > 0 for κ∗

r = 0, and converges to κr when κ∗
r goes to zero. Therefore, (25)

has a unique solution for κ∗
r , which is positive.

Substituting C(τ) from (22) into (24), we find

κ∗
r r

∗
[

1 + aσ2
r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

]

= κrr + aσ2
r

∫ ∞

0
θ0(τ)Ar(τ)dτ

+ aσ4
r

2

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)

2 du

]
Ar(τ)dτ� (A.1)

Since

κrr = κ∗
r r

[
1 + aσ2

r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

]

+ (
κr − κ∗

r

)
r − κ∗

r raσ
2
r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ
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and

(
κr − κ∗

r

)
r − κ∗

r raσ
2
r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

= −raσ2
r

∫ ∞

0
α(τ)Ar(τ)

2 dτ − κ∗
r raσ

2
r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

= −raσ2
r

∫ ∞

0
α(τ)

[
Ar(τ)+ κ∗

r

∫ τ

0
Ar(u)du

]
Ar(τ)dτ

= −raσ2
r

∫ ∞

0
α(τ)τAr(τ)dτ�

where the first step follows from (21) and (25), and the third step follows from integrating
(19) from zero to τ and using (21) and (25), we can write (A.1) as

κ∗
r r

∗
[

1 + aσ2
r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

]

= κ∗
r r

[
1 + aσ2

r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

]
− raσ2

r

∫ ∞

0
α(τ)τAr(τ)dτ

+ aσ2
r

∫ ∞

0
θ0(τ)Ar(τ)dτ + aσ4

r

2

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)

2 du

]
Ar(τ)dτ� (A.2)

Equations (21) and (A.2) imply (26). Q.E.D.

PROOF OF PROPOSITION 2: Taking expectations conditional on time t in (8), we find

dEt(rt+τ) = κr

(
r −Et(rt+τ)

)
dτ

⇒ Et(rt+τ)= (
1 − e−κrτ

)
r + e−κrτrt � (A.3)

Equation (A.3) implies

∂Et(rt+τ)

∂rt
= e−κrτ� (A.4)

Equation (27) likewise implies

∂f (τ)
t

∂rt
= A′

r(τ)= e−κ∗
r τ� (A.5)

where the second step follows from (21).
Equation (25) implies that if a > 0 and α(τ) > 0 in a positive-measure subset of (0�T ),

then κ∗
r > κr . Since the right-hand side of (25) increases in a, σ2

r , and α(τ), and the dif-
ference between the left-hand side and the right-hand side increases in κ∗

r , κ
∗
r increases in

a, σ2
r , and α(τ). Q.E.D.

PROOF OF PROPOSITION 3: Equations (1), (2), and (10) imply that the dependent vari-
able in (28) is

1

τ

{
Ar(τ)rt +C(τ)− [

Ar(τ −
τ)rt+
τ +C(τ −
τ)
] − [

Ar(
τ)rt +C(
τ)
]}
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and the independent variable is

1

τ

{
Ar(τ)rt +C(τ)− [

Ar(τ −
τ)rt +C(τ −
τ)
] − [

Ar(
τ)rt +C(
τ)
]}
�

Therefore, the FB regression coefficient is

bFB = Cov
{[
Ar(τ)−Ar(
τ)

]
rt −Ar(τ −
τ)rt+
τ�

[
Ar(τ)−Ar(τ −
τ)−Ar(
τ)

]
rt
}

Var
{[
Ar(τ)−Ar(τ −
τ)−Ar(
τ)

]
rt
}

=
[
Ar(τ)−Ar(
τ)

]
Var(rt)−Ar(τ −
τ)Cov(rt+
τ� rt)[

Ar(τ)−Ar(τ −
τ)−Ar(
τ)
]
Var(rt)

� (A.6)

Since (A.3) implies

Cov(rt+
τ� rt)=Var(rt)e−κr
τ� (A.7)

we can write (A.6) as

bFB = Ar(τ)−Ar(τ −
τ)e−κr
τ −Ar(
τ)

Ar(τ)−Ar(τ −
τ)−Ar(
τ)
�

Taking the limit 
τ → 0 and noting from (21) that Ar(
τ)


τ
→ 1, we find

bFB → A′
r(τ)+ κrAr(τ)− 1

A′
r(τ)− 1

=
(
κ∗
r − κr

)
Ar(τ)

κ∗
rAr(τ)

= κ∗
r − κr

κ∗
r

� (A.8)

where the second step follows from (19) and (25). Since κ∗
r > κr when a > 0 and α(τ) > 0

in a positive-measure subset of (0�T ), (A.8) implies bFB > 0. Since κ∗
r increases in a, σ2

r ,
and α(τ), (A.8) implies that bFB increases in the same variables.

Equations (1) and (10) imply that the dependent variable in (29) is

Ar(τ −
τ)rt+
τ +C(τ −
τ)

τ −
τ
− Ar(τ)rt +C(τ)

τ

and the independent variable is


τ

τ −
τ

[
Ar(τ)rt +C(τ)

τ
− Ar(
τ)rt +C(
τ)


τ

]
�

Therefore, the CS regression coefficient is

bCS =
Cov

{
Ar(τ −
τ)

τ −
τ
rt+
τ − Ar(τ)

τ
rt�


τ

τ −
τ

[
Ar(τ)

τ
− Ar(
τ)


τ

]
rt

}

Var
{


τ

τ −
τ

[
Ar(τ)

τ
− Ar(
τ)


τ

]
rt

}

=
Ar(τ −
τ)

τ −
τ
Cov(rt+
τ� rt)− Ar(τ)

τ
Var(rt)


τ

τ −
τ

[
Ar(τ)

τ
− Ar(
τ)


τ

]
Var(rt)

� (A.9)
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Using (A.7), we can write (A.9) as

bCS =
Ar(τ −
τ)

τ −
τ
e−κr
τ − Ar(τ)

τ

τ

τ −
τ

[
Ar(τ)

τ
− Ar(
τ)


τ

] �

Taking the limit 
τ → 0, we find

bCS →
Ar(τ)

τ
− [

A′
r(τ)+ κrAr(τ)

]
Ar(τ)

τ
− 1

= 1 − A′
r(τ)+ κrAr(τ)− 1

Ar(τ)

τ
− 1

= 1 −
(
κ∗
r − κr

)
Ar(τ)τ

τ −Ar(τ)
� (A.10)

where the third step follows from (19) and (25). Since κ∗
r > κr when a > 0 and α(τ) > 0

in a positive-measure subset of (0�T ), (A.10) implies bCS < 1. Since

Ar(τ)τ

τ −Ar(τ)
= 1 − e−κ∗

r τ

κ∗
r

(
1 − 1 − e−κ∗

r τ

κ∗
r τ

) �

(A.10) implies that bCS increases in τ if the function

K(x) ≡
1 − 1 − e−x

x
1 − e−x = 1

1 − e−x − 1
x

is increasing for x > 0. The derivative K′(x) has the same sign as the function

K̂(x) ≡ 1 − e−x − xe− x
2 �

The function K̂(x) is equal to zero for x = 0, and its derivative K̂′(x) has the same sign
as e− x

2 − 1 + x
2 which is positive for all x. Therefore, K̂(x) > 0 for x > 0, and K(x) is

increasing. Q.E.D.

PROOF OF PROPOSITION 4: The argument in the text shows that 
y(τ)
t = κ∗

r 
r
∗ ∫ τ

0 Ar(u)du

τ

and 
r∗ has the same sign as aσ2
r

∫ ∞
0 
θ0(τ)Ar(τ)dτ. Hence, when a > 0, the change


θ0(τ) raises all yields if
∫ ∞

0 
θ0(τ)Ar(τ)dτ > 0 and lowers them otherwise. The relative
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effect across maturities is


y
(τ2)
t


y
(τ1)
t

=

∫ τ2

0
Ar(u)du

τ2∫ τ1

0
Ar(u)du

τ1

and is independent of 
θ0(τ). Since the function Ar(τ) increases in τ, the function∫ τ
0 Ar(u)du

τ
also increases, and hence the relative effect across maturities is larger than 1

for τ1 < τ2. Q.E.D.

The proof of Lemma 2 was given in the text.

PROOF OF LEMMA 3: Using the diagonalization

M = P−1 Diag(ν1� ν2� � � � � νK+1)P�

where Diag(z1� z2� � � � � zN) is the N × N diagonal matrix with elements (z1� z2� � � � � zN),
and multiplying the ODE system (36) from the left by P , we can write it as

PA′(τ)+ Diag(ν1� ν2� � � � � νK+1)PA(τ)− PE = 0� (A.11)

Integrating (A.11) with the initial condition A(0)= 0 yields

PA(τ) = Diag
(

1 − e−ν1τ

ν1
�

1 − e−ν2τ

ν2
� � � � �

1 − e−νK+1τ

νK+1

)
PE � (A.12)

Using

Diag
(

1 − e−ν1τ

ν1
�

1 − e−ν2τ

ν2
� � � � �

1 − e−νK+1τ

νK+1

)

= 1 − e−ν1τ

ν1
IK+1 + Diag

(
0�

1 − e−ν2τ

ν2
− 1 − e−ν1τ

ν1
� � � � �

1 − e−νK+1τ

νK+1
− 1 − e−ν1τ

ν1

)
�

where IN is the N ×N identity matrix, we can write (A.12) as

A(τ)= 1 − e−ν1τ

ν1
E + P−1 Diag

(
0�

1 − e−ν2τ

ν2
− 1 − e−ν1τ

ν1
� � � � �

1 − e−νK+1τ

νK+1
− 1 − e−ν1τ

ν1

)
PE

⇒
⎡
⎢⎣

Ar(τ)
Aβ�1(τ)

· · ·
Aβ�K(τ)

⎤
⎥⎦ = 1 − e−ν1τ

ν1

⎡
⎢⎣

1
0
· · ·
0

⎤
⎥⎦

+ P−1 Diag
(

0�
1 − e−ν2τ

ν2
− 1 − e−ν1τ

ν1
� � � � �

1 − e−νK+1τ

νK+1
− 1 − e−ν1τ

ν1

)

× P

⎡
⎢⎣

1
0
· · ·
0

⎤
⎥⎦ � (A.13)



6 D. VAYANOS AND J.-L. VILA

Equation (A.13) implies (39) and (40). Integrating (38) with the initial condition C(0)= 0
yields (41). Q.E.D.

We next derive the system of equations in the Laplace transforms. We consider
the general case where there are K demand factors. We assume α(τ) = αe−δατ and
θk(τ) = ∑N

n=1 θk�ne
−δθnτ , where N ≥ 1, (α�δα� {θk�n}k=1�����K�n=1�����N� {δθn}n=1�����N) are scalars

and (α�δα� {δθn}n=1�����N) are positive. We set

I ≡
∫ ∞

0
α(τ)A(τ)dτ�

J ≡
∫ ∞

0
α(τ)A(τ)A(τ)	 dτ�

For n = 1� � � � �N , we set

In ≡
∫ ∞

0
e−δθnτA(τ)dτ

and denote by Θn the 1×(K+1) vector (0� θ1�n� � � � � θK�n). Since the vectors (I� I1� � � � � IN)
are (K + 1) × 1, and since the matrix J is (K + 1) × (K + 1) and symmetric, there are a
total of

K + 1 + (K + 1)(K + 2)
2

+ (K + 1)N = (K + 1)
(
K

2
+N + 2

)

distinct elements. These elements are Laplace transforms of the functions (Ar(τ)�
{Aβ�k(τ)}k=1�����K) and of those functions’ pairwise products. Using (J� {In}n=1�����N�
{Θn}n=1�����N), we can write the matrix M defined in (37) as

M ≡ �	 − a

∫ ∞

0

(
N∑
n=1

Θ	
n I

	
n − J

)
ΣΣ	� (A.14)

LEMMA A.1: Suppose that α(τ) = αe−δατ and θk(τ) = ∑N

j=1 θk�ne
−δθnτ, where N ≥ 1,

(α�δα� {θk�n}k=1�����K�n=1�����N� {δθn}n=1�����N) are scalars, and (α�δα� {δθn}n=1�����N) are positive.
The (K + 1)(K

2 +N + 2) elements of (I� J� {In}n=1�����N) solve the system

(δαIK+1 +M)I = α

δα

E� (A.15)

(δθnIK+1 +M)In = 1
δθn

E� (A.16)

for n = 1� � � � �N , and

(δαIK+1 +M)J + JM	 = EI	 + IE	� (A.17)

PROOF: To derive (A.15), we multiply the ODE system (36) by α(τ) and integrate from
zero to infinity. This yields∫ ∞

0
α(τ)A′(τ)dτ +MI −

[∫ ∞

0
α(τ)dτ

]
E = 0� (A.18)
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Integration by parts implies∫ ∞

0
α(τ)A′(τ)dτ = [

α(τ)A(τ)
]∞

0
−

∫ ∞

0
α′(τ)A(τ)dτ

= lim
τ→∞

α(τ)A(τ)− α(0)A(0)+ δα

∫ ∞

0
α(τ)A(τ)dτ

= lim
τ→∞

α(τ)A(τ)+ δα

∫ ∞

0
α(τ)A(τ)dτ�

where the second step follows from α′(τ) = −δαα(τ) and the third step follows from
A(0) = 0. Assuming limτ→∞ α(τ)A(τ) = 0, a property that is required for the matrix M
to be finite (and that holds for the solution in Theorem 1, as we show at the end of that
theorem’s proof), we find∫ ∞

0
α(τ)A′(τ)dτ = δα

∫ ∞

0
α(τ)A(τ)dτ = δαI� (A.19)

Using (A.18), (A.19), and a(τ) = αe−δατ, we find (A.15).
To derive (A.16), we likewise multiply the ODE system (36) by e−δθnτ and integrate from

zero to infinity. This yields∫ ∞

0
e−δθn τA′(τ)dτ +MIn −

[∫ ∞

0
e−δθn τ dτ

]
E = 0� (A.20)

Integration by parts and a zero limit at infinity imply∫ ∞

0
e−δθn τA′(τ)dτ = δθn

∫ ∞

0
e−δθn τA(τ)dτ = δθnIn� (A.21)

Using (A.20) and (A.21), we find (A.16).
To derive (A.17), we multiply the ODE system (36) from the left by α(τ)A(τ)	, add to

the resulting (K + 1) × (K + 1) matrix its transpose, and integrate from zero to infinity.
This yields∫ ∞

0
α(τ)

[
A′(τ)A(τ)	 +A(τ)A′(τ)	]

dτ +MJ + JM	 − EI	 − IE	 = 0� (A.22)

Integration by parts and a zero limit at infinity imply∫ ∞

0
α(τ)

[
A′(τ)A(τ)	 +A(τ)A′(τ)	]

dτ

= δα

∫ ∞

0
α(τ)A(τ)A(τ)	dτ = δαJ� (A.23)

Using (A.22) and (A.23), we find (A.17).
The total number of equations is (K+1)(K

2 +N+2), which is the same as the number of
unknown Laplace transforms: the vector equation (A.15) yields K + 1 scalar equations,
the vector equations (A.16) for n = 1� � � � �N yield (K + 1)N scalar equations, and the
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matrix equation (A.17) yields (K+1)(K+2)
2 scalar equations because the matrices in it are

symmetric. Q.E.D.

PROOF OF THEOREM 1: The theorem specializes Lemma A.1 to the case K = 1, N = 2,
θ11 = −θ12 = θ, δθ1 = δα, δθ2 = δθ, � = Diag(κr�κβ), and Σ = Diag(σ2

r � σ
2
β). Since K = 1

and N = 2, there are nine unknown Laplace transforms, which reduce to seven because
δθ1 = δα implies I1 = I

α
. Setting I ≡ (Ir� Iβ)

	, I2 ≡ (Ir�2� Iβ�2)
	, and

J ≡
[
Ir�r Ir�β
Ir�β Iβ�β

]
�

the seven unknown Laplace transforms are (Ir� Iβ� Ir�2� Iβ�2� Ir�r� Ir�β� Iβ�β). Setting


Ir�θ ≡ θ

(
Ir

α
− Ir�2

)
− Ir�β� (A.24)


Iβ�θ ≡ θ

(
Iβ

α
− Iβ�2

)
− Iβ�β� (A.25)

we can write the matrix M given by (A.14) as

[
κr + aσ2

r Ir�r aσ2
βIr�β

−aσ2
r 
Ir�θ κβ − aσ2

β
Iβ�θ

]
� (A.26)

The vector equation (A.15) yields the two scalar equations

(
δα + κr + aσ2

r Ir�r
)
Ir + aσ2

βIr�βIβ = α

δα

� (A.27)

−aσ2
r 
Ir�θIr + (

δα + κβ − aσ2
β
Iβ�θ

)
Iβ = 0� (A.28)

The vector equation (A.16) yields the two scalar equations

(
δθ + κr + aσ2

r Ir�r
)
Ir�2 + aσ2

βIr�βIβ�2 = 1
δθ

� (A.29)

−aσ2
r 
Ir�θIr�2 + (

δθ + κβ − aσ2
β
Iβ�θ

)
Iβ�2 = 0� (A.30)

The matrix equation (A.17) yields the three scalar equations
(
δα

2
+ κr + aσ2

r Ir�r

)
Ir�r + aσ2

βI
2
r�β = Ir� (A.31)

(
δα + κr + κβ + aσ2

r Ir�r − aσ2
β
Iβ�θ

)
Ir�β + aσ2

βIr�βIβ�β − aσ2
r 
Ir�θIr�r = Iβ� (A.32)

−aσ2
r 
Ir�θIr�β +

(
δα

2
+ κβ − aσ2

β
Iβ�θ

)
Iβ�β = 0� (A.33)

Equations (A.27)–(A.32) constitute a system of seven equations in the seven unknowns
(Ir� Iβ� Ir�r� Ir�β� Iβ�β� Ir�2� Iβ�2). The rest of the proof, which is in the Full Appendix, avail-
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able at http://personal.lse.ac.uk/vayanos/Papers/PHMTSIR_ECMAf.pdf, shows that this
system has a solution. Q.E.D.

PROOF OF PROPOSITION 5: Using K = 1 and (A.26), we can write the system (36) as

A′
r(τ)+ (

κr + aσ2
r Ir�r

)
Ar(τ)+ aσ2

βIr�βAβ(τ)− 1 = 0� (A.34)

A′
β(τ)− aσ2

r 
Ir�θAr(τ)+ (
κβ − aσ2

β
Iβ�θ
)
Aβ(τ)= 0� (A.35)

and the solution to that system, given in Lemma 3, as

Ar(τ)= 1 − e−ν1τ

ν1
+φr

(
1 − e−ν2τ

ν2
− 1 − e−ν1τ

ν1

)
� (A.36)

Aβ(τ)=φβ

(
1 − e−ν2τ

ν2
− 1 − e−ν1τ

ν1

)
� (A.37)

Equations (A.34) and (A.35), together with the initial conditions Ar(0)= Aβ(0) = 0, im-
ply A′

r(0) = 1 and A′
β(0) = 0. Differentiating (A.35) at zero and using 
Ir�θ > 0, which

follows from M2�1 < 0 and (A.26), we find A′′
β(0) > 0. Hence, Ar(τ) > 0, A′

β(τ) > 0, and
Aβ(τ) > 0 for small τ.

Suppose that the two eigenvalues of M are real and without loss of generality set
ν1 > ν2. Since the function (ν� τ) −→ 1−e−ντ

ν
decreases in ν, the term in parentheses in

(A.37) is positive. Since, in addition, Aβ(τ) > 0 for small τ, φβ > 0, and hence, Aβ(τ) > 0
for all τ. Since

A′
β(τ)= φβ

(
e−ν2τ − e−ν1τ

)
and φβ > 0, A′

β(τ) > 0. Since

Ar(τ)

Aβ(τ)
=

1 − e−ν1τ

ν1

φβ

(
1 − e−ν2τ

ν2
− 1 − e−ν1τ

ν1

) + φr

φβ

= 1

φβ

(
ν1

ν2

1 − e−ν2τ

1 − e−ν1τ
− 1

) + φr

φβ

�

and the function (ν1� ν2� τ) −→ 1−e−ν2τ

1−e−ν1τ increases in τ because its derivative has the same
sign as eν1τ−1

ν1
− eν2τ−1

ν2
, [ Ar(τ)

Aβ(τ)
]′ < 0. Since

A′
r(τ)= e−ν1τ +φr

(
e−ν2τ − e−ν1τ

)
�

the sign of A′
r(τ) can change at most once. Hence, A′

r(τ) > 0 for τ ∈ (0� τ̄′) and A′
r(τ) <

0 for τ ∈ (τ̄′�∞), where τ̄′ is a threshold in (0�∞]. The function Ar(τ) has the same
behavior for a different threshold τ̄.

When a ≈ 0, Ar(τ) > 0 because Lemma A.2 implies φr ≈ 0, ν1 ≈
κr > 0, and ν2 ≈ κβ > 0. When α(τ) = 0, Ir�r = Ir�β = 0 and, hence, (A.34) implies

http://personal.lse.ac.uk/vayanos/Papers/PHMTSIR_ECMAf.pdf
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Ar(τ) = 1−e−κr τ

κr
> 0. In both cases, τ̄ = ∞. When a ≈ ∞, Lemma A.2 implies that for

τ bounded away from zero,

Ar(τ)≈ 1

a
1
3

(
1
n1

+ cr
1 − e−ν2τ

ν2

)

= 1

a
1
3 n1

(
1 −

∫ ∞

0
α
(
τ′)1 − e−ν2τ

′

ν2
dτ′

∫ ∞

0
α
(
τ′)(1 − e−ν2τ

′

ν2

)2

dτ′

1 − e−ν2τ

ν2

)

= 1

a
1
3 n1

∫ ∞

0
α
(
τ′)(1 − e−ν2τ

′)(
e−ν2τ − e−ν2τ

′)
dτ′

∫ ∞

0
α
(
τ′)(1 − e−ν2τ

′)2
dτ′

�

Since this is negative for τ close to ∞, τ̄ <∞.
Suppose that the two eigenvalues of M are complex. Since they are conjugates, we set

ν1 = μ + iξ and ν2 = μ − iξ for real numbers (μ�ξ). Equations (A.36) and (A.37) imply
that (Ar(τ)�Aβ(τ)) takes the form

Ar(τ)= φr�0 +φr�1e
−μτ cos(ξτ)+φr�2e

−μτ sin(ξτ)� (A.38)

Aβ(τ)= φβ�0 +φβ�1e
−μτ cos(ξτ)+φβ�2e

−μτ sin(ξτ) (A.39)

for real numbers {φj�n}j=r�β�n=0�1�2. Since the initial conditions Ar(0) = Aβ(0) = 0 imply
φj�0 +φj�1 = 0 for j = r�β, condition A′

r(0)= 1 implies −φr�1μ+φr�2ξ = 1, and condition
A′

β(0)= 0 implies −φβ�1μ+φβ�2ξ = 0, we can write (A.38) and (A.39) as

Ar(τ) = φr�0

[
1 − μ

ξ
e−μτ sin(ξτ)− e−μτ cos(ξτ)

]
+ 1

ξ
e−μτ sin(ξτ)� (A.40)

Aβ(τ) = φβ�0

[
1 − μ

ξ
e−μτ sin(ξτ)− e−μτ cos(ξτ)

]
� (A.41)

Differentiating (A.40) and (A.41), we find

A′
r(τ)=φr�0

μ2 + ξ2

ξ
e−μτ sin(ξτ)+ e−μτ

[
cos(ξτ)− μ

ξ
sin(ξτ)

]
� (A.42)

A′
β(τ)=φβ�0

μ2 + ξ2

ξ
e−μτ sin(ξτ)� (A.43)

Since A′
β(τ) > 0 for small τ, φβ�0 > 0, and hence, A′

β(τ) > 0 for τ ∈ (0� π
|ξ|). The derivative

[ Ar(τ)

Aβ(τ)
]′ has the same sign as

A′
r(τ)Aβ(τ)−Ar(τ)A

′
β(τ)

= e−μτ

[
cos(ξτ)− μ

ξ
sin(ξτ)

]
φβ�0

[
1 − μ

ξ
e−μτ sin(ξτ)− e−μτ cos(ξτ)

]
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− 1
ξ
e−μτ sin(ξτ)φβ�0

μ2 + ξ2

ξ
e−μτ sin(ξτ)

= φβ�0e
−μτ

[
cos(ξτ)− μ

ξ
sin(ξτ)− e−μτ

]
� (A.44)

where the second step follows from (A.40)–(A.43) and the third step follows by rearrang-
ing. Since φβ�0 > 0, [ Ar(τ)

Aβ(τ)
]′ is negative if the term in brackets in (A.44) is negative. That

term is concave in μ and is maximized for μ given by

−1
ξ

sin(ξτ)+ τe−μτ = 0 ⇔ e−μτ = sin(ξτ)
ξτ

�

The maximum is

cos(ξτ)− sin(ξτ)
ξτ

[
1 − log

(
sin(ξτ)

ξτ

)]
=H(ξτ)

sin(ξτ)
ξτ

� (A.45)

where

H(x) ≡ x cos(x)
sin(x)

− 1 + log
(

sin(x)
x

)
�

The function H(x) is equal to zero for x= 0, and its derivative is

H ′(x) = − x

sin2(x)
+ cos(x)

sin(x)
+

x cos(x)− sin(x)
x2

sin(x)
x

= −x2 − 2x cos(x) sin(x)+ sin2(x)

x sin2(x)
�

Since

x2 − 2x cos(x) sin(x)+ sin2(x) > x2 − 2
∣∣x sin(x)

∣∣ + sin2(x) = (|x| − ∣∣sin(x)
∣∣)2

> 0

for x = 0, H ′(x) > 0 for x < 0 and H ′(x) < 0 for x > 0. Since, in addition, H(0)= 0, then
H(x) < 0. Hence, the maximum (A.45) is negative for τ ∈ (0� π

|ξ|), and so is [ Ar(τ)

Aβ(τ)
]′. This

establishes the results in the proposition for A′
β(τ) and Ar(τ)

Aβ(τ)
, and for the threshold τ̂ = π

|ξ| .

The result for Aβ(τ) and for a threshold ¯̄τ > τ̂ follows because Aβ(0)= 0 and A′
β(τ) > 0

for τ ∈ (0� τ̂) imply Aβ(τ) > 0 for τ ∈ (0� τ̂].
If ¯̄τ <∞, then Aβ( ¯̄τ)= 0 and A′

β( ¯̄τ)≤ 0. If A′
β( ¯̄τ) < 0, then 
Ir�θ > 0 and (A.35) imply

Ar( ¯̄τ) < 0. If A′
β( ¯̄τ) = 0, then 
Ir�θ > 0 and (A.35) imply Ar( ¯̄τ) = 0, and (A.35) implies

A′
r( ¯̄τ) = 1. Hence, in both cases, Ar(τ) < 0 for τ smaller than and close to ¯̄τ. This yields

the result in the proposition for Ar(τ) and for a threshold τ̄ < ¯̄τ. Q.E.D.

Lemma A.2 derives the asymptotic behavior of (ν1� ν2�φr�φβ) when a ≈ 0 and a ≈ ∞.
To state and prove the lemma, we define the functions

F
(
ν� ν′) ≡

∫ ∞

0
α(τ)

1 − e−ντ

ν

1 − e−ν′τ

ν′ dτ�

F̂
(
ν� ν′) ≡ F

(
ν� ν′) − F(ν� ν)�
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ˆ̂
F

(
ν� ν′) ≡ F(ν� ν)+ F

(
ν′� ν′) − 2F

(
ν� ν′)�

G(ν)≡
∫ ∞

0
θ(τ)

1 − e−ντ

ν
dτ�

Ĝ
(
ν� ν′) ≡ G

(
ν′) −G(ν)�

We also note that the definitions of (J� Ir�r� Ir�β) imply

Ir�r =
∫ ∞

0
α(τ)Ar(τ)

2 dτ� (A.46)

Ir�β =
∫ ∞

0
α(τ)Ar(τ)Aβ(τ)dτ� (A.47)

LEMMA A.2: Suppose that there is one demand factor, the matrices (��Σ) are diagonal,
and α(τ) and θ(τ)

τ
have a positive and a finite limit, respectively, at τ = 0. When a ≈ 0 and

a≈ ∞, (ν1� ν2�φr�φβ) are real, and their asymptotic behavior is as follows:
• When a≈ 0, (ν1� ν2�φr�φβ)≈ (κr�κβ�a

3cr� acβ), where

cr = −c2
βσ

2
βF̂(κr�κβ)

κr − κβ

� (A.48)

cβ = σ2
r G(κr)

κr − κβ

� (A.49)

• When a≈ ∞, (ν1� ν2�φr�φβ) ≈ (a
1
3 n1� ν2� a

− 1
3 cr�φβ), where

n1 = σ
2
3
r

[∫ ∞

0
α(τ)dτ −

[∫ ∞

0
α(τ)

1 − e−ν2τ

ν2
dτ

]2

∫ ∞

0
α(τ)

(
1 − e−ν2τ

ν2

)2

dτ

] 1
3

> 0� (A.50)

cr = − 1
n1

∫ ∞

0
α(τ)

1 − e−ν2τ

ν2
dτ

∫ ∞

0
α(τ)

(
1 − e−ν2τ

ν2

)2

dτ

< 0� (A.51)

φβ =

∫ ∞

0
θ(τ)

1 − e−ν2τ

ν2
dτ

∫ ∞

0
α(τ)

(
1 − e−ν2τ

ν2

)2

dτ

� (A.52)

and ν2 solves ∫ ∞

0
θ(τ)

1 − e−ν2τ

ν2
dτ∫ ∞

0
θ(τ)dτ

=

∫ ∞

0
α(τ)

(
1 − e−ν2τ

ν2

)2

dτ∫ ∞

0
α(τ)

1 − e−ν2τ

ν2
dτ

� (A.53)
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PROOF: Substituting (A.36) and (A.37) into (A.34), and identifying terms in 1−e−ν1τ

ν1
and

( 1−e−ν2τ

ν2
− 1−e−ν1τ

ν1
), we find

φr(ν1 − ν2)− ν1 + κr + aσ2
r Ir�r = 0� (A.54)

−φrν2 +φr

(
κr + aσ2

r Ir�r
) +φβaσ

2
βIr�β = 0� (A.55)

respectively. Using (A.54), we can write (A.55) as

φr(1 −φr)(ν1 − ν2)+φβaσ
2
βIr�β = 0� (A.56)

Substituting (A.36) and (A.37) into (A.35), and identifying terms, we find

φβ(ν1 − ν2)− aσ2
r 
Ir�θ = 0� (A.57)

−φβν2 −φr
Ir�θ +φβ

(
κβ − aσ2

β
Iβ�θ
) = 0� (A.58)

respectively. Using (A.57), we can write (A.58) as

−ν2 −φr(ν1 − ν2)+ κβ − aσ2
β
Iβ�θ = 0� (A.59)

Equations (A.54), (A.56), (A.57), and (A.59) constitute a system of four equations in
the four unknowns (ν1� ν2�φr�φβ). Substituting (A.36) and (A.37) into the definitions
(A.46), (A.47), (A.24), and (A.25) of (Ir�r� Ir�β�
Ir�θ�
Iβ�θ), we can write that system
as

φr(ν1 − ν2)− ν1 + κr + aσ2
r

[
F(ν1� ν1)+ 2φrF̂(ν1� ν2)+φ2

r

ˆ̂
F(ν1� ν2)

] = 0� (A.60)

φr(1 −φr)(ν1 − ν2)+φ2
βaσ

2
β

[
F̂(ν1� ν2)+φr

ˆ̂
F(ν1� ν2)

] = 0� (A.61)

φβ(ν1 − ν2)− aσ2
r

[
G(ν1)+φrĜ(ν1� ν2)−φβ

[
F̂(ν1� ν2)+ γr

ˆ̂
F(ν1� ν2)

]] = 0� (A.62)

−ν2 −φr(ν1 − ν2)+ κβ −φβaσ
2
β

[
Ĝ(ν1� ν2)−φβ

ˆ̂
F(ν1� ν2)

] = 0� (A.63)

Suppose that a ≈ 0. Setting (φr�φβ) = (a3cr� acβ), we can write (A.60)–(A.63)
as

a3cr(ν1 − ν2)− ν1 + κr + aσ2
r

[
F(ν1� ν1)+ 2a3crF̂(ν1� ν2)+ a6c2

r

ˆ̂
F(ν1� ν2)

] = 0� (A.64)

cr
(
1 − a3cr

)
(ν1 − ν2)+ c2

βσ
2
β

[
F̂(ν1� ν2)+ a3cr

ˆ̂
F(ν1� ν2)

] = 0� (A.65)

cβ(ν1 − ν2)− σ2
r

[
G(ν1)+ a3crĜ(ν1� ν2)− acβ

[
F̂(ν1� ν2)+ a3cr

ˆ̂
F(ν1� ν2)

]] = 0� (A.66)

−ν2 − a3cr(ν1 − ν2)+ κβ − a2cβσ
2
β

[
Ĝ(ν1� ν2)− acβ

ˆ̂
F(ν1� ν2)

] = 0� (A.67)

The asymptotic behavior of (ν1� ν2�φr�φβ) is as in the lemma if (A.64)–(A.67) has a
nonzero solution (ν1� ν2� cr� cβ) for a = 0. For a = 0, (A.64) implies ν1 = κr , (A.67) im-
plies ν2 = κβ, (A.66) implies cβ = cβ, and (A.65) implies cr = cr .
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Suppose that a ≈ ∞. Setting (ν1�φr) = (a
1
3 n1� a

− 1
3 cr), we can write (A.60)–(A.63)

as

a− 2
3 cr

(
a

1
3 n1 − ν2

) − n1 + a− 1
3 κr

+ a
2
3 σ2

r

[
F

(
a

1
3 n1� a

1
3 n1

) + 2a− 1
3 crF̂

(
a

1
3 n1� ν2

) + a− 2
3 c2

r

ˆ̂
F

(
a

1
3 n1� ν2

)] = 0� (A.68)

a−1cr
(
1 − a− 1

3 cr
)(
a

1
3 n1 − ν2

)
+ a

1
3 φ2

βσ
2
β

[
F̂

(
a

1
3 n1� ν2

) + a− 1
3 cr

ˆ̂
F

(
a

1
3 n1� ν2

)] = 0� (A.69)

a− 2
3 φβ

(
a

1
3 n1 − ν2

) − a
1
3 σ2

r

[
G

(
a

1
3 n1

) + a− 1
3 crĜ

(
a

1
3 n1� ν2

)
−φβ

[
F̂

(
a

1
3 n1� ν2

) + a− 1
3 cr

ˆ̂
F

(
a

1
3 n1� ν2

)]] = 0� (A.70)

a−1
[−ν2 − a− 1

3 cr
(
a

1
3 n1 − ν2

) + κβ

]
−φβσ

2
β

[
Ĝ

(
a

1
3 n1� ν2

) −φβ
ˆ̂
F

(
a

1
3 n1� ν2

)] = 0� (A.71)

The asymptotic behavior of (ν1� ν2�φr�φβ) is as in the lemma if (A.68)–(A.71) has a
nonzero solution (n1� ν2� cr�φβ) for a= ∞. Noting that

lim
a→∞

a
2
3 F

(
a

1
3 n1� a

1
3 n1

) = 1
n2

1

∫ ∞

0
α(τ)dτ�

lim
a→∞

a
1
3 F

(
a

1
3 n1� ν2

) = 1
n1

∫ ∞

0
α(τ)

1 − e−ν2τ

ν2
dτ�

lim
a→∞

a
1
3 G

(
a

1
3 n1

) = 1
n1

∫ ∞

0
θ(τ)dτ�

we can write (A.68)–(A.71) for a= ∞ as

n1 − σ2
r

[
1
n2

1

∫ ∞

0
α(τ)dτ + 2cr

1
n1

∫ ∞

0
α(τ)

1 − e−ν2τ

ν2
dτ

+ c2
r

∫ ∞

0
α(τ)

(
1 − e−ν2τ

ν2

)2

dτ

]
= 0� (A.72)

1
n1

∫ ∞

0
α(τ)

1 − e−ν2τ

ν2
dτ + cr

∫ ∞

0
α(τ)

(
1 − e−ν2τ

ν2

)2

dτ = 0� (A.73)

1
n1

∫ ∞

0
θ(τ)dτ + cr

∫ ∞

0
θ(τ)

1 − e−ν2τ

ν2
dτ

−φβ

[
1
n1

∫ ∞

0
α(τ)

1 − e−ν2τ

ν2
dτ + cr

∫ ∞

0
α(τ)

(
1 − e−ν2τ

ν2

)2

dτ

]
= 0� (A.74)

∫ ∞

0
θ(τ)

1 − e−ν2τ

ν2
dτ −φβ

∫ ∞

0
α(τ)

(
1 − e−ν2τ

ν2

)2

dτ = 0� (A.75)
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Equations (A.73) and (A.74) imply (A.53). Equation (A.53) has a solution ν2. Indeed,
when ν2 goes to infinity, the left-hand side is

1
ν2

[
1 −

∫ ∞

0
θ(τ)e−ν2τ dτ∫ ∞

0
θ(τ)dτ

]
= 1

ν2

[
1 + o

(
1
ν2

)]

because θ(τ)

τ
has a finite limit at zero, and the right-hand side is

1
ν2

[
1 −

∫ ∞

0
α(τ)

(
1 − e−ν2τ

)
e−ν2τ dτ∫ ∞

0
α(τ)

(
1 − e−ν2τ

)
dτ

]
= 1

ν2

[
1 − α(0)

ν2

∫ ∞

0
α(τ)dτ

+ o

(
1
ν2

)]

because α(τ) has a positive limit at zero. Hence, the left-hand side exceeds the right-hand
side. When (α(τ)� {θk(τ)}k=1�����K) becomes zero for τ larger than a finite threshold T , and
ν2 goes to minus infinity, the left-hand side is

e−ν2T

ν2

∫ ∞

0
θ(τ)

[
eν2T − eν2(T−τ)

]
dτ∫ ∞

0
θ(τ)dτ

= e−ν2T

ν2
2

θ(T)∫ ∞

0
θ(τ)dτ

+ o

(
1
ν2

2

)

and is smaller than the right-hand side, which is

e−ν2T

ν2

∫ ∞

0
α(τ)

[
eν2T − eν2(T−τ)

]2
dτ∫ ∞

0
α(τ)

[
eν2T − eν2(T−τ)

]
dτ

= e−ν2T

−2ν2
+ o

(
1
ν2

)
�

Hence, a solution ν2 ∈ (−∞�∞) to (A.53) exists. When T = ∞, (α(τ)�θ(τ)) ≈
(αe−δατ� θe−δ′

ατ) for τ large and for 0 < δα ≤ δ′
α. When ν2 goes to − δα

2 , the right-hand side
goes to infinity, while the left-hand side remains finite. Hence, a solution ν2 ∈ (− δα

2 �∞)
to (A.53) exists.

Using (A.73) to eliminate cr in (A.72), we find n1 = n1. Equations (A.73) and (A.75)
imply cr = cr and φβ = φβ, respectively. The Cauchy–Schwarz inequality implies n1 > 0
and, hence, cr < 0. Q.E.D.

PROOF OF PROPOSITION 6: Proceeding as in the proof of Proposition 3, we find that
the FB regression coefficient is

bFB = NFB�r Var(rt)+NFB�βVar(βt)[
Ar(τ)−Ar(τ −
τ)−Ar(
τ)

]2
Var(rt)+ [

Aβ(τ)−Aβ(τ −
τ)
]2
Var(βt)

=
NFB�r

σ2
r

κr

+NFB�β

σ2
β

κβ[
Ar(τ)−Ar(τ −
τ)−Ar(
τ)

]2σ2
r

κr

+ [
Aβ(τ)−Aβ(τ −
τ)

]2σ
2
β

κβ

� (A.76)
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where

NFB�j = [
Aj(τ)−Aj(τ −
τ)e−κj
τ −Aj(
τ)

][
Aj(τ)−Aj(τ −
τ)−Aj(
τ)

]

for j = r�β. Taking the limit in (A.76) when 
τ → 0, and noting from (A.36) and (A.37)
that Ar(
τ)


τ
→ 1 and Aβ(
τ)


τ
→ 0, we find

bFB =
[
A′

r(τ)+ κrAr(τ)− 1
][
A′

r(τ)− 1
]σ2

r

κr

+ [
A′

β(τ)+ κβAβ(τ)
]
A′

β(τ)
σ2

β

κβ[
A′

r(τ)− 1
]2σ2

r

κr

+A′
β(τ)

2
σ2

β

κβ

� (A.77)

For τ < min{τ̄� τ̂}, Ar(τ) > 0, Aβ(τ) > 0, and A′
β(τ) > 0. Moreover, (A.34) implies

A′
r(τ)+ κrAr(τ)− 1 = −aσ2

r Ir�rAr(τ)− aσ2
βIr�βAβ(τ)≤ 0� (A.78)

A′
r(τ)− 1 = −(

κr + aσ2
r Ir�r

)
Ar(τ)− aσ2

βIr�βAβ(τ) < 0� (A.79)

where the inequalities follow from Ar(τ) > 0, Aβ(τ) > 0, Ir�r ≥ 0, and Ir�β ≥ 0, which in
turn follows from M1�2 ≥ 0 and (A.26). Equations (A.77), Aβ(τ) > 0, A′

β(τ) > 0, (A.78),
and (A.79) imply bFB > 0.

When a ≈ 0, (A.36), (A.37) and (ν1� ν2�φr�φβ) ≈ (κr�κβ�a
3cr� acβ) (Lemma A.2) im-

ply

bFB =
ν1 − κr

ν1

(
1 − e−κrτ

)2σ2
r

κr

+ a2c2
β

[
L′

β(τ)+ κβLβ(τ)
]
L′

β(τ)
σ2

β

κβ(
1 − e−κrτ

)2σ2
r

κr

+ a2c2
βL

′
β(τ)

2
σ2

β

κβ

+ o
(
a2

)
�

where

Lβ(τ)≡ 1 − e−κβτ

κβ

− 1 − e−κrτ

κr

�

Since Lβ(τ)L
′
β(τ) > 0, and (A.46) and (A.54) imply

ν1 − κr = aσ2
r

∫ ∞

0
α(τ)

(
1 − e−κrτ

κr

)2

dτ + o
(
a2

)
� (A.80)

then bFB > 0.



PREFERRED HABITAT AND THE TERM STRUCTURE 17

When a≈ ∞, (A.36), (A.37), and (ν1� ν2�φr�φβ)≈ (a
1
3 n1� ν2� a

− 1
3 cr�φβ) (Lemma A.2)

imply that for τ bounded away from zero,

bFB =
σ2

r

κr

+φ
2

β

(
e−ν2τ + κβ

1 − e−ν2τ

ν2

)
e−ν2τ

σ2
β

κβ

σ2
r

κr

+φ
2

βe
−2ν2τ

σ2
β

κβ

+ o(1)

= 1 +
φ

2

β

1 − e−ν2τ

ν2
e−ν2τσ2

β

σ2
r

κr

+φ
2

βe
−2ν2τ

σ2
β

κβ

+ o(1)� (A.81)

Hence, bFB > 1. We next show that bFB increases in τ if (43) holds. Equation (43) implies
that the left-hand side of (A.53) exceeds the right-hand side for ν2 = 0, and, hence, (A.53)
has a solution ν2 < 0. We write (A.81) as

bFB = 1 + φ
2

βNFB(τ)σ
2
β

σ2
r

κr

+φ
2

βDFB(τ)
σ2

β

κβ

+ o(1)� (A.82)

where

NFB(τ)≡ e2zτ − ezτ

z
�

DFB(τ)≡ e2zτ�

and z ≡ −ν2 > 0, and consider the derivative

[
φ

2

βNFB(τ)σ
2
β

σ2
r

κr

+φ
2

βDFB(τ)
σ2

β

κβ

]′

=
σ2

r

κr

φ
2

βσ
2
βN

′
FB(τ)+φ

4

β

σ4
β

κβ

[
N ′

FB(τ)DFB(τ)−NFB(τ)D
′
FB(τ)

]
[
σ2

r

κr

+φ
2

βDFB(τ)
σ2

β

κβ

]2 �

Since [
NFB(τ)

DFB(τ)

]′
=

[
1 − e−zτ

z

]′
= e−zτ > 0�

N ′
FB(τ)DFB(τ)−NFB(τ)D

′
FB(τ) > 0. Since, in addition,

N ′
FB(τ)= 2e2zτ − ezτ > 0�

bFB increases in τ.
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Proceeding as in the proof of Proposition 3, we find that the CS regression coefficient
is

bCS = NCS�r Var(rt)+NCS�βVar(βt)


τ

τ −
τ

{[
Ar(τ)

τ
− Ar(
τ)


τ

]2

Var(rt)+
[
Aβ(τ)

τ
− Aβ(
τ)


τ

]2

Var(βt)

}

=
NCS�r

σ2
r

κr

+NCS�β

σ2
β

κβ


τ

τ −
τ

{[
Ar(τ)

τ
− Ar(
τ)


τ

]2
σ2

r

κr

+
[
Aβ(τ)

τ
− Aβ(
τ)


τ

]2σ2
β

κβ

} � (A.83)

where

NCS�j =
[
Aj(τ −
τ)

τ −
τ
e−κj
τ − Aj(τ)

τ

][
Aj(τ)

τ
− Aj(
τ)


τ

]

for j = r�β. Taking the limit in (A.83) when 
τ → 0, we find

bCS →
([

Ar(τ)

τ
− [

A′
r(τ)+ κrAr(τ)

]][
Ar(τ)

τ
− 1

]
σ2

r

κr

+
[
Aβ(τ)

τ
− [

A′
β(τ)+ κβAβ(τ)

]]Aβ(τ)

τ

σ2
β

κβ

)

/([
Ar(τ)

τ
− 1

]2
σ2

r

κr

+
[
Aβ(τ)

τ

]2σ2
β

κβ

)

= 1 −
([

A′
r(τ)+ κrAr(τ)− 1

][Ar(τ)

τ
− 1

]
σ2

r

κr

+ [
A′

β(τ)+ κβAβ(τ)
]Aβ(τ)

τ

σ2
β

κβ

)

/([
Ar(τ)

τ
− 1

]2
σ2

r

κr

+
[
Aβ(τ)

τ

]2σ2
β

κβ

)
� (A.84)

For τ < min{τ̄� τ̂}, Aβ(τ) > 0 and A′
β(τ) > 0, and (A.78) and (A.79) hold. Equation

(A.79) and the initial condition Ar(0)= 0 imply Ar(τ)− τ < 0. Equation (A.9), Aβ(τ) >
0, A′

β(τ) > 0, (A.78), and Ar(τ)− τ < 0 imply bCS < 1.
When a ≈ 0, (A.36), (A.37), (ν1� ν2�φr�φβ) ≈ (κr�κβ�a

3cr� acβ) (Lemma A.2), and
(A.80) imply

bCS = 1 − a
σ2

r

(
1 − e−κrτ

)
κr

(
1 − 1 − e−κrτ

κrτ

) ∫ ∞

0
α(τ)

(
1 − e−κrτ

κr

)2

dτ + o(a)�

Hence, bCS is smaller than and close to 1. Moreover, bCS increases in τ because the func-
tion K(x) defined in Proposition 3 is increasing for x > 0.
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When a≈ ∞, (A.36), (A.37), and (ν1� ν2�φr�φβ)≈ (a
1
3 n1� ν2� a

− 1
3 cr�φβ) (Lemma A.2)

imply that for τ bounded away from zero,

bCS = 1 −
σ2

r

κr

+φ
2

β

(
e−ν2τ + κβ

1 − e−ν2τ

ν2

)
1 − e−ν2τ

ν2τ

σ2
β

κβ

σ2
r

κr

+φ
2

β

(
1 − e−ν2τ

ν2τ

)2σ2
β

κβ

+ o(1)� (A.85)

Hence, bCS < 1. We next show that bCS is negative and decreasing in τ if (43) holds. We
write (A.85) as

bCS = 1 −
σ2

r

κr

+φ
2

βNCS(τ)
σ2

β

κβ

σ2
r

κr

+φ
2

βDCS(τ)
σ2

β

κβ

+ o(1)� (A.86)

where

NCS(τ)≡
(
ezτ + κβ

ezτ − 1
z

)
ezτ − 1
zτ

� DCS(τ)≡
(
ezτ − 1
zτ

)2

�

and z ≡ −ν2 > 0. Equation (A.86) implies

bCS = −
φ

2

β

[
NCS(τ)−DCS(τ)

]σ2
β

κβ

σ2
r

κr

+φ
2

βDCS(τ)
σ2

β

κβ

+ o(1)� (A.87)

Since

NCS(τ)−DCS(τ)=
[
ezτ +

(
κβ − 1

τ

)
ezτ − 1

z

]
ezτ − 1
zτ

>

[
ezτ − ezτ − 1

zτ

]
ezτ − 1
zτ

= zτezτ − ezτ + 1
zτ

ezτ − 1
zτ

and xex − ex + 1 > 0 for all x, (A.87) implies bCS < 0. Consider next the derivative

⎡
⎢⎢⎢⎣
σ2

r

κr

+φ
2

βNCS(τ)
σ2

β

κβ

σ2
r

κr

+φ
2

βDCS(τ)
σ2

β

κβ

⎤
⎥⎥⎥⎦

′

=
σ2

r

κr

φ
2

β

σ2
β

κβ

[
N ′

CS(τ)−D′
CS(τ)

] +φ
4

β

σ4
β

κ2
β

[
N ′

CS(τ)DCS(τ)−NCS(τ)D
′
CS(τ)

]
[
σ2

r

κr

+φ
2

βDCS(τ)
σ2

β

κβ

]2 �
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Since

N ′
CS(τ)−D′

CS(τ)=
[
zezτ +

(
κβ − 1

τ

)
ezτ + ezτ − 1

zτ2

]
ezτ − 1
zτ

+
[
ezτ +

(
κβ − 1

τ

)
ezτ − 1

z

]
z2τezτ − z

(
ezτ − 1

)
z2τ2

>
z2τ2ezτ − zτezτ + ezτ − 1

zτ2

ezτ − 1
zτ

+ zτezτ − ezτ + 1
zτ

zτezτ − ezτ + 1
zτ2

and x2ex − xex + ex − 1 > 0 for all x, N ′
CS(τ)−D′

CS(τ) > 0. Since

[
NCS(τ)

DCS(τ)

]′
=

[
zτezτ

ezτ − 1

]′
= zezτ

(1 + zτ)
(
ezτ − 1

) − zτezτ(
ezτ − 1

)2 = zezτ
ezτ − 1 − zτ(
ezτ − 1

)2

and ex − 1 − x > 0 for all x, N ′
CS(τ)DCS(τ) − NCS(τ)D

′
CS(τ) > 0. Hence, bCS decreases

in τ. Q.E.D.

PROOF OF PROPOSITION 7: Substituting C(τ) from (41) into (42), using
� = Diag(κr�κβ) and Σ = Diag(σ2

r � σ
2
β), and dropping the subscript 1 from functions

of the single demand factor, we find

χr = κrr + aσ2
r

[∫ ∞

0
θ0(τ)Ar(τ)dτ

−χr

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Ar(τ)dτ

−χβ

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

+ σ2
r

2

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)

2 du

)
Ar(τ)dτ

+ σ2
β

2

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)

2 du

)
Ar(τ)dτ

]
� (A.88)

χβ = aσ2
β

[∫ ∞

0
θ0(τ)Aβ(τ)dτ

−χr

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

−χβ

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Aβ(τ)dτ

+ σ2
r

2

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)

2 du

)
Aβ(τ)dτ

+ σ2
β

2

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)

2 du

)
Aβ(τ)dτ

]
� (A.89)
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The system of (A.88) and (A.89) is linear in (χr�χβ) and its solution is

χr = 1
D

{[
κrr + aσ2

r

∫ ∞

0
θ0(τ)Ar(τ)dτ +Cr

]

×
[

1 + aσ2
β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Aβ(τ)dτ

]

−
[
aσ2

β

∫ ∞

0
θ0(τ)Aβ(τ)dτ +Cβ

]

×
[
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

]}
� (A.90)

χβ = 1
D

{[
aσ2

β

∫ ∞

0
θ0(τ)Aβ(τ)dτ +Cβ

]

×
[

1 + aσ2
r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Ar(τ)dτ

]

−
[
κrr + aσ2

r

∫ ∞

0
θ0(τ)Ar(τ)dτ +Cr

]

×
[
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

]}
� (A.91)

where

D≡
[

1 + aσ2
r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Ar(τ)dτ

]

×
[

1 + aσ2
β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Aβ(τ)dτ

]

−
[
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

]

×
[
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

]

and

Cj ≡ aσ2
j σ

2
r

2

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)

2 du

)
Aj(τ)dτ

+ aσ2
j σ

2
β

2

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)

2 du

)
Aj(τ)dτ

for j = r�β. The effect of a change in the demand intercept from θ0(τ) to θ0(τ)+
θ0(τ)
on the yield y(τ)

t for maturity τ is 
y(τ)
t ≡ 
C(τ)

τ
, which from (41), (A.90), and (A.91) is


y(τ)
t = 1

D

{[
aσ2

r

∫ ∞

0

θ0(τ)Ar(τ)dτ

]

×
[

1 + aσ2
β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Aβ(τ)dτ

]
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−
[
aσ2

β

∫ ∞

0

θ0(τ)Aβ(τ)dτ

][
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

]}

×

∫ τ

0
Ar(u)du

τ

+ 1
D

{[
aσ2

β

∫ ∞

0

θ0(τ)Aβ(τ)dτ

]

×
[

1 + aσ2
r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Ar(τ)dτ

]

−
[
aσ2

r

∫ ∞

0

θ0(τ)Ar(τ)dτ

][
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

]}

×

∫ τ

0
Aβ(u)du

τ
� (A.92)

Hence, the change 
θ0(τ) affects yields only through
∫ ∞

0 
θ0(τ)Ar(τ)dτ and∫ ∞
0 
θ0(τ)Aβ(τ)dτ.
When the change 
θ0(τ) is a Dirac function with point mass at τ∗,

∫ ∞

0

θ0(τ)Aj(τ)dτ =Aj

(
τ∗)

for j = r�β, and (A.92) becomes


y(τ)
t�τ∗ = 1

D

[
Λr

(
τ∗)

∫ τ

0
Ar(u)du

τ
+Λβ

(
τ∗)

∫ τ

0
Aβ(u)du

τ

]
� (A.93)

where

Λr

(
τ∗) ≡ aσ2

r Ar

(
τ∗)[1 + aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Aβ(τ)dτ

]

− aσ2
βAβ

(
τ∗)[aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

]
�

Λβ

(
τ∗) ≡ aσ2

βAβ

(
τ∗)[1 + aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Ar(τ)dτ

]

− aσ2
r Ar

(
τ∗)[aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

]
�
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Using (A.93), we can write (44) in the equivalent form

[
Λr(τ1)

∫ τ1

0
Ar(u)du

τ1
+Λβ(τ1)

∫ τ1

0
Aβ(u)du

τ1

]

×
[
Λr(τ2)

∫ τ2

0
Ar(u)du

τ2
+Λβ(τ2)

∫ τ2

0
Aβ(u)du

τ2

]

>

[
Λr(τ1)

∫ τ2

0
Ar(u)du

τ2
+Λβ(τ1)

∫ τ2

0
Aβ(u)du

τ2

]

×
[
Λr(τ2)

∫ τ1

0
Ar(u)du

τ1
+Λβ(τ2)

∫ τ1

0
Aβ(u)du

τ1

]

⇔ [
Λr(τ1)Λβ(τ2)−Λr(τ2)Λβ(τ1)

]

×
[∫ τ1

0
Ar(u)du

τ1

∫ τ2

0
Aβ(u)du

τ2
−

∫ τ2

0
Ar(u)du

τ2

∫ τ1

0
Aβ(u)du

τ1

]
> 0� (A.94)

To show that (A.94) holds, we show that each of the two terms in brackets is positive. The
second term is positive because it has the same sign as

∫ τ1

0
Ar(u)du

∫ τ2

0
Aβ(u)du−

∫ τ2

0
Ar(u)du

∫ τ1

0
Aβ(u)du

=
∫ τ1

0
Ar(u)du

∫ τ2

τ1

Aβ(u)du

−
∫ τ2

τ1

Ar(u)du

∫ τ1

0
Aβ(u)du

>

∫ τ1

0

[
Aβ(u)

Ar(τ1)

Aβ(τ1)

]
du

∫ τ2

τ1

Aβ(u)du

−
∫ τ2

τ1

[
Aβ(u)

Ar(τ1)

Aβ(τ1)

]
du

∫ τ1

0
Aβ(u)du

= 0�

where the second step follows because Aβ(τ) > 0 and [ Ar(τ)

Aβ(τ)
]′ < 0 for τ ∈ (0� τ̂). The first

term is equal to

[
Ar(τ1)Aβ(τ2)−Ar(τ2)Aβ(τ1)

]
D�
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and is positive if D> 0, since Aβ(τ) > 0 and [ Ar(τ)

Aβ(τ)
]′ < 0 for τ ∈ (0� τ̂). Integration by parts

implies that for j = r�β,∫ ∞

0
α(τ)

(∫ τ

0
Aj(u)du

)
Aj(τ)dτ

=
[
α(τ)

(∫ τ

0
Aj(u)du

)2]∞

0

+
∫ ∞

0

(∫ τ

0
Aj(u)du

)2

dα̂(τ)

−
∫ ∞

0
α(τ)

(∫ τ

0
Aj(u)du

)
Aj(τ)dτ� (A.95)

where dα̂(τ) denotes the measure generated by the nondecreasing function −α(τ) (which
is possibly discontinuous at a finite threshold T ). Since[

α(τ)

(∫ τ

0
Aj(u)du

)2]∞

0

= lim
τ→∞

[
α(τ)

(∫ τ

0
Aj(u)du

)2]
= 0�

where the second step follows because M is finite, (A.95) implies

∫ ∞

0
α(τ)

(∫ τ

0
Aj(u)du

)
Aj(τ)dτ =

∫ ∞

0

(∫ τ

0
Aj(u)du

)2

dα̂(τ)

2
≥ 0� (A.96)

Likewise,∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ +

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

= 2
[
α(τ)

(∫ τ

0
Ar(u)du

)(∫ τ

0
Aβ(u)du

)]∞

0

+ 2
∫ ∞

0

(∫ τ

0
Ar(u)du

)(∫ τ

0
Aβ(u)du

)
dα̂(τ)

−
∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ −

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

⇒
∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ +

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

=
∫ ∞

0

(∫ τ

0
Ar(u)du

)(∫ τ

0
Aβ(u)du

)
dα̂(τ)

and, hence,[∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

][∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

]

≤

[∫ ∞

0

(∫ τ

0
Ar(u)du

)(∫ τ

0
Aβ(u)du

)
dα̂(τ)

]2

4
� (A.97)
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Equations (A.96) and (A.97) imply that D> 0 if[∫ ∞

0

(∫ τ

0
Ar(u)du

)2

dα̂(τ)

][∫ ∞

0

(∫ τ

0
Aβ(u)du

)2

dα̂(τ)

]

≥
[∫ ∞

0

(∫ τ

0
Ar(u)du

)(∫ τ

0
Aβ(u)du

)
dα̂(τ)

]2

�

which holds because of the Cauchy–Schwarz inequality. Q.E.D.

APPENDIX B: DEMAND OF PREFERRED-HABITAT INVESTORS

There are overlapping generations of preferred-habitat investors living for a period of
length T <∞ and arbitrageurs living for a period of length dt. Thus, at each point in time
there is a continuum of investor generations and one arbitrageur generation. Arbitrageurs
and investors receive endowment W at the beginning of their life and consume at the
end of their life. Arbitrageurs use their endowment to buy bonds. Investors use their
endowment to buy bonds and to invest in a private opportunity (“real estate”) that pays
at the end of their life. To ensure that the slope of the investors’ demand for bonds is finite,
we require that substitution between bonds and the private opportunity is imperfect. We
model imperfect substitution by assuming that bonds pay in a good 1 (“money”) and the
private opportunity pays in a different good 2 (“real estate services”). The endowment
W is in good 1. Arbitrageurs and investors can use good 1 to invest in bonds and in the
private opportunity.

Consider the optimization problem of an investor n born at time 0. We denote by Ẑ(τ)
n�t

the number of units of the bond with maturity τ that the investor holds at time t ∈ [0�T ],
where one unit of the bond is an investment in the bond with face value 1. We denote by
Wn�t the value of the investor’s bond portfolio at time t and denote by dcn�t the investment
in the private opportunity between t and t + dt, both expressed in units of good 1. We
denote by (Ŵn�t� dĉn�t) the counterparts of (Wn�t� dcn�t) when expressed in units of the
bond maturing at time T :

Ŵn�t ≡ Wn�t

P(T−t)
t

�

dĉn�t ≡ dcn�t

P(T−t)
t

�

We finally denote by β̂(T−t)
n�t > 0 the number of units of good 2 that an investment of one

unit of good 1 at time t yields at time T . The investor’s budget constraint is

dŴn�t =
∫ T

0
Ẑ(τ)

n�t d

(
P(τ)
t

P(T−t)
t

)
dτ − dĉn�t � (B.1)

The investor’s utility at time T is

u(CT)+
∫ T

0
β̂(T−t)

n�t P(T−t)
t dĉn�t (B.2)

and it consists of two parts: a utility u(CT) that is an increasing and concave function of the
consumption CT of good 1 at time T , and a utility

∫ T

0 β̂(T−t)
n�t P(T−t)

t dĉn�t that is equal to the
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consumption of good 2 at time T and is derived from the accumulated investment in the
private opportunity between times 0 and T . The marginal utility u′(CT ) converges to infin-
ity when CT goes to a lower bound C and converges to zero when CT goes to infinity. The
investor has max-min preferences. At each time t ∈ [0�T ], the investor chooses (Ẑ(τ)

n�t � ĉn�t)
to maximize the minimum of (B.2) over sample paths of qt = (rt�β1�t � � � � �βK�t)

	 and
β̂(T−t)

n�t , subject to the budget constraint (B.1) and the terminal condition CT = ŴT .

PROPOSITION B.1: Assume that Σ has full rank, K ≥ 1, β̂(T−t)
n�t is an invertible function of

(β1�t � � � � �βK�t)
	, and the term structure involves no arbitrage (i.e., (34) holds). At time t, the

investor holds only the bond maturing at time T and no other bonds. The number Ẑ(T−t)
n�t of

units of the bond held by the investor solves

u′(Ẑ(T−t)
n�t

) = P(T−t)
t β̂(T−t)

n�t � (B.3)

PROOF: Defining (μẐ�n�t� σẐ�n�t) by∫ T

0
Ẑ(τ)

n�t d

(
P(τ)
t

P(T−t)
t

)
dτ ≡ μẐ�n�t dt + σẐ�n�t dBt�

where dBt = (dBr�t� dBβ�1�t� � � � � dBβ�K�t)
	, we write the budget constraint (B.1) as

dŴn�t = μẐ�n�t dt + σẐ�n�t dBt − dĉn�t � (B.4)

Integrating (B.4) from 0 to T and using the terminal condition CT = ŴT , we write the
investor’s optimization problem at t = 0 as

max
Ẑ
(τ)
n�t �ĉn�t

min
qt �β̂

(T−t)
n�t

[
u

(
Ŵ0 +

∫ T

0
μẐ�n�t dt +

∫ T

0
σẐ�n�t dBt −
ĉ0�n −

∫ T

0
dĉn�t

)

+ β̂(T)
0�nP

(T)
0 
ĉn�t +

∫ T

0
β̂(T−t)

n�t P(T−t)
t dĉn�t

]
� (B.5)

where we allow for the possibility that ĉt has a discrete change 
ĉn�0 at t = 0. Since Σ has
full rank and K ≥ 1, rt is not perfectly correlated with (β1�t � � � � �βK�t). Since, in addition,
β̂(T−t)

n�t is an invertible function of (β1�t � � � � �βK�t), sample paths of qt and β̂(T−t)
n�t exist such

that β̂(T−t)
n�t P(T−t)

t = u′(Ŵ0 −
ĉ0) for t > ε and for any ε > 0. Hence, the minimum in (B.5)
is smaller than

min
qt �β̂

(T−t)
n�t

[
u

(
Ŵ0 +

∫ T

0
μẐ�n�t dt +

∫ T

0
σẐ�n�t dBt −
ĉ0�n −

∫ T

0
dĉn�t

)

+ β̂(T)
0�nP

(T)
0 
ĉ0�n + u′(Ŵ0 −
ĉ0)

∫ T

0
dĉn�t

]
�

which in turn is smaller than

min
qt �β̂

(T−t)
n�t

[
u(Ŵ0 −
ĉ0)+ u′(Ŵ0 −
ĉ0)

(∫ T

0
μẐ�n�t dt +

∫ T

0
σẐ�n�t dBt

)

+ β̂(T)
0�nP

(T)
0 
ĉ0�n

]
(B.6)
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because u is concave. If σẐ�n�t = 0 for any interval in (0�T ), then the minimum in (B.6) is
minus infinity because the Brownian motion has infinite variation. Therefore, σẐ�n�t = 0,
that is, the investor holds the bond maturing at time T and zero units of all other bonds.
Since absence of arbitrage requires μẐ�n�t = 0, (B.6) is smaller than

u(Ŵ0 −
ĉ0)+ β̂(T)
0�n P

(T)
0 
ĉ0�n

and, hence,

max
Ẑ
(τ)
n�t �ĉn�t

min
qt �β̂

(T−t)
n�t

[
u

(
Ŵ0 +

∫ T

0
μẐ�n�t dt +

∫ T

0
σẐ�n�t dBt −
ĉ0�n −

∫ T

0
dĉn�t

)

+ β̂(T)
0�nP

(T)
0 
ĉn�t +

∫ T

0
β̂(T−t)

n�t P(T−t)
t dĉn�t

]

≤ max

ĉ0�n

[
u(Ŵ0 −
ĉ0)+ β̂(T)

0�nP
(T)
0 
ĉ0�n

]
� (B.7)

Setting Ẑ(τ)
n�t = 0 for t ≥ 0 and τ = T − t, and dĉn�t = 0 for t > 0 in (B.5), we find that

(B.7) holds also in the reverse sense and is, therefore, an equality. The optimal 
ĉ0�n thus
satisfies

u′(Ŵ0 −
ĉ0�n)= β̂(T)
0�nP

(T)
0 � (B.8)

Since Ŵ0 − 
ĉ0�n represents units of the bond maturing at time T that the investor holds
at time 0, (B.8) yields (B.3) for t = 0. The same argument yields (B.3) for t > 0. Q.E.D.

Proposition B.1 implies that preferred-habitat investors demand only the bond whose
maturity coincides with the time when they consume. To ensure that the demand by
preferred-habitat investors takes the specific functional form (5)–(7), we assume specific
functions for the utility u and the return β̂(τ)

n�t on the private opportunity.
Suppose C = −∞, u(CT) = −e−CT , and β̂(τ)

n�t = eβ
(τ)
t , where β(τ)

t is given by (6) and (7).
Proposition B.1 implies that the number Ẑ(T−t)

n�t of units of the bond maturing at time T
and held at time t by an investor born at time 0 is given by

e−Ẑ
(T−t)
n�t = P(T−t)

t β̂(T−t)
n�t ⇔ Ẑ(T−t)

n�t = − log
(
P(T−t)
t

) −β(T−t)
t �

This coincides with the demand (5)–(7) with α(τ) = 1, except that (5)–(7) concern the
present value of the bond rather than its face value, that is, the units of the bond. To derive
the demand (5)–(7) expressed in present-value terms, we modify the assumed functions
for u and β̂(τ)

n�t . We can obtain the demand (5)–(7) for a set of values of qt whose probability
can be made arbitrarily close to 1.

Suppose that there are two types of preferred-habitat investors born at each time
t in equal measure. For type 1 investors, C = 0, u(Ct+T ) = log(Ct+T ), and β̂(T+t−t′)

n�t′ =
− 1

min{β(T+t−t′)
t′ �−ε} , where β(τ)

t is given by (6) and (7), and ε is positive and small. For type

2 investors, C = −∞ and β̂(T+t−t′)
n�t′ = 1. To define u(Ct+T ) for type 2 investors, we start

with the function

N(x) ≡ − log(x)
x

�
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defined for x > 0. The function N(x) converges to infinity when x goes to zero and
converges to zero when x goes to infinity. It decreases for x ∈ (0� e) and increases for
x ∈ (e�T). Its minimum value, obtained for x= e, is − 1

e
. We take x to represent marginal

utility u′(Ct+T ) and take N(x) to represent Ct+T . This defines u(Ct+T ) for Ct+T > − 1
e

and
u′(Ct+T ) ∈ (0� e). To define u(Ct+T ) for Ct+T < − 1

e
and u′(Ct+T ) > e, we extend u′(Ct+T )

as a linear function of Ct . (Other extensions are possible as well.) We set the derivative of
the linear function so that u′(Ct+T ) is continuously differentiable at the extension point,
and we take the extension point to be u′(Ct+T ) = e(1 − ε) (rather than u′(Ct+T ) = e) so
that the derivative is finite. We thus set

u′(Ct+T )= N−1(Ct+T ) for Ct+T ≥ N[e(1 − ε)],

u′(Ct+T )= e(1 − ε)− e2(1 − ε)2

log(1 − ε)

[
Ct+T −N

[
e(1 − ε)

]]
for Ct+T < N

[
e(1 − ε)

]
�

Since u′(Ct+T ) is positive and decreasing, u(Ct+T ) is increasing and concave.
Proposition B.1 implies that the number Ẑ(T−t)

n�t of units of the bond maturing at time T
and held at time t by a type 1 investor born at time 0 is given by

1

Ẑ(T−t)
n�t

= P(T−t)
t β̂(T−t)

n�t �

This yields the demand

P(T−t)
t Ẑ(T−t)

n�t = 1

β̂(T−t)
n�t

= −β(T−t)
t �

expressed in present-value terms, when β(T−t)
t <−ε. Proposition B.1 implies that the num-

ber Ẑ(T−t)
n�t of units of the bond maturing at time T and held at time t by a type 2 investor

born at time 0 is given by

N−1
(
Ẑ(T−t)

n�t

) = P(T−t)
t

when P(T−t)
t < e(1 − ε). This yields the demand

P(T−t)
t Ẑ(T−t)

n�t = P(T−t)
t N

(
P(T−t)
t

) = − log
(
P(T−t)
t

)
�

expressed in present-value terms. The aggregate demand, expressed in present-value
terms, across type 1 and type 2 investors when β(T−t)

t < −ε and P(T−t)
t < e(1 − ε) is

− log
(
P(T−t)
t

) −β(T−t)
t

and coincides with the demand (5)–(7) with α(τ)= 1. Condition β(T−t)
t < −ε requires that

the demand intercept in (5) is negative (smaller than −ε). Condition P(T−t)
t < e(1 − ε)

requires that zero-coupon bonds trade below e(1 − ε) and, hence, below par value. The
probability of the set of values of qt such that the two conditions hold simultaneously can
be made arbitrarily close to 1 if r is sufficiently large and θ0(τ) is sufficiently small.

Proposition B.1 and the subsequent analysis require K ≥ 1. To extend them to K = 0,
we assume that β̂(T−t)

n�t is equal to a deterministic function of T − t plus random noise that
is independent across investors n in the same generation. Because of the random noise,
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β̂(T−t)
n�t is not perfectly correlated with rt , and the proof of Proposition B.1 goes through.

Because the random noise is independent across investors in the same generation, β̂(T−t)
n�t

averages to a deterministic function of T − t.

APPENDIX C: CALIBRATION

The material in Appendix C is included in the Full Appendix, available at http:
//personal.lse.ac.uk/vayanos/Papers/PHMTSIR_ECMAf.pdf.
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