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IN THIS SUPPLEMENT, we extend our analysis of the linear instrumental variable model to
allow for multiple endogenous variables.

S1. THE FF AND FAS FOR MULTIPLE ENDOGENOUS VARIABLES

Theorem 1 characterizes the identified set for the vector of coefficients on the endoge-
nous variables, as a function of the exclusion restriction relaxation. Our subsequent char-
acterizations of the falsification frontier and the falsification adaptive set, however, re-
stricted attention to the case with just one endogenous variable; see Proposition 2 and
Theorem 2. In this section, we extend these two results to the general case with K ≥ 1
endogenous variables. These results can also be used if, for example, a single endogenous
variable has interactions with covariates or if the outcome equation is nonlinear in this
variable.

In this general case we assume all instruments are relevant for simplicity. To state our
new assumption, we consider submatrices ofΠ. Let L⊆ {1� � � � �L}. LetΠL be the |L|×K
submatrix of Π formed by removing all rows � /∈ L. Let π ′

� denote the �th row of the
matrix Π. We strengthen and generalize assumption A1 as follows.

ASSUMPTION A1′—Relevance: The following hold:
1. For all L⊆ {1� � � � �L} with |L| =K, ΠL has full rank.
2. For all L⊆ {1� � � � �L} such that |L| =K+1, {π� : � ∈L} are affinely independent. That

is, for all L= {�1� � � � � �K+1}, (
1 1 � � � 1
π�1 π�2 � � � π�K+1

)

has full rank.

A1.1′ implies that any set L of K instruments uniquely define the coefficients β2SLS
L =

Π−1
L ψL, where ψL equals the subvector of ψ after removing all components � /∈ L. β2SLS

L
is the population 2SLS coefficient on X using ZL as excluded instruments and Z−L as
controls. Here we partition Z = (ZL�Z−L) based on the indices in L.

A1.2′ means that there does not exist a hyperplane that passes through all of the π�
vectors. It is equivalent to linear independence of (πL −π1� � � � �π2 −π1).
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For |L| =K + 1, let

PL = conv
({
β2SLS

L\{�} : � ∈L
})
�

This is the convex hull of K + 1 just-identified 2SLS estimands in R
K . We show that the

falsification frontier and the falsification adaptive set can be constructed from PL.

PROPOSITION S1: Suppose A1′, A2, and A3 hold. Suppose the joint distribution of
(Y�X�Z) is known. Then the falsification frontier is the set

FF = {
δ ∈R

L
≥0 : δ� = ∣∣ψ� −π ′

�b
∣∣� b ∈PL�L⊆ {1� � � � �L}� |L| =K + 1

}
�

THEOREM S1: Suppose A1′, A2, and A3 hold. Suppose the joint distribution of (Y�X�Z)
is known. Let

P =
⋃

L⊆{1�����L}:|L|=K+1

PL�

Then P is the falsification adaptive set.

Like the K = 1 case (Theorem 2), P can be computed by running a variety of 2SLS
regressions. Unlike that case, however, P is generally not convex, even though each PL is
convex. Nonetheless, we are often only interested in linear functionals of the coefficient
vector β. For example, we often care about just one component of β. The following corol-
lary shows that the falsification adaptive set for a linear functional of β again has a simple
form. For this result, let

FAS∗ = conv
({
β2SLS

L :L⊆ {1� � � � �L}� |L| =K})
(S1)

denote the convex hull of the set of all just-identified 2SLS estimands.

COROLLARY S1: Suppose A1′, A2, and A3 hold. Suppose the joint distribution of
(Y�X�Z) is known. Then FAS∗ contains the falsification adaptive set for β. Moreover, for
any α ∈ R

K the falsification adaptive set for α′β is[
min

L⊆{1�����L}:|L|=K
α′β2SLS

L � max
L⊆{1�����L}:|L|=K

α′β2SLS
L

]
�

This result shows that the FAS characterized in Theorem S1 is contained in the simpler
set FAS∗. It also shows that we can simply cycle through all possible just-identified models,
compute the corresponding 2SLS estimand, take the convex hull, and project it onto one
component to get the FAS for that component.

To illustrate these results, consider the two endogenous variables (K = 2) and three
instruments (L= 3) case. Hence we have L=K + 1. Consider the left plot in Figure S1.
This plot shows possible values (b1� b2) of the coefficients onX . The exclusion restriction
from instrument � imposes a single linear constraint ψ� = π ′

�b. These constraints are sim-
ply lines in R

2. Since there are three instruments, there are three constraints. When these
three lines do not intersect at a common point, the baseline model is falsified. This case
is shown in the figure. Suppose we drop the exclusion restriction for instrument �. Then
two linear constraints remain, β is point identified, and it equals the intersection point
β2SLS

{1�2�3}\{�}. Repeating this for � ∈ {1�2�3} and taking the convex hull yields the falsification
adaptive set, which is shown as the shaded triangular region.
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FIGURE S1.—Example withK = 2 endogenous variables. Left: L= 3 instruments. Right:L= 4 instruments.
In both plots, the falsification adaptive set for (β1�β2) is the shaded region. In the right plot, the falsification
adaptive set for β1 is shown as the projection onto the first component.

The right plot in Figure S1 illustrates the L > K + 1 case. Here we have K = 2 and
L= 4. There are 6 different just-identified 2SLS estimands. The falsification adaptive set
is no longer convex. Nonetheless, the projection of the convex hull of all just-identified
2SLS estimands onto the first component gives the falsification adaptive set for β1. More-
over, this projection can be computed by simply taking the largest and smallest values of
β1 among the just-identified 2SLS estimands, as shown in Corollary S1.

S2. PROOFS FOR SECTION S1

We next present a sequence of lemmas that lead to the proofs of the results in Sec-
tion S1. Here we omit proofs of some of the more straightforward lemmas, but full proofs
are available in Appendix K of Masten and Poirier (2020).

We begin by showing a basic geometric fact about the set FAS∗ when L=K + 1. Here
and elsewhere we use the notation β2SLS

−� = β2SLS
{1�����L}\{�}.

LEMMA S1: Suppose A1′, A2, and A3 hold. Suppose L=K + 1. Then exactly one of the
following holds:

1. β2SLS
−� = β2SLS

−�′ for all �� �′ ∈ {1� � � � �L}.
2. π ′

�β
2SLS
−� �=ψ� for all � ∈ {1� � � � �L}.

The next lemma shows that, when L=K + 1 and FAS∗ is not a singleton, we can write
any element of RK as a weighted sum of our just-identified 2SLS estimands.

LEMMA S2: Suppose A1′, A2, and A3 hold. Suppose L=K+ 1. Assume that FAS∗ is not
a singleton. Then for any b ∈ R

K there exist weightsw1(b)� � � � �wL(b) such that
∑L

�=1w�(b)=
1 and

b=
L∑
�=1

w�(b)β
2SLS
−� �
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Define δ�(b)= |ψ� − π ′
�b| for all �= 1� � � � �L. Let δ(b)= (δ1(b)� � � � � δL(b)). We next

show that, in the L=K + 1 case, the identified set for β is a singleton for δ= δ(b), and
b ∈ FAS∗.

LEMMA S3: Suppose A1′, A2, and A3 hold. Suppose L = K + 1. Let b ∈ FAS∗. Then
B(δ(b))= {b}.

PROOF OF LEMMA S3: By Lemma S1, there are two cases to consider: FAS∗ is either a
singleton or a nondegenerate simplex in R

K .
Case 1. Suppose FAS∗ = {b} is a singleton. By the definition of FAS∗, this implies

that b = β2SLS
L for any L ⊆ {1� � � � �L} with |L| = K. It also implies δ(b) = 0L. Therefore

B(0L)= ⋂L

�=1B�(0)= ⋂
L:|L|=K(

⋂
�∈LB�(0))= {b} by

⋂
�∈LB�(0)= {b}.

Case 2. Suppose FAS∗ is not a singleton. Then π ′
�β

2SLS
−� �= ψ� for all � ∈ {1� � � � �L}. We

prove equality of sets by showing that both directions of set inclusion hold.
Step 1 (⊇). First we show that B(δ(b)) ⊇ {b}. By definition of δ�(·), ψ� − π ′

�b ∈
[−δ�(b)�δ�(b)] for all �. Thus, by the characterization of B(·) in Theorem 1, b ∈ B(δ(b)).

Step 2 (⊆). Next we show that B(δ(b))⊆ {b}. First suppose δ(b)= 0L. In this case the
baseline model is not falsified and FAS∗ is a singleton. This is a contradiction. So we must
have δ�(b) > 0 for some �.

We will show that any element b∗ �= b is not in B(δ(b)). The set FAS∗ is a polytope.
Consider its alternative half-space representation. The half-spaces correspond to one side
of the hyperplanes B�(0). Formally, write

FAS∗ =
L⋂
�=1

{
b̃ ∈ R

K :ψ� −π ′
�b̃≤ 0

}
� (S2)

We assume without loss of generality that all L inequalities go in the same direction.
This is because ψ� − π ′

�b̃ ≥ 0 can be rewritten as −ψ� − (−π ′
�b̃) ≤ 0, which is equivalent

to replacing instrument Z� with −Z�. Neither the estimands β2SLS
L nor the set FAS∗ are

affected by these sign normalizations.
Noting that B(δ) is an intersection of half-spaces and evaluating it at δ(b) gives

B
(
δ(b)

) =
L⋂
�=1

{
b̃ ∈R

K : −δ�(b)≤ψ� −π ′
�b̃≤ δ�(b)

}

=
(

L⋂
�=1

{
b̃ ∈R

K :ψ� −π ′
�b̃≥ −∣∣ψ� −π ′

�b
∣∣})

⋂ (
L⋂
�=1

{
b̃ ∈R

K :ψ� −π ′
�b̃≤ ∣∣ψ� −π ′

�b
∣∣})

≡P1(b)∩P2(b)�

To complete this proof, it suffices to show b∗ /∈P1(b). By Lemma S2, any element in R
K

can be written as a linear combination of the L different just-identified 2SLS estimands.
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In particular, we can write b∗ in this way:

b∗ =
L∑
�=1

w�(b
∗)β2SLS

−� �

where w�(b∗) are weights that sum to one,
∑L

�=1w�(b
∗)= 1.

Since b ∈ FAS∗, ψ� − π ′
�b≤ 0 for all �. This follows directly from our half-space repre-

sentation of FAS∗. Thus −|ψ� −π ′
�b| =ψ� −π ′

�b for all �. Hence

P1(b)=
L⋂
�=1

{
b̃ ∈ R

K :ψ� −π ′
�b̃≥ −∣∣ψ� −π ′

�b
∣∣} =

L⋂
�=1

{
b̃ ∈R

K : π ′
�(b̃− b)≤ 0

}
�

So b∗ ∈ P1(b) if and only if π ′
�(b

∗ − b) ≤ 0 for all �. Focus on just one � for a moment.
Then

π ′
�

(
b∗ − b) =

L∑
s=1

(
ws(b

∗)−ws(b)
)
π ′
�β

2SLS
−s

=
∑
s �=�

(
ws(b

∗)−ws(b)
)
ψ� + (

w�(b
∗)−w�(b)

)
π ′
�β

2SLS
−�

= (
ψ� −π ′

�β
2SLS
−�

)∑
s �=�

(
ws(b

∗)−ws(b)
)
�

The first line follows from Lemma S2. The second follows from ψ� = π ′
�β

2SLS
−s when s �= �

by the definition of these 2SLS estimands. The third follows from the difference in weights
summing to zero.

Next notice that ψ� −π ′
�β

2SLS
−� < 0. This follows from β2SLS

−� ∈ FAS∗, the half-space repre-
sentation of FAS∗, and since FAS∗ is a nondegenerate simplex. Suppose by way of contra-
diction that b∗ ∈ P1(b). Then π ′

�(b
∗ − b)≤ 0 for all �. We have just seen that this implies∑

s �=�(ws(b
∗)−ws(b))≥ 0 for all �. But now we have

0 =
L∑
s=1

(
ws(b

∗)−ws(b)
) =

∑
s �=�

(
ws(b

∗)−ws(b)
) + (

w�(b
∗)−w�(b)

)
�

Thus w�(b∗) − w�(b) = ∑
s �=�(ws(b) − ws(b

∗)) ≤ 0 for all �. Since w�(b∗) − w�(b) sums
to zero, w�(b∗) = w�(b) for all �. This implies b∗ = b, a contradiction. Thus b∗ /∈ P1(b).

Q.E.D.

LEMMA S4: Suppose A1′, A2, and A3 hold. Suppose L ≥ K + 1. Let b ∈ P . Then
B(δ(b))= {b}.

PROOF OF LEMMA S4: We prove set equality by showing that both directions of set
inclusion hold.

Step 1 (⊇). The proof of this step from Lemma S3 applies without modification.
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Step 2 (⊆). Since b ∈P there is some L⊆ {1� � � � �L} with |L| =K+ 1 such that b ∈PL.
Let

BL(δ)=
⋂
�∈L
B�(δ)�

By Lemma S3, BL(δ(b))= {b}. By definition, BL(δ)⊇ B(δ). Thus B(δ(b))⊆ {b}. Q.E.D.

The following variation on Farkas’ Lemma (e.g., Corollary 22.3.1 on p. 200 of Rockafel-
lar (1970); Border (2019) provides an extensive discussion) is helpful.

LEMMA S5—Variation on Farkas’ Lemma: Let x1� � � � � xn ∈ R
K . Then 0K /∈ conv({x1� � � � �

xn}) if and only if there exists a p ∈R
K such that p′xi > 0 for all i= 1� � � � � n.

The next two technical lemmas are used in the proof of Lemma S8, which is then used
in the proof of Lemma S9.

LEMMA S6: Suppose A1′ holds. Suppose L = K + 1. Suppose FAS∗ is not a singleton.
Then ψ� −π ′

�b=w�(b)(ψ� −π ′
�β

2SLS
−� ) for all �= 1� � � � �L.

LEMMA S7: Suppose A1′ holds. Suppose L = K + 1. Suppose FAS∗ is not a singleton.
Without loss of generality (see equation (S2) and the surrounding discussion), write

FAS∗ =
L⋂
�=1

{
b ∈ R

K :ψ� −π ′
�b≤ 0

}
�

Then there are no b ∈ R
K such that ψ� −π ′

�b≥ 0 for all �= 1� � � � �L.

LEMMA S8: Suppose A1′, A2, and A3 hold. SupposeL=K+1. Consider the hyperplanes
{b ∈ R

K : π ′
�b=ψ�} for �= 1� � � � �L. There exists a normalization of these hyperplanes such

that ψ� ≥ 0 for all �= 1� � � � �L and such that

0K ∈ conv
({π� : �= 1� � � � �L}) ⇒ 0K ∈ conv

({
β2SLS

−� : �= 1� � � � �L
})
�

LEMMA S9: Suppose A1′, A2, and A3 hold. Suppose L ≥K + 1. Let b /∈ P . Then there
exists a δ′ < δ(b) such that B(δ′) �= ∅.

PROOF OF LEMMA S9: Without loss of generality, suppose b = 0K . This follows since
we can simply translate our coordinate system so that the origin is at b. Put differently,
we map all x ∈ R

K to x − b. Throughout this proof, we also use a normalization from
Lemma S8 where ψ� ≥ 0 for all �. Next, there are two cases to consider.

Case 1. Suppose δ�(b) = |ψ� − π ′
�b| = ψ� > 0 for all �. Since b /∈ P , b /∈ PL =

conv({β2SLS
L\{�} : � ∈ L}) for any L with |L| = K + 1. Since b = 0K , Lemma S8 implies that

0K /∈ conv({π� : � ∈ L}). This holds for any set L such that |L| = K + 1. This implies
that 0K /∈ conv({π� : �= 1� � � � �L}). To see this, assume 0K ∈ conv({π� : �= 1� � � � �L}). By
Caratheodory’s theorem, (e.g., Chapter 17 of Rockafellar (1970)) 0K is then in the convex
hull of a (K+ 1)-element subset of {π� : �= 1� � � � �L}. That is, 0K ∈ conv({π� : � ∈L}) for
some L with |L| =K + 1. This is a contradiction.

Since 0K /∈ conv({π� : �= 1� � � � �L}), Lemma S5 implies that there exists a vector b̄ such
that π ′

�b̄ > 0 for all �= 1� � � � �L. Define b(ε)= b+ εb̄. Since ψ� > 0 and π ′
�b̄ > 0 for all
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�, there exists an ε̄ > 0 such that ψ� − ε̄π ′
�b̄ > 0 for all �. This implies that

0<
∣∣ψ� −π ′

�b(ε̄)
∣∣ = ∣∣ψ� −π ′

�(ε̄b̄)
∣∣ = δ�(b)− ε̄π ′

�b̄ < δ�(b)

by δ�(b)=ψ� and by 0< ε̄π ′
�b̄ < ψ� for all �.

Let δ′
� = |ψ� − π ′

�b(ε̄)|. We have shown that δ′ < δ(b). Finally, by our characterization
of B(·) and the definition of δ′, we have b(ε̄) ∈ B(δ′). Hence B(δ′) �= ∅.

Case 2. Suppose δ�(b)= 0 for some �’s. There can be at most K − 1 such indices, since
otherwise we would have b ∈ P . Let L0 denote the set of these indices. Since b= 0K and
δ�(b)= 0, ψ� = 0 for � ∈L0. In this case, consider the subspace

{
b̃ ∈ R

K : 0 = π ′
�b̃� � ∈L0

}
�

This is a linear subspace of dimension at least 1 (by |L0|> 0) and at most K− 1 (as noted
earlier). Within this subspace, we can look at the remaining indices {1� � � � �L} \ L0. We
have δ�(b) > 0 for all of these indices. By restricting attention to this subspace we can
thus immediately apply the analysis of case 1. Q.E.D.

For the next two lemmas, let

FFguess = {
δ ∈ R

L
≥0 : δ� = ∣∣ψ� −π ′

�b
∣∣� �= 1� � � � �L�b ∈P

}
and let FF denote the true falsification frontier from Definition 1.

LEMMA S10: Suppose A1′, A2, and A3 hold. Suppose L≥K + 1. Then FFguess ⊆ FF.

PROOF OF LEMMA S10: Recall the definition δ�(b)= |ψ� −π ′
�b|. Let δ ∈ FFguess. Then,

by definition, there is a b ∈P such that δ�(b)= δ� for all �. Thus B(δ)= {b} by Lemma S4.
Let δ′ < δ(b). Then there is some index � such that 0 < δ′

� < δ�(b). So ψ� − π ′
�b /∈[−δ′

�� δ
′
�] and hence b /∈ B�(δ′). This implies that b /∈ B(δ′). But since B(δ′)⊆ B(δ)= {b},

we must have B(δ′) = ∅. Hence, by the definition of the falsification frontier, FFguess ⊆
FF. Q.E.D.

LEMMA S11: Suppose A1′, A2, and A3 hold. Suppose L≥K + 1. Then FFguess ⊇ FF.

PROOF OF LEMMA S11: We will show the contrapositive: δ /∈ FFguess implies δ /∈ FF.
Let δ /∈ FFguess. There are two cases to consider.

Case 1. Suppose δ is such that B(δ) contains an element b /∈ P . By Lemma S9, there
exists δ′ < δ(b) with B(δ′) �= ∅. Moreover, δ(b) ≤ δ by the characterization of B(δ) in
Theorem 1. Thus δ /∈ FF by the definition of the falsification frontier.

Case 2. Suppose δ is such that B(δ)⊆P . If B(δ)= ∅, then δ /∈ FF by definition. There-
fore we let B(δ) �= ∅. Let b′ be any element of B(δ). Let δ′ = δ(b′). By b′ ∈P , δ′ ∈ FFguess

and by δ /∈ FFguess, δ′ �= δ. Also, by b′ ∈ B(δ) we have δ′
� = |ψ� − π ′

�b
′| ≤ δ� for all �. To-

gether these imply δ′ < δ. Moreover, we have B(δ′)= B(δ(b′))= {b′} �= ∅ by Lemma S4.
Thus δ /∈ FF, by definition of the falsification frontier.

All values of δ must fall in one of these two cases. Therefore FFguess ⊇ FF. Q.E.D.

PROOF OF PROPOSITION S1: This follows directly from Lemmas S10 and S11. Q.E.D.
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PROOF OF THEOREM S1: We have⋃
δ∈FF

B(δ)=
⋃
b∈P

B
(
δ(b)

) =
⋃
b∈P

{b} =P

by Proposition S1 and Lemma S4. Q.E.D.

To prove Corollary S1, we use the following definition: Let P be aK×K matrix. Define
the linear operator p : RK → R

K by p(a) = Pa. For A ⊆ R
K , define the set proj(A) =

{p(a) ∈ R
K : a ∈A}.

We use the following lemma in the proof of the corollary.

LEMMA S12: proj(conv(A))= conv(proj(A)).

PROOF OF COROLLARY S1: The first part of this result states that P ⊆ FAS∗. To see
this, let b ∈P . Then b ∈PL for some set of indices L with |L| =K+1. But if b is a convex
combination of {β2SLS

L\{�} : � ∈ L}, then it is also a convex combination of the larger set of
elements {β2SLS

S : S ⊆ {1� � � � �L}� |S| =K}. Hence b ∈ FAS∗.
To prove the second part, consider the K ×K matrix

P = (
α 0K · · · 0K

)′
�

where α ∈ R
K . For any set A ⊆ R

K , let [A]1 = {a1 ∈ R : a = (a1� � � � � aK) ∈ A}. Since
P maps the 2� � � � �K components of any vector a ∈ R

K to zero, it suffices to show that
[proj(P)]1 = [proj(FAS∗)]1 where

[
proj

(
FAS∗)]

1
=

[
min

L⊆{1�����L}:|L|=K
α′β2SLS

L � max
L⊆{1�����L}:|L|=K

α′β2SLS
L

]
� (S3)

We have

proj
(
FAS∗) = proj

(
conv(P)

) = conv
({
Pβ2SLS

L :L⊆ {1� � � � �L}� |L| =K})
by Lemma S12. Using the specific form of P now gives equation (S3).

Similarly,

proj(P)=
⋃

L⊆{1�����L}:|L|=K+1

proj
(
conv

({
β2SLS

L\{�} : � ∈L
}))

=
⋃

L⊆{1�����L}:|L|=K+1

conv
(
proj

({
β2SLS

L\{�} : � ∈L
}))
�

The first line follows by proj(A ∪ B) = proj(A) ∪ proj(B) for any sets A�B ⊆ R
K . The

second line follows from Lemma S12. Hence[
proj(P)

]
1
=

⋃
L⊆{1�����L}:|L|=K+1

[
min
�∈L

α′β2SLS
L\{�}�max

�∈L
α′β2SLS

L\{�}
]
�

Thus we see that the first component of proj(P) is a union of closed intervals. If L and L′

differ by at most one element, then the intervals[
min
�∈L

α′β2SLS
L\{�}�max

�∈L
α′β2SLS

L\{�}
]

and
[
min
�∈L′ α

′β2SLS
L′\{�}�max

�∈L′ α
′β2SLS

L′\{�}
]
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have nonempty intersection. Their union is therefore a closed interval. Because we
take the union over all L ⊆ {1� � � � �L} such that |L| = K + 1, we can find a sequence
(L1� � � � �LN) such that[

min
�∈Ln

α′β2SLS
Ln\{�}�max

�∈Ln
α′β2SLS

Ln\{�}
]

and
[

min
�∈Ln+1

α′β2SLS
Ln+1\{�}� max

�∈Ln+1
α′β2SLS

Ln+1\{�}
]

overlap for n= 1� � � � �N − 1 and such that
⋃N

n=1 Ln = {1� � � � �L}. Thus

⋃
L⊆{1�����L}:|L|=K+1

[
min
�∈L

α′β2SLS
L\{�}�max

�∈L
α′β2SLS

L\{�}
]

=
[

min
L⊆{1�����L}:|L|=K

α′β2SLS
L � max

L⊆{1�����L}:|L|=K
α′β2SLS

L

]
�

Putting everything together yields [proj(P)]1 = [proj(FAS∗)]1 as desired. Q.E.D.
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