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S1. INTRODUCTION

THERE IS NO SUPPLEMENTARY MATERIAL for this section of OW.

S2. BASIC SETUP AND MAIN RESULTS

In this section, we provide proofs of Lemmas OW5 and OW6 referred to in the proof
of Theorem OW1.

S2.1. Proof of Lemma OW5

Note that

UMU ′ =
(

0 0
0 UT−1

)
M

(
0 0
0 U ′

T−1

)
�

where UT−1 is the T −1-dimensional upper triangular matrix of ones. Denoting the T −1-
dimensional vector of ones as lT−1, we obtain

UMU ′ =
(

0 0
0 UT−1

(
IT−1 − lT−1l

′
T−1/T

)
U ′

T−1

)
=

(
0 0
0 Q

)
�

We have

Q−1 = (
U ′

T−1

)−1(
IT−1 + lT−1l

′
T−1

)
(UT−1)

−1�

On the other hand, (UT−1)
−1 is a two-diagonal matrix with 1 on the main diagonal and −1

on the super-diagonal. Therefore, Q−1 is a three-diagonal matrix with 2 on the main diago-
nal, and −1 on the sub- and super-diagonals. As is well known (e.g., Sargan and Bhargava
(1983)), the eigenvalues of such a three-diagonal matrix, indexed in the increasing order,
are μk = 2−2 cos(�k/2), k= 1� � � � � T −1, where �k = 2πk/T . The corresponding (nor-
malized) eigenvectors are v̄k = (v̄k1� � � � � v̄k�T−1)

′ with v̄kj = √
2/T sin(j�k/2). This implies

that the singular values of MU ′ (in decreasing order) are

σk =
√
μ−1

k = (
2 sin(�k/4)

)−1
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2 A. ONATSKI AND C. WANG

for k = 1� � � � � T − 1 and σT = 0, and the components of the corresponding normalized
right singular vectors are

vks = √
2/T sin

(
(s − 1)�k/2

)
� s = 1� � � � �T

for k = 1� � � � �T − 1; and vTs = 1 for s = 1 and vTs = 0 for s > 1. Notice that vks, s =
1� � � � � T , are proportional to the values at (s− 1)/T of the kth principal eigenfunction of
the covariance operator of the Brownian bridge process (e.g., Shorack and Wellner (1986,
pp. 213–214)).

To find the kth left singular vectors wk with k< T , we multiply MU ′ by σ−1
k vk. We have

wk = 2 sin(�k/4)MU ′vk. On the other hand, the jth element of U ′vk equals

√
2/T Im

j−1∑
s=0

eis�k/2 = √
2/T Im

eij�k/2 − 1
ei�k/2 − 1

�

Therefore,
√
T/2 times the jth element of MU ′vk equals

Im
eij�k/2 − 1
ei�k/2 − 1

− 1
T

Im
T∑
j=1

eij�k/2 − 1
ei�k/2 − 1

= Im
eij�k/2

ei�k/2 − 1
= −cos

(
(2j − 1)�k/4

)
2 sin(�k/4)

�

Hence,

wks = −√
2/T cos

(
(s − 1/2)�k/2

)
� s = 1� � � � � T�

for k < T . Clearly, the left singular vector of MU ′ corresponding to zero singular value
equals wT = √

1/T lT .

REMARK: From (OW7), we see that wks with s = 1� � � � �T and k < T are proportional
to the values at (s− 1/2)/T of the kth principal eigenfunction of the covariance operator
of the demeaned Wiener process.

S2.2. Proof of Lemma OW6

Our proof of Lemma OW6 is based on the following result.

LEMMA S1: Suppose Assumption A1 of OW holds. Let a, b, c, d and A, B be any deter-
ministic T -dimensional vectors and Nε ×Nε matrices, respectively. Then

E
(
a′ε′Aεb

) = a′b trA� and (S1)∣∣Cov
(
a′ε′Aεb�c′ε′Bεd

) − (
a′c

)(
b′d

)
tr

(
A′B

) − (
a′d

)(
b′c

)
tr(AB)

∣∣
≤ 2κ4

Nε∑
i=1

T∑
t=1

|AiiBiiatbtctdt |� (S2)

where at , bt , ct , and dt are the tth components of vectors a, b, c, and d.

First, let us derive Lemma OW6 from Lemma S1. After such a derivation, we will prove
Lemma S1. Since W is positive semi-definite, we have(‖W ‖/ trW

)2 ≤ tr
(
W 2

)
/(trW )2 ≤ ‖W ‖/ trW �
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Further, ‖W ‖ = ‖Ω‖ and trW = trΩ. Therefore, Assumption A3 of OW is equivalent to
the requirement

tr
(
W 2

) = o(1)(trW )2� (S3)

The first and second equalities of Lemma OW6 follow from Lemma S1, Chebyshev’s
inequality, and (S3). The last equality follows from the fact that

∑T−1
r=1 σ2

r =O(T 2).
Now, let us turn to the proof of Lemma S1. We have

E
(
a′ε′Aεb

) =
T∑

t�s=1

Nε∑
i�j=1

E(atεitAijεjsbs)

=
T∑
t=1

Nε∑
i=1

atAiibt = a′b trA�

Further, denoting the ith row of ε as εi·, we have

E
(
a′ε′Aεbc′ε′Bεd

)
=

Nε∑
i�j=1

Nε∑
p�l=1

E(εi·aAijεj·bεp·cBplεl·d)

=
Nε∑
i=1

Nε∑
j �=i

E
(
(εi·a)(εi·b)(εj·c)(εj·d)AiiBjj

)

+
Nε∑
i=1

Nε∑
j �=i

E
(
(εi·a)(εi·c)(εj·b)(εj·d)AijBij

)

+
Nε∑
i=1

Nε∑
j �=i

E
(
(εi·a)(εi·d)(εj·b)(εj·c)AijBji

)

+
Nε∑
i=1

E
(
(εi·a)(εi·b)(εi·c)(εi·d)AiiBii

)
�

We have, first,

Nε∑
i=1

Nε∑
j �=i

E
(
(εi·a)(εi·b)(εj·c)(εj·d)AiiBjj

)

=
Nε∑
i=1

Nε∑
j �=i

(
a′b

)(
c′d

)
AiiBjj

= (
a′b

)(
c′d

)[
(trA)(trB)−

Nε∑
i=1

AiiBii

]
�
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second,

Nε∑
i=1

Nε∑
j �=i

E
(
(εi·a)(εi·c)(εj·b)(εj·d)AijBij

)

=
Nε∑
i=1

Nε∑
j �=i

(
a′c

)(
b′d

)
AijBij

= (
a′c

)(
b′d

)[
tr

(
A′B

) −
Nε∑
i=1

AiiBii

]
�

third,

Nε∑
i=1

Nε∑
j �=i

E
(
(εi·a)(εi·d)(εj·b)(εj·c)AijBji

)

=
Nε∑
i=1

Nε∑
j �=i

(
a′d

)(
b′c

)
AijBji

= (
a′d

)(
b′c

)[
tr(AB)−

Nε∑
i=1

AiiBii

]
�

and finally,

Nε∑
i=1

E
(
(εi·a)(εi·b)(εi·c)(εi·d)AiiBii

)

=
Nε∑
i=1

E

(
T∑
t=1

εitat

T∑
t=1

εitbt

T∑
t=1

εitct

T∑
t=1

εitdtAiiBii

)

=
Nε∑
i=1

AiiBii

(
T∑

t�s:t �=s

atbtcsds +
T∑

t�s:t �=s

atbsctds +
T∑

t�s:t �=s

atbscsdt

+
T∑
t=1

Eε4
itatbtctdt

)

=
Nε∑
i=1

AiiBii

((
a′b

)(
c′d

) + (
a′c

)(
b′d

) + (
a′d

)(
b′c

)

+
T∑
t=1

(
Eε4

it − 3
)
atbtctdt

)
�
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Summing up,

E
(
a′ε′Aεbc′ε′Bεd

)
= (

a′b
)(
c′d

)
(trA)(trB)+ (

a′c
)(
b′d

)
tr

(
A′B

) + (
a′d

)(
b′c

)
tr(AB)

+
Nε∑
i=1

AiiBii

T∑
t=1

(
Eε4

it − 3
)
atbtctdt�

Recall that E(a′ε′Aεb) = a′b trA and E(c′ε′Bεd)= c′d trB. These equalities and the last
display yield

Cov
(
a′ε′Aεb�c′ε′Bεd

) = (
a′c

)(
b′d

)
tr

(
A′B

) + (
a′d

)(
b′c

)
tr(AB)

+
Nε∑
i=1

AiiBii

T∑
t=1

(
Eε4

it − 3
)
atbtctdt�

The inequality (S2) follows because |Eε4
it −3| is bounded by 2κ4 uniformly over i and t. In-

deed, by Assumption A1, Eε4
it ≤ κ4, and Eε4

it −3 ≤ κ4. On the other hand, Eε4
it ≥ (Eε2

it)
2 =

1, and thus, κ4 ≥ 1 and Eε4
it − 3 ≥ −2 ≥ −2κ4.

S3. EXTENSIONS

S3.1. Local Level Model

S3.1.1. Proof of Theorem OW2

Consider the decomposition

YM =ωTXM +ZM� (S4)

where X = [X1� � � � �XT ] and Z = [Z1� � � � �ZT ]. Note that the principal eigenvalues and
eigenvectors of MX ′XM/N satisfy Theorem OW1(i)–(ii) as long as condition (OW5) of
that theorem holds. Statements (i) and (ii) of Theorem OW2 would follow from this fact
and the standard perturbation theory (e.g., Kato (1980, Chapter 2)) if we are able to show
that ‖MZ′ZM‖ = ω2

TT
2 trΩoP(1).

Assumption A4 of OW yields
∑∞

k=0 ‖Πk‖ = O(Nβ) and k‖Πk‖ ≤ ∑∞
k=0(1 + k)‖Πk‖ =

O(Nβ). Therefore,
∑∞

k=0 k‖Πk‖2 = O(N2β) and, as explained in Remark OW8, we can
apply Lemma OW7 to obtain

‖ZM‖ ≤ ‖Z‖ =OP

(
T 1/2Nβ +N1/2

η Nβ
)
�

Hence, Theorem OW2(i)–(ii) holds as long as (OW5) and (OW9) hold. But these are the
assumptions of Theorem OW2(i)–(ii).

For (iii) to hold, it is sufficient that (OW6) is satisfied and | tr Σ̌−ω2
T tr(MX ′XM)/N| is

asymptotically dominated by ω2
T tr(MX ′XM)/N . Using arguments very similar to those

employed in the proof of Theorem OW1(iii) after equation (OW33), we see that such
an asymptotic domination takes place if ω2

TT
2 trΩ/N asymptotically dominates N2β(T +

Nη)min{1�T/N}, which is implied by the assumptions of Theorem OW2(iii).
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S3.1.2. The Case of the I(1) Weight Proportional to 1/T

In this subsection, we would like to revisit the example given in the main text immedi-
ately after the formulation of Theorem OW2. We would like to show how, in that example,
the theorem would be violated if ωT converges to zero faster than allowed by condition
(OW9).

Consider Xt and Zt that follow a pure multivariate random walk and white noise pro-
cesses, respectively. For simplicity, we assume that Xt and Zt are independent and Gaus-
sian, and that T/N = c ∈ (0�∞). In this setting, Assumptions A1–A4 are satisfied with
α = β = 0 and trΩ = Nε = Nη = N , so that condition (OW5) of Theorem OW1 is triv-
ially satisfied while condition (OW9) of Theorem OW2 is violated if and only if ωT con-
verges to zero as fast or faster than 1/T . We will assume that ωT =w/T for some positive
fixed w.

Consider a singular value decomposition ωTXM/
√
N = USV . Here U and V are or-

thonormal matrices and S is a diagonal matrix of the singular values of ωTXM/
√
N .

By Theorem OW1(i)–(ii), the kth row of V becomes asymptotically collinear with a co-
sine wave (represented by vector dk), and the kth diagonal element of S converges to
w/(kπ) as T → ∞. We would like to know whether and how the principal eigenvectors
of Σ̌= MY ′YM/N differ from the cosine waves.

From (S4), we have

U ′YMV ′/
√
N = S +U ′ZMV ′/

√
N�

Note that the last diagonal element of S is zero (because M has deficient rank), and the
last row of V belongs to the null space of M . Denote matrix U ′YMV ′ with the last (zero)
column removed as Ỹ . Similarly, denote matrices S and U ′ZMV ′ with last (zero) columns
removed as S̃ and ε̃, respectively. With this notation,we have Ỹ /

√
N = S̃ + ε̃/

√
N .

By definition, the entries of the kth principal eigenvector of Ỹ ′Ỹ /N equal the scalar
products of the kth principal eigenvector of Σ̌ with the rows of V (which become asymp-
totically collinear with the cosine waves). Further, since we have assumed that Xt and Zt

are independent Gaussian, ε̃ has i.i.d. (standard) Gaussian entries.
Now, let S̄ be an N × (T − 1) matrix with all elements zero, except the first K diagonal

elements. For k≤ K, let S̄kk =w/(kπ). Obviously,

Ỹ /
√
N = S̄ + ε̃/

√
N + (S̃ − S̄)�

For arbitrarily small δ > 0, we can choose K so large that ‖S̃ − S̄‖ < δ with probability at
least 1 − δ, for all sufficiently large N , T . Therefore, the asymptotic behavior of the kth
principal eigenvectors (and eigenvalues) of Ỹ ′Ỹ /N and of (

√
NS̄ + ε̃)′(

√
NS̄ + ε̃)/N is

the same. In particular, the kth components of these two principal eigenvectors converge
to the same limit.

By Theorem 1 of Onatski (2018), if w2 > (kπ)2√c, the kth component of the kth prin-
cipal eigenvector of (

√
NS̄ + ε̃)′(

√
NS̄ + ε̃)/N converges to

lkk :=
√

w4 − c(kπ)4

w2
(
w2 + (kπ)2

) �
If w2 ≤ (kπ)2√c, then the kth component converges to zero. Furthermore, by Theorem 5
of Onatski (2018), if w2 > (kπ)2√c, the kth principal eigenvalue of (

√
NS̄ + ε̃)′(

√
NS̄ +
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ε̃)/N converges to

μk := (
w2/(kπ)2 + c

)(
1 + (kπ)2/w2

)
�

If w2 ≤ (kπ)2√c, then the kth eigenvalue converges to (1 + √
c)2.

In our setting, these results show that Theorem OW2 does not hold when ωT = w/T .
Specifically, the scalar product of the kth principal eigenvector of Σ̌ with the “kth cosine
wave” does not converge to 1, and the kth principal eigenvalue of Σ̌ does not converge
to w2/(kπ)2. Instead, if w2 > (kπ)2√c, the scalar product converges to lkk < 1 and the
eigenvalue converges to μk > w2/(kπ)2. If w2 ≤ (kπ)2√c, the kth principal eigenvec-
tor of Σ̌ is asymptotically orthogonal to the “kth cosine wave,” and the kth eigenvalue
asymptotically depends only on c, but not on w or k.

Interestingly, even though Theorem OW2 becomes violated, the principal eigenvalues
of Σ̌ still decay very fast, for relatively large w. Hence, the scree plot for matrix Σ̌ still
can be wrongfully interpreted as showing the existence of factors in the data. This phe-
nomenon gradually disappears as w becomes smaller and smaller. Similarly, for large w,
the kth principal eigenvector of Σ̌ is “almost collinear” with the “kth cosine wave,” but
the quality of the alignment deteriorates as w decreases.

S3.2. Demeaned and Standardized Data

S3.2.1. Proof of Theorem OW3

First, we prove the theorem for k = 1, and then establish it for general k using mathe-
matical induction. For the demeaned and standardized case, F̂1 is defined as a normalized
eigenvector of

Σ̂ = MX ′D−1XM/N�

corresponding to its largest eigenvalue λ̂1. Here D = diag{XMX ′/T } and M is the pro-
jector on the space orthogonal to the T -dimensional vector of ones.

In contrast to the proof of Theorem OW1, we will not approximate Σ̂ by Σ̃, where the
latter matrix is derived from the Beveridge–Nelson decomposition

XM =Ψ(1)εUM +Ψ ∗(L)εM�

In fact, we will not be using the BN decomposition at all. There are two reasons for
this. First, Lemma OW7 cannot be applied to the standardized version of Ψ ∗(L)εM ,
that is, D−1/2Ψ ∗(L)εM . Second, even if we manage to reduce the analysis of D−1/2XM
to that of D−1/2Ψ(1)εUM , our method of handling Ψ(1)εUM would not extend to
D−1/2Ψ(1)εUM , because D and ε are not independent. To summarize, we are not going
to use the BN decomposition, and will work directly with the demeaned and standardized
data D−1/2XM = D−1/2eUM , where e= [e1� � � � � eT ] with et =Ψ(L)εt .

Recall that by Lemma OW5, UM = ∑T

q=1 σqvqw
′
q. Consider a representation of F̂1 in

the basis w1� � � � �wT :

F̂1 =
T−1∑
q=1

αqwq� (S5)
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Vector F̂1 is orthogonal to wT , hence summation runs up to q = T − 1. Representation
(S5) yields

λ̂1 =
T−1∑
k�q=1

αkαqw
′
kΣ̂wq =

T−1∑
k�q=1

αkαqσkσqv
′
ke

′D−1evq/N� (S6)

It is convenient to represent λ̂1 in the form λ̂1 =A′A, where

A = 1√
N

K∑
k=1

αkσkD
−1/2evk + 1√

N

T−1∑
k=K+1

αkσkD
−1/2evk = A1 +A2�

with K being a fixed positive integer. Let ej· denote the jth row of e. Then, we have the
following explicit expressions for ‖A1‖2 and ‖A2‖2:

‖A1‖2 = T

K∑
k�q=1

αkαq

1
N

N∑
j=1

σkσq(ej·vk)(ej·vq)
T−1∑
t=1

σ2
t (ej·vt)

2

� (S7)

‖A2‖2 = T

N

N∑
j=1

(
T−1∑

k=K+1

αkσkej·vk

)2

T−1∑
t=1

σ2
t (ej·vt)

2

� (S8)

Let

Mj�kq = σkσq(ej·vk)(ej·vq)/
T−1∑
t=1

σ2
t (ej·vt)

2�

Then

‖A1‖2 = T

K∑
k�q=1

αkαq

1
N

N∑
j=1

Mj�kq�

and by Assumption A2b, Mj�kq are independent for different j = 1� � � � �N . Moreover,
since

∣∣σkσqv
′
ke

′
j·ej·vq

∣∣ ≤ σ2
kv

′
ke

′
j·ej·vk + σ2

qv
′
qe

′
j·ej·vq

2
�

we have |Mj�kq| ≤ 1/2. Therefore, the variance of 1
N

∑N

j=1 Mj�kq is no larger than 1/(4N),
and thus, the asymptotic behavior of ‖A1‖2 is, to a large extent, determined by that of
1
N

∑N

j=1 EMj�kq.
Consider the finite Fourier transform of ej· (e.g., Brillinger (2001, Chapter 3.1)):

d(�)=
T∑
t=1

ejt exp
{−i(t − 1)�

}
� � ∈ [0�2π]�
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Let us denote d(�r/2) as dr and d(−�r/2) as d−r , where �r = 2πr/T . By definition (see
Lemma OW5), the tth entry of vr for r = 1� � � � � T − 1 equals

vrt =
√

2/T
(
exp

{
i(t − 1)�r/2

} − exp
{−i(t − 1)�r/2

})
/(2i)�

Therefore,

ej·vr = √
2/T(d−r − dr)/(2i)� (S9)

Theorem 13 in Chapter 4 of Hannan (1970) (one of the assumptions of this theorem
requires that the spectral density of ej· at zero is positive, which is ensured by Assump-
tion A2b), identity (S9), and the definition of σi imply that, for any fixed j, k, and q, as

T → ∞, Mj�kq
d→Mkq, where

Mkq = (kq)−1ηkηq/

∞∑
t=1

(t)−2η2
t �

and {ηk}∞
k=1 is a sequence of i.i.d. N(0�1) random variables. Since Mj�kq is bounded, the

convergence in distribution implies the convergence of the moments of Mj�kq. In particu-
lar, as T → ∞,

EMj�kq = EMkq + oj(1)� (S10)

To proceed further, we need to establish the uniformity of oj(1) in j = 1� � � � �N .
In preparation for the proof of the uniformity, we establish some bounds on the spectral

density of the series ejt , t ∈ Z at frequency �,

fj(�)= 1
2π

∣∣∣∣∣
∞∑
k=0

(Ψk)jj exp{ik�}
∣∣∣∣∣

2

� (S11)

By Assumption A2b, for all j,

max
�

∣∣fj(�)
∣∣ ≤ B2/(2π)� (S12)

Furthermore, differentiating both sides of (S11) with respect to �, we obtain

fj(�)′ = 1
2π

∞∑
k�r=0

i(k− r)(Ψk)jj(Ψr)jj exp{ik�− ir�}�

Since |k− r| ≤ (k+ 1)(r + 1), we conclude, using Assumption A2b, that for all j,

max
�

∣∣f ′
j (�)

∣∣ ≤ B2/(2π)� (S13)

Finally, Assumption A2b also implies that, for all j,

fj(0)≥ b2/(2π)� (S14)

We will need the following two lemmas. Their proofs can be found in Sections S3.2.2
and S3.2.3.
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LEMMA S2: Under the assumptions of Theorem OW3, there exists an absolute constant C
such that, for any j = 1� � � � �N and any q� r�p� l = 1� � � � �T − 1, we have

(i) |E(v′
qe

′
j·ej·vr)− 2πfj(�q/2)δqr | ≤ CB2/T , where δqr is the Kronecker delta and �q =

2πq/T ;
(ii) |Cov(v′

qe
′
j·ej·vr� v

′
pe

′
j·ej·vl)| ≤ C(δqpδrl + δqlδrp + (1 + κ4)/T)B

4, where κ4 is as de-
fined in Assumption A1.

LEMMA S3: Let X be an R-dimensional vector with the kth coordinate ej·vk and let Y be
an R-dimensional vector with i.i.d. normal coordinates with mean zero and variance 2πfj(0).
Further, let g :RR → R be a thrice continuously differentiable function with all derivatives up
to and including the third order are bounded by absolute value by a constant Mg. Then, under
Assumptions A1 and A2b, we have, for all sufficiently large T ,∣∣Eg(X)−Eg(Y)

∣∣ ≤ MgC/
√
T�

where C depends only on R, B, and κ4, with κ4 and B as defined in Assumptions A1 and
A2b.

Now we are ready to prove the uniformity of oj(1) in (S10). By definition,

Mj�kq = σkσqXkXq

R∑
t=1

σ2
t X2

t + Z

�

where Z =∑T−1
t=R+1 σ

2
t v

′
te

′
j·ej·vt . For max{k�q} ≤R, denote σkσqXkXq/

∑R

t=1 σ
2
t X2

t as M̄j�kq.
Consider the event E = {X2

1 ≤ δ} and let 1E and 1Ec be the indicators of this event and
of its complement, respectively. Since |Mj�kq| ≤ 1/2 and |M̄j�kq| ≤ 1/2, we have

E
[|Mj�kq − M̄j�kq| × 1E

] ≤ pδ = Pr(E)�

By setting function g in Lemma S3 so that it approximates 1E , we see that pδ can be made
arbitrarily small for all sufficiently large T uniformly in j by choosing δ sufficiently small.
On the other hand,

E
[|Mj�kq − M̄j�kq| × 1Ec

] = E

[
|Mj�kq|Z1Ec

R∑
t=1

σ2
t X2

t

]
≤ EZ

2δσ2
1

�

By Lemma S2(i) and by (S12),

EZ ≤
T−1∑

t=R+1

σ2
t

(
B +CB2/T

) ≤ C̃σ2
1/R

for some absolute constant C̃ , where the latter inequality follows from the definition of
σ2

t . Therefore,

E
[|Mj�kq − M̄j�kq| × 1Ec

] ≤ C̃/(2δR)�
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and

E|Mj�kq − M̄j�kq| = E
[|Mj�kq − M̄j�kq| × 1E

] +E
[|Mj�kq − M̄j�kq| × 1Ec

]
≤ pδ + C̃/(2δR)�

which can be made arbitrarily small for all sufficiently large T uniformly in j by choosing
sufficiently small δ and sufficiently large R.

Further, let M̄kq = σkσqηkηq/
∑R

t=1 σ
2
t η

2
t . By choosing R sufficiently large, we can

make E|M̄kq −Mkq| arbitrarily small for all sufficiently large T .
Now consider EM̄j�kq − EM̄kq. To bound this expression uniformly in j, we would

like to use Lemma S3 again. Unfortunately, M̄j�kq does not have bounded derivatives
as a function of X = (X1� � � � �XR)

′. The derivatives are unbounded in a neighborhood of
X = 0.

To overcome this difficulty, let us introduce τ : [0�∞) → R, a thrice continuously dif-
ferential function such that

τ(z) = z for z > δ�

τ(z) > δ/2 for z ≥ 0�

and the first three derivatives of τ(z) bounded for z ∈ [0� δ]. Further, let

M̃j�kq = σkσqXkXq

σ2
1τ

(
X2

1

) +
R∑
t=2

σ2
t X2

t

= g(X)�

Similarly, let M̃kq = g(η), where η = (η1� � � � �ηR)
′. Note that the derivatives ∂r

ig(x) for
r = 1�2�3 are bounded, with a bound that depends only δ, but not on R.

We have

M̄j�kq = M̄j�kq1E + M̄j�kq1Ec = M̄j�kq1E + M̃j�kq1Ec

= (M̄j�kq − M̃j�kq)1E + M̃j�kq�

Therefore,

|EM̄j�kq −EM̃j�kq| =
∣∣E[

(M̄j�kq − M̃j�kq)1E
]∣∣ ≤ pδ�

so that |EM̄j�kq − EM̃j�kq| can be made arbitrarily small, uniformly over j, by choosing
sufficiently small δ. By similar arguments, we can show that |EM̃kq −EM̄kq| can be made
arbitrarily small by choosing sufficiently small δ. Finally, |EM̃j�kq − EM̃kq| can be made
arbitrarily small uniformly over j for all sufficiently large T by Lemma S3. Summing up
the above arguments, we conclude that oj(1) in (S10) is uniform in j.
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By (S10) and Chebyshev’s inequality,

1
N

N∑
j=1

Mj�kq = EMkq + o(1)+OP

(
N−1/2

)
�

Furthermore, by a conditioning argument, it is easy to show that EMkq = 0 for k �= q.
Now recall

‖A1‖2 = T

K∑
k�q=1

αkαq

1
N

N∑
j=1

Mj�kq�

Therefore, we have

1
T

‖A1‖2 =
K∑

k=1

α2
kEMkk + o(1)+OP

(
N−1/2

)
�

For A2, the Cauchy–Schwarz inequality and the identity
∑

α2
i = 1 yield

‖A2‖2/T = 1
N

N∑
j=1

(
T−1∑

k=K+1

αkσkej·vk

)2

T−1∑
t=1

σ2
t v

′
te

′
j·ej·vt

≤
(

1 −
K∑
i=1

α2
i

)
1
N

N∑
j=1

T−1∑
k=K+1

σ2
k(ej·vk)

2

T−1∑
t=1

σ2
t (ej·vt)

2

�

Note that

E

T−1∑
k=K+1

σ2
k(ej·vk)

2

T−1∑
t=1

σ2
t (ej·vt)

2

= 1 −E

K∑
k=1

σ2
k(ej·vk)

2

T−1∑
t=1

σ2
t (ej·vt)

2

= 1 −
K∑

k=1

EMkk + o(1)

= δK + o(1)�

where δK can be made arbitrarily small by choosing sufficiently large K, and o(1) is uni-
form in j, but may depend on K. Therefore,

‖A2‖2/T ≤
(

1 −
K∑
i=1

α2
i

)(
δK + o(1)+OP

(
N−1/2

))
�

For λ̂1, we have

λ̂1 = ‖A‖2 ≤ ‖A1‖2 + 2‖A1‖‖A2‖ + ‖A2‖2�
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This inequality and the above bounds on ‖A1‖2/T and ‖A2‖2/T yield

λ̂1/T ≤
K∑

k=1

α2
kEMkk +�K + oP(1)�

where �K can be made arbitrarily small by choosing sufficiently large K, and the conver-
gence of oP(1) to 0 as T → ∞ may depend on the choice of K. This implies that

λ̂1/T ≤
T−1∑
k=1

α2
kEMkk + oP(1)�

It is easy to see that EMaa > EMbb for a < b. Indeed, consider functions Ha, Hb :
[0�∞)2→R:

Ha(x� y) = xη2
a∑

t≥1�t �=a�b

(t)−2η2
t + xη2

a + yη2
b

�

Hb(x� y) = xη2
b∑

t≥1�t �=a�b

(t)−2η2
t + xη2

b + yη2
a

�

Functions Ha and Hb are increasing in x and decreasing in y and this monotonicity is strict
(unless η2

a = 0 or η2
b = 0, which is a zero probability event). Therefore, with probability 1,

for a < b, we have

EMaa = EHa

(
a−2� b−2

)
> EHa

(
a−2 + b−2

2
�
a−2 + b−2

2

)
and

EMbb = EHb

(
b−2� a−2

)
< EHb

(
a−2 + b−2

2
�
a−2 + b−2

2

)
�

On the other hand,

EHa

(
a−2 + b−2

2
�
a−2 + b−2

2

)
= EHb

(
a−2 + b−2

2
�
a−2 + b−2

2

)
�

Therefore, EMaa > EMbb. This implies that

T−1∑
k=1

α2
kEMkk ≤ α2

1EM11 + (
1 − α2

1

)
EM22�

and thus,

λ̂1/T ≤ α2
1EM11 + (

1 − α2
1

)
EM22 + oP(1)� (S15)

On the other hand, λ̂1 must be no smaller than v′
1Σ̂v1, which yields

λ̂1/T ≥ EM11 + oP(1)� (S16)
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Thus, (
1 − α2

1

)
EM11 ≤ (

1 − α2
1

)
EM22 + oP(1)�

which only holds if

α2
1

P→ 1� (S17)

This yields statement (i) of the theorem.
To establish statement (ii), note that (S15) and (S16) imply

|λ̂1/T −EM11| ≤
∣∣1 − α2

1

∣∣(EM11 +EM22)+ oP(1)�

Combining this with (S17), we conclude that

λ̂1/T = EM11 + oP(1)�

This yields (ii) because EM11 = ν1 (the latter being defined in the statement of Theo-
rem OW3).

Further,

tr Σ̂= tr
(
MX ′D−1XM/N

) = tr
(
D−1XMX ′/N

)
�

But, by definition, D = diag{XMX ′/T }. Therefore, tr Σ̂= T and

λ̂1/T = λ̂1/ tr Σ̂�

which yields statement (iii) of the theorem.
For k = m > 1, the theorem follows by mathematical induction. Indeed, suppose it

holds for k<m. Consider a representation F̂m = ∑T−1
q=1 αqwq. Since F̂ ′

mF̂j = 0 for all j <m,
and since |F̂ ′

jwj| = 1 + oP(1) by the induction hypothesis, we must have αj = oP(1) for all
j <m. In particular,

F̂ ′
mΣ̂F̂m =

T−1∑
q�r=m

αqαrσqσrv
′
qe

′D−1evr/N + oP(T)�

In addition to this equality, we must have

m−1∑
i=1

λ̂i + F̂ ′
mΣ̂F̂m ≥

m∑
i=1

w′
iMU ′e′D−1eUMwi/N = T

m∑
i=1

EMii + oP(T)�

Combining the above two displays, and using the induction hypothesis, this time regarding
the validity of the identities λ̂i = TEMii + oP(T) for all i <m, we obtain

T−1∑
q�r=m

αqαrσqσrv
′
qe

′D−1evr/N ≥ TEMmm + oP(T)� (S18)

Statements (i), (ii), and (iii) for k = m now follow by arguments that are very similar to
those used above for the case k= 1.
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That is, we represent the sum on the left-hand side of (S18) in the form A′A, where
A = 1√

N

∑T−1
k=1 αkσkD

−1/2evk. Then proceed along the lines of the above proof to obtain
an upper bound on A′A, similar to the right-hand side of (S15). Then, combining this
upper bound with the lower bound (S18), we prove the convergence α2

m

P→ 1. Finally, we
proceed to establishing parts (ii) and (iii) using part (i). We omit further details to save
space.

S3.2.2. Proof of Lemma S2

Identity (S9) yields

E
(
v′
qe

′
j·ej·vr

) = −E
[
(d−q − dq)(d−r − dr)

]
/(2T)�

and

Cov
(
v′
qe

′
j·ej·vr� v

′
pe

′
j·ej·vl

) = 1
4T 2 Cov

(
(d−q − dq)(d−r − dr)� (d−p − dp)(d−l − dl)

)
�

To evaluate the latter expectation and covariance, we use Theorem 4.3.2 of Brillinger
(2001) (B01), which describes joint cumulants of finite Fourier transforms. First, we need
to represent the expectation and covariance in terms of the joint cumulants. By their
definition, and by Theorem 2.3.1 (B01, p. 19),

E
(
v′
qe

′
j·ej·vr

) = − 1
2T

∑
s1�s2∈{−1�+1}

s1s2 cum(ds1q� ds2r)� (S19)

Similarly, Cov(v′
qe

′
j·ej·vr� v

′
pe

′
j·ej·vl) equals

1
4T 2

∑
s1�s2�s3�s4∈{−1�+1}

s1s2s3s4 cum(ds1qds2r� ds3pds4l)�

By Theorem 2.3.2 of B01, the joint cumulant of the two products of d, as in the latter
display, can be represented in the form of a sum of the products of the cumulants of
order 2 and the fourth-order cumulant. Precisely, we have

Cov
(
v′
qe

′
j·ej·vr� v

′
pe

′
j·ej·vl

)
= 1

4T 2

∑
s1�s2�s3�s4∈{−1�+1}

s1s2s3s4

× {
cum(ds1q� ds3p) cum(ds2r� ds4l)+ cum(ds1q� ds4l) cum(ds2r� ds3p)

+ cum(ds1q� ds2r� ds3p�ds4l)
}
� (S20)

LEMMA S4: Under assumptions of Theorem OW3, there exists an absolute constant C
such that, for any q� r�p� l = 1� � � � �T − 1, and any s1� s2� s3� s4 ∈ {−1�+1},∣∣cum(ds1q� ds2r)− 2πHs1q�s2rfj(�q/2)

∣∣ ≤ CB2� (S21)

where Hs1q�s2r = ∑T−1
t=0 e−it(s1ωq+s2ωr)/2, and∣∣cum(ds1q� ds2r� ds3p�ds4l)− (2π)3Hs1q�s2r�s3p�s4lfj4

∣∣ ≤ Cκ4B
4� (S22)
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where Hs1q�s2r�s3p�s4l =
∑T−1

t=0 e−it(s1�q+s2�r+s3�p+s4�l)/2 and fj4 is the fourth-order cumulant spec-
trum of the series ejt , t ∈ Z at frequencies s1�q/2, s2�r/2, s3�p/2.

PROOF: The proof of Theorem 4.3.2 in B01 implies that the left-hand side of (S21) can
be bounded by C

∑∞
k=0(1 + k)|Γj(k)|, where C is an absolute constant and

Γj(k) = Eejsej�s−k =
∞∑

t=−∞
θjtθj�t−k�

Here θjt = (Ψt)jj for t ≥ 0 and θjt = 0 for t < 0. On the other hand,

∞∑
k=0

(1 + k)
∣∣Γj(k)

∣∣

≤
∞∑
k=0

(1 + k)

∞∑
t=−∞

|θjt ||θj�t−k|

≤
∞∑
k=0

∞∑
t=−∞

(
1 + |t − k|)|θjt ||θj�t−k| +

∞∑
k=0

∞∑
t=−∞

(
1 + |t|)|θjt ||θj�t−k| ≤ 2B2� (S23)

where the last inequality follows from Assumption A2b. This yields (S21).
Similarly, from the proof of Theorem 4.3.2 in B01, we know that the left-hand side of

(S22) can be bounded by

C

∞∑
k1�k2�k3=−∞

(
1 + |k1| + |k2| + |k3|

)∣∣cj4(k1�k2�k3)
∣∣� (S24)

where C is an absolute constant and cj4(k1�k2�k3) is the joint fourth-order cumulant of
ejs, ej�s−k1 , ej�s−k2 , and ej�s−k3� By Theorem 2.3.1(i),(iii) of B01, this cumulant equals

∞∑
t1�t2�t3�t4=−∞

θj�t1−k1θj�t2−k2θj�t3−k3θj�t4 cum(εj�−t1� εj�−t2� εj�−t3� εj�−t4)

=
∞∑

t=−∞
θj�t−k1θj�t−k2θj�t−k3θj�t

(
Eε4

j�−t − 3
)

≤
∞∑

t=−∞
|θj�t−k1θj�t−k2θj�t−k3θj�t |κ4�

where the last line follows from Assumption A1. By an argument similar to (S23), ex-
pression (S24) can be bounded by Cκ4B

4, where C is an absolute constant. This yields
(S22). Q.E.D.

Returning to the proof of Lemma S2, consider (S19). Inequality (S21) implies that∣∣∣∣E(
v′
qe

′
j·ej·vr

) + 1
2T

∑
s1�s2∈{−1�+1}

s1s2Hs1q�s2r2πfj(�q/2)
∣∣∣∣ ≤ 2KB2

T
� (S25)
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Further, for q = r,

∑
s1�s2∈{−1�+1}

s1s2Hs1q�s2r =
∑

s1�s2∈{−1�+1}
s1s2

T−1∑
t=0

e−it(s1+s2)πq/T = −2T� (S26)

For q �= r and such that s1q+ s2r is even for all s1� s2 ∈ {−1�+1},
∑

s1�s2∈{−1�+1}
s1s2Hs1q�s2r =

∑
s1�s2∈{−1�+1}

s1s2

T−1∑
t=0

e−it(s1q+s2r)π/T = 0� (S27)

Here, the latter equality holds because s1q + s2r is an even nonzero integer, such that
|s1q+ s2r| < 2T (recall that 1 ≤ q� r ≤ T − 1). For q �= r and such that s1q+ s2r is odd for
all s1� s2 ∈ {−1�+1}, we have

T−1∑
t=0

e−it(s1q+s2r)π/T = −2
e−i(s1q+s2r)π/T − 1

�

Nevertheless,
∑

s1�s2∈{−1�+1} s1s2Hs1q�s2r still equals zero because

−2
e−i(q+r)π/T − 1

+ −2
ei(q+r)π/T − 1

+ 2
e−i(q−r)π/T − 1

+ 2
ei(q−r)π/T − 1

= 2 − 2�

Therefore, (S27) still holds. Using identities (S26) and (S27) in (S25), we obtain statement
(i) of Lemma S2.

Next, consider (S20). By (S21) and (S22), the difference between(
π

T

)2 ∑
s1�s2�s3�s4∈{−1�+1}

s1s2s3s4

{
2πHs1q�s2r�s3p�s4lfj4

+ (Hs1q�s3pHs2r�s4l +Hs1q�s4lHs2r�s3p)fj(�q/2)fj(�r/2)
}

and Cov(v′
qe

′
j·ej·vr� v

′
pe

′
j·ej·vl) is no larger by absolute value than

1
4T 2

∑
s1�s2�s3�s4∈{−1�+1}

{
Cκ4B

4 + 2C2B4 + 2πCB2
(∣∣Hs1q�s3pfj(�q/2)

∣∣
+ ∣∣Hs2r�s4lfj(�r/2)

∣∣ + ∣∣Hs1q�s4lfj(�q/2)
∣∣ + ∣∣Hs2r�s3pfj(�r/2)

∣∣)}�
which, in its turn, is bounded from above by C(1 +κ4)B

4/T , where C is an absolute con-
stant (we remind the reader that throughout the paper, the value of the absolute constant
C may change from one appearance to another). Indeed, such a bound follows from (S12)
and the fact that |Ha�b| ≤ T . Further, from the above analysis of E(v′

qe
′
j·ej·vr),∑

s1�s2�s3�s4∈{−1�+1}
s1s2s3s4(Hs1q�s3pHs2r�s4l +Hs1q�s4lHs2r�s3p) = 4T 2(δqpδrl + δqlδrp)�

Therefore, from (S12),∣∣∣∣ ∑
s1�s2�s3�s4∈{−1�+1}

s1s2s3s4(Hs1q�s3pHs2r�s4l +Hs1q�s4lHs2r�s3p)fj(�q/2)fj(�r/2)
∣∣∣∣
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is no larger than 4T 2B4(δqpδrl + δqlδrp)/(2π)2. Next, by Theorem 2.8.1 of B01,

fj4(μ1�μ2�μ3)= Θ(μ1)Θ(μ2)Θ(μ3)Θ(−μ1 −μ2 −μ3)
Eε4

jt − 3

(2π)3 �

where Θ(μ) = ∑∞
k=0 θke

−ikμ, and since |Ha�b�c�d| ≤ T ,∣∣∣∣ ∑
s1�s2�s3�s4∈{−1�+1}

s1s2s3s42πHs1q�s2r�s3p�s4lfj4

∣∣∣∣ ≤ TB4
κ4

(2π)2 �

Overall, we conclude that |Cov(v′
qe

′
j·ej·vr� v

′
pe

′
j·ej·vl)| is no larger than

(
π

T

)2(
TB4

κ4

(2π)2 + 4T 2B4(δqpδrl + δqlδrp)

(2π)2

)
+ C(1 + κ4)B

4

T
�

which yields statement (ii) of Lemma S2.

S3.2.3. Proof of Lemma S3

Our proof is based on the following theorem, established in Chatterjee (2006).

THEOREM S5—Chatterjee (2006): Suppose x and y are random vectors in R
m with y

having independent components. For 1 ≤ i ≤m, let

Ri := E
∣∣E(xi|x1� � � � � xi−1)−E(yi)

∣∣�
Bi := E

∣∣E(
x2
i |x1� � � � � xi−1

) −E
(
y2
i

)∣∣�
Let M3 be a bound on maxi(E|xi|3 + E|yi|3). Suppose h : Rm → R is a thrice continuously
differentiable function, and for r = 1�2�3, let Lr(h) be a finite constant such that |∂r

ih(z)| ≤
Lr(h) for each i and z, where ∂r

i denotes the r-fold derivative in the ith coordinate. Then

∣∣Eh(x)−Eh(y)
∣∣ ≤

m∑
i=1

(
RiL1(h)+ 1

2
BiL2(h)

)
+ 1

6
mL3(h)M3�

Let us denote (Ψk)jj as θjk, as in the previous section. With this notation, we have

ejt =
∞∑
k=0

θjkεj�t−k�

Let

xi =

⎧⎪⎨
⎪⎩
εj�T+1−i for i = 1� � � � �2T�

∞∑
k=2T+1−i

θj�k+2Tεj�T+1−i−k for i = 2T + 1� � � � �3T�

and m= 3T . Then, for t = 1� � � � �T , we have

ejt =
T+t−1∑
k=0

θjkxk+T−t+1 + x3T−t+1�
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so that the R-dimensional vector X with the kth coordinate ej·vk can be thought of as a
function X(x) : Rm → R

R� Further, let

yi =
{

i.i.d. N(0�1) for i = 1� � � � �2T�
0 for i = 2T + 1� � � � �3T�

Since xi� i = 1� � � � �2T , are independent, we have

Ri = Bi = 0 for i = 1� � � � �2T� (S28)

For i > 2T , we have

Ri = E
∣∣E(xi|x1� � � � � xi−1)

∣∣
≤ (

E
[
E
(
x2
i |x1� � � � � xi−1

)])1/2 = [
E
(
x2
i

)]1/2

and

Bi = E
[
E
(
x2
i |x1� � � � � xi−1

)] = E
(
x2
i

)
�

On the other hand, for i > 2T ,

E
(
x2
i

) =
∞∑

k=2T+1−i

θ2
j�k+2T �

By Assumption A2b,
∑∞

k=0(1 + k)|θjk| ≤ B. Therefore, |θjk| ≤ B/(1 + k) and, for 2T <
i ≤ 3T ,

E
(
x2
i

) ≤ B

4T + 1 − i

∞∑
k=2T+1−i

|θj�k+2T | ≤ B2

(4T + 1 − i)2 ≤ B2

T 2 �

Hence,

|Ri| ≤ B/T and |Bi| ≤ B2/T 2 for i = 2T + 1� � � � �3T� (S29)

Further, for i = 1� � � � �2T ,

E|xi|3 +E|yi|3 = E|εj�T+1−i|3 + 2
√

2/π <
(
E|εj�T+1−i|4

)3/4 + 2

≤ (κ4 + 3)3/4 + 2 ≤ κ4 + 5� (S30)

Here, the second to the last inequality follows from Assumption A1. For 2T < i ≤ 3T , we
have

E|xi|3 +E|yi|3 = E|xi|3 = E

∣∣∣∣∣
∞∑

k=2T+1−i

θj�k+2Tεj�T+1−i−k

∣∣∣∣∣
3

≤
(
E

( ∞∑
k=2T+1−i

θj�k+2Tεj�T+1−i−k

)4)3/4

≤
(( ∞∑

k=2T+1−i

θ2
j�k+2T

)2

+κ4

∞∑
k=2T+1−i

θ4
j�k+2T

)3/4
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≤ (1 +κ4)
3/4B3/T 3 ≤ (1 +κ4)B

3/T 3 ≤ κ4 + 5

for all sufficiently large T .
Next, let h(x) = g(X(x)). We have

∣∣∂1
i h(x)

∣∣ ≤
R∑
t=1

∣∣∂1
t g(X)

∣∣∣∣∂1
i Xt(x)

∣∣ ≤Mg

R∑
t=1

∣∣∂1
i Xt(x)

∣∣�
On the other hand,

∂1
i Xt(x) = ∂1

i (ej·vt)=
T∑
s=1

vts∂
1
i

(
T+s−1∑
k=0

θjkxk+T−s+1 + x3T−s+1

)

=

⎧⎪⎨
⎪⎩

T∑
s=T+1−i

vtsθj�i+s−T−1 for i = 1� � � � �2T�

vt�3T+1−i for i = 2T + 1� � � � �3T�

Since |vts| ≤
√

2/T and
∑∞

k=0(1 + k)|θjk| ≤ B, we have∣∣∂1
i Xt(x)

∣∣ ≤ (B + 1)
√

2/T �

Here, we use B + 1 instead of B to take into account a possibility that B < 1. Combining
the latter display with the above inequality for |∂1

i h(x)|, we obtain∣∣∂1
i h(x)

∣∣ ≤MgC1/T
1/2� (S31)

where C1 = √
2R(B + 1).

Further,

∣∣∂2
i h(x)

∣∣ ≤
R∑

t1�t2=1

∣∣∂2
t1t2

g(X)
∣∣∣∣∂1

i Xt1(x)
∣∣∣∣∂1

i Xt2(x)
∣∣

+
R∑
t=1

∣∣∂1
t g(X)

∣∣∣∣∂2
i Xt(x)

∣∣

=
R∑

t1�t2=1

∣∣∂2
t1t2

g(X)
∣∣∣∣∂1

i Xt1(x)
∣∣∣∣∂1

i Xt2(x)
∣∣

≤ Mg

R∑
t1�t2=1

∣∣∂1
i Xt1(x)

∣∣∣∣∂1
i Xt2(x)

∣∣�
so that ∣∣∂2

i h(x)
∣∣ ≤ MgC2/T� (S32)

where C2 = C2
1 . Similarly,

∣∣∂3
i h(x)

∣∣ ≤
R∑

t1�t2�t3=1

∣∣∂3
t1t2t3

g(X)
∣∣∣∣∂1

i Xt1(x)
∣∣∣∣∂1

i Xt2(x)
∣∣∣∣∂1

i Xt3(x)
∣∣�
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so that ∣∣∂3
i h(x)

∣∣ ≤MgC3/T
3/2� (S33)

where C3 = C3
1 .

Using inequalities established above in Theorem S5, we obtain

∣∣Eh(x)−Eh(y)
∣∣ ≤ MgC1B

T 1/2 + MgC2B
2

2T 2 + MgC3(κ4 + 5)
2T 1/2 �

On the other hand,∣∣Eg(X)−Eg(Y)
∣∣ = ∣∣Eg(

X(x)
) −Eg

(
X(y)

) +Eg
(
X(y)

) −Eg(Y)
∣∣

= ∣∣Eh(x)−Eh(y)+Eg
(
X(y)

) −Eg(Y)
∣∣

≤ ∣∣Eh(x)−Eh(y)
∣∣ + ∣∣Eg(

X(y)
) −Eg(Y)

∣∣�
Note that X(y) and Y are normally distributed vectors with zero means but different

covariance matrices, which we denote Σy and ΣY, respectively. By definition,

ΣY = 2πfj(0)IR�

Define ηT+1−i, i = 1�2� � � � as yi for i = 1� � � � �2T , and as i.i.d. N(0�1) random variables
independent from y1� � � � � y2T for i > 2T . Then,

Xt(y) =
T∑
s=1

T+s−1∑
k=0

θjkyk+T−s+1vts

=
T∑
s=1

T+s−1∑
k=0

θjkηs−kvts

=
T∑
s=1

∞∑
k=0

θjkηs−kvts −
T∑
s=1

∞∑
k=T+s

θjkηs−kvts

= Xt(η)−
T∑
s=1

∞∑
k=T+s

θjkηs−kvts

= Xt(η)−
∞∑

τ=T

η−τ

T∑
s=1

θj�τ+svts�

By Lemma S2, ∣∣E(
Xt1(η)Xt2(η)

) − 2πfj(�t1/2)δt1t2

∣∣ ≤ CB2/T�

Further,

E

(
2∏

i=1

∞∑
τ=T

η−τ

T∑
s=1

θj�τ+svtis

)
=

∞∑
τ=T

(
2∏

i=1

T∑
s=1

θj�τ+svtis

)

≤
∞∑

τ=T

T∑
s=1

θ2
j�τ+s ≤

T∑
s=1

B2

(T + s)2 <
B2

T
�
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and

E

(
Xt1(η)

∞∑
τ=T

η−τ

T∑
s=1

θj�τ+svt2s

)

= E

(
T∑

s1=1

∞∑
τ1=−s1

η−τ1θj�τ1+s1vt1s1

∞∑
τ2=T

η−τ2

T∑
s2=1

θj�τ2+s2vt2s2

)

=
∞∑

τ=T

T∑
s1=1

θj�τ+s1vt1s1

T∑
s2=1

θj�τ+s2vt2s2 <
B2

T
�

This yields

∣∣E(
Xt1(y)Xt2(y)

) − 2πfj(�t1/2)δt1t2

∣∣ ≤ C̃/T

for some constant C̃ that depends on B. This and inequality (S13) yield

∣∣E(
Xt1(y)Xt2(y)

) − 2πfj(0)δt1t2

∣∣ ≤ Ĉ/T (S34)

for any positive integers t1� t2 ≤ R, where Ĉ depends on B and R.
Further,

∣∣g(
X(y)

) − g(Y)
∣∣ ≤Mg

∥∥X(y)− Y
∥∥�

Therefore,

∣∣Eg(
X(y)

) −Eg(Y)
∣∣ ≤ MgE

∥∥X(y)− Y
∥∥

≤ Mg

(
E
∥∥X(y)− Y

∥∥2)1/2
�

On the other hand, we may assume that y and Y are independent, and thus

E
∥∥X(y)− Y

∥∥2 = tr(Σy −ΣY)≤RĈ/T�

where the last inequality follows from (S34). Hence, finally,

∣∣Eg(X)−Eg(Y)
∣∣ ≤ MgC1B

T 1/2 + MgC2B
2

2T 2

+ MgC3(κ4 + 5)
2T 1/2 + MgR

1/2Ĉ1/2

T 1/2 �

This yields the statement of Lemma S3.
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S4. THE “NUMBER OF FACTORS”

S4.1. Proof of Proposition OW4

Let us denote V (k) + kσ̂2pj(N�T) as IPCj(k). For positive integers k, IPCj(k) >

IPCj(k− 1) if and only if λ̂k/T < σ̂2pj(N�T). The latter inequality is equivalent to

λ̂k/ tr Σ̂ <

(
1 −

kmax∑
j=1

λ̂j/ tr Σ̂

)
pj(N�T)� (S35)

On the other hand, by Theorem OW1(iii), for any fixed positive integer k, λ̂k/ tr Σ̂
P→

6/(kπ)2. Since pj(N�T) → ∞ as N�T → ∞ for j = 1�2�3, inequality (S35) is satisfied
with probability arbitrarily close to 1 for all sufficiently large N , T . This yields statement
(i) of Proposition OW4.

To establish part (ii), we need the following lemma.

LEMMA S6: Under assumptions of Proposition OW4, for kmax = [γδNT ], we have

σ̂2 = OP

(
T trΩ
NδNT

+ (T +Nε)N
2αδNT

NT

)
�

PROOF: We rely on notations and definitions from the proof of Theorem OW1. Let
Ṽ (k)= tr Σ̃/T − ∑k

j=1 λ̃j/T . Then,

T Ṽ (kmax)=
T−1∑

r=kmax+1

λ̃r ≤
T−1∑

r=kmax+1

w′
rΣ̃wr =

T−1∑
r=kmax+1

1
N
σ2

r v
′
rε

′W εvr�

Denote
∑T−1

r=kmax+1 σ
2
r as skmax . Then Lemma OW6 and the fact that trW = trΩ yield

T−1∑
r=kmax+1

σ2
r v

′
rε

′W εvr = skmax trΩ+ oP(skmax trΩ)�

Since σr = (2 sin(πr/(2T)))−1 ≤ T/(2r) for r = 1� � � � �T − 1, we have

skmax ≤
T−1∑

r=kmax+1

T 2/
(
4r2

) ≤ T 2/(4kmax)�

and therefore,

Ṽ (kmax) ≤ T trΩ
4Nkmax

+ oP

(
T trΩ
Nkmax

)
� (S36)

Next, similarly to (OW34), we have the following inequality:∣∣(TV (kmax)
)1/2 − (

T Ṽ (kmax)
)1/2∣∣ ≤ ∥∥Ψ ∗(L)εM

∥∥min{1�√T/N}�
Hence,

σ̂2 = V (kmax)≤ 2Ṽ (kmax)+ 2
T

∥∥Ψ ∗(L)εM
∥∥2

min{1�T/N}�
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This inequality together with (OW33) and (S36) yield the statement of the lemma.
Q.E.D.

By Theorem OW1(ii), for any fixed k, (λ̂k/T)
−1 = OP(N/(T trΩ)). Therefore, by

Lemma S6, (λ̂k/T)
−1σ̂2 =OP(mNT ) and

(λ̂k/T)
−1σ̂2pj(N�T)=OP

(
mNTpj(N�T)

) P→ 0�

Hence, for any fixed k, λ̂k/T > σ̂2pj(N�T) with probability arbitrarily close to 1 for all
sufficiently large N , T . This implies that IPCj(k) < IPCj(k−1) with probability arbitrarily

close to 1 for all sufficiently large N , T , and thus, k̂j
P→ ∞.
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