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Notation: THE PROOFS BELOW USE the following notation. For given φ ∈ Φ and i =
1� � � � � n, let f̃i(φ)≡ rank(Fi(φ)). Since the rank of Fi(φ) is determined by its row rank,
f̃i(φ)≤ fi(φ) holds. Let F⊥

i (φ) be the linear subspace of Rn that is orthogonal to the row
vectors of Fi(φ). If no zero restrictions are placed on qi, we interpret F⊥

i (φ) to be R
n.

Note that the dimension of F⊥
i (φ) is equal to n− f̃i(φ). We let Hi(φ) be the half-space in

R
n defined by the sign normalization restriction {z ∈ R

n : (σi)′z ≥ 0}, where σi is the ith
column vector of Σ−1

tr . Given linearly independent vectors,A= [a1� � � � � aj] ∈R
n×j , denote

the linear subspace in R
n that is orthogonal to the column vectors of A by P(A). Note

that the dimension of P(A) is n− j.

B.1. Convexity

The next proposition shows conditions for the convexity of the impulse-response iden-
tified set.

PROPOSITION B.1—Convexity: Let the object of interest be η = c′
ih(φ)qj∗ , the hth-

horizon impulse response of ith variable to the j∗th structural shock, i ∈ {1�2� � � � � n},
h ∈ {0�1�2� � � � }, where the variables are ordered according to Definition 3.

(I) Suppose there are only zero restrictions of the form (4.9). Assume fi ≤ n − i for all
i = 1� � � � � n. Then, for every i and h, and almost every φ ∈Φ, the identified set of η
is non-empty and bounded, and it is convex if any of the following mutually exclusive
conditions holds:

(i) j∗ = 1 and f1 < n− 1;
(ii) j∗ ≥ 2, and fi < n− i for all i= 1� � � � � j∗ − 1;
(iii) j∗ ≥ 2 and there exists 1 ≤ i∗ ≤ j∗ −1 such that fi < n− i for all i= i∗ +1� � � � � j∗

and [q1� � � � � qi∗ ] is exactly identified, meaning that, for almost every φ ∈Φ, the
constraints Fi(φ)qi = 0, i = 1� � � � � i∗, and the sign-normalizations (σi)′qi ≥ 0,
i= 1� � � � � i∗, pin down a unique [q1� � � � � qi∗ ].1
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cation of [q1� � � � � qi∗ ] is that fi = n− i for all i= 1�2� � � � � i∗. One can check if the condition is also sufficient by
checking that Algorithm 1 of Rubio-Ramírez, Waggoner, and Zha (2010) yields a unique set of orthonormal
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rank conditions (B.3) in Algorithm B.1 below.
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(II) Consider the case with both zero and sign restrictions, and suppose that sign restrictions
are placed only on the responses to the j∗th structural shock, that is, IS = {j∗}.
(iv) Suppose the zero restrictions satisfy one of conditions (i) and (ii) in the current

proposition. If there exists a unit-length vector q ∈ R
n such that

Fj∗(φ)q= 0 and
(
Sj∗(φ)(
σj

∗)′
)
q > 0� (B.1)

then the identified set of η, ISη(φ|F�S), is non-empty and convex for every i and
h.

(v) Suppose that the zero restrictions satisfy condition (iii) in the current proposi-
tion. Let [q1(φ)� � � � � qi∗(φ)] be the first i∗th orthonormal vectors that are exactly
identified (see condition (iii)). If there exists a unit length vector q ∈R

n such that

Fj∗(φ)q= 0� q′
i(φ)q= 0 for i= 1� � � � � i∗� and(

Sj∗(φ)(
σj

∗)′

)
q > 0�

(B.2)

then the identified set of η, ISη(φ|F�S), is non-empty and convex for every i
and h.

PROOF OF PROPOSITION B.1: The proof builds on Algorithm 1 of Rubio-Ramírez,
Waggoner, and Zha (2010). We present its slightly modified version here.

ALGORITHM B.1: Consider a collection of zero restrictions of the form given by (4.9),
where the order of the variables is consistent with f1 ≥ f2 ≥ · · · ≥ fn ≥ 0. Assume fi = n− i
for all i= 1� � � � � i∗, and rank(Fi(φ))= fi for all i= 1� � � � � i∗,φ-a.s. Let q1 be a unit-length
vector satisfying F1(φ)q1 = 0, which is unique up to sign since rank(F1(φ)) = n − 1 by
assumption. Given q1, find orthonormal vectors q2� � � � � qi∗ , by solving Fi(φ)qi = 0 and
q′
jqi = 0, j = 1� � � � � i− 1, successively for i= 2�3� � � � � i∗. If

rank
(
F ′
i (φ) q1 · · · qi−1

) = n− 1 for i= 2� � � � � i∗� (B.3)

and qi, i = 1� � � � � i∗, obtained by this algorithm satisfies (σi)′qi 	= 0 for almost all φ ∈
Φ, that is, the sign normalization restrictions determine a unique sign for the q′

is, then
[q1� � � � � qi∗ ] is exactly identified.2

Consider first the case with only zero restrictions (Case (I)). Fix φ ∈ Φ. Let Q1:i =
[q1� � � � � qi], i= 2� � � � � (n− 1), be an n× i matrix of orthonormal vectors in R

n. The set of
feasible Q’s satisfying the zero restrictions and the sign normalizations, Q(φ|F), can be

2A special situation where the rank conditions (B.3) are guaranteed at almost every φ is when σi is linearly
independent of the row vectors in Fi(φ) for all i = 1� � � � � n, and the row vectors of Fi(φ) are spanned by the
row vectors of Fi−1(φ) for all i = 2� � � � � i∗. This condition holds in the recursive identification scheme, which
imposes a triangularity restriction on A−1

0 . See Example B.2 in Appendix B.
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written in the following recursive manner:

Q= [q1� � � � � qn] ∈Q(φ|F)
if and only if Q= [q1� � � � � qn] satisfies

q1 ∈D1(φ)≡F⊥
1 (φ)∩H1(φ)∩ Sn−1�

q2 ∈D2(φ�q1)≡F⊥
2 (φ)∩H2(φ)∩P(q1)∩ Sn−1�

q3 ∈D3(φ�Q1:2)≡F⊥
3 (φ)∩H3(φ)∩P(Q1:2)∩ Sn−1�

���

qj ∈Dj(φ�Q1:(j−1))≡F⊥
j (φ)∩Hj(φ)∩P(Q1:(j−1))∩ Sn−1�

���

qn ∈Dn(φ�Q1:(n−1))≡F⊥
n (φ)∩Hn(φ)∩P(Q1:(n−1))∩ Sn−1�

(B.4)

where Di(φ�Q1:(i−1)) ⊂ R
n denotes the set of feasible qi’s given Q1:(i−1) = [q1� � � � � qi−1],

the set of (i− 1) orthonormal vectors in R
n preceding i. Non-emptiness of the identified

set for η= cih(φ)qj follows if the feasible domain of the orthogonal vector Di(φ�Q1:(i−1))
is non-empty at every i= 1� � � � � n.

Note that by the assumption f1 ≤ n− 1, F⊥
1 (φ) ∩H1(φ) is the half-space of the linear

subspace of Rn with dimension n− f̃1(φ) ≥ n− f1 ≥ 1. Hence, D1(φ) is non-empty for
every φ ∈Φ. For i= 2� � � � � n, F⊥

i (φ)∩Hi(φ)∩P(Q1:(i−1)) is the half-space of the linear
subspace of Rn with dimension at least

n− f̃i(φ)− dim
(
P(Q1:(n−1))

) ≥ n− fi − (i− 1)≥ 1�

where the last inequality follows from the assumption fi ≤ n − i. Hence, Di(φ�Q1:(i−1))
is non-empty for every φ ∈ Φ. We thus conclude that Q(φ|F) is non-empty, and this
implies non-emptiness of the impulse-response identified sets for every i ∈ {1� � � � � n},
j ∈ {1� � � � � n}, and h = 0�1�2� � � � . The boundedness of the identified sets follows since
|cih(φ)qj| ≤ ‖cih(φ)‖<∞ for any i ∈ {1� � � � � n}, j ∈ {1� � � � � n}, and h= 0�1�2� � � � , where
the boundedness of ‖cih(φ)‖ is ensured by the restriction on φ that the reduced-form
VAR is invertible to VMA(∞).

Next, we show convexity of the identified set of the impulse response to the j∗th shock
under each one of conditions (i)–(iii). Suppose j∗ = 1 and f1 < n− 1 (condition (i)). Since
f̃1(φ) < n− 1 for all φ ∈Φ, D1(φ) is a path-connected set because it is an intersection of
the half-space with dimension at least 2 and the unit sphere. Since the impulse response is
a continuous function of q1, the identified set of η= cih(φ)q1 is an interval, as the range
of a continuous function with a path-connected domain is always an interval (see, e.g.,
Propositions 12.11 and 12.23 in Sutherland (2009)).

Suppose j∗ ≥ 2 and assume condition (ii) holds. Denote the set of feasible qj∗ ’s by
Ej∗(φ) ≡ {qj∗ ∈ Sn−1 : Q ∈ Q(φ|F)}. The next lemma provides a specific expression for
Ej∗(φ).

LEMMA B.1: Suppose j∗ ≥ 2 and assume condition (ii) of Proposition B.1 holds. Then
Ej∗(φ)=F⊥

j∗(φ)∩Hj∗(φ)∩ Sn−1.
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PROOF OF LEMMA B.1: Given zero restrictions F(φ�Q)= 0 and the set of feasible or-
thogonal matrices Q(φ|F), define the projection of Q(φ|F) with respect to the first i
column vectors,

Q1:i(φ|F)≡ {[q1� � � � � qi] :Q ∈Q(φ|F)}�
Following the recursive representation of (B.4), Ej∗(φ) ≡ {qj∗ ∈ Sn−1 : Q ∈ Q(φ|F)} can
be written as

Ej∗(φ)=
⋃

Q1:(j∗−1)∈Q1:(j∗−1)(φ|F)

[
F⊥
j∗(φ)∩Hj∗(φ)∩P(Q1:(j∗−1))∩ Sn−1

]

= F⊥
j∗(φ)∩Hj∗(φ)∩

[ ⋃
Q1:(j∗−1)∈Q1:(j∗−1)(φ|F)

P(Q1:(j∗−1))

]
∩ Sn−1�

Hence, the conclusion follows if we can show
⋃

Q1:(j∗−1)∈Q1:(j∗−1)(φ|F)P(Q1:(j∗−1)) = Sn−1.
To show this claim, let q ∈ Sn−1 be arbitrary, and we construct Q1:(j∗−1) ∈ Q1:(j∗−1)(φ|F)
such that q ∈ P(Q1:(j∗−1)) holds. Specifically, construct qi, i = 1� � � � � (j∗ − 1), succes-
sively, by solving Fi(φ)qi = 0, q′

	qi = 0, 	= 1� � � � � i− 1, and q′qi = 0, jointly, and choose
the sign of qi to satisfy its sign normalization. Under condition (ii) of Proposition B.1,
qi ∈ Sn−1 solving these equalities exists since the rank of the coefficient matrix is at most
fi + i < n. The obtained Q1:(j∗−1) = [q1� � � � � qj∗−1] belongs to Q1:(j∗−1)(φ|F) by construc-
tion, and it is orthogonal to q. Hence, q ∈ P(Q1:(j∗−1)). Since q is arbitrary, we obtain⋃

Q1:(j∗−1)∈Q1:(j∗−1)(φ|F)P(Q1:(j∗−1))= Sn−1. Q.E.D.

Lemma B.1 shows that Ej∗(φ) is an intersection of a half-space of a linear subspace with
dimension n− fj∗ ≥ j∗ ≥ 2 with the unit sphere. Hence, Ej∗(φ) is a path-connected set on
Sn−1 and convexity of ISη(φ|F) follows.

Next, suppose condition (iii) holds. Let Q1:i∗(φ) ≡ [q1(φ)� � � � � qi∗(φ)] be the first i∗
columns of feasible Q ∈ Q(φ|F) that are common for all Q ∈ Q(φ|F) by the assumption
of exact identification of the first i∗ columns. In this case, the set of feasible qj∗ ’s can be
expressed as in the next lemma.

LEMMA B.2: Suppose j∗ ≥ 2 and assume condition (iii) of Proposition B.1 holds. Then,
whenever Q1:i∗(φ) = (q1(φ)� � � � � qi∗(φ)) is uniquely determined as a function of φ (this is
the case for almost every φ ∈Φ by the assumption of exact identification), Ej∗(φ)=F⊥

j∗(φ)∩
Hj∗(φ)∩P(Q1:i∗(φ))∩ Sn−1.

PROOF OF LEMMA B.2: Let Q1:i∗(φ) ≡ [q1(φ)� � � � � qi∗(φ)] be the first i∗ columns of
feasible Q ∈Q(φ|F), that are common for all Q ∈Q(φ|F), φ-a.s., by exact identification
of the first i∗ columns. As in the proof of Lemma A.1, Ej∗(φ) can be written as

Ej∗(φ)= F⊥
j∗(φ)∩Hj∗(φ)∩

[ ⋃
Q1:(j∗−1)∈Q1:(j∗−1)(φ|F)

P(Q1:(j∗−1))

]
∩ Sn−1

= F⊥
j∗(φ)∩Hj∗(φ)∩P

(
Q1:i∗(φ)

)

∩
⎡
⎣ ⋃
Q(i∗+1):(j∗−1)∈Q(i∗+1):(j∗−1)(φ|F)

P(Q(i∗+1):(j∗−1))

⎤
⎦ ∩ Sn−1�
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where Q(i∗+1):(j∗−1)(φ|F) = {Q(i∗+1):(j∗−1) = [qi∗+1� � � � � qj∗−1] : Q ∈ Q(φ|F)} is the projec-
tion of Q(φ|F) with respect to the (i∗ + 1)th to (j∗ − 1)th columns of Q. We now show
that, under condition (iii) of Proposition B.1,

⋃
Q(i∗+1):(j∗−1)∈Q(i∗+1):(j∗−1)(φ|F)P(Q(i∗+1):(j∗−1))=

Sn−1 holds. Let q ∈ Sn−1 be arbitrary, and we consider constructing Q(i∗+1):(j∗−1) ∈
Q(i∗+1):(j∗−1)(φ|F) such that q ∈ P(Q(i∗+1):(j∗−1)) holds. For i = (i∗ + 1)� � � � � (j∗ − 1), we
recursively obtain qi by solving

q′
i

(
F ′
i (φ) q1(φ) · · · qi∗(φ) qi∗+1 · · · qi−1 q

) = 0′�

and choose the sign of qi to be consistent with the sign normalization. Under condi-
tion (iii) of Proposition B.1, qi ∈ Sn−1 solving these equalities exists since the rank of
the coefficient matrix is at most fi + i < n for all i = (i∗ + 1)� � � � � (j∗ − 1). The ob-
tained Q(i∗+1):(j∗−1) = [qi∗+1� � � � � qj∗−1] belongs to Q(i∗+1):(j∗−1)(φ|F) by construction, and
it is orthogonal to q. Hence, q ∈ P(Q(i∗+1):(j∗−1)). Since q is arbitrary, we have that⋃

Q(i∗+1):(j∗−1)∈Q(i∗+1):(j∗−1)(φ|F)P(Q(i∗+1):(j∗−1))= Sn−1. Q.E.D.

Lemma B.2 shows that Ej∗(φ) is an intersection of a half-space of a linear subspace
with dimension n − fj∗ − i∗ ≥ j∗ + 1 − i∗ ≥ 2 with the unit sphere. Hence, Ej∗(φ) is a
path-connected set on Sn−1 and convexity of ISη(φ|F) follows.

For the cases under condition (i) or (ii), since φ ∈Φ is arbitrary, the convexity of the
impulse-response identified set holds for every φ ∈Φ. As for the case of condition (iii),
the exact identification of [q1(φ)� � � � � qi∗(φ)] assumes its unique determination up to al-
most every φ ∈Φ, so convexity of the identified set holds for almost every φ ∈Φ.

Next, consider the case with both zero and sign restrictions (Case (II)). Suppose j∗ = 1
and f1 < n − 1 (condition (i)). Following (B.4), the set of feasible q1’s can be denoted
by D1(φ) ∩ {x ∈ R

n : S1(φ)x ≥ 0}. Let q̃1 ∈ D1(φ) be a unit-length vector that satisfies( S1(φ)

(σ1)′
)
q̃1 > 0. Such q̃1 is guaranteed to exist by the assumption stated in the current propo-

sition. Let q1 ∈D1(φ)∩ {x ∈ R
n : S1(φ)x≥ 0} be arbitrary. Note that q1 	= −q̃1 must hold,

since otherwise some of the sign restrictions are violated. Consider

q1(λ)= λq1 + (1 − λ)q̃1∥∥λq1 + (1 − λ)q̃1

∥∥ � λ ∈ [0�1]�

which is a connected path in D1(φ) ∩ {x ∈ R
n : S1(φ)x ≥ 0} since the denominator is

nonzero for all λ ∈ [0�1] by the fact that q1 	= −q̃1. Since q1 is arbitrary, we can connect any
points in D1(φ) ∩ {x ∈ R

n : S1(φ)x ≥ 0} by connected paths via q̃1. Hence, D1(φ) ∩ {x ∈
R
n : S1(φ)x ≥ 0} is path-connected, and convexity of the impulse-response identified set

follows.
Suppose j∗ ≥ 2 and assume that the imposed zero restrictions satisfy condition (ii).

Let Ej∗(φ)≡ {qj∗ ∈ Sn−1 :Q ∈ Q(φ|F�S)}, and let q̃j∗ ∈ Ej∗(φ) be chosen so as to satisfy( Sj∗ (φ)
[σj∗ (φ)]′

)
q̃j∗ > 0. Such q̃j∗ exists by the assumption stated in the current proposition. For

any qj∗ ∈ Ej∗(φ), qj∗ 	= −q̃j∗ must be true, since otherwise qj∗ would violate some of the
imposed sign restrictions. Consider constructing a path between qj∗ and q̃j∗ as follows.
For λ ∈ [0�1], let

qj∗(λ)= λq̃j∗ + (1 − λ)qj∗∥∥λq̃j∗ + (1 − λ)qj∗
∥∥ � (B.5)

which is a continuous path on the unit sphere since the denominator is nonzero for all λ ∈
[0�1] by the construction of q̃j∗ . Along this path, Fj∗(φ)qj∗(λ)= 0 and the sign restrictions



6 R. GIACOMINI AND T. KITAGAWA

hold. Hence, for every λ ∈ [0�1], if there exists Q(λ) ≡ [q1(λ)� � � � � qj∗(λ)� � � � � qn(λ)] ∈
Q(φ|F�S), then the path-connectedness of Ej∗(φ) follows. A recursive construction simi-
lar to Algorithm B.1 can be used to construct suchQ(λ) ∈Q(φ|F�S). For i= 1� � � � � (j∗ −
1), we recursively obtain qi(λ) that solves

q′
i(λ)

(
F ′
i (φ) q1(λ) · · · qi−1(λ) qj∗(λ)

) = 0′� (B.6)

and satisfies [σi(φ)]′qi(λ) ≥ 0. Such a qi(λ) always exists since the rank of the ma-
trix multiplied to qi(λ) is at most fi + i, which is less than n under condition (ii). For
i= (j∗ + 1)� � � � � n, a direct application of Algorithm B.1 yields a feasible qi(λ). Thus, ex-
istence of Q(λ) ∈Q(φ|F�S), λ ∈ [0�1], is established. We therefore conclude that Ej∗(φ)
is path-connected under condition (ii), and the convexity of impulse-response identified
sets holds for every variable and every horizon. This completes the proof for Case (iv) of
the current proposition.

Last, we consider Case (v). Suppose that the imposed zero restrictions satisfy condition
(iii) of the current proposition. Let [q1(φ)� � � � � qi∗(φ)] be the first i∗th columns of feasible
Q’s, that are common for all Q ∈ Q(φ|F�S), φ-a.s., by exact identification of the first
i∗ columns. Let q̃j∗ ∈ Ej∗(φ) be chosen so as to satisfy

( Sj∗ (φ)
(σj

∗
)′
)
q̃j∗ > 0, and qj∗ ∈ Ej∗(φ)

be arbitrary. Consider qj∗(λ) in (B.5) and construct Q(λ) ∈ Q(φ|F�S) as follows. The
first i∗th column of Q(λ) must be [q1(φ)� � � � � qi∗(φ)], φ-a.s., by the assumption of exact
identification. For i= (i∗ + 1)� � � � � (j∗ − 1), we can recursively obtain qi(λ) that solves

Fi(φ)qi(λ)= 0 and

q′
i(λ)

(
q1(φ) · · · qi∗(φ) qi∗+1(λ) · · · qi−1(λ) qj∗(λ)

) = 0′�
(B.7)

and satisfies [σi(φ)]′qi(λ) ≥ 0. There always exists such qi(λ) because fi < n − i for all
i= (i∗ + 1)� � � � � (j∗ − 1). The rest of the column vectors qi(λ), i= j∗ + 1� � � � � n, of Q(λ)
are obtained successively by applying Algorithm B.1. Having shown a feasible construc-
tion of Q(λ) ∈ Q(φ|F�S) for λ ∈ [0�1], we conclude that Ej∗(φ) is path-connected, and
convexity of the impulse-response identified sets follows for every variable and every hori-
zon. Q.E.D.

Proposition B.1 shows that, when a set of zero restrictions satisfies fi ≤ n − i for all
i = 1�2� � � � � n, the identified set for the impulse response is never empty, so the zero
restrictions cannot be refuted by data. In this case, the plausibility of the identifying re-
strictions defined in Section 2.6.1 is always equal to 1. When there are also sign restric-
tions, we can have an empty identified set and a non-trivial value for the plausibility of the
identifying restrictions.

Lemma 1 of Granziera, Moon, and Schorfheide (2018) shows convexity of the impulse-
response identified set for the special case where zero and sign restrictions are imposed
only on responses to the j∗th shock, that is, j∗ = 1, fi = 0 for all i= 2� � � � � n, and IS = {1}
in our notation. Proposition B.1 extends their result to the case where zero restrictions
are placed on the columns of Q other than qj∗ . The inequality conditions (iv) and (v) of
Proposition B.1 imply that the set of feasible q’s does not collapse to a one-dimensional
subspace in R

n. If the set of feasible q’s becomes degenerate, non-convexity arises since
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the intersection of a one-dimensional subspace in R
n with the unit sphere consists of two

disconnected points.3
To gain some intuition for Proposition B.1, consider the case of equality restrictions

that restrict a single column qj by linear constraints of the form (4.9). Convexity of the
identified set for η then follows if the subspace of constrained qj ’s has dimension greater
than 1. This is because the set of feasible qj ’s is a subset on the unit sphere in R

n where
any two elements qj and qj′ are path-connected, which implies a convex identified set for
the impulse response because the impulse response is a continuous function of qj . When
the subspace has dimension 1, non-convexity can occur if, for example, the identified set
consists of two disconnected points and the sign normalization restriction fails to select
one, which means that the impulse response is locally, but not globally, identified. This ar-
gument implies that for almost every φ ∈Φ, we can guarantee convexity of the identified
set by finding a condition on the number of zero restrictions that yields a subspace of qj ’s
with dimension greater than 1.

The following examples show how to verify the conditions of Proposition B.1.

EXAMPLE B.1: Consider Example 1 in Section 4 in the main text. If the object of in-
terest is an impulse response to the monetary policy shock εi�t , we order the variables as
(it�mt�πt� yt)

′ and have (f1� f2� f3� f4)= (2�2�0�0) with j∗ = 1. Since f1 = 2, condition (i)
of Proposition B.1 guarantees that the impulse-response identified set is φ-a.s. convex. If
the object of interest is an impulse response to a demand shock εy�t , we order the variables
as (it�mt� yt�πt), and j∗ = 3. None of the conditions of Proposition B.1 apply in this case,
so Proposition B.1 does not gurantee convexity of the impulse-response identified set.

EXAMPLE B.2: Consider adding to Example 1 in Section 4 of the main text a long-run
money neutrality restriction, which sets the long-run impulse response of output to a mon-
etary policy shock (εi�t) to zero. This adds a zero restriction on the (2�4)th element of the
long-run cumulative impulse-response matrix CIR∞ and implies one more restriction on
qi. We can order the variables as (it�mt�πt� yt)

′ and we have (f1� f2� f3� f4)= (3�2�0�0). It
can be shown that, in this case, the first two columns [q1� q2] are exactly identified,4 which
implies that the impulse responses to εi�t and εm�t are point-identified. The impulse re-
sponses to εy�t are instead set-identified and their identified sets are convex, as condition
(iii) of Proposition B.1 applies to (it�mt� yt�πt)

′ with j∗ = 3.

The next corollary presents a formal result to establish whether the addition of identi-
fying restrictions tightens the identified set.

COROLLARY B.1: Let a set of zero restrictions, an ordering of variables (1� � � � � j∗� � � � � n),
and the corresponding number of zero restrictions (f1� � � � � fn) satisfy fi ≤ n− i for all i, f1 ≥
· · · ≥ fn ≥ 0, and fj∗−1 > fj∗ , as in Definition 3. Consider imposing additional zero restrictions.
Let π(·) : {1� � � � � n} → {1� � � � � n} be a permutation that reorders the variables to be consistent
with Definition 3 after adding the new restrictions, and let (f̃π(1)� � � � � f̃π(n)) be the new number

3If the set ofφ’s that leads to such degeneracy has measure zero inΦ, then, as a corollary of Proposition B.1,
we can claim that the impulse-response identified set is convex for almost all φ conditional on it being non-
empty.

4In this case, F2(φ) is a submatrix of F1(φ), which implies that the vector space spanned by the rows of
F1(φ) contains the vector space spanned by the rows of F2(φ) for every φ ∈Φ. Hence, the rank condition for
exact identification (B.3) holds,
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of restrictions. If f̃π(i) ≤ n − π(i) for all i = 1� � � � � n, (π(1)� � � � �π(j∗)) = (1� � � � � j∗), and
(f1� � � � � fj∗) = (f̃1� � � � � f̃j∗), that is, adding the zero restrictions does not change the order
of the variables and the number of restrictions for the first j∗ variables, then the additional
restrictions do not tighten the identified sets for the impulse response to the j∗th shock for
every φ ∈Φ.

PROOF OF COROLLARY B.1: The successive construction of the feasible column vec-
tors qi, i = 1� � � � � n, shows that the additional zero restrictions that do not change the
order of variables and the zero restrictions for those preceding j∗ do not constrain the set
of feasible qj∗ ’s. Q.E.D.

EXAMPLE B.3: Consider adding to Example 1 in Section 4 of the main text the restric-
tion a12 = 0. Then, an ordering of the variables when the objects of interest are the im-
pulse responses to εi�t is (it�mt� yt�πt)

′ with j∗ = 1 and (f1� f2� f3� f4)= (2�2�1�0). Com-
pared to Example 1 in Section 4 of the main text, imposing a12 = 0 does not change j∗.
Corollary B.1 then implies that the restriction does not bring any additional identifying
information for the impulse responses.

The next corollary shows invariance of the identified sets when relaxing the zero restric-
tions, which partially overlaps with the implications of Corollary B.1.

COROLLARY B.2: Let a set of zero restrictions, an ordering of variables (1� � � � � j∗� � � � � n),
and the corresponding number of zero restrictions (f1� � � � � fn) satisfy fi ≤ n− i for all i, f1 ≥
· · · ≥ fn ≥ 0, and fj∗−1 > fj∗ , as in Definition 3 in the main text. Under any of the conditions
(i)–(iii) of Proposition B.1, the identified set for the impulse responses to the j∗th structural
shock does not change when relaxing any or all of the zero restrictions on qj∗+1� � � � � qn−1.
Furthermore, if condition (ii) of Proposition B.1 is satisfied, the identified set for the impulse
responses to the j∗th structural shock does not change when relaxing any or all of the zero
restrictions on q1� � � � � qj∗−1. When condition (iii) of Proposition B.1 is satisfied, the identified
set for the impulse responses to the j∗th shock does not change when relaxing any or all of the
zero restrictions on qi∗+1� � � � � qj∗−1.

PROOF OF COROLLARY B.2: Dropping the zero restrictions imposed for those follow-
ing the j∗th variable does not change the order of variables nor the construction of the
set of feasible qj∗ ’s. Under condition (ii) of Proposition B.1, Lemma A.1 in Appendix A
shows that the set of feasible qj∗ ’s does not depend on any of Fi(φ), i = 1� � � � � (j∗ − 1).
Hence, removing or altering them (as long as condition (ii) of Proposition B.1 holds) does
not affect the set of feasible qj∗ ’s. Under condition (iii) of Proposition B.1, Lemma B.2
shows that the set of feasible qj∗ ’s does not depend on any Fi(φ), i= (i∗ +1)� � � � � (j∗ −1).
Hence, relaxing the zero restrictions constraining [qi∗+1� � � � � qj∗−1] does not affect the set
of feasible qj∗ ’s. Q.E.D.

EXAMPLE B.4: Consider relaxing one of the zero restrictions in (4.11),

⎛
⎜⎝
uπ�t
uy�t
um�t
ui�t

⎞
⎟⎠ =

⎛
⎜⎜⎝
a11 a12 0 0
a21 a22 0 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎠

⎛
⎜⎝
επ�t
εy�t
εm�t
εi�t

⎞
⎟⎠ �
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where the (2�4)th element of A−1
0 is now unconstrained, that is, the aggregate demand

equation is allowed to respond contemporaneously to the monetary policy shock. If the
interest is on the impulse responses to the monetary policy shock εi�t , the variables can be
ordered as (mt� it�πt� yt)

′ with j∗ = 2. Condition (ii) of Proposition B.1 is satisfied and the
impulse-response identified sets are convex. In fact, Lemma A.1 in Appendix A implies
that in situations where condition (ii) of Proposition B.1 applies, the zero restrictions
imposed on the preceding shocks to the j∗th structural shocks do not tighten the identified
sets for the j∗th shock impulse responses compared to the case with no zero restrictions.
In the current context, this means that dropping the two zero restrictions on qm does not
change the identified sets for the impulse responses to εi�t .

If sign restrictions are imposed on impulse responses to a shock other than the j∗th
shock, the identified set can become non-convex, as we show in the next example.5

EXAMPLE B.5: Consider an SVAR(0) model,

(
y1�t

y2�t

)
=A−1

0

(
ε1�t

ε2�t

)
�

Let Σtr = ( σ11 0
σ21 σ22

)
, where σ11 ≥ 0 and σ22 ≥ 0. Note that positive semidefiniteness of Σ=

ΣtrΣ
′
tr does not impose other constraints on the elements of Σtr. Denoting an orthonormal

matrix by Q= ( q11 q12
q21 q22

)
, we can express the contemporaneous impulse-response matrix as

IR0 =
(

σ11q11 σ11q12

σ21q11 + σ22q21 σ21q12 + σ22q22

)
�

Consider restricting the sign of the (1�2)th element of IR0 to being positive, σ11q12 ≥ 0.
Since Σ−1

tr = (σ11σ22)
−1

( σ22 0
−σ21 σ11

)
, the sign normalization restrictions give σ22q11 − σ21q21 ≥

0 and σ11q22 ≥ 0. We now show that the identified set for the (1�1)th element of IR0

is non-convex for a set of Σ with a positive measure. Note first that the second column
vector of Q is constrained to {q12 ≥ 0� q22 ≥ 0}, so that the set of (q11� q21)

′ orthogonal to
(q12� q22)

′ is constrained to

{q11 ≥ 0� q21 ≤ 0} ∪ {q11 ≤ 0� q21 ≥ 0}�

When σ21 < 0, intersecting this union set with the half-space defined by the first sign
normalization restriction {σ22q11 − σ21q21 ≥ 0} yields two disconnected arcs,

{(
q11

q21

)
=

(
cosθ
sinθ

)
: θ ∈

([
1
2
π�

1
2
π +ψ

]
∪

[
3
2
π +ψ�2π

])}
�

5See also the example in Section 4.4 of Rubio-Ramírez, Waggoner, and Zha (2010), where n = 3 and the
zero restrictions satisfy f1 = f2 = f3 = 1. Their paper shows that the identified set for an impulse response
consists of two distinct points. If we interpret the zero restrictions on the second and third variables as pairs of
linear inequality restrictions for q2 and q3 with opposite signs, convexity of the impulse-response identified set
fails. In this example, the assumption that sign restrictions are only placed on qj fails.
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where ψ = arccos( σ22√
σ2

22+σ2
21

) ∈ [0� 1
2π]. Accordingly, the identified set for r = σ11q11 is

given by the union of two disconnected intervals[
σ11 cos

(
1
2
π +ψ

)
�0

]
∪

[
σ11 cos

(
3
2
π +ψ

)
�σ11

]
�

Since {σ21 < 0} has a positive measure in the space of Σ, the identified set is non-convex
with a positive measure.

B.2. Continuity

One of the key assumptions for Theorem 3 is the continuity of ISη(φ) at φ= φ0 (As-
sumption 2(i)).6 The next proposition shows that in SVARs, this continuity property is
ensured by mild regularity conditions on the coefficient matrices of the zero and sign
restrictions.

PROPOSITION B.2—Continuity: Let η = c′
ih(φ)qj∗ , i ∈ {1� � � � � n}, h ∈ {0�1�2� � � � }, be

the impulse response of interest. Suppose that the variables are ordered according to Defini-
tion 3 and sign restrictions are placed only on the responses to the j∗th structural shock, that
is, IS = {j∗}.

(i) Suppose that the zero restrictions satisfy one of conditions (i) and (ii) of Proposition B.1.
If there exists an open neighborhood of φ0, G ⊂ Φ, such that rank(Fj∗(φ)) = fj∗ for all
φ ∈G, and if there exists a unit-length vector q ∈R

n such that

Fj∗(φ0)q= 0 and
(
Sj∗(φ0)(
σj

∗
(φ0)

)′
)
q� 0�

then the identified set correspondence ISη(φ|F�S) is continuous at φ = φ0 for every i and
h.7 (ii) Suppose that the zero restrictions satisfy condition (iii) of Proposition B.1, and let
[q1(φ)� � � � � qi∗(φ)] be the first i∗ column vectors of Q that are exactly identified. If there
exists an open neighborhood of φ0, G ⊂ Φ, such that

(
F ′
j∗(φ) q1(φ) · · · qi∗(φ)

)
is a

full column-rank matrix for all φ ∈G, and if there exists a unit-length vector q ∈ R
n such that

q′ (F ′
j∗(φ0) q1(φ0) · · · qi∗(φ0)

) = 0′ and
(
Sj∗(φ0)(
σj

∗
(φ0)

)′
)
q� 0�

then the identified-set correspondence ISη(φ|F�S) is continuous at φ=φ0 for every i and h.

PROOF OF PROPOSITION B.2: (i) Following the notation introduced in the proof of
Proposition B.1, the upper and lower bounds of the impulse-response identified set are
written as

u(φ)/	(φ)= max/min
qj∗
c′
ih(φ)qj∗�

s.t. qj∗ ∈ Ej∗(φ) and Sj∗(φ)qj∗ ≥ 0�
(B.8)

When j∗ = 1 (Case (i) of Proposition B.1), E1(φ) is given by D1(φ) defined in (B.4). On
the other hand, when j∗ ≥ 2 and Case (ii) of Proposition B.1 applies, Lemma B.1 provides

6Proposition B.1 shows boundedness of ISη(φ|F�S) for all φ so that Assumption 2(iii) also holds.
7For a vector y = (y1� � � � � ym)

′, y � 0 means yi > 0 for all i= 1� � � � �m.
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a concrete expression for Ej∗(φ). Accordingly, in either case, the constrained set of qj∗ in
(B.8) can be expressed as

Ẽj∗(φ)≡
{
q ∈ Sn−1 : Fj∗(φ)q= 0�

(
Sj∗(φ)(
σj

∗
(φ)

)′
)
q≥ 0

}
�

The objective function of (B.8) is continuous in qj∗ , so, by the Theorem of Maximum (see,
e.g., Theorem 9.14 of Sundaram (1996)), the continuity of u(φ) and 	(φ) is obtained if
Ẽj∗(φ) is shown to be a continuous correspondence at φ=φ0.

To show continuity of Ẽj∗(φ), note first that Ẽj∗(φ) is a closed and bounded corre-
spondence, so upper-semicontinuity and lower-semicontinuity of Ẽj∗(φ) can be defined
in terms of sequences (see, e.g., Propositions 21 of Border (2013)):

• Ẽj∗(φ) is upper-semicontinuous (usc) at φ=φ0 if and only if, for any sequence φv →
φ0, v = 1�2� � � � , and any qvj∗ ∈ Ẽj∗(φv), there is a subsequence of qvj∗ with limit in
Ẽj∗(φ0).

• Ẽj∗(φ) is lower-semicontinuous (lsc) at φ= φ0 if and only if φv → φ0, v = 1�2� � � � ,
and q0

j∗ ∈ Ẽj∗(φ0) imply that there is a sequence qvj∗ ∈ Ẽj∗(φv) with qvj∗ → q0
j∗ .

In the proofs below, we use the same index v to denote a subsequence for brevity of
notation.

Usc: Since qvj∗ is a sequence on the unit sphere, it has a convergent subsequence qvj∗ →
qj∗ . Since qvj∗ ∈ Ẽj∗(φv), Fj∗(φv)qvj∗ = 0 and

( Sj∗ (φv)
(σj

∗
(φv))′

)
qvj∗ ≥ 0 hold for all v. Since Fj∗(·)

and
( Sj∗ (·)
(σj

∗
(·))′

)
are continuous in φ, these equality and sign restrictions hold at the limit as

well. Hence, qj∗ ∈ Ẽj∗(φ0).
Lsc: Our proof of lsc proceeds similarly to the proof of Lemma 3 in the 2013 working

paper version of Granziera, Moon, and Schorfheide (2018). Let φv → φ0 be arbitrary.
Let q0

j∗ ∈ Ẽj∗(φ0), and define P0 = Fj∗(φ0)
′[Fj∗(φ0)Fj∗(φ0)

′]−1Fj∗(φ0) be the projection
matrix onto the space spanned by the row vectors of Fj∗(φ0). By the assumption of the
current proposition, Fj∗(φ) has full row-rank in the open neighborhood of φ0, so P0 and
Pv = Fj∗(φ

v)′[Fj∗(φv)Fj∗(φv)′]−1Fj∗(φ
v) are well-defined for all large v. Let ξ∗ ∈ R

n be a
vector satisfying

( Sj∗ (φ0)

(σj
∗
(φ0))

′
)[In − P0]ξ∗ � 0, which exists by the assumption. Let

ζ = min
{(

Sj∗(φ0)(
σj

∗
(φ0)

)′
)[
In − P0

]
ξ∗

}
> 0�

and define

ξ = 2
ζ
ξ∗�

εv =
∥∥∥∥
(
Sj∗

(
φv

)(
σj

∗(
φv

))′

)[
In − Pv

] −
(
Sj∗(φ0)(
σj

∗
(φ0)

)′
)[
In − P0

]∥∥∥∥ �
qvj∗ =

[
In − Pv

][
q0
j∗ + εvξ]

∥∥[
In − Pv

][
q0
j∗ + εvξ]∥∥ �

Since Pv converges to P0, εv → 0. Furthermore, [In − P0]q0
j∗ = q0

j∗ implies that qvj∗ con-
verges to q0

j∗ as v → ∞. Note that qvj∗ is orthogonal to the row vectors of Fj∗(φv) by
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construction. Furthermore, note that(
Sj∗

(
φv

)(
σj

∗(
φv

))′

)
qvj∗

= 1∥∥[
In − Pv

][
q0
j∗ + εvξ]∥∥

(
Sj∗

(
φv

)(
σj

∗(
φv

))′

)[[
In − Pv

][
q0
j∗ + εvξ]]

≥ 1∥∥[
In − Pv

][
q0
j∗ + εvξ]∥∥

(((
Sj∗

(
φv

)(
σj

∗(
φv

))′

)[
In − Pv

] −
(
Sj∗(φ0)(
σj

∗
(φ0)

)′
)[
In − P0

])
q0
j∗

+ εv
(
Sj∗

(
φv

)(
σj

∗(
φv

))′

)[
In − Pv

]
ξ

)

≥ 1∥∥[
In − Pv

][
q0
j∗ + εvξ]∥∥

(
−εv∥∥q0

j∗
∥∥1 + εv

(
Sj∗

(
φv

)(
σj

∗(
φv

))′

)[
In − Pv

]
ξ

)

= εv∥∥[
In − Pv

][
q0
j∗ + εvξ]∥∥

(
2
ζ

(
Sj∗

(
φv

)(
σj

∗(
φv

))′

)[
In − Pv

]
ξ∗ − 1

)
�

where the third line follows by
( Sj∗ (φ0)

(σj
∗
(φ0))

′
)[In − P0]q0

j∗ = ( Sj∗ (φ0)

(σj
∗
(φ0))

′
)
q0
j∗ ≥ 0. By the con-

struction of ξ∗ and ζ, 2
ζ

( Sj∗ (φv)
(σj

∗
(φv))′

)[In − Pv]ξ∗ > 1 holds for all large v. This implies that( Sj∗ (φv)
(σj

∗
(φv))′

)
qvj∗ ≥ 0 holds for all large v, implying that qvj∗ ∈ Ẽj∗(φv) for all large v. Hence,

Ẽj∗(φ) is lsc at φ=φ0.
(ii) Usc: Under Case (iii) of Proposition B.1, Lemma B.2 implies that the constraint set

of qj∗ in (B.8) can be expressed as

Ẽj∗(φ)≡
{
q ∈ Sn−1 : q′ (F ′

j∗(φ) q1(φ) · · · qi∗(φ)
) = 0′�

(
Sj∗(φ)(
σj

∗
(φ)

)′
)
q≥ 0

}
�

Let qvj∗ , v = 1�2� � � � , be a sequence on the unit sphere, such that qvj∗ ∈ Ẽj∗(φv) holds
for all v. This has a convergent subsequence qvj∗ → qj∗ . Since Fi(φ) are continuous in
φ for all i = 1� � � � � i∗, qi(φ), i = 1� � � � � i∗, are continuous in φ as well, implying that the
equality restrictions and the sign restrictions, qv′j∗

(
F ′
j∗(φ

v) q1(φ
v) · · · qi∗(φ

v)
) = 0′

and
( Sj∗ (φv)
(σj

∗
(φv))′

)
qvj∗ ≥ 0, must hold at the limit v→ ∞. Hence, qj∗ ∈ Ẽj∗(φ0).

Lsc: Define P0 and Pv as the projection matrices onto the column vectors of(
F ′
j∗(φ0) q1(φ0) · · · qi∗(φ0)

)
and

(
F ′
j∗(φ

v) q1(φ
v) · · · qi∗(φ

v)
)
, respectively.

The imposed assumptions imply that Pv and P0 are well-defined for all large v, and
Pv → P0. With the current definition of Pv and P0, lower-semicontinuity of Ẽj∗(φ) can
be shown by repeating the same argument as in the proof of part (i) of the current propo-
sition. We omit details for brevity. Q.E.D.

B.3. Differentiability

In the development of a delta method for the endpoints of the impulse-response iden-
tified set, Theorem 2 in Gafarov, Meier, and Montiel-Olea (2018) shows their directional
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differentiability. We restrict our analysis to the settings of Proposition B.1 where the iden-
tified set is convex. The following proposition extends Theorem 2 of Gafarov, Meier, and
Montiel-Olea (2018) and obtains a sufficient condition for differentiability of 	(φ) and
u(φ).

PROPOSITION B.3—Differentiability: Let η= c′
ih(φ)qj∗ , i ∈ {1� � � � � n}, h ∈ {0�1�2� � � � },

be the impulse response of interest. Suppose that the variables are ordered according to Defi-
nition 3 and sign restrictions are placed only on the responses to the j∗th structural shock, that
is, IS = {j∗}.

(i) Suppose that the zero restrictions satisfy one of conditions (i) and (ii) of Proposition B.1
and the column vectors of [F ′

j∗(φ0)� S
′
j∗(φ0)�σ

j∗(φ0)] are linearly independent in the sense

that for any n× k matrix Bk, 0 ≤ k ≤ 1 + ∑h̄

h=0 shj∗ , formed by selecting k column vectors
from [S′

j∗(φ0)�σ
j∗(φ0)], n× (fj∗ +k) matrix [F ′

j∗(φ0)�Bk] is full-rank. If the set of solutions
of the following optimization problem:

min
q∈Sn−1

{
c′
ih(φ0)q

} (
resp. max

q∈Sn−1

{
c′
ih(φ0)q

})

s.t. Fj∗(φ0)q= 0 and
(
Sj∗(φ0)(
σj

∗
(φ0)

)′
)
q≥ 0�

(B.9)

is singleton, the optimized value 	(φ0) (resp. u(φ0)) is nonzero, and the number of binding
sign restrictions at the optimum is less than or equal to n− fj∗ − 1, then 	(φ) (resp. u(φ)) is
differentiable at φ=φ0.

(ii) Suppose that the zero restrictions satisfy conditions (iii) of Proposition B.1. Let
[q1(φ0)� � � � � qi∗(φ0)] be the first i∗th column vectors of Q that are exactly identified at φ=
φ0. Assume that the column vectors of [Fj∗(φ0)

′� Sj∗(φ0)
′�σj

∗
(φ0)�q1(φ0)� � � � � qi∗(φ0)] are

linearly independent in the sense that for any n × k matrix Bk, 0 ≤ k ≤ 1 + ∑h̄

h=0 shj∗ ,
formed by selecting k column vectors from [S′

j∗(φ0)�σ
j∗(φ0)], n × (fj∗ + i∗ + k) matrix

[F ′
j∗(φ0)�Bk�q1(φ0)� � � � � qi∗(φ0)] is full-rank. If the set of solutions of the following opti-

mization problem:

min
q∈Sn−1

{
c′
ih(φ0)q

} (
resp. max

q∈Sn−1

{
c′
ih(φ0)q

})

s.t.

⎛
⎜⎜⎝
Fj∗(φ0)
q1(φ0)

′

���
qi∗(φ0)

′

⎞
⎟⎟⎠q= 0 and

(
Sj∗(φ0)(
σj

∗
(φ0)

)′
)
q≥ 0�

(B.10)

is singleton, the optimized value 	(φ0) (resp. u(φ0)) is nonzero, and the number of binding
sign restrictions at the optimum is less than or equal to n−fj∗ − i∗ −1, then 	(φ) (resp. u(φ))
is differentiable at φ=φ0.

PROOF OF PROPOSITION B.3: We show that in each of Cases (i)–(iii) of Proposition B.1
with the sign restrictions imposed on the j∗th shock only, the optimization problem to be
solved for the endpoints of the identified set (	(φ)�u(φ)) is reduced to the optimization
problem that Gafarov, Meier, and Montiel-Olea (2018) analyzed. The differentiability of
the endpoints in φ then follows by directly applying Theorem 2 of Gafarov, Meier, and
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Montiel-Olea (2018). Our proof focuses on the lower bound 	(φ0) only, as the conclusion
for the upper bound can be proved similarly.

To show claim (i) of this proposition, assume j∗ = 1 and f1 < n − 1 (i.e., Case (i) of
Proposition B.1 with IS = {1}). The choice set of q1 is given by D1(φ0) ∩ {q ∈ Sn−1 :
S1(φ0)q≥ 0}, where D1(φ) is as defined in (B.4), and the optimization problem to obtain
	(φ) can be written as (B.9) with j∗ = 1. One-to-one differentiable reparameterization
of q ∈ Sn−1 by x = Σtrq leads to the optimization problem in equation (2.5) of Gafarov,
Meier, and Montiel-Olea (2018). Hence, under the assumptions stated in claim (i) of the
current proposition, their Theorem 2 proves differentiability of 	(φ0).

Assume that the imposed zero restrictions satisfy Case (ii) of Proposition B.1 with
IS = {j∗}. By applying Lemma B.1, the choice set of qj∗ is given by F⊥

j∗(φ0)∩Hj∗(φ)∩{q ∈
Sn−1 : Sj∗(φ0)q ≥ 0}, and the optimization problem to obtain 	(φ0) can be written as
(B.10). One-to-one differentiable reparameterization of q ∈ Sn−1 by x = Σtrq leads to
the optimization problem in equation (2.5) of Gafarov, Meier, and Montiel-Olea (2018),
so the conclusion follows by their Theorem 2.

Last, assume that the imposed zero restrictions satisfy Case (iii) of Proposition B.1 with
IS = {j∗}. By applying Lemma B.2, the choice set of qj∗ is given by F⊥

j∗(φ0) ∩ Hj∗(φ0) ∩
P(Q1:i∗(φ0)) ∩ {q ∈ Sn−1 : Sj∗(φ0)q ≥ 0} with Q1:i∗(φ0) = [q1(φ0)� � � � � qi∗(φ0)] pinned
down uniquely by the assumption of exact identification. Accordingly, the optimization
problem to obtain 	(φ0) can be written as (B.10). One-to-one differentiable reparame-
terization of q ∈ Sn−1 by x= Σtrq leads to the optimization problem in equation (2.5) of
Gafarov, Meier, and Montiel-Olea (2018) with the expanded set of equality restrictions
consisting of Fj∗(φ0)(Σtr)

−1x = 0 and Q1:i∗(φ0)
′(Σtr)

−1x = 0. Hence, under the assump-
tions stated in claim (ii) of the current proposition, their Theorem 2 implies differentia-
bility of 	(φ0). Q.E.D.

Theorem 2 in Gafarov, Meier, and Montiel-Olea (2018) concerns Case (i) of Propo-
sition B.1 with sign restrictions placed on IS = {1} and no zero restrictions on the other
shocks, f2 = · · · = fn = 0. Proposition B.3 extends Theorem 2 in Gafarov, Meier, and
Montiel-Olea (2018) to the setting where we impose the zero restrictions on the column
vectors of Q other than j∗ subject to the conditions for convexity of the identified set
characterized in Proposition B.1.8

Among the sufficient conditions for differentiability of the bounds shown in Proposi-
tion B.3, the two key conditions are uniqueness of the optimizer and the maximal number
of binding constraints.

The uniqueness condition seems mild in SVARs. Since the feasible set for q is the in-
tersection of the unit sphere and the polyhedron formed by the sign restrictions, it has
vertices and the manifolds connecting the vertices are arcs or a subset on the sphere
rather than lines or planes. Hence, if cih(φ0) is linearly independent of any of the linear
inequality constraints—which holds if the sign of the impulse response of interest is not
restricted—we can rule out that the continuum of optimizers lies on one of the arcs con-
necting neighboring vertices. Another possible failure of the condition is when the linear
objective functions are optimized at multiple vertices of the (curved) feasible set. In the-
ory, we cannot exclude such possibility, but we believe this to be a pathological case in
practice. In the other cases, the solution is unique, attained at either one of the vertices,

8The statement of Theorem 2 of Gafarov, Meier, and Montiel-Olea (2018) does not explicitly constrain the
maximal number of binding inequality restrictions at the optimum (cf. Proposition B.3 in this paper), while
their proof implicitly does so.
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an interior point on one of the edge arcs, or a strict interior of the surface subset of the
sphere.

The condition on the maximal number of binding constraints implies that if the opti-
mum is attained at one of the vertices on the constrained surface of Sn−1, it has to be a
basic solution, that is, exactly n− 1 equality and inequality restrictions (excluding the unit
sphere constraint) are binding at the vertex. Otherwise, a local perturbation of φ around
φ0 can create additional vertices and generate non-smooth changes of the value function
depending on which of the new vertices becomes a new solution. We want to rule out this
case to ensure differentiability of 	(φ) and u(φ). If the vertex attaining the optimum is
not a basic solution, 	(φ) or u(φ) that involves the max or min operator has multiple en-
tries attaining the maximum or minimum at φ=φ0. This type of non-differentiable 	(φ)
and u(φ) generally leads to failure of Assumptions 4(i) and 4(ii). In frequentist inference
in moment inequality models, this issue translates to non-pivotal asymptotic distributions
of the test statistics depending on which moment inequalities are binding. The frequen-
tist approaches to uniformly valid inference studied in Andrews and Soares (2010), Bugni,
Canay, and Shi (2017), and Kaido, Molinari, and Stoye (2019), among others, involve gen-
eralized moment selection. A Bayesian or robust Bayesian interpretation or justification
for such moment selection procedures is not yet known and thus left for future research.
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