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MARKET SELECTION AND THE INFORMATION CONTENT OF PRICES

ALP E. ATAKAN
Department of Economics, Koç University and School of Economics and Finance,

Queen Mary University of London

MEHMET EKMEKCI
Department of Economics, Boston College

We study information aggregation when n bidders choose, based on their private
information, between two concurrent common-value auctions. There are ks identical
objects on sale through a uniform-price auction in market s and there are an additional
kr objects on auction in market r, which is identical to market s except for a positive
reserve price. The reserve price in market r implies that information is not aggregated
in this market. Moreover, if the object-to-bidder ratio in market s exceeds a certain
cutoff, then information is not aggregated in market s either. Conversely, if the object-
to-bidder ratio is less than this cutoff, then information is aggregated in market s as the
market grows arbitrarily large. Our results demonstrate how frictions in one market can
disrupt information aggregation in a linked, frictionless market because of the pattern
of market selection by imperfectly informed bidders.
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1. INTRODUCTION

CONSIDER A MARKET where ks identical common-value objects of unknown value are
sold to n bidders, each with unit demand. The sale is conducted through a sealed-bid
auction where each of the highest ks bidders receives an object and pays a uniform price
equal to the highest losing bid. Each object’s common value (V ) is equal to 1 in the good
state and 0 in the bad state. In such an auction, if each bidder has an independent signal
about the unknown value of the object, then the auction’s equilibrium price converges to
the object’s true value as the number of objects and the number of bidders grow arbitrarily
large (see Pesendorfer and Swinkels (1997)). Therefore, the auction price reveals the
unknown value of the object and, thus, aggregates all relevant information dispersedly
held by the bidders.

Most previous work on auctions takes the distribution of types that bid in the auction as
exogenously given.1 Yet, in many instances, bidders strategically decide whether to trade
in a particular market after weighing their alternatives. In other words, the bidder dis-
tribution is endogenously determined jointly by the set of available alternatives and the
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bidders’ expectations about the relative attractiveness of these alternatives. Our focus in
this paper is an environment where bidders choose, based on their private information,
between the auction (market s) and an outside option (market r). This framework allows
us to highlight the interplay between self-selection into an auction, bidding behavior in
the auction, and the information content of prices.

Market r, which serves as the outside option for market s, is a uniform-price auction
with a reserve price c > 0, where there are an additional nκr = kr units of the same object
for sale.2 If the object-to-bidder ratio in market r is sufficiently large, then each bidder
can purchase an object at a fixed price equal to c > 0. In this case, the payoff from choos-
ing the outside option is exogenously determined by the reserve price c. Otherwise, the
attractiveness of the outside option is endogenously determined by the bidders who select
market r together with the reserve price c.

Our main result identifies when frictions in market r, resulting from the positive reserve
price, disrupts information aggregation also in the frictionless market s. In particular, we
show that there is no symmetric equilibrium that aggregates information in either market
if the object-to-bidder ratio in market s exceeds a certain cutoff κ̄. This cutoff depends
on the reserve price, the signal structure, and the object-to-bidder ratio in market r. If, on
the other hand, the object-to-bidder ratio in market s is less than κ̄, then information is
aggregated in market s. Importantly, our result implies that information aggregation can
fail in both markets under imperfect information even in circumstances where informa-
tion is aggregated in both markets under complete information. We provide intuition for
these findings using an illustrative example further below.

Previous work on information aggregation mainly focused on homogeneous (or highly
correlated) objects that trade in a single centralized, frictionless auction market. How-
ever, such a centralized market is an exception rather than the rule. Fragmentation, the
disperse trading of the same security in multiple markets, is commonplace: Many stocks
listed on the New York Stock Exchange trade concurrently on regional exchanges (see
Hasbrouck (1995)). Investors who participate in a primary treasury bond auction could
purchase a bond with similar cash-flow characteristics from the secondary market. Labor
markets are linked but also segmented according to industry, geography, and skill. Buyers
in the market for aluminum or steel can choose between the London Metal Exchange or
the New York Mercantile Exchange. Such fragmented markets and exchanges also differ
in structure, rules, and regulations. In particular, markets are heterogeneous in terms of
the frictions that participants face. The results that we present in this paper suggest that
selection into markets can have important implications for the information content of
prices, especially when individuals choose between markets that differ in terms of insti-
tutional detail and, therefore, frictions. In particular, we demonstrate how frictions can
disrupt information aggregation not only in the market with frictions, but also in friction-
less, substitute markets.

1.1. An Illustrative Example

Recall that bidders choose, based on their private information, between market s,
where there are nκs objects on auction, and market r, where there are an additional nκr

objects on auction. There is a positive reserve price c > 0 in market r, while there is no

2The reserve price has various interpretations: (a) It is a reserve price set by a single auctioneer; (b) the
auction is comprised of kr nonstrategic sellers and the reservation value (or the cost) for these sellers is equal
to c; (c) it is a government/regulator imposed minimum price.
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reserve price in market s. For this example, assume that κr + κs < 1, and further suppose
that each bidder receives a private signal that perfectly reveals the value of the object
with probability 1 −g and receives an uninformative signal with the remaining probability
g ∈ [0�1]. A bidder who receives the uninformative signal believes that V = 1 with prob-
ability 1/2, while a bidder who receives the perfectly revealing signal knows the object’s
true value.

As a first benchmark, suppose that κr = 0, that is, suppose that there is only one ac-
tive market. In this case, it is innocuous to assume that all bidders participate in market
s because a nonparticipating bidder’s payoff is equal to 0 in both states. However, if all
bidders participate in market s, then Pesendorfer and Swinkels’s (1997) analysis implies
that the auction price in market s converges to 1 and 0 in states V = 1 and V = 0, respec-
tively, as the number of bidders n and the number of object nκs grow arbitrarily large for
any g < 1. In other words, if κr = 0, then information is aggregated because the auction
price in market s converges to the object’s value in each state.

As a second benchmark assume that κr > 0 and suppose that all bidders receive per-
fectly informative signals (g = 0). In this benchmark, there is a unique equilibrium for
each n and information is again aggregated. In state V = 0, all bidders bid 0 in auction s
because there is a positive reserve price in market r. Therefore, the price in state V = 0 is
equal to 0 and c in markets s and r, respectively.3 In state V = 1, the bidders randomize
between the two auctions and bid 1 in the auction that they choose.4 Since the bidders
randomize, they are indifferent between the two markets in equilibrium. Moreover, the
facts that all bidders bid 1 and κr + κs < 1 together imply that the price in one of the two
markets must converge to 1. Since the bidders are indifferent between the two markets,
the price in state V = 1 must converge to 1 in both markets. Therefore, the auction price
in market s converges to value and perfectly reveals the state.

In contrast to the two benchmarks, we will now argue that price cannot converge to
value in market s if there are sufficiently many uninformed bidders.5 For this argument,
we will assume that 1 − g < κr and c > 1/2. On the way to a contradiction, assume that
price converges to value in auction s. No uninformed bidder and no bidder who knows
that the state is V = 0 would bid in market r in equilibrium because the price in this
market is at least c > 1/2 in both states. Consider a bidder who knows that the state is
V = 1. This bidder’s payoff from participating in auction s converges to 0 because the
auction price converges to 1 in state V = 1 by our initial assumption. The price in market
r converges to c in both states because 1 − g < κr and because only the informed bid-
ders select market r. Therefore, any informed bidder will opt for market r in state V = 1
for sufficiently large n. However, if no bidder other than the uninformed bidders submit
nontrivial bids that exceed 0 in market s, then all the uninformed bidders would bid 1/2,
that is, their valuation for the object. Thus, the price cannot converge to 1 in state V = 1,
contradicting our initial assumption.

This example highlights the main tension between type-dependent market selection and
information aggregation. In order for information to be aggregated in market s, informed
bidders must choose this market in both states. However, if information is aggregated,
then no informed bidder would choose market s in state V = 1 because they can obtain
an object for a price equal to c in market r. We further discuss this example in Section 4.

3In the auction that we study, if there are fewer bidders than objects, then the price is equal to the reserve
price.

4Bidders bid their value in the auctions since the auctions are ks + 1 (or kr + 1) price auctions.
5A third benchmark that comes to mind is one where the reserve price c in market r is also equal to 0. In

this case, price converges to value in both markets along every equilibrium sequence.
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1.2. Relation to the Literature

We make two main contributions to the literature on information aggregation in multi-
object common-value auctions. (i) We are the first to study bidding behavior in a multi-
object common-value auction where bidders have outside options and the distribution
of types is endogenously determined. (ii) In this context, we highlight a new mechanism,
based on self-selection, that can lead to the failure of information aggregation.

The model that we study is closest to Pesendorfer and Swinkels (1997).6 Their paper
argued that prices converge to the true value of a common-value object in all symmetric
equilibria if and only if both the number of objects and the number of bidders who are
not allocated an object grow without bound (double largeness). In contrast, we show that
information aggregation can fail if bidders have access to an outside option even when
the double-largeness condition is satisfied.

Our paper is also related to recent work on single-unit common-value auctions by
Lauermann and Wolinsky (2017) and Murto and Valimaki (2014). The novel feature of
Lauermann and Wolinsky’s (2017) model is that the auctioneer knows the value of the
object but must solicit bidders for the auction, and soliciting bidders is costly. Therefore,
the number of bidders in the auction is endogenously determined by the auctioneer. Our
paper differs from Lauermann and Wolinsky (2017) because (i) we study a multi-unit mul-
timarket auction, while they study a single-object single-market auction, and Pesendorfer
and Swinkels’s (1997) analysis implies that the information aggregation properties of a
multi-unit auctions differ substantially from the information aggregation properties of an
auction with a single object. (ii) In our model, the distribution of types is determined by
the participation decision of the bidders, while in their paper the auctioneer’s solicita-
tion strategy determines the number of bidders. This implies that in our model partici-
pation decisions are type-dependent, while in theirs they are type-independent but state-
dependent. In Murto and Valimaki (2014), potential bidders must pay a cost to participate
in the auction. This creates type-dependent participation, as in our model. However, in
contrast to this paper, they study a single-object, single-market auction and their emphasis
is on characterizing equilibria rather than information aggregation.

Lauermann and Wolinsky (2017) and Atakan and Ekmekci (2014) also present models
where information aggregation fails in a large common-value auction. In both of these
papers, information aggregation fails because there is an atom in the bid distribution
and the auction price is equal to this atom with positive probability in both states of the
world. In this paper, information aggregation can fail even when there are no atoms in
the bid distribution. For instance, in the illustrative example information, aggregation
fails in market s because the same set of types determine the price, and the limit-price
distribution is continuous, atomless, and increasing over the unit interval, in both states.

2. PRELIMINARIES

We study an auction where n bidders choose between three mutually exclusive alterna-
tives: (i) A bidder can bid in market s, (ii) she can bid in market r, or (iii) she can choose

6There is extensive work on information aggregation by prices in various contexts. For example, see Wilson
(1977) for common-value, uniform-price auctions with one object for sale, Pesendorfer and Swinkels (2000)
for mixed private, common-value auctions, Reny and Perry (2006) and Cripps and Swinkels (2006) for large
double auctions, Vives (2011) and Rostek and Weretka (2012) for markets for divisible objects, and Wolinsky
(1990), Golosov, Lorenzoni, and Tsyvinski (2014), Ostrovsky (2012), Lauermann and Wolinsky (2015), and
Lambert, Ostrovsky, and Panov (2018) for search markets and markets with dynamic trading.
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neither and receive a payoff equal to 0. A bidder does not observe anything beyond her
private signal when making this choice.

Market s is a common-value, sealed-bid, uniform-price auction for �κsn� = ks identical
objects where κs ∈ (0�1) is the object-to-bidder ratio.7 There are �nκr� = kr additional
objects on auction in market r and the auction format in market r is identical to market s
except for a reserve price c ∈ (0�1). The price in market s is equal to the ks + 1st highest
bid in market s (the highest losing bid) if there are more bidders than objects and is equal
to 0 otherwise. The price in market r is equal to the maximum of c and the highest losing
bid in market r if there are more bidders than objects, and is equal to c otherwise. Ties
are broken uniformly and randomly.

Each bidder has unit demand, and puts value V on a single object and value 0 on any
further objects. The km highest bidders in auction m ∈ {r� s} are allocated objects. Thus, a
bidder who is allocated an object at price P enjoys utility V − P , while a bidder who fails
to win an object receives a payoff equal to 0.

The common value V (or the state of the world) is a random variable with typical re-
alizations v ∈ {0�1}. The common prior is equal to 1/2.8 Before selecting a market, each
bidder receives a signal θ ∈ [0�1] according to a continuous, increasing cumulative dis-
tribution function F(θ|v) that admits a density function f (θ|v), v = 0�1.9 Conditional
on V , the signals are identically and independently distributed. Given that there are two
states of the world, the signals satisfy the monotone likelihood ratio property (MLRP)
possibly after a reordering. In other words, the likelihood ratio l(θ) := f (θ|1)/f (θ|0) is
a nondecreasing function of θ. Throughout the paper, we further assume that (a) there
are no uninformative signals, that is, F({θ : l(θ) = 1}) = 0, and (b) signals contain bounded
information, that is, there is a constant η> 0 such that η< l(θ) < 1

η
for all θ ∈ [0�1]. The

first assumption states that the mass of signals that contain no information is equal to 0.
This is a strengthening of MLRP, but it is weaker than assuming strict MLRP. The second
assumption is a technical condition that is also maintained by Pesendorfer and Swinkels
(1997). These assumptions significantly simplify the statements and proofs of our results.
However, neither of these two assumptions is needed to show that information aggrega-
tion fails under the other assumptions outlined in the paper. In fact, in the illustrative
example, neither assumption is satisfied, but all of our results nevertheless hold.

2.1. Strategies and Equilibrium

We represent bidder behavior by a distributional strategy H, which is a measure over
[0�1] × {s� r�neither} × [0�∞). We focus on the symmetric Nash equilibria of the game �
in which all players use the same distributional strategy H and we refer to a symmetric
strategy profile simply by the strategy H. We ignore, without loss of generality, the option
of choosing “neither,” because this option is never chosen by a positive measure of types
in any symmetric equilibrium.10

For a given strategy H, define the measure of types in auction s by FH
s (θ) := H([0� θ] ×

{s}× [0�∞)) and define the selection function aH : [0�1] → [0�1] as the function such that

7The smallest integer not less than x is denoted by �x�.
8We focus on a uniform prior for expositional simplicity only.
9For any half-open interval (θ′� θ′′], we use F((θ′� θ′′]|v) := F(θ′′|v)− F(θ′|v).
10If a positive mass of types were to choose “neither” in a symmetric equilibrium, then any bidder who

submits a bid equal to 0 in auction s would win an object with strictly positive probability in state V = 1. Thus,
all types who choose “neither” and receive a payoff equal to 0 would rather bid 0 in the auction and receive a
strictly positive expected payoff.
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FH
s (θ) = ∫ θ

0 aH(θ)dF(θ). Intuitively, aH(θ) is the probability that type θ bids in auction s.
Also, FH

s (θ|v) := ∫ θ

0 aH(θ)dF(θ|v) is the measure of types that bid in market s conditional
on V = v and F̄H

s (θ|v) := FH
s (1|v)− FH

s (θ|v). The kth highest type that bids in auction s
is denoted by Yn

s (k), and we set Yn
s (k) equal to 0 if there are fewer than k bidders in the

auction.
The following lemma, which follows closely from Pesendorfer and Swinkels (1997, Lem-

mata 3–6), allows us to work exclusively with a pure and nondecreasing bidding strategy,
that is, a function b : [0�1] → [0�∞) such that H({θ� s�b(θ)}θ∈[0�1])= FH

s (1). Moreover, if
the bidding function is increasing over an interval of types, then any type θ in this interval
bids her value conditional on being the pivotal bidder in the auction.

LEMMA 2.1: Any equilibrium H can be represented by a nondecreasing bidding function
bH . Moreover, if bH(θ) is increasing over an interval (θ′� θ′′), then bH(θ) = E[V |Yn−1

s (ks) =
θ�θ] for almost every θ ∈ (θ′� θ′′).

Below we define a certain type θH
s (v) for each state v such that the expected number of

bids above this type’s bid in state v is exactly equal to the number of goods in market s. We
refer to θH

s (v) as the pivotal type in state v because the types that determine the auction
price are concentrated around θH

s (v) in a large market by the law of large numbers (LLN).

DEFINITION 2.1—Pivotal Types: For any strategy H, the pivotal type in state v is
θH
s (v) := max{θ : F̄H

s (θ|v) = κs}, and θH
s (v) := 0 if the set is empty.11

For any sequence of strategies {Hn}, we will denote each θHn

s (v) simply by θn
s (v), and

we let θs(v)= limn θ
n
s (v) and Fs(θ|v) = limFn

s (θ|v) whenever such limits exist.

2.2. Definition of Information Aggregation

We study a sequence of strategies H = {Hn}∞
n=1 for a sequence of auctions �n where the

nth auction has n bidders. We assume that the parameters of the auctions are constant
along the sequence and satisfy all the assumptions that we make.

Suppose that the number of bidders n is large. In this case, the LLN implies that observ-
ing the signals of all n bidders conveys precise information about the state of the world.
A strategy Hn determines an auction price Pn given any realization of signals. We say
that information is aggregated in the auction if this price also conveys precise information
about the state of the world. Specifically, (i) if the likelihood ratio l(Pn = p) := Pr(V =1|Pn=p)

Pr(V =0|Pn=p)

is close to 0 (i.e., if it is arbitrarily more probable that we observe such a price p when
V = 0), then an outsider who observes price p learns that the state is V = 0. Alternatively,
(ii) if the likelihood ratio l(Pn = p) is arbitrarily large, then an outsider who observes
price p learns that the state is V = 1. If the probability that we observe a price that sat-
isfies either (i) or (ii) is arbitrarily close to 1, then we say that the equilibrium sequence
aggregates information. Our formal definition of information aggregation is given below.

DEFINITION 2.2—Kremer (2002) and Atakan and Ekmekci (2014): A sequence of
strategies H aggregates information if the random variables l(Pn = p) and 1/l(Pn = p)
converge in probability to 0 in state 0 and state 1, respectively.

11The equation F̄H
s (θ|v) = κs can have multiple solutions if FH

s is flat over a range of θ. However, the
function F̄H

s (θ|v) is continuous because it is absolutely continuous with respect to F̄(θ|v). Hence, the set
{θ : F̄H

s (θ|v)= κs} ⊂ [0�1] is compact and has a unique maximal element if it is nonempty.
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We now derive conditions that are necessary and sufficient for information aggrega-
tion. Information aggregation fails if the supports of the limit price distributions are the
same in the two states. The following definition captures such failures using the mass that
separates the pivotal types.

DEFINITION 2.3: The pivotal types are distinct along a sequence H if
limn

√
n|Fn

s (θ
n
s (1)|1)−Fn

s (θ
n
s (0)|1)| = ∞ and the pivotal types are arbitrarily close along a

sequence H if lim infn
√
n|Fn

s (θ
n
s (1)|1)− Fn

s (θ
n
s (0)|1)|< ∞.

Distinct pivotal types is a necessary condition for information aggregation. To see why,
recall that the random variable Yn

s (ks + 1) denotes the ks + 1st highest type that bids
in the auction. The auction clears at the bid of this type because bidding is monotone
(Lemma 2.1). For large n, the distribution of Yn

s (ks + 1) in state V = v puts most of the
mass within finitely many standard deviations of the pivotal type in state V = v and the
standard deviation is approximated by

√
κs(1 − κs)/n. If the pivotal types are arbitrarily

close, that is, if the pivotal types are separated by finitely many standard deviations, then
the same set of types determines the price and the supports of the limit price distributions
are the same in the two states. Therefore, information cannot be aggregated.

Information aggregation also fails if the limit price distribution features an atom that
occurs with positive probability in both states. We term such a failure pooling by pivotal
types and formally define it below.

DEFINITION 2.4: There is pooling by pivotal types along a sequence H if there is a sub-
sequence of pooling bids {bnk

p } such that limk Pr(Pnk = b
nk
p |V = v) > 0 for v = 0�1. Other-

wise, there is no pooling by pivotal types.

No pooling by pivotal types is also a necessary condition for information aggregation
because if it does not hold, then the limit price distribution features an atom that occurs
with positive probability in both states. In the following lemma, we further show that these
two necessary conditions are also sufficient for information aggregation.

LEMMA 2.2: An equilibrium sequence aggregates information if and only if the pivotal
types are distinct and there is no pooling by pivotal types.

A sketch of the argument for sufficiency is as follows: Pick any type θ that is within
finitely many standard deviations of the pivotal type in state V = 1 and note that the
auction can clear only at the bids of such types in state V = 1. Distinctness of the pivotal
types implies that type θ is infinitely many standard deviations away from the pivotal type
in state V = 0. Therefore, if type θ does not bid in an atom, then an outside observer who
observes a price equal to type θ’s bid is arbitrarily certain that the state is V = 1. On the
other hand, suppose that θ bids in an atom, that is, suppose that the price is equal to θ’s
bid with positive probability in state V = 1. In this case, the probability that the price is
equal to θ’s bid in state V = 0 is equal to 0 because there is no pooling by pivotal types.
Once again, an outside observer who observes a price equal to θ’s bid is arbitrarily certain
that the state is V = 1.

3. INFORMATION AGGREGATION

The main theorem in this section shows that information is not aggregated in market s
along any equilibrium sequence if the object-to-bidder ratio in market s exceeds a certain
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cutoff κ̄ (described further below). Conversely, if the object-to-bidder ratio in market s is
less than κ̄, then information is aggregated in market s along every equilibrium sequence.

In order to state our main theorem, we first define the cutoff κ̄. Let θF
r (1) denote the

pivotal type in market r in state V = 1 if all types were to bid in auction r, that is, θF
r (1) is

the unique type that satisfies the equality 1 − F(θF
r (1)|1)= κr . For a given type θ′ < 1, let

θ∗(θ′) denote the unique type θ < θ′ such that F([θ�θ′]|0)= F([θ�θ′]|1), and let θ∗(θ′)=
θ′ if there is no such θ < θ′.12 For some intuition, suppose that types θ > θ′ opt for market
r, while types θ ≤ θ′ bid in auction s. In this case, θ∗(θ′) is defined as the type such that
the expected number of bidders who bid in auction s with signals that exceed θ∗(θ′) is the
same in both states. The implicit function theorem and MLRP together imply that θ∗(θ′)
is a decreasing function of θ′.13

DEFINITION 3.1: Let θen := max{θF
r (1)� inf{θ : Pr(V = 1|θ) > c}}, and θen := 1 if

the set over which the infimum is taken is empty. Define κ̄ := F([θ∗(θen)�θen]|0) =
F([θ∗(θen)�θen]|1).

To better understand the definition of κ̄, suppose that all types greater than θen select
market r, while all types smaller than θen bid in market s. The cutoff κ̄ is defined so that
if the object-to-bidder ratio in market s is equal to κ̄, then the pivotal type in market s is
equal to θ∗(θen) in both of the states. Turning next to the definition of θen, further suppose
that any type that chooses market r bids according to an increasing bidding function. Type
θen is defined as the smallest type that can make positive profits in an arbitrarily large
market r. To see why the definition captures this property, note that θen must be at least
as large as θF

r (1), because only those types greater than θF
r (1) can actually win an object in

the auction in state V = 1. Furthermore, any type θ > θF
r (1) can make a profit in market r

only if Pr(V = 1|θ) > c, because any such type will win an object with probability 1 in both
states and will pay a price which is at least c. Also, see Figure 1 for a graphical depiction
of κ̄.

The main implication of Definition 3.1 is as follows: if the object-to-bidder ratio in
market s exceeds κ̄, then the pivotal type in state 0 exceeds the pivotal type in state 1
whenever all types that value market r select market r. Such an ordering of pivotal types
is ruled out by MLRP if all types were to bid in market s. However, if types that exceed
θen < 1 choose market r, then the measure of types that bid in market s is smaller in state
1 than in state 0 as a consequence of MLRP. This implies that κ̄ is less than 1. Therefore,
there is an open interval (κ̄�1) such that whenever the object-to-bidder ratio is in this
interval, the order of the pivotal types is reversed. The converse is also true, that is, if the
object-to-bidder ratio in auction s is less than κ̄, then the pivotal type in state 1 exceeds
the pivotal type in state 0 even if all types that value market r select market r.

Our main theorem is stated below.

THEOREM 3.1: If the object-to-bidder ratio in market s exceeds κ̄, then there is no equi-
librium sequence that aggregates information in either market. If the object-to-bidder ratio
in market s is less than κ̄, then information is aggregated in market s along any equilibrium
sequence.

12If l(θ′) > 1, then there is a unique type θ < θ′ such that F([θ�θ′]|0) = F([θ�θ′]|1). Otherwise, there is no
such type and θ∗(θ′)= θ′.

13If l(θ′) ≤ 1, then θ∗(θ′) = θ′ and the function is decreasing. Otherwise, F([θ∗(θ′)�θ′]|0)= F([θ∗(θ′)�θ′]|1)
and the implicit function theorem implies that dθ∗/dθ′ = f (θ′|0)(l(θ′) − 1)/f (θ∗|0)(l(θ∗) − 1). The fact that
F([θ∗(θ′)�θ′]|0) = F([θ∗(θ′)�θ′]|1) and MLRP together imply that l(θ′) < 1. Moreover, if θ∗(θ′) < θ′, then
MLRP implies that l(θ∗) > 1. Therefore, dθ∗/dθ′ < 0.
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FIGURE 1.—The function F([θ�θen]|v) depicts the fraction of types above θ that bid in auction s in state v
given that all types θ > θen take the outside option. The cutoff κ̄ is defined as the value of F([θ�θen]|v) at the
point θ < θen where F([θ�θen]|1) and F([θ�θen]|0) cross. If κs > κ̄, then the pivotal type in state 0 exceeds the
pivotal type in state 1.

The argument for our main theorem shows that information cannot be aggregated
along any equilibrium sequence in market s if the order of the pivotal types in this market
is reversed whenever all the types that value market r select market r, that is, if κs > κ̄.
In other words, self-selection is detrimental to information aggregation when scarcity is
sufficiently low or, equivalently, when the object-to-bidder ratio in market s is above the
threshold κ̄. Conversely, information is aggregated in market s along any equilibrium se-
quence if the order of the pivotal types is preserved even when all the types that value
market r select market r, that is, if scarcity is sufficiently high (κs < κ̄).

Before providing some intuition for Theorem 3.1, we describe an intermediate result
(Lemma A.8 in the Appendix) that we utilize: If information is aggregated in market s,
then the price in market s converges to 0 in state V = 0 and to 1 in state V = 1, that is,
price converges to value. In order to provide an argument for this intermediate result, we
first note that Lemma 2.2 implies that there is a bid b∗ > 0 that separates the support of
the limit-price distribution in state 0 from the support of the limit-price distribution in
state 1 if information is aggregated in market s.

The first step of the argument that establishes the intermediate result stated above
shows that the limit-price distribution’s support lies below b∗ in state 0 and above b∗ in
state V = 1. Suppose, on the way to a contradiction, that the limit-price distribution’s
support lies above b∗ in state V = 0 and below b∗ in state V = 1. Then any bidder can
ensure that she wins an object only in state V = 1 with probability 1 by submitting a bid
equal to b∗. Therefore, any bidder who submits a bid greater than b∗ can improve her
payoff by instead submitting a bid equal to b∗. So the limit-price distribution’s support
cannot lie above b∗ in state 0. The second step argues that bids less than b∗ must all
converge to 0 and, therefore, the price in state 0 must converge to 0: Any bid less than b∗

never wins in state V = 1 and, therefore, any such bid (and in particular, the bid of the
pivotal type in state V = 0) must converge to 0. The final step concludes that the price in
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state V = 1 must converge to 1. If the expected price in state 1 is strictly less than 1, then
the pivotal type in state 0 could improve her payoff by bidding 1 instead of following her
equilibrium strategy. If she follows her equilibrium strategy, she never wins an object in
state V = 1 and receives a payoff equal to 0, while under the deviation, she wins an object
at a price equal to 0 in state V = 0 and at a price which is strictly less than 1 in state V = 1
with positive probability.

Intuition for why information is not aggregated in market s if κs > κ̄: On the way to a
contradiction, assume that price converges to value in market s and, therefore, the pay-
off of any type that bids in market s is equal to 0. If this is so, then all types that exceed
θen would opt for market r. To see this, observe that if any type θ > θen did not choose
market r, then less optimistic types would not choose market r either. Moreover, at the
limit, types that exceed θen face a choice between market s, where their payoff is equal
to 0, and market r, where their payoff is positive (in fact, their payoff is equal to −c if
V = 0 and 1 − c if V = 1). However, if all types that exceed θen opt for market r and if
κs > κ̄, then we find θs(0) > θs(1) (see Figure 1). If information is aggregated in mar-
ket s, then limn→∞ bn(θn

s (1)) = 1 and limn→∞ bn(θn
s (0)) = 0, because price converges to

value. However, this leads to a contradiction that proves the result. The findings that
limn→∞ bn(θn

s (1)) = 1, limn→∞ bn(θn
s (0)) = 0, and θs(0) > θs(1) together contradict that

the bidding function is nondecreasing in θ for all n. Intuitively, more pessimistic types
opt for market s and there are more of such types in state V = 0. Therefore, the auction
clears at the bid of a more pessimistic type in state V = 1 than in state V = 0 and this is
incompatible with price converging to value.

Intuition for why information is not aggregated in market r: In market r information
aggregation fails for any κs in contrast to market s. A similar argument to the one given
for market s implies that the price in market r converges to 1 in state V = 1 if information
is aggregated. However, if price in market r converges to 1 in state V = 1, then the payoff
from bidding in market r is negative for all types and, therefore, no type would choose
this market. But if no type chooses this market, then the price is equal to c in both states
and information is not aggregated in market r.

Recall that information is aggregated in an auction if and only if the pivotal types are
distinct and they submit distinct bids (no pooling by pivotal types) by Lemma 2.2. There-
fore, if κs > κ̄, then information aggregation must fail in market s either because the
pivotal types are arbitrarily close or because the pivotal types bid in an atom. We con-
struct examples of equilibria where the pivotal types are arbitrarily close and where the
pivotal types bid in an atom in Section 4 and the Appendix, respectively.

Intuition for why information is aggregated in market s if κs < κ̄: The definition of κ̄
implies that θs(1) > θs(0) whenever κs < κ̄, that is, the pivotal types are distinct. Below,
we argue that there can be no pooling by pivotal types either whenever θs(1) > θs(0). But
then Lemma 2.2 implies that information is aggregated.

To sustain a pool, the highest type that submits the pooling bid (denoted by θp) must
prefer the pooling bid to a slightly higher bid that wins an object with probability 1 when-
ever the price is equal to the pooling bid. Also, the lowest type that submits the pooling
bid (denoted by θp) must prefer the pooling bid to a slightly lower bid that avoids winning
an object whenever the price is equal to the pooling bid. In other words, pooling must
be incentive compatible for type θp and individually rational for type θp. In the termi-
nology of Lauermann and Wolinsky (2017) (or Pesendorfer and Swinkels (1997)), we say
that there is winner’s blessing at pooling if the probability of winning at the pooling bid is
higher when V = 1 than when V = 0, in other words, if a bidder wins more frequently at
pooling when the object’s value is high. Similarly, there is loser’s blessing at pooling if a
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bidder loses more frequently at pooling when the object’s value is low. Put another way, if
there are loser’s and winner’s blessings at pooling, then losing is a signal in favor of V = 0
and winning is a signal in favor of V = 1. The strengths of these two signals determine
whether a pooling bid is incentive compatible and individually rational. In particular, the
loser’s blessing’s strength determines the lowest pooling bid that is incentive compatible
for type θp, while the winner’s blessing’s strength determines the highest pooling bid that
is individually rational for type θp. Our key result that establishes that pooling by pivotal
types is not possible shows that if θs(1) > θs(0), then there are bounds on the strength
of the loser’s and winner’s blessings at the pooling bid. These bounds preclude a pooling
bid that is both individually rational for type θp and incentive compatible for type θp thus
establishing that pooling by pivotal types is incompatible with equilibrium.

Theorem 3.1 showed that the level of scarcity in the frictionless market (κs), together
with the cutoff object-to-bidder ratio κ̄, determines whether information is aggregated.
The following remark, which presents comparative statics for κ̄, further suggests that a
frictional market r with little scarcity (i.e., a large object-to-bidder ratio κr) is more likely
to disrupt information aggregation. Taken together, our analysis identifies the scarcity
parameters κs and κr as key determinants of information aggregation.

REMARK 3.1: The ratio κ̄ is nonincreasing in the object-to-bidder ratio in the market r
and nondecreasing in the level of frictions c. This is because the type θen is nondecreasing
in c and nonincreasing in κr . Consequently, θ∗(θen) is nonincreasing in c and nondecreas-
ing in κr . If no type finds it profitable to purchase an object at a price equal to c, that is,
if c > Pr(V = 1|θ) for all θ, then θ∗(θen)= 1 and κ̄= 1. If all types are perfectly informed
or if c = 0, then information is aggregated in both markets whenever κs + κr < 1 and
information is not aggregated in either market if κs + κr > 1 in both of these cases.14

4. EQUILIBRIA IN THE ILLUSTRATIVE EXAMPLE

In this section, we use the example discussed in the Introduction to illustrate how type-
dependent market selection leads to nonrevealing prices in equilibrium. We assume that
κs + κr < 1 and that signals are drawn according to the density function

f (θ|V )=

⎧⎪⎨
⎪⎩

3(1 − g)(1 − V ) for θ ∈ E(0) := [0�1/3)�
3g for θ ∈ E(1/2) := [1/3�2/3]�
3(1 − g)V for θ ∈ E(1) := (2/3�1]�

where g ∈ [0�1] is the fraction of uninformed types θ ∈ E(1/2). Note that all types other
than those in E(1/2) are perfectly informed. Under these assumptions, information ag-
gregation fails in both markets if the object-to-bidder ratio in the frictional market ex-
ceeds the fraction of informed bidders (i.e., κr > 1 − g) and information is aggregated in
both markets if κr < 1 − g. We will describe equilibrium sequences for each of these two
cases here. Proposition A.1 in the Appendix constructs these sequences and shows that
the properties highlighted here hold across all equilibrium sequences.

This example focuses attention on market selection since bidding is relatively simple:
Each θ ∈ E(0) bids 0, each θ ∈ E(1) bids 1, and each θ ∈ E(1/2) bids E[V |Yn−1

m (km) = θ]
in the market of their choice. Moreover, types in E(0) never bid in market r because

14If all types are perfectly informed, then a straightforward computation yields κ̄ = 1 − κr .
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c > 0. Therefore, pinning down market selection strategies for the uninformed types and
those in E(1) is sufficient to construct an equilibrium. In the equilibrium sequences that
we describe, the mass of types that select market s exceeds κs in both states and the mass
that separates the two pivotal types (i.e., θn

s (1) and θn
s (0)) is equal to the mass of types in

E(1) that bid in market s, that is, Fn
s (E(1)|1).

The structure of this example also allows us to compute the limit price distribution in
market s in closed form using the central limit theorem: the bid of a type, which is z
standard deviations from the pivotal type in state V = 1, converges to bs(z) = φ(z)

φ(z+x)
/(1 +

φ(z)

φ(z+x)
), where φ is the standard normal density, x := limFn

s (E(1)|1)/σn is the mass that
separates the two pivotal types expressed in standard deviations, and σn ≈ √

(1 − κs)κs/n
is the standard deviation. The limit price is less than or equal to bs(z) with probability
	(z) and 	(z + x) in states V = 1 and V = 0, respectively. As x approaches infinity, the
prices in state V = 1 and V = 0 converge to point masses at p= 1 and p= 0, respectively.
As x approaches 0, the price converges to a point mass at 1/2 in both states.

We now assume 1−g < κr and describe equilibrium sequences along which information
aggregation fails by considering two separate cases: c > 1/2 and c < 1/2. In both of these
cases, the mass of types in E(1) that chooses market s is positive for each n but converges
to 0 at the order of 1/

√
n. Information aggregation fails in market r due to insufficient

competition: at the limit the number of bidders in this market is less than the number of
objects and the price is equal to the reserve price c in both states with positive probability.
Information aggregation fails in market s due to pivotal types that are arbitrarily close even
though there is sufficient competition. This is because the mass that separates the two
pivotal types is chosen at the order of 1/

√
n by construction. The limit price distribution

in market s is atomless and strictly increasing over [0�1] in both states. See Figure 2 for a
depiction of the limit price distributions as a function of x.

Suppose that c > 1/2. Under this assumption, no uninformed type chooses market r.
Since only types in E(1) bid in market r, the mass of types that bid in market r is less than
κr and the price in market r converges to the reserve price c in both states, that is, the price
is uninformative. The main step of the construction picks the sequence {Fn

s (E(1)|1)} to
ensure that types in E(1) are indifferent between the two markets for each n. This choice
implies that the expected price in market s is also equal to c in state V = 1 at the limit,
that is, expected prices are equalized across markets in state V = 1.

If c < 1/2, then in contrast to the previous case, uninformed types also bid in both
markets. The mass of uninformed types that select market r is chosen to ensure that the
mass of types in market r converges to κr and to a value strictly less than κr in states V = 1
and V = 0, respectively. The price converges to c in state V = 0, and converges to a binary
random variable that is equal to 1 and c with probabilities (1 − 2c)/(1 − c) and c/(1 − c),
respectively, in state V = 1. Hence, the expected price in state V = 1 converges to 1 − c.
The main step of the construction again chooses the sequence {Fn

s (E(1/2)|1)�Fn
s (E(1)|1)}

to ensure that types in E(1/2) and E(1) are indifferent between the two markets. These
choices imply that the expected limit price in both markets is equal to c and 1 − c in states
V = 0 and V = 1, respectively, that is, expected prices in both states are equalized across
markets.

REMARK 4.1: In this example, information aggregation fails either due to insufficient
competition (market r) or because the same set of types determines the price at the limit
(market s). More generally, information aggregation in market s can also fail due to pool-
ing by pivotal types, and we present an example in Appendix B in the Supplemental Ma-
terial (Atakan and Ekmekci (2021)).
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FIGURE 2.—Limit cumulative price distributions in market s in states V = 0 and V = 1. The properties
of the price distributions imply that limE[Pn

s |V = 1] = 1 − limE[Pn
s |V = 0]. If c > 1/2, then x is such that

limE[Pn
s |V = 1] = c. Similarly, if c < 1/2, then x is such that limE[Pn

s |V = 0] = c. The solid curves depict the
cumulative price distributions for c = 0
6 or c = 0
4, in which case x is approximately equal to 1. The dotted
curves depict the price distributions as c ranges from 0
6 to 0
8.

We end this section by assuming 1 − g > κr and describing an equilibrium sequence
along which information is aggregated. Along the equilibrium sequence, only types in
E(1) bid in market r and the mass of such types that bid in market r exceeds κr in
state V = 1. Therefore, the price in market r converges to c and 1 in states V = 0
and V = 1, respectively. A positive mass of types in E(1) also bid in market s and
x = limFn

s (E(1)|1)/σn → ∞ along the subsequence that we construct. Therefore, the
price in market s converges to 0 and 1 in states V = 0 and V = 1, respectively.

5. DISCUSSION AND CONCLUSION

The results that we presented in this paper argued that the price in a large, uniform-
price, common-value auction may not aggregate all available information if bidders have
access to an alternative market that delivers state-dependent payoffs. However, we stud-
ied only one such instance. There are many other institutional configurations that could
result in similar outcomes. For example, market r could instead be (a) a pay-as-you-bid
(discriminatory price) auction as in Jackson and Kremer (2007), where all bidders who
win an object from the auction pay their own bid, (b) an all-pay auction as in Chi, Murto,
and Valimaki (2019), or (c) a uniform-price auction, where each bidder must pay a positive
cost in order to submit a bid as in Murto and Valimaki (2014). The payoff distributions in
these alternative specifications have similar properties to the payoff distribution in mar-
ket r as described by Theorem 3.1: payoffs are negative in state V = 0 and positive in state
V = 1. Our analysis suggests that information aggregation could be hindered also by such
market mechanisms.
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APPENDIX A

Throughout the Appendix, given a sequence of strategies H = {Hn}∞
n=1 for a sequence of

auctions {�n}∞
n=1, the notation Prn represents the joint probability distribution over states

of the world, signal and bid distributions, allocations, market choices, and prices, where
this distribution is induced by the strategy Hn. Given a strategy Hn, we denote the payoff
to type θ from bidding b in auction s by un(s�b|θ) and denote this type’s payoff by un(θ).

A.1. Bidding Equilibria

Suppose participation in market s is exogenously determined by a function Fs(·) that is
absolutely continuous with respect to F(·), and that �̂(Fs) is the auction where each type
θ is allowed to bid in the auction with probability a(θ) and is assigned a payoff equal to 0
with probability 1 − a(θ). A strategy H is a bidding equilibrium if it is a symmetric Nash
equilibrium of the auction �̂(Fs).

Denote by E(θ′) = {θ : l(θi = θ) = l(θi = θ′)} an equivalence class of types that receive
signals that generate the same posterior. If E(θ′) is not a singleton, then H may involve a
range of bids given a signal in E(θ′). However, for any such H, there is another strategy,
which is pure and increasing on each E(θ′), such that this strategy yields the same payoff
to the player, and is indistinguishable to any other player. Strategies which differ only in
their representation over sets E(θ′) generate the same joint distribution over values, bids,
and equilibrium prices. We choose a representation of H which is pure and nondecreasing
over equivalence classes E(θ′).

The following lemma shows that the bids of the pivotal types determine the auction-
clearing price of a sufficiently large auction.

LEMMA A.1: Suppose lim F̄n
s (0|v) > κs, and let θn denote the type such that Fn

s ([θn�
θn
s (v)]|v) = ε and θn = 0 if no such type exist. Similarly, let θ̄n denote the type such

that Fn
s ([θn

s (v)� θ̄
n]|v) = ε whenever such a type exists. For every ε > 0, lim Pr(Pn ∈

[bn(θn)�bn(θ̄n)]|V = v) = 1, where bn(0) = 0. Conversely, if lim F̄n
s (0|v) < κs, then

lim Pr(Pn = 0|V = v) = 1.

PROOF: The LLN implies that lim Pr(Y n
s (ks +1)≥ θn|V = v) = 1 for every ε > 0. How-

ever, if Yn
s (ks+1)≥ θn, then Pn = bn(Yn

s (ks+1))≥ bn(θn) because bn is nondecreasing by
Lemma 2.1. Therefore, Pr(Pn ≥ bn(θn)|V = v) ≥ Pr(Yn

s (ks + 1) ≥ θn|V = v), and taking
limits proves the first part of the claim. We establish lim Pr(Yn

s (ks +1)≤ θ̄n|V = v) = 1 us-
ing the same idea. If lim F̄n

s (0|v) < κs, then lim Pr(Pn = 0|V = v) = 1 also follows directly
from the LLN. Q.E.D.

A.1.1. Pooling Calculations

In this subsection we determine when pooling by pivotal types is incompatible with equi-
librium. Given a strategy H, denote by Pr(b win|Pn = b�V = v�θ) the conditional proba-
bility that bidder i wins an object with a bid equal to b given that the auction price is equal
to b, the state is equal to v, and bidder i receives a signal equal to θ. Our assumptions that
the signals are conditionally independent given V and that H is symmetric together im-
ply that Pr(b win|Pn = b�V = v�θ) = Pr(b win|Pn = b�V = v). This is because once one
conditions on the state, the individual signal of bidder i does not provide any additional
information (conditional independence). Moreover, this probability is independent of the
identity of the bidder that we consider because we focus on symmetric strategies.
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Given a pooling bid bn
p, let θn

p = sup{θ : bn(θ) = bn
p}, θn

p = inf{θ : bn(θ) = bn
p}, and let

limθn
p = θp and limθn

p = θp whenever these limits exist. The following lemma calculates
Pr(bn

p wins|Pn = bn
p�V = v) for various cases, and the proof, which involves lengthy com-

putations, is provided in the Supplemental Material.

LEMMA A.2: If lim Pr(Pn = bn
p|v) > 0, then there is a constant C > 0 such that

Pr
(
bn
p

(
θn

)
lose|Pn = bn

p�V = v
) ≥ C

max
{
κs − Fn

s

(
θn
p|1

)
�1/

√
n
}

Fn
s

([
θn
p�θ

n
p

]|1)

for all sufficiently large n. If limFn
s ([θn

p�θ
n
p]|v) > 0, then

lim Pr
(
bn
p win|Pn = bn

p�V = v
) = lim

κs − F̄n
s

(
θn
p|v

)
Fn
s

([
θn
p�θ

n
p

]|v) 


If lim Pr(Pn ≥ bn
p|v = 0), then

lim Pr
(
bn
p lose|Pn = bn

p�V = v
)
/

F
n

s

(
θn
p|v

)(
1 − F̄s

(
θn
p|v

))
nFn

s

([
θn
p�θ

n
p

]|v)(κs − F̄n
s

(
θn
p|v

)) = 1


LEMMA A.3: Fix a sequence of bidding equilibria H. If Fs(θs(1)|1) > Fs(θs(0)|1) or if
Fs(1|1)≥ Fs(1|0) and Fs(1|1) > κs, then there is no pooling by pivotal types.

PROOF: We will argue that if Fs(θs(1)|1) > Fs(θs(0)|1), then pooling by pivotal types
is incompatible with equilibrium. At the end of the proof we show that Fs(1|1) ≥ Fs(1|0)
and Fs(1|1) > κs imply Fs(θs(1)|1) > Fs(θs(0)|1).

The fact that Fs(θs(1)|1) > Fs(θs(0)|1) implies θs(1) > θs(0) and Fs(θs(1)|0) >
Fs(θs(0)|0). Pooling by pivotal types implies that Fs(θp|v) ≤ Fs(θs(0)|v) < Fs(θs(1)|v) ≤
Fs(θp|v). We will show that pooling by pivotal types is incompatible with equilibrium be-
havior in three cases: (i) Fs(θp|v) < Fs(θs(0)|v) and Fs(θp|v) > Fs(θs(1)|v); (ii) Fs(θp|v) =
Fs(θs(1)|v) and Fs(θp|v) < Fs(θs(0)|v); (iii) Fs(θp|v)= Fs(θs(0)|v).

Case 1: Fs(θp|v) < Fs(θs(0)|v) and Fs(θp|v) > Fs(θs(1)|v). For type θp bidding
bp instead of bidding slightly above, the pooling bid is incentive-compatible: (1 −
bp)l(θp) lim Pr(Pn = bn

p�b
n
p win|V = 1) − bp lim Pr(Pn = bn

p�b
n
p win|V = 0) ≥ (1 −

bp)l(θp)− bp. Therefore,

bp

1 − bp

≥ l(θp)
lim Pr

(
Pn = bn

p�b
n
p loses|V = 1

)
lim Pr

(
Pn = bn

p�b
n
p loses|V = 0

) 


Pooling is individually rational for type θp: (1 − bp)l(θp) lim Pr(Pn = bn
p�b

n
p win|V = 1)−

bp lim Pr(Pn = bn
p�b

n
p win|V = 0)≥ 0. Therefore,

bp

1 − bp

≤ l(θp)
lim Pr

(
Pn = bn

p�b
n
p wins|V = 1

)
lim Pr

(
Pn = bn

p�b
n
p wins|V = 0

) 




2064 A. E. ATAKAN AND M. EKMEKCI

Combining the incentive compatibility and individual rationality constraints and substi-
tuting in using by Lemma A.2, we obtain

l(θp)
Fs(θp|1)− Fs

(
θs(1)|1

)
Fs(θp|0)− Fs

(
θs(0)|0

) ≥ l(θp)
Fs

(
θs(1)|1

) − Fs(θp|1)
Fs

(
θs(0)|0

) − Fs(θp|0)
�

which is not possible because l(θp) ≤ Fs(θs(0)|1)−Fs(θp|1)
Fs(θs(0)|0)−Fs(θp|0) <

Fs(θs(1)|1)−Fs(θp|1)
Fs(θs(0)|0)−Fs(θp|0) and because

Fs(θp|1)−Fs(θs(1)|1)
Fs(θp|0)−Fs(θs(0)|0) <

Fs(θp|1)−Fs(θs(1)|1)
Fs(θp|0)−Fs(θs(1)|0) ≤ l(θp) by MLRP.

Case 2: If Fs(θp|v) = Fs(θs(1)|v) and Fs(θp|v) < Fs(θs(0)|v), then Lemma A.2 implies
that lim Pr(Pn = bn

p�b
n
p wins|V = 1) = 0 and lim Pr(Pn = bn

p�b
n
p wins|V = 0) > 0. How-

ever, then pooling cannot be sustained by Lemma 7 and Corollary 3 in Pesendorfer and
Swinkels (1997).

Case 3: If Fs(θp|v)= Fs(θs(0)|v), then Lemma A.2 implies that lim Pr(Pn = bn
p�b

n
p wins|

V = 0)= 1 and lim Pr(Pn = bn
p�b

n
p wins|V = 1) < 1, again showing that pooling cannot be

sustained by Lemma 7 and Corollary 3 in Pesendorfer and Swinkels (1997).
We conclude the proof by arguing that Fs(1|1) ≥ Fs(1|0) and Fs(1|1) > κs together im-

ply that Fs(θs(1)|1) > Fs(θs(0)|1). On the way to a contradiction, assume Fs(θs(1)|1) ≤
Fs(θs(0)|1). Note Fs(1|1) > κs implies 0 < Fs(θs(1)|1) ≤ Fs(θs(0)|1). Our assumption
Fs(θs(1)|1) ≤ Fs(θs(0)|1) and MLRP together imply that 1 ≥ F̄s(θs(1)|1)/F̄s(θs(1)|0) >
Fs(θs(1)|1)/Fs(θs(1)|0). However, Fs(1|v) = F̄s(θs(1)|v) + Fs(θs(1)|v), F̄s(θs(1)|1) ≤
F̄s(θs(1)|0), and Fs(θs(1)|1) < Fs(θs(1)|0) together imply that Fs(1|1) < Fs(1|0), leading
to a contradiction. Q.E.D.

The following lemma shows that there cannot be a pooling bid that occurs with positive
probability in state V = 1 and with probability 0 in state V = 0 if the pivotal types are
distinct.

LEMMA A.4: Fix a sequence of bidding equilibria H and assume
√
n(Fn

s (θ
n
s (1)|1) −

Fn
s (θ

n
s (0)|1)) → ∞. There is no sequence of pooling bids bn

p such that lim Pr(Pn = bn
p|V =

1) > 0 and lim Pr(Pn ≥ bn
p|V = 0)= 0.

PROOF: We will show that lim Pr(bn lose|Pn=bnp�V =0)

Pr(bn lose|Pn=bnp�V =1) = 0, which implies that pooling can-
not be sustained for sufficiently large n by Lemma 7 and Corollary 3 in Pesendorfer and
Swinkels (1997). Lemma A.2 gives that

lim
Pr

(
bn lose|Pn = bn

p�0
)

Pr
(
bn lose|Pn = bn

p�1
)

≤ lim
Fn
s

([
θn
p�θ

n
p

]|1)
Fn
s

([
θn
p�θ

n
p

]|0) CF
n

s

(
θn
p|0

)(
1 − F̄s

(
θn
p|0

))
n
(
κs − F̄n

s

(
θn
p|0

))
max

{
κs − Fn

s

(
θn
p|1

)
�1/

√
n
} �

where C ∈ (0�∞). However, Fn
s ([θn

p�θ
n
p]|1)/Fn

s ([θn
p�θ

n
p]|0) ≤ 1/η by Lemma A.5,

nmax{κs − Fn
s (θ

n
p|1)�1/

√
n} ≥ √

n, F
n

s (θ
n
p|0)(1 − F̄s(θ

n
p|0)) ≤ 1, and lim

√
n(κs −

F̄n
s (θ

n
p|0))= ∞ (because lim Pr(Pn ≥ bn

p|V = 0)= 0). Therefore,

lim Pr
(
bn lose|Pn = bn

p�0
)
/Pr

(
bn lose|Pn = bn

p�1
)

≤ lim 1/
(
Cη

√
n
(
κs − F̄n

s

(
θn
p|0

))) = 0
 Q.E.D.



SELECTION AND INFORMATION AGGREGATION 2065

A.1.2. Information Content of Being Pivotal

In this subsection, we provide bounds for the ratio l(Y n(ks+1)= θn)= Pr(Yn(ks+1)=
θn|V = 1)/Pr(Yn(ks + 1) = θn|V = 0), that is, the information content of the event of
being pivotal. The results we present below show that the event of being pivotal provides
only bounded amounts of information for the types that set the price if the pivotal types
are arbitrarily close.

We begin with the following lemma that outlines the implication of our assumption that
there are no arbitrarily informative signals.

LEMMA A.5: For any interval I ⊂ [0�1],

Fn
s (I|V = 1) ∈

[
ηFn

s (I|V = 0)�
Fn
s (I|V = 0)

η

]



Thus,
√
n(Fn

s (θ
n
s (1)|0)−Fn

s (θ
n
s (0)|0)) <∞ if and only if

√
n|Fn

s (θ
n
s (1)|1)−Fn

s (θ
n
s (0)|1)|<∞.

PROOF: To see this, note that Fn
s (I|1) = ∫

I
a(θ)f (θ|1)dθ = ∫

I
a(θ)f (θ|0)l(θ)dθ and

ηFn
s (I|0) = η

∫
I
a(θ)f (θ|0)dθ ≤ ∫

I
a(θ)f (θ|0)l(θ)dθ ≤ 1

η

∫
I
a(θ)f (θ|0)dθ = 1

η
Fn
s (I|0)

because l(θ) ∈ (η�1/η) for θ ∈ [0�1]. Q.E.D.

The probability that a particular type θ is pivotal (i.e., Yn
s (ks + 1) = θ) can be approx-

imated using the central limit theorem. If lim nκs−nF̄n
s (θ|v)√

nκs(1−κs)
= a, then Bi(ks;n� F̄n

s (θ|v)) →
	(a), where Bi and 	 denote the binomial and standard normal cumulative distributions,
respectively. Moreover, if we let p = F̄n

s (θ|v), then

bi(ks;n�p)=
(
n
ks

)
pks(1 −p)n−ks = 1 + δn(p)√

2πnκs(1 − κs)
φ

(
ks − np√
κs(1 − κs)n

)
� (A.1)

where bi and φ denote the binomial and standard normal densities, respectively, and
limn→∞ supp:|np−ks |<nt δn(p) = 0 for t < 2/3 (see Lesigne (2005, Proposition 8.2)). In the
following two lemmata, we use these convergence results and show that if the price is set
by a type θ that is within finitely many standard deviations of both pivotal types, then the
information that this type gets from being pivotal is bounded.

For any θ ∈ [0�1] and v = 0�1 define

zn
v (θ) := ks − (n− 1)F̄n

s (θ|v)√
(n− 1)κs(1 − κs)




LEMMA A.6: Pick a sequence of types {θn} that bid in market s. Assume that limzn
v (θ

n) =
zv for v = 0�1 and lim l(θn) = ρ. For any δ > 0, there exists an N such that for all n > N ,
we have ρ(1 − δ)φ(z1)/φ(z0) ≤ l(Y n(ks + 1) = θn) ≤ ρ(1 + δ)φ(z1)/φ(z0). Therefore,
l(Y n(ks + 1)= θn)→ φ(z1)/φ(z0)ρ.

PROOF: A direct computation shows that l(Y n(ks + 1) = θn) = l(θn) bi(ks;n−1�F̄n
s (θ

n|1))
bi(ks;n−1�F̄n

s (θ
n|0)) .

Equation (A.1) implies that for any δ > 0, there exists an N such that

(1 − δ)φ
(
zn

1

(
θn

))
/φ

(
zn

0

(
θn

)) ≤ bi
(
ks;n− 1� F̄n

s

(
θn|1))

/bi
(
ks;n− 1� F̄n

s

(
θn|0))

≤ (1 + δ)φ
(
zn

1

(
θn

))
/φ

(
zn

0

(
θn

))
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for all n > N . Our assumptions that limzn
v (θ

n) = zv and ks/(n − 1) → κs together estab-
lish that lim

√
n|F̄n

s (θ
n|v) − κs| < ∞ for v = 0�1. The fact that φ(zn

v (θ)) is a continuous
function of θ implies that for any δ > 0, there exists an N such that for all n >N , we have
ρ(1 − δ)φ(z1)/φ(z0)≤ l(Y n(ks + 1)= θn)≤ ρ(1 + δ)φ(z1)/φ(z0). Q.E.D.

LEMMA A.7: Assume lim
√
n|Fn

s (θ
n
s (1)|1) − Fn

s (θ
n
s (0)|1)| = x < ∞ and lim

√
n(κs −

F̄n
s (0|0)) = −∞. Suppose θn

y is a type such that Fn
s ([θn

y � θ
n
s (0)]|0) = √

κs(1 − κs)/n. For any
δ > 0, there exists an N such that for all n > N and for any interval [a�b] ⊂ [θn

y � θ
n
s (0)]

such that Fn
s ([a�b]|0) > 0, we have η(1 − δ)φ(x + y/η)/φ(0) ≤ l(Yn(ks + 1) ∈ [a�b]) ≤

(1 + δ)φ(0)/ηφ(y).

PROOF: Suppose, without loss of generality, that lim
√
n(Fn

s (θ
n
s (1)|1)−Fn

s (θ
n
s (0)|1))√

κs(1−κs)
≥ 0. Note

that if lim
√
n(κs − F̄n

s (0|0)) = −∞, then lim
√
nFs(θ

n
s (0)|0) = ∞ and the interval

[θn
y � θ

n
s (0)] is well defined for all sufficiently large n. For any sequence {θn} such that

θn ∈ [θn
y � θ

n
s (0)] for every n, we have limzn

v (θ
n) = lim

√
n(κs − F̄n

s (θ
n|v))/√κs(1 − κs).

Also, l(θ) ∈ [η�1/η] (no arbitrarily informative signals), limzn
1(θ

n) ∈ [−x − y/η�0], and
limzn

0(θ
n) ∈ [−y�0]. Therefore, Lemma A.6 implies that for any δ > 0, there exists an N

such that for all n >N and any θ ∈ [θn
y � θ

n
s (0)],

(1 − δ)
φ(x+ y/η)

φ(0)
≤ bi

(
ks;n− 1� F̄n

s (θ|1))
bi

(
ks;n− 1� F̄n

s (θ|0)) ≤ (1 + δ)
φ(0)
φ(y)




Thus, using the fact that l(θ) ∈ [η�1/η], we conclude that

η(1 − δ)φ(x+ y/η)/φ(0)≤ l
(
Yn(ks + 1) ∈ [a�b]) ≤ (1 + δ)φ(0)/ηφ(y)

for any interval [a�b] ⊂ [θn
y � θ

n(0)]. Q.E.D.

A.1.3. Proving Information Aggregation Lemma 2.2

PROOF: First we argue that if H aggregates information, then there is no pooling by
pivotal types and the pivotal types are distinct. Note that if there is pooling by pivotal
types, then H does not aggregate information by definition.15

We will argue that if H aggregates information, then the pivotal types are distinct
(lim

√
n|Fn

s (θ
n
s (1)|1)− Fn

s (θ
n
s (0)|1)| = ∞). Suppose the pivotal types are arbitrarily close,

that is, lim infn
√
n|Fn

s (θ
n
s (1)|1)−Fn

s (θ
n
s (0)|1)|<∞. Then there exists a subsequence {nk}

such that limnk
√
n|Fnk

s (θnk

s (1)|1) − Fnk

s (θnk

s (0)|1)| = x < ∞. We will show that informa-
tion is not aggregated along this subsequence, which, with a slight abuse of notation, we
index by n. Recall that F̄n

s (0|0) is the fraction of types that bid in market s in state 0. In
the next two claims, we will show (i) if lim

√
n(κs − F̄n

s (0|0)) > −∞, then H does not ag-
gregate information and (ii) if lim

√
n(κs − F̄n

s (0|0)) = −∞, then H does not aggregate
information. Therefore, we will conclude that if the pivotal types are arbitrarily close, then
H does not aggregate information, establishing our claim.

CLAIM A.1: If lim
√
n|Fn

s (θ
n
s (1)|1) − Fn

s (θ
n
s (0)|1)| < ∞ and lim

√
n(κs − F̄n

s (0|0)) >
−∞, then H does not aggregate information.

15This is because lim Pr(Pn = bn
p|V = v) > 0 for v = 0�1, that is, the auction price is equal to the pooling bid

with strictly positive probability in both states.



SELECTION AND INFORMATION AGGREGATION 2067

PROOF: Suppose lim
√
n|Fn

s (θ
n
s (1)|1)− Fn

s (θ
n
s (0)|1)| < ∞. We will show that the price

is equal to 0 with strictly positive probability in both states and, therefore, H does not
aggregate information. Suppose that

√
n(κs − F̄n

s (0|0))/σ → x >−∞, where x is possibly
equal to +∞ and where σ := √

κs(1 − κs). The central limit theorem implies that the
number of goods in the auction exceeds the number of bidders with positive probability if
V = 0, and limn Pr(Yn

s (ks + 1)= 0|V = 0)= 	(x) > 0.
Below we argue that lim

√
n|Fn

s (θ
n
s (1)|1) − Fn

s (θ
n
s (0)|1)| < ∞ and

√
n(κs − F̄n

s (0|0))/
σ → x > −∞ together imply that

√
n(κs − F̄n

s (0|1))/σ → x′ > −∞. But if
√
n(κs −

F̄n
s (0|1))σ → x′ > −∞, then applying the central limit theorem once again, we find

limn Pr(Yn
s (ks + 1) = 0|V = 1) = 	(x′) > 0 and, therefore, limn Pr(Pn = 0|V = 1) ≥

	(x′) > 0. However, limn Pr(Pn = 0|V = v) > 0 for v = 0�1 and limn l(P
n = 0) =

	(x′)/	(x) ∈ (0�∞) contradict that H aggregates information.
We argue that

√
n
(
κs − F̄n

s (0|0))/σ = √
n
(
κs − (

Fn
s

(
θn
s (0)|0

) + F̄n
s

(
θn
s (0)|0

)))
/σ → x > −∞

implies lim
√
nFs(θ

n
s (0)|0) < ∞ and, therefore, lim

√
nFs(θ

n
s (0)|1) <∞. By definition, we

have F̄n
s (θ

n
s (0)|0) = κs if κs ≤ F̄n

s (0|0) and θn
s (0) = 0 otherwise. Therefore, lim

√
n(κs −

F̄n
s (0|0)) = −∞ if and only if lim

√
nFs(θ

n
s (0)|0) = ∞. Hence,

√
n(κs − F̄n

s (0|0))/σ →
x > −∞ implies that lim

√
nFs(θ

n
s (0)|0) < ∞ and, hence, lim

√
nFs(θ

n
s (0)|1) < ∞ by

Lemma A.5.
We now show that lim

√
n(κs − F̄n

s (0|0)) = x > −∞ implies lim
√
n(κs − F̄n

s (0|1)) >
−∞. We argued in the previous paragraph that

√
n(κs − F̄n

s (0|1))/σ → −∞ if and only
if lim

√
nFs(θ

n
s (1)|1) = ∞. However, if lim

√
nFs(θ

n
s (1)|1) = ∞, then lim

√
nFn

s ([θn
s (0)�

θn
s (1)]|1) = ∞ because lim

√
nFs(θ

n
s (0)|0) < ∞ and because lim

√
nFs(θ

n
s (0)|1) < ∞. But

this contradicts lim
√
n|Fn

s (θ
n
s (1)|1) − Fn

s (θ
n
s (0)|1)| < ∞. Hence,

√
n(κs − F̄n

s (0|1))/σ →
x′ for some x′ > −∞ which is possibly equal to +∞. Q.E.D.

We now turn to the case where lim
√
n(κs − F̄n

s (0|0)) = −∞. Pick any y > 0 and let θn
y

denote the type such that

Fn
s

([
θn
y � θ

n
s (0)

]|0) = σy/
√
n (A.2)

when such a type exists. Observe that θn
y < θn

2y/3 < θn
y/3 < θn(0) and Fn

s ([θn
2y/3� θ

n
y/3]|0) =

σy/3/
√
n by the definition of these types given in Eq. (A.2). Let An := {p : p = bn(θ)�θ ∈

[θn
2y/3� θ

n
y/3]}. The central limit theorem implies that lim Pr(Yn(k + 1) ∈ [θn

2y/3� θ
n
y/3]|V ) =

0 =	(2y/3)−	(y/3) > 0. Also, Pr(Pn ∈ An|V = 0)≥ Pr(Yn(k+ 1) ∈ [θn
2y/3� θ

n
y/3]|V ) = 0

because Pn = bn(Yn(k+ 1)). The inequality above does not necessarily hold as an equal-
ity because types other than those [θn

2y/3� θ
n
y/3] may also choose a bid in An. Lemma A.7

implies that lim Pr(Yn(k + 1) ∈ [θn
2y/3� θ

n
y/3]|V = 1) ≥ φ(x+y/η)

φ(0) η(	(2y/3) − 	(y/3)) > 0.
Therefore, lim Pr(Pn ∈An|V = 1)≥ φ(x+y/η)

φ(0) η(	(2y/3)−	(y/3)) > 0.

CLAIM A.2: If lim
√
n|Fn

s (θ
n
s (1)|1)−Fn

s (θ
n
s (0)|1)| = x < ∞ and lim

√
n(κs − F̄n

s (0|0))=
−∞, then H does not aggregate information.

PROOF: We will argue that there exists an ε > 0 such that l(Pn = p) ∈ (ε�1/ε) for any
p ∈ An and any n sufficiently large. However, this together with the facts that Pr(Pn ∈
An|V = 1) > 0 and Pr(Pn ∈ An|V = 0) > 0 imply that H does not aggregate information.
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Pick any δ > 0. For any θ∗ ∈ [θn
2y/3� θ

n
y/3] that bids in market s with positive probabil-

ity, we have either (a) {θ : bn(θ) = bn(θ∗)} ⊂ [θn
y � θ

n(0)] or (b) {θ : bn(θ) = bn(θ∗)} �
[θn

y � θ
n(0)]. Moreover, the fact that the bidding function is monotone implies that the

set {θ : bn(θ) = bn(θ∗)} is either a singleton or an interval.
If {θ : bn(θ) = bn(θ∗)} ⊂ [θn

y � θ
n(0)], then Lemma A.7 implies that

(1 − δ)
φ(x+ y/η)

φ(0)
η≤ l

(
Yn(k+ 1) ∈ {

θ : bn(θ) = bn
(
θ∗)}) ≤ (1 + δ)

φ(0)
φ(y)

1
η

for all n >N(δ).16 Therefore,

η(1 − δ)φ(x+ y/η)/φ(0)≤ l
(
Pn = bn

(
θ∗)) ≤ (1 + δ)φ(0)/φ(y)η

for all n >N(δ).
If, on the other hand, {θ : bn(θ) = bn(θ∗)} � [θn

y � θ
n(0)], then either [θn

y � θ
n
2y/3] ⊂

{θ : bn(θ) = bn(θ∗)} or [θn
y/3� θ

n(0)] ⊂ {θ : bn(θ) = bn(θ∗)} because the set {θ : bn(θ) =
bn(θ∗)} is an interval that extends beyond [θn

y � θ
n(0)]. Therefore, Pr(Pn = bn(θ∗)|V =

v) ≥ Pr(Yn(k + 1) ∈ [θn
y/3� θ

n(0)]|V = v) or Pr(Pn = bn(θ∗)|V = v) ≥ Pr(Yn(k + 1) ∈
[θn

y � θ
n
2y/3]|V = v). The central limit theorem implies that (1 − δ)(	(y/3) − 1/2) ≤

Pr(Yn(k + 1) ∈ [θn
y/3� θ

n(0)]|V = 0) and (1 − δ)(	(y) − 	(2y/3)) ≤ Pr(Yn(k + 1) ∈
[θn

y � θ
n
2y/3]|V = 0) for all n > N(δ). Moreover, Lemma A.7 implies that (1 − δ)φ(x +

y/η)η(	(y/3)− 1/2)/φ(0)≤ Pr(Yn(k+ 1) ∈ [θn
y/3� θ

n(0)]|V = 1) and

(1 − δ)φ(x+ y/η)η
(
	(y)−	(2y/3)

)
/φ(0)≤ Pr

(
Yn(k+ 1) ∈ [

θn
y � θ

n
2y/3

]|V = 1
)

for all n >N(δ). Therefore, (1 − δ)φ(x+ y/η)Cη/φ(0) ≤ l(Pn = bn(θ∗)) ≤ 1/(1 − δ)C
for all for all n > N(δ), where C = min{	(y/3) − 1/2�	(y) − 	(2y/3)}. Hence picking
ε such that ε < φ(x + y/η)ηC/φ(0), ε < C , and 1/ε > φ(0)/φ(y)η establishes that H
does not aggregate information. Q.E.D.

We now argue that if there is no pooling by pivotal types and if the pivotal types are
distinct, then information is aggregated along a sequence H. Denote by v ∈ {0�1} the state
where the pivotal type is largest and denote by v′ the other state. Our assumption that the
pivotal types are distinct implies that

√
nFn

s ([θn
s (v

′)�θn
s (v)]|0) → ∞. For any ε ∈ (0�1/2),

define

θ̄n
ε := min

{
θ : Pr

(
Yn

s (k+ 1)≤ θ|V = v
)} = ε� (A.3)

θn
ε := max{θ : Pr(Yn

s (k + 1) ≥ θ|V = v′) = ε}, and bn
ε := (bn(θn

ε) + bn(θ̄n
ε))/2. These def-

initions imply that θn
s (v

′) < θn
ε < θ̄n

ε < θn
s (v) for sufficiently large n. This is because

lim
√
nFn

s ([θ̄n
ε� θ

n
s (v)]|V = v) ∈ (0�∞) and lim

√
nFn

s ([θn
s (v

′)�θn
ε]|V = v′) ∈ (0�∞) by the

LLN, and
√
nFn

s ([θn
s (v

′)�θn
s (v)]|0)→ ∞.

We prove the result through the three claims given below. We first argue that Pr(Yn
s (k+

1) ≤ θn
ε |v) → 0 and Pr(Yn

s (k+ 1) ≥ θ̄n
ε |v′) → 0 (Claim A.3). We then show that the types

θn
ε and θ̄n

ε submit distinct bids and, therefore, bn(θn
ε) < bn(θ̄n

ε) (Claim A.4). We complete
the proof by showing that the bid distribution is state v lies above bn

ε and the bid distribu-
tion in state v′ lies below bn

ε with probability converging to 1, that is, bn
ε separates the two

bid distributions (Claim A.5).

16Observe that N(δ) is independent of θ∗ and the set [θn
2y/3� θ

n
y/3].
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CLAIM A.3: If
√
nFn

s ([θn
s (v

′)�θn
s (v)]|0) → ∞, then Pr(Yn

s (k + 1) ≤ θn
ε |v) → 0 and

Pr(Yn
s (k+ 1)≥ θ̄n

ε |v′)→ 0.

PROOF: Note that
√
nFn

s ([θn
ε� θ̄

n
ε]|0)→ ∞ because

lim
√
nFn

s

([
θn
s

(
v′)� θn

s (v)
]|0) = lim

√
n(Fn

s

([
θn
s

(
v′)� θn

ε

]|0)
+ Fn

s

([
θn
ε� θ̄

n
ε

]|0) + Fn
s

([
θ̄n
ε� θ

n
s (v)

]|0)
�

lim
√
nFn

s ([θn
s (v

′)�θn
s (v)]|0)= ∞, lim

√
nFn

s ([θ̄n
ε� θ

n
s (v)]|0) ∈ (0�∞),

lim
√
nFn

s

([
θn
s

(
v′)� θn

ε

]|0) ∈ (0�∞)


Moreover,
√
nFn

s ([θn
ε� θ

n
s (v)]|v) → ∞ and

√
nFn

s ([θn
s (v

′)� θ̄n
ε]|v′)→ ∞ follow immediately

from
√
nFn

s ([θn
ε� θ

n
s (v)]|v) ≥ √

nFn
s ([θn

ε� θ̄
n
ε]|v) and

√
nFn

s ([θn
s (v

′)� θ̄n
ε]|v′) ≥ √

nFn
s ([θn

ε�
θ̄n
ε]|v′). Finally, the LLN implies that Pr(Yn

s (k + 1) ≤ θn
ε |v) → 0 and Pr(Yn

s (k + 1) ≥
θ̄n
ε |v′)→ 0. Q.E.D.

CLAIM A.4: If the pivotal types are distinct and there is no pooling by pivotal types, then
bn(θn

ε) < bn(θ̄n
ε) for all sufficiently large n.

PROOF: Monotonicity implies bn(θn
ε) ≤ b(θ̄n

ε). Suppose bnk(θnk
ε ) = bn(θ̄nk

ε ) = b
nk
p for

all nk along a subsequence. Then lim Pr(Pnk = b
nk
p |V = v) ≥ ε > 0 for each v = 0�1 by

Claim A.3. However, this means that there is pooling by pivotal types contradicting the
assumption of the claim. Q.E.D.

CLAIM A.5: If the pivotal types are distinct and there is no pooling by pivotal types, then H
aggregates information.

PROOF: Fix any ε ∈ (0�1/2). Claim A.4 implies bn(θn
ε) < bn

ε < bn(θ̄n
ε) for sufficiently

large n. Given this definition, we have Pr(Pn ≤ bn
ε |V = v) ≤ ε and lim Pr(Pn ≥ bn

ε |V =
v′)≤ ε. Moreover,

∫
p<bnε

Pr
(
Pn = p|V = v

)
Pr

(
Pn = p|V = v′) Pr

(
Pn = p|V = v′)dp=

∫
p<bnε

Pr
(
Pn = p|V = v

)
dp ≤ ε


Therefore, Pr(Pn ∈ {p< bn
ε : Pr(V =v|Pn=p)

Pr(V =v′|Pn=p)
>

√
ε}|V = v′)≤ √

ε. Hence,

lim Pr
(
Pn ∈

{
Pr

(
V = v|Pn = p

)
Pr

(
V = v′|Pn = p

) >
√
ε

}∣∣∣V = v′
)

≤ √
ε+ lim Pr

(
Pn ≥ bn

ε |V = v′)< 2
√
ε


Finally, for any ε′ >
√
ε, we find lim Pr(Pn ∈ { Pr(V =v|Pn=p)

Pr(V =v′|Pn=p)
> ε′}|V = v′) < 2

√
ε. Because, ε

is arbitrary, we conclude that lim Pr(Pn ∈ { Pr(V =v|Pn=p)

Pr(V =v′|Pn=p)
> ε′}|V = v′) = 0 and a symmetric

argument establishes the result for V = v. Q.E.D.

Q.E.D.
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LEMMA A.8: If an equilibrium sequence aggregates information and limE[Pn] > 0, then
Pn converges in probability to V .

PROOF: We prove the result through two claims. In the first claim we show that if in-
formation is aggregated and the expected price is positive, then the pivotal types must
be ordered. In the second claim we show that if the pivotal types are ordered, then price
must converge to value.

CLAIM A.6: If H aggregates information and limE[Pn] > 0, then
√
n(Fn

s (θ
n
s (1)|1) −

Fn
s (θ

n
s (0)|1))→ ∞.

PROOF: If H aggregates information, then
√
n|Fn

s (θ
n
s (1)|1) − Fn

s (θ
n
s (0)|1)| → ∞ and

there is no pooling by pivotal types by Lemma 2.2. Pick a subsequence (abusing nota-
tion, we omit the relabeling of this subsequence) and assume, contrary to the claim, that√
n(Fn

s (θ
n
s (0)|1) − Fn

s (θ
n
s (1)|1)) → ∞ along this subsequence. Moreover, suppose that

limE[Pn|V = 0] and limE[Pn|V = 1] exist along this subsequence.
Recall the definition of bn

ε given by Eq. (A.3). The facts that H aggregates information
and

√
n(Fn

s (θ
n
s (0)|1)− Fn

s (θ
n
s (1)|1))→ ∞ together imply that

limE
[
Pn|V = 0

] ≥ limE
[
Pn

] ≥ limE
[
Pn|V = 1

]
and, in particular, limE[Pn|V = 0] ≥ limE[Pn] > 0. This is because E[Pn|V = 0] ≥ (1 −
ε)bn

ε and E[Pn|V = 1] ≤ (1 − ε)bn
ε + ε together imply that E[Pn|V = 0] + ε ≥ E[Pn|V = 1]

for each ε. Consider any type that submits a bid equal to bn
ε . We have Pr(Pn < bn

ε |V =
1) ≥ 1 − ε and Pr(Pn > bn

ε |V = 0) ≥ 1 − ε by definition. Therefore, u(bn
ε |θ) ≥ Pr(V =

1|θ)(1 − ε)(1 − E[Pn|V = 1]) − Pr(V = 0|θ)ε for any type θ. As ε is arbitrary, we find
limu(bn(θ)|θ)≥ Pr(V = 1|θ)(1 − limE[Pn|V = 1]) for each θ.

For a given ε ∈ (0�κs), pick any type θ > θs(0)≥ θs(1) such that F̄n
s (θ|0) < ε. Note that

lim Pr(Pn ≤ bn(θ)|V = v) = 1 for v = 0�1. This type wins with probability at least κs − ε
in state V = 0. This is because if the type θ bids in a pool with θs(0), then the probability
of winning is at least κs − ε in state V = 0 by Lemma A.2. Otherwise, this type wins with
probability 1 in both states. Therefore, limu(bn(θ)|θ) ≤ Pr(V = 1|θ)(1 − limE[Pn|V =
1]) − (κs − ε)Pr(V = 0|θ) limE[Pn|V = 0] < Pr(V = 1|θ)(1 − limE[Pn|V = 1]), leading
to a contradiction. Q.E.D.

CLAIM A.7: Suppose H aggregates information. If limE[Pn] > 0 or if
√
n(Fn

s (θ
n
s (1)|1) −

Fn
s (θ

n
s (0)|1))→ ∞, then limE[Pn|V = 0] = 0 and limE[Pn|V = 1] = 1.

PROOF: Information aggregation and limE[Pn] > 0 together imply that
√
n(Fn

s (θ
n
s (1)|

1)− Fn
s (θ

n
s (0)|1)) → ∞ by the previous claim. Assume to the contrary that limE[Pn|V =

0] > 0 along a convergent subsequence. There are two cases to consider: (i) there is an
ε < η limE[Pn|V = 0] and a subsequence such that Pr(Pn = bn(θ̄n

ε)|V = 1) → 0 or, alter-
natively, (ii) lim inf Pr(Pn = bn(θ̄n

ε)|V = 1) > 0 for all ε < η limE[Pn|V = 0], where θ̄n
ε is

the type defined in Eq. (A.3).
Case 1. Our assumption that Pr(Pn = bn(θ̄n

ε)|V = 1)→ 0 implies

lim Pr
(
Pn > bn

(
θ̄n
ε

)|V = 1
) = lim Pr

(
Yn

s (k+ 1) > θ̄n
ε |V = 1

) = 1 − ε


Therefore,

limu
(
bn

(
θ̄n
ε

)|θ̄n
ε

) ≤ lim
(
Pr

(
V = 1|θ̄n

ε

)
ε− Pr

(
V = 0|θ̄n

ε

)
E
[
Pn|V = 0

])
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However, limE[Pn|V = 0] > 0 implies that limu(bn(θ̄n
ε)|θ̄n

ε) < 0 because ε < η limE[Pn|
V = 0] and because Pr(V =0|θ̄nε )

Pr(V =1|θ̄nε ) = 1
l(θ̄nε )

> η, leading to a contradiction. Therefore, limE[Pn|
V = 0] = 0.

Case 2. Our assumption lim inf Pr(Pn = bn(θ̄n
ε)|V = 1) > 0 implies

lim Pr
(
Yn

s (k+ 1) ∈ {
θ : bn(θ) = bn

(
θ̄n
ε

)}|V = 1
)
> 0


In other words, θ̄n
ε bids in a pool and lim

√
nFn

s ({θ : bn(θ) = bn(θ̄n
ε)}|V = 1) > 0. However,

such a pool is not possible if lim Pr(Pn = bn(θ̄n
ε)|V = 1) > 0 and lim Pr(Pn = bn(θ̄n

ε)|V =
0)= 0 by Lemma A.4.

Information aggregation and
√
n(Fn

s (θ
n
s (1)|0)−Fn

s (θ
n
s (0)|0))→ ∞ together imply that

lim Pr(Pn ≤ bn(θn
s (0))|V = 1) = 0. Therefore, limu(bn(θn

s (0))|θn
s (0)) = 0. However, 0 =

limu(bn(θn
s (0))|θn

s (0))≥ limu(b = 1|θn
s (0))= lim Pr(V = 1|θn

s (0))(1−E[Pn|V = 1]), that
is, limE[Pn|V = 1] = 1. Q.E.D.

The following lemma also provides conditions for information aggregation that we fre-
quently use.

LEMMA A.9: Fix a sequence of bidding equilibria H. If Fs(θs(1)|1) > Fs(θs(0)|1) or if
Fs(1|1) ≥ Fs(1|0) and Fs(1|1) > κs, then there is no pooling by pivotal types and price con-
verges to value.

PROOF: For the following argument, note that Fs(1|1) ≥ Fs(1|0) and Fs(1|1) > κs

together imply that Fs(θs(1)|1) > Fs(θs(0)|1) (see Lemma A.3). Under the lemma’s
assumptions, the pivotal types are distinct and pooling by pivotal types is incompati-
ble with equilibrium by Lemma A.3. However, then Lemma 2.2 implies that informa-
tion is aggregated and Claim A.7 further implies that price converges to value because
Fs(θs(1)|1) > Fs(θs(0)|1). Q.E.D.

A.2. The Market Selection Lemmata

This section characterizes market selection. Throughout the section, we define aH
s (θ) :=

aH(θ) and aH
r (θ) := 1 − aH(θ) to simplify exposition.

LEMMA A.10: Suppose that aH
m(θ

′) > 0 for some type θ′ in an equilibrium H. If
uH(m�b(θ′)|V = 0) < uH(m′� b|V = 0) for m �= m′ and some bid b ≥ 0, then u(m�
b(θ′)|θ) > u(m′� b|θ) for all θ > θ′ such that θ /∈ E(θ′).

PROOF: Fix an equilibrium H. For the remainder of the proof we suppress refer-
ence to the equilibrium H. Note that u(m�b′|θ�V = v) = u(m�b′|V = v) for any b′,
θ, and v. Writing down the profit for type θ from bidding b in market m, we ob-
tain u(m�b|θ) = u(m�b|V = 0)Pr(V = 0|θ) + u(m�b|V = 1)Pr(V = 1|θ). Our ini-
tial assumption that am(θ

′) > 0 implies u(m�b(θ′)|θ′) − u(m′� b|θ′) ≥ 0. Moreover,
u(m�b(θ′)|θ′) − u(m′� b|θ′) ≥ 0 and u(m�b(θ′)|V = 0) < u(m′� b|V = 0) together imply
that u(m�b(θ′)|V = 1)− u(m′� b|V = 1) > 0. Hence, if θ > θ′ and θ /∈ E(θ′), then

(
u
(
m�b

(
θ′)|V = 0

) − u
(
m′� b|V = 0

))
Pr(V = 0|θ)

+ (
u
(
m�b

(
θ′)|V = 1

) − u
(
m′� b|V = 1

))
Pr(V = 1|θ)



2072 A. E. ATAKAN AND M. EKMEKCI

>
(
u
(
m�b

(
θ′)|V = 0

) − u
(
m′� b|V = 0

))
Pr

(
V = 0|θ′)

+ (
u
(
m�b

(
θ′)|V = 1

) − u
(
m′� b|V = 1

))
Pr

(
V = 1|θ′)

= u
(
m�b

(
θ′)|θ′) − u

(
m′� b|θ′) ≥ 0

because Pr(V = 1|θ) > Pr(V = 1|θ′). Q.E.D.

Below we define θ̂m for m ∈ {s� r} as the smallest type which wins a good with positive
probability if V = 0 at the limit as n grows large, that is, this type is the smallest “active”
type in state V = 0.

DEFINITION A.1: Fix a sequence of strategies {Hn}. If Fm(1|0)≥ κm, let θn
m(ε) := inf{θ :

Hn([0�1] ×m× (bn(θ)�1]|0) < κm − ε}, θ̂m(ε) := lim supθn
m(ε) and θ̂m := infε>0 θm(ε). If

Fm(1|0) < κm, let θ̂m = inf{θ : Fm(θ|0) > 0} and let θ̂m = 1 if the set is empty.

Suppose that Fs(1|0) ≥ κs. The definition above selects type θ̂s = θs(0) if the bidding
function bn is strictly increasing at θn

s (0) for sufficiently large n. The definition has more
bite if, on the other hand, θn

s (0) submits a pooling bid. If θn
s (0) submits a pooling bid, then

there are types θn
p ≤ θn

s (0) ≤ θn
p that submit the same bid as θn

s (0). There are two cases
to consider. In the first case, θs(0) = limθn

p. Then the definition selects θ̂s = θs(0). In the
second case, if θs(0) < limθn

p, then the definition selects θ̂s = limθn
p.

LEMMA A.11: Suppose that for an equilibrium sequence H we have that limE(Pn
s |0) = 0

and limE(Pn
r |0) > 0. Then liman

r (θ) = 1 for any θ > θ̂r .

PROOF: The fact that limnE(Pn
s |V = 0) = 0 implies that limun(s�b|V = 0) = 0 for

any b. Pick an ε > 0 and a sequence of types θn ∈ [θ̂n
r (ε/2)� θ̂n

r (ε)] such that the limits
limθn, lim θ̂n

r (ε/2), lim θ̂n
r (ε) all exist and an

r (θ
n) > 0. The probability that Pn

r ≤ bn
r (θ

n)
converges to 1 in state 0. Therefore, the probability that θn wins an object in state 0
converges to 1 if this type does not bid in an atom along the sequence. Otherwise, the
probability that this type wins is at least ε/2 (see Lemma A.2 for this calculation). Hence,
limu(r�bn

r (θ
n)|V = 0) ≤ − ε

2 limE[Pn
r |V = 0] < 0 = limun(s�b|V = 0). Lemma A.10 then

implies that limu(r�bn
r (θ

n)|θ) > limu(s�b|θ) for any b and any type θ > limθn such that
θ /∈ E(limθn), and, therefore, ar(θ) = 1. Similarly, if θ > limθn and θ ∈ E(limθn), then
an
r (θ) = 1. This is because we can pick, without loss of generality, a pure and increasing

representation of the market selection strategy an
r over E(limθn). Since ε is arbitrary and

θ̂r = infε θ̂r(ε), we conclude that liman
r (θ) = 1 for any θ > θ̂r . Q.E.D.

LEMMA A.12: If liman
r (θ) = 1 for all θ > θen and κs > κ̄, then either θs(0) > θs(1) or

κs > Fs(1|1). Alternatively, if liman
r (θ) = 0 for all θ < θen and κs < κ̄, then θs(0) < θs(1).

PROOF: We argue that liman
r (θ) = 1 for all θ > θen, κs ≤ Fs(1|1), and κs > κ̄ together

imply that θs(0) − θs(1) > 0. Let L1 denote the set of measurable functions α : [0�1] →
[0�1] and consider the optimization problem

W (κs�θen)= max
α∈L1

∫ θen

0
α(θ)dF(θ|1)

∫ θen

0
α(θ)dF(θ|0)

s.t.
∫ θen

0
α(θ)dF(θ|1)= κs
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MLRP implies that W (κs�θen) = F([θ′�θen]|1)
F([θ′�θen]|0) , where θ′ is the type such that F([θ′� θen]|1) =

κs.17 If κs > κ̄en = F([θ∗(θen)�θen]|0) = F([θ∗(θen)�θen]|1), then θ′ < θ∗(θ′), and MLRP
implies F([θ′� θ∗(θen)]|0) > F([θ′� θ∗(θen)]|1). Therefore, W (κs�θen) < 1.

Assume κs > Fs(1|1) and define α∗(θ) as the function which is equal to 0 for all
θ ≤ θs(1) and equal to as(θ) for all θ > θs(1). This function α∗ is feasible for the above

maximization problem. Therefore, we obtain F̄s(θs(1)|1)
F̄s(θs(1)|0) =

∫ θen
θs(1)

as(θ)dF(θ|1)∫ θen
θs(1)

as(θ)dF(θ|0) =
∫ θen

0 α∗(θ)dF(θ|1)∫ θen
0 α∗(θ)dF(θ|0) ≤

W (κs�θen) < 1. Hence, θs(0) > θs(1).
We now argue that if liman

r (θ) = 0 for all θ < θen and κs < κ̄, then θs(0) < θs(1).
Define θ′ as the type such that F([θ′� θen]|1) = κs. Consider the following minimization
problem W (κs�θ

′) = minα∈L1

∫ 1
θ′ α(θ)dF(θ|1)∫ 1
θ′′ α(θ)dF(θ|0) such that

∫ 1
θ′ α(θ)dF(θ|1) = κs. MLRP implies

that W (κs�θ
′)= F([θ′�θen]|1)

F([θ′�θen]|0) . Also, if κs < κ̄= F([θ∗(θen)�θen]|0)= F([θ∗(θen)�θen]|1), then
θ′ > θ∗(θen) and, hence, W (κs�θ

′) > 1 by MLRP. Define α∗(θ) as the function that is equal
to 0 for all θ ≤ θs(1) and equal to as(θ) for all θ > θs(1). This α∗ is feasible for the min-

imization problem. Therefore, F̄s(θs(1)|1)
F̄s(θs(1)|0) =

∫ 1
θs(1) as(θ)dF(θ|1)∫ 1
θs(1) as(θ)dF(θ|0) =

∫ 1
θ′ α∗(θ)dF(θ|1)∫ 1
θ′ α∗(θ)dF(θ|0) ≥ W (κs�θ

′) > 1
and, hence, θs(1) > θs(0). Q.E.D.

A.3. Proof of Theorem 3.1

In the following lemma we characterize behavior in market r. We then use this lemma
to prove Theorem 3.1.

LEMMA A.13: If c > 0, then Fr(1|0) < Fr(1|1) ≤ κr along any equilibrium sequence.
Moreover, the price in market r converges to c almost surely if V = 0 and converges to a
random variable Pr(1) if V = 1. The random variable Pr(1) is equal to c with probability
q > 0 and is equal to 1 with the remaining probability.

PROOF: The following three steps will together prove the result.
Step 1: Fr(1|0) < Fr(1|1) ≤ κr . We will argue that Fr(1|0) < Fr(1|1). If Fr(1|0) <

Fr(1|1), then we must have Fr(1|1) ≤ κr . This is because Fr(1|0) < Fr(1|1) and Fr(1|1) >
κr together imply that Pn

r → 1 if V = 1 by Lemma A.9. But this is not possible because all
the bidders in market r would then earn negative profits.

We now show Fr(1|0) < Fr(1|1). First, suppose that Fr(1|0) > Fr(1|1). This implies that
Fs(1|0) < Fs(1|1). There are two cases: Fs(1|1) > κs and Fs(1|1) ≤ κs. If Fs(1|1) > κs,
then Pn

s → 0 if V = 0 by Lemma A.9, and if Fs(1|1) ≤ κs, then again Pn
s → 0 if V = 0

because Fs(1|0) < κs. However, if Pn
s → 0 when V = 0, then ar(θ) = 1 for all θ > θ̂r by

Lemma A.11. However, if Fr(1|0) < κr , then ar(θ) = 1 for all θ > θ̂r implies that Fr(1|1) >
Fr(1|0), which contradicts our initial assumption. On the other hand, if Fr(1|0)≥ κr , then
Fr(1|1) > κr . However, Fr(1|1) > κr and ar(θ) = 1 for all θ > θ̂r together imply that Pn

r →
1 if v = 1 by Lemma A.9, which is not possible.

Second, suppose that Fr(1|0) = Fr(1|1). There are two cases to consider: Fr(1|1) > κr

and Fr(1|1) ≤ κr . If Fr(1|1) > κr , then Pn
r → 1 if V = 1 by Lemma A.9, which is not

possible. Alternatively, if Fr(1|1)≤ κr , then Fs(1|1) > κs. However, Fs(1|0)= Fs(1|1) and
Fs(1|1) > κs together imply by Lemma A.9 that Pn

s → 0 if V = 0. However, as argued
previously, if Pn

s → 0 if V = 0 and if Fr(1|0) ≤ κr , then almost all types in market r win

17In other words, the function α∗(θ), which is equal to 1 if θ ≥ θ′ and equal to 0 otherwise, is a maximizer of
the problem.
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an object when V = 0 at a price which is at least c. Therefore, ar(θ) = 1 for all θ > θ̂r by
Lemma A.11. Thus, we conclude that Fr(1|1) > Fr(1|0) because ar(θ) = 1 for all θ > θ̂r .
However, this contradicts that Fr(1|0)= Fr(1|1), as we initially assumed.

Step 2: Assume lim
√
n(Fn

r (1|1) − κr) > −∞, that is, there are more bidders than ob-
jects in market r with positive probability in state 1. We have bn

r (θ) → 1 for any type θ
that bids in market r.

For any ε > 0, pick θn such that Pr(Yn−1
r (nκr) ∈ (0� θn)|V = 1) ≤ ε and recall that that

Yn−1
r (nκr)= 0 if there are fewer than nκr + 1 bidders in market r. For sufficiently small ε,

lim Pr(Yn−1
r (nκr) ≥ θn|V = 1) > 0 because lim Pr(Yn−1

r (nκr) = 0|V = 1) < 1 by assump-
tion.

We argue that limbn
r (θ) = 1 for any θ > limθn. Any type θn in this sequence can

ensure winning an object by submitting a bid equal to 1 in the auction. Therefore,
u(r�bn

r (θ
n)|θn)= E[V −Pn

r |bn
r (θ

n) win� θ]Pr(bn
r (θ

n) win|θ)≥ u(r�b = 1|θn). Noticing that

u
(
r� b = 1|θn

) = E
[
V − Pn

r |bn
r

(
θn

)
win� θ

]
Pr

(
bn
r

(
θn

)
win|θ)

+E
[
V − Pn

r |bn
r

(
θn

)
lose� θ

]
Pr

(
bn
r

(
θn

)
lose|θ)

�

we find E[V − Pn
r |bn

r (θ
n) lose� θ]Pr(bn

r (θ
n) lose|θ)≤ 0.

First, note that Pr(Pn
r ≥ bn

r (θ
n)|V = 0) ≤ e− δ2nFnr (1|0)

2+δ by applying Chernoff’s inequality
(see Janson, Luczak, and Rucinski (2011, Theorem 2.1)), where δ := κr

Fn
r (1|0) −1. Therefore,

Pr(Pn
r ≥ bn

r (θ
n)|V = 0) ≤ e− δ2nFnr (1|0)

2+δ . Suppose that lim Pr(Pn
r = bn

r (θ
n)|V = 1) = 0. Then

Pr(bn
r (θ

n) lose|V = 1) = lim Pr(Pn
r ≥ bn

r (θ
n)|V = 1) > 0. The fact that E[V − Pn

r |Pn
r ≥

bn
r (θ

n)�θ]Pr(Pn
r ≥ bn

r (θ
n)|θ)≤ 0 implies that

lim
(
1 −E

[
Pn
r |Pn

r ≥ bn
r

(
θn

)
� V = 1

]) ≤ c lim
Pr

(
Pn
r ≥ bn

r

(
θn

)|V = 0
)

Pr
(
Pn
r ≥ bn

r

(
θn

)|V = 1
)
l
(
θn

)

= c lim
e− δ2nFnr (1|0)

2+δ

Pr
(
Pn
r ≥ bn

r

(
θn

)|V = 1
)
l
(
θn

) = 0�

that is, limbn
r (θ) = 1 for almost all θ > limθn. Alternatively, suppose that lim Pr(Pn

r =
bn
r (θ

n)|V = 1) > 0. If lim Pr(Pn
r = bn

r (θ
n)|V = 1) > 0, then Lemma A.2 implies that

there is a constant A such that Pr(Pn
r = bn

r (θ
n)�bn

r (θ
n) lose|V = 1) ≥ A/

√
n for all

sufficiently large n. Therefore, (1 − bn
r (θ

n))Pr(Pn
r = bn

r (θ
n)�bn

r (θ
n) lose|V = 1)l(θn) −

cPr(bn
r (θ

n) lose|V = 0) ≤ 0, that is, lim(1 − bn
r (θ

n)) ≤ lim c
A

√
ne− δ2nFnr (1|0)

2+δ = 0. Therefore,
limbn

r (θ) = 1 for all θ ≥ limθn.
Step 3: The price in market r converges to c almost surely if V = 0 and converges to a

random variable Pr(1) if V = 1. The random variable Pr(1) is equal to c with probability
q > 0 and is equal to 1 with the remaining probability.

The fact that the price converges to c almost surely if V = 0 follows from the LLN and
the fact that Fr(1|0) < κr . Also note that lim

√
n(Fn

r (1|1) − κr) < ∞. This is because if
lim

√
n(Fn

r (1|1)−κr)= ∞, then the price clears at the bid of some type with probability 1
in state 1. However, the previous claim showed that bn

r (θ) → 1 for all θ. But then Pr(1)→
1, which implies that all bidders make a loss. The fact that lim

√
n(Fn

r (1|1)− κr) < ∞ im-
plies that Pr(1) is equal to c with probability q > 0. With the remainder of the probability,
that is, with probability 1 − q, the auction clears at the bid of some type θ and bn

r (θ) → 1.
Therefore, the auction price is equal to 1 with probability 1 − q. Q.E.D.
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PROOF OF THEOREM 3.1: Fix an equilibrium sequence H. If c > 0, then information is
not aggregated in market r by Lemma A.13. We now prove the other assertions in the
theorem.

If c > 0 and κs > κ̄, then information is not aggregated in market s. Assume, on
the way to a contradiction, that information is aggregated in market s. First suppose
that limnE[Pn

s ] = 0. Note that limnE[Pn
r |V = 0] = c > 0 by Lemma A.13. Therefore, if

limnE[Pn
s ] = 0, then all types would prefer to submit a bid equal to 1 in market s for

all sufficiently large n. But if all types bid in auction s, then Fs(θs(1)|1) > Fs(θs(0)|1)
and Lemma A.9 implies that limnE[Pn

s |V = 0] = 0, limnE[Pn
s |V = 1] = 1, and, therefore,

limnE[Pn
s ] = 1/2 which contradicts that limnE[Pn

s ] = 0. Hence, if information is aggre-
gated in auction s, then price converges to value by Lemma A.8.

If price converges to value in auction s, then limun(s�bn
s (θ)|θ) = 0 for all θ. We first

argue that liman
r (θ) = 1 for all θ > θen. Recall that θ̂r is the smallest type that wins an

object in state 0 in market r (Definition A.1). If θ > θ̂r , then liman
r (θ) = 1 by Lemma A.11

because limnE[Pn
r |V = 0] > 0 and limnE[Pn

s |V = 0] = 0. Also note that θ̂r ≤ θen because
if θ̂r > θen, then limnE[Pn

r |V = 1] = c because θF
r (1) ≤ θen by Definition 3.1. However, if

limnE[Pn
r |V = 1] = c, then limun(r�bn

r (θ)|θ) > 0 for all θ ∈ (θen� θ̂r), contradicting that
θ̂r ≤ θen.

If Fs(1|1) < κs, then Pn
s → 0 in state 1, showing that information is not aggregated in

market s. Instead suppose that Fs(1|1) ≥ κs. Lemma A.12 shows that if liman
r (θ) = 1 for

all θ > θen and if κs > κ̄, then θn
s (0)− θn

s (1)≥ 0 for all sufficiently large n. If Fs(1|1)≥ κs,
then θn

s (0) − θn
s (1) ≥ 0 for all sufficiently large n; however, this contradicts our initial

assumption that information is aggregated in market s. This is because information ag-
gregation in market s implies that θn

s (1)− θn
s (0) > 0 for all sufficiently large n.

If c > 0 and κs < κ̄, then information is aggregated in market s. We prove this by looking
at two cases. First, assume that

θen = inf
{
θ : Pr(V = 1|θ) > c

}



The fact that κs < κ̄en implies that Fs(θs(1)|1) > Fs(θs(0)|1), even if all θ ≥ θen choose
market r by Lemma A.12. If Fs(θs(1)|1) > Fs(θs(0)|1), then Lemma A.9 implies that
information is aggregated. Second, assume that θen = θF

r (1). Lemma A.13 implies that
Fr(1|1) ≤ κr . However, if Fr(1|1) ≤ κr , then Lemma A.12 implies that Fs(θs(1)|1) >
Fs(θs(0)|1). If Fs(θs(1)|1) > Fs(θs(0)|1), then Lemma A.9 implies that information is ag-
gregated. Q.E.D.

A.4. Analysis of the Illustrative Example

Here we construct equilibria under the assumptions of Section 4 for c �= 1/2. As we
noted earlier, no θ ∈ E(0) bids in market r; if c > 1/2, then no θ ∈ E(1/2) bids in market r;
bn
m(θ) = 0 and bn

m(θ) = 1 for each θ ∈ E(0) and θ ∈ E(1), respectively, in any equilibrium.
For each θ ∈ E(1/2), let

bn
m(θ) := h

(
Yn−1

m (km)= θ|V = 1
)

h
(
Yn−1

m (km)= θ|V = 0
)/(

1 + h
(
Yn−1

m (km)= θ|V = 1
)

h
(
Yn−1

m (km)= θ|V = 0
)
)
� (A.4)

where h(Yn−1
m (km)= θ|V = 1) := d

dθ
Pr(Yn−1

m (km)≤ θ|V = 1), that is, h is a binomial den-
sity.
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PROPOSITION A.1: An equilibrium exists for each n and in any equilibrium, all types θ
bid bn

m(θ). If 1 − g > κr , then information is aggregated in both markets. If 1 − g < κr , then
all equilibrium sequences converge to the following outcome: If V = 0, then Pn

r → c with
probability 1. If V = 1, then Pn

r converges to a random variable Pr that is equal to c with
probability c/(1 − c) and equal to 1 with the remaining probability. In market s, Pn

s converges
in distribution to a random variable Ps and Pr[Ps ≤ p|V = v] is atomless, increasing on
[0�1] for v = 0�1. If c > 1/2, then E[Pr |V = 1] = E[Pr |V = 0] = c, E[Ps|V = 1] = c, and
E[Ps|V = 0] = 1 − c. If c < 1/2, then E[Pr |V = 1] = E[Ps|V = 1] = 1 − c and E[Pr |V =
0] = E[Ps|V = 0] = c.

PROOF: Step 1: All types θ ∈ E(1/2) bid bn
m(θ) in any bidding equilibrium. If

Fn
m(E(1)|1) > 0, then the bidding distribution has no atoms except at b = 1 and b = 0,

and, therefore, bn
m(θ) is given by Eq. (A.4) for each θ ∈ E(1/2) by Lemma 2.1. To see this,

define an auxiliary type distribution G, where all types that choose market m′ �= m are
assigned signal θ ∈ E(0), that is, G(E(1/2)|v) = Fm(E(1/2)|v), G(E(1)|v) = Fm(E(1)|v),
and G(E(0)|v)= 1−G(E(1/2)|v)−G(E(1)|v). Bidding in market m under G is the same
as Fm except at b = 0 and G satisfies MLRP. Therefore, no type θ ∈ E(1/2) can bid in an
atom because otherwise we have a contradiction to Lemma 7 in Pesendorfer and Swinkels
(1997). If Fn

m(E(1)|1) = 0, then Eq. (A.4) implies bn
m(θ) = 1/2 for each θ ∈ E(1/2). Any

type θ ∈ E(1/2) would always undercut any atom b > 1/2 and out bid any atom b < 1/2.
Therefore, types θ ∈ E(1/2) can bid in an atom only at b = 1/2. If the bid distribution
is increasing over an interval, these types bid bn

m(θ) = 1/2 by Lemma 2.1. Therefore, all
types θ ∈ E(1/2) bid 1/2 as required.

Step 2: There exists θ1 ∈ E(1/2), θ2 ∈ E(1), and an equilibrium where all types θ ∈
[0� θ1) ∪ (2/3� θ2] bid bn

s (θ) in market s and all others bid bn
r (θ) in market r. The proof,

which uses Kakutani’s fixed point theorem, is provided in the Supplemental Material.
Step 3: We have un(θ) → 0 for any θ ∈ E(1/2). Pick m such that limFn

m(E(1)|1) +
Fn
m(E(1/2)|1) > κm. If Fn

m(E(1)|1) > 0 for all sufficiently large n, then bn
m(·) is increasing in

θ ∈ E(1/2). Therefore, there exists a θ′ ∈ E(1/2) that bids in market m and wins an object
in state V = 1 with probability converging to 0. This type’s equilibrium payoff un(θ′)→ 0.
Consequently, un(θ) = un(θ′)→ 0 for any θ ∈ E(1/2). Alternatively, if Fn

m(E(1)|1)= 0 for
all large n, then all θ ∈ E(1/2) bid 1/2 and, hence, un(θ) → 0 for any θ ∈ E(1/2).

Step 4: Suppose
√
nF̄n

m(E(1)|V = 1)/σ → x ∈ [0�∞] and there is a sequence {θn} ⊂
E(1/2) with lim

√
n(κm − F̄n

m(θ
n|V = 1))/σ = y , where σ = √

κm(1 − κm). If x < ∞,
then limbn

m(θ
n)= φ(y)

φ(y+x)
/(1+ φ(y)

φ(y+x)
), lim Pr(Pn

m ≤ bn
m(θ

n)|V = 1)=	(y), and lim Pr(Pn
m ≤

bn
m(θ

n)|V = 0)=	(y + x) by Lemma A.6. If x = ∞, then bn
m(θ

n)→ 1 because
√
nh

(
Yn−1

m (km)= θn|V = 1
)

√
nh

(
Yn−1

m (km)= θn|V = 0
) → φ(y)√

nh
(
Yn−1

m (km)= θn|V = 0
) = ∞

since
√
nh(Yn−1

m (km)= θn|V = 0)→ 0.
Step 5: If c > 1/2, then Fn

s (E(1)|1) > 0; if we further assume 1 − g < κr , then
lim

√
nFn

s (E(1)|1) < ∞ and Pn
r → c in both states. First we show Fn

s (E(1)|1) > 0. If
Fn
s (E(1)|1) = 0, then bn

s (θ) = 1/2 for any θ ∈ E(1/2). However then any type θ ∈ E(1)
can get an object from auction s with probability 1 at a price not more than 1/2. There-
fore, if Fn

s (E(1)|1) = 0, then the payoff from participating in auction s is strictly greater
than bidding in market r for θ ∈ E(1) and this contradicts Fn

s (E(1)|1)= 0.
If 1 − g < κr , then Pn

r → c in both states because limFn
r (E(1)|1) ≤ 1 − g < κr and

Fn
r (E(1/2)|1) = 0. Now we show that 1 − g < κr implies lim

√
nFn

s (E(1)|1) < ∞. Assume
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to the contrary. Step 4, limFn
s (E(1/2)|1) = g > κs, and lim

√
nFn

s (E(1)|1) = ∞ together
imply that Pn

s → 1 in state V = 1. However, then no type θ ∈ E(1) would choose market s
for sufficiently large n because Pn

r → c, leading to a contradiction.
Step 6: If c < 1/2, then Fn

s (E(1)|1) > 0 for all sufficiently large n; if we further assume
1 − g < κr , then lim

√
nFn

s (E(1)|1) < ∞, Pn
r → c in state V = 0, and limE[Pn

r |V = 1] =
1 − c. We first show if 1 − g < κr and limFn

s (E(1)|1) = 0, then limFn
r (E(1/2)|1) = κr +

g − 1, Pn
r → c in state V = 0, and limE[Pn

r |V = 1] = 1 − c. Subsequently, we show that if
1 − g < κr , then Fn

s (E(1)|1) > 0 for all sufficiently large n and lim
√
nFn

s (E(1)|1) < ∞.
First, suppose that limFn

r (E(1/2)|1) < κr +g− 1. Then the price in market r converges
to c in both states and each θ ∈ E(1/2) that bids in market r wins an object with probabil-
ity 1 at a price converging to c. However, then limun(θ) = 1/2 − c > 0 for any such type
but this contradicts Step 3. Suppose instead that limFn

r (E(1/2)|1) > κr + g − 1. Then the
price in market r converges to 1 in state V = 1 by Step 4. But this would imply that the
profit of any θ ∈ E(1/2) that bids in market r is negative again, leading to a contradiction.
Hence, limFn

r (E(1/2)|1)= κr +g−1, which further implies Pn
r → c in state V = 0 because

limFn
r (E(1/2)|0) < κr and Fn

r (E(1)|0) = 0. Since the profit for any θ ∈ E(1/2) from bid-
ding in market r converges to 0 by Step 3 we further establish that limE[Pn

r |V = 1] = 1−c.
We next show Fn

s (E(1)|1) > 0 for all sufficiently large n. On the way to a contradiction,
assume that Fn

s (E(1)|1) = 0 for all sufficiently large n. This implies that limE[Pn
s |V =

1] ≥ limE[Pn
r |V = 1], because otherwise any type θ ∈ E(1) would prefer to bid in market

s instead of r for all sufficiently large n. If 1 −g > κr and Fn
s (E(1)|1)= 0, then Pr → 1 and

Ps → 1/2. But this contradicts limE[Pn
s |V = 1] ≥ limE[Pn

r |V = 1]. On the other hand, if
1 − g < κr and Fn

s (E(1)|1)= 0 for all sufficiently large n, then bn
s (θ) = 1/2 for θ ∈ E(1/2)

for all sufficiently large n. Hence, limE[Pn
s |V = 1] ≤ 1/2 < limE[Pn

r |V = 1] = 1 − c, again
leading to a contradiction.

We now show that if 1 − g < κr , then lim
√
nFn

s (E(1)|1) < ∞. Assume lim
√
nFn

s (E(1)|
1) = ∞. If Fn

s (E(1)|1) + Fn
s (E(1/2)|1) > κs, then Pn

s → 1 in state V = 1 by Step 4. How-
ever, limE[Pn

r |V = 1] ≤ 1 − c < 1, which implies that no θ ∈ E(1) would bid in market
s for sufficiently large n, contradicting lim

√
nFn

s (E(1)|1) = ∞. On the other hand, if
Fn
s (E(1)|1) + Fn

s (E(1/2)|1) ≤ κs, then Pn
s → 0 in state V = 0 by Step 4. The fact that

θ ∈ E(1) bids in market s implies that limE[Pn
s |V = 1] ≤ limE[Pn

r |V = 1] ≤ 1 − c. But
then bidding 1 in market s gives any θ ∈ E(1/2) positive profit at the limit because Pn

s → 0
and limE[Pn

s |V = 1] ≤ 1 − c, leading to a contradiction.
Step 7: If 1 − g < κr , then Pn

s → Ps in distribution, and Pr(Ps ≤ p|V = v) is atomless
and increasing on [0�1] for v = 0�1; if c > 1/2, then limE[Pn

s |V = 1] = c and limE[Pn
s |V =

0] = 1 − c; if c < 1/2, then limE[Pn
s |V = 1] = 1 − c and limE[Pn

s |V = 0] = c. If 1 − g < κr ,
then Fn

s (E(1/2)|1) > κs and
√
nFn

s (E(1)|1)/σ = x < ∞ by Steps 5 and 6. For any y , pick
θn ∈ E(1/2) such that

√
n(κs − F̄n

s (θ
n|V = 1))/σ = y . This type’s bid is given by bn

s (θ
n)→

φ(y)

φ(y+x)
/(1 + φ(y)

φ(y+x)
) = eyx+ x2

2 /(1 + eyx+ x2
2 ) ∈ (0�1) by Step 4. Solving for y as a function of

p using p = eyx+ x2
2 /(1 + eyx+ x2

2 ), we find y = 1
x
(ln p

1−p
− x2

2 ). Therefore, lim Pr(P ≤ p|V =
1)=	((ln p

1−p
− x2/2)/x) and lim Pr(P ≤ p|V = 0)= 	((ln p

1−p
+ x2/2)/x).

For type θ′ ∈ E(1/2), which wins an object in market s with probability converging
to 1 in both states, we find limun(s�bn

s (θ
′)|θ′) = (1 − limE[Pn

s |V = 1] − limE[Pn
s |V =

0])/2 = 0. Therefore, 1 − limE[Pn
s |V = 1] = limE[Pn

s |V = 0]. If c > 1/2, then we must
have limE[Pn

s |V = 1] = c in order for types θ ∈ E(1) to be indifferent between the
two markets. If c < 1/2, then we must have limE[Pn

s |V = 1] = limE[Pn
r |V = 1] and

limE[Pn
s |V = 0] = limE[Pn

r |V = 0] = c for types θ ∈ E(1) and types θ ∈ E(1/2) to be
indifferent between the two markets. Note that if x = 0, then limE[Pn

s |V = v] = 1/2 for
v = 0�1 and, hence, we find x > 0 because c �= 1/2.
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Step 8: If 1 −g > κr , then Pn
s → V and Pn

r → V + c(1 −V ). We show that limE[Pn
m|V =

1] = 1 for m ∈ {r� s} implies that limE[Pn
s |V = 0] = 0 and limE[Pn

r |V = 0] = c. If
limE[Pn

r |V = 1] = 1, then limFn
r (E(1/2)|1) = 0 and, therefore, limE[Pn

r |V = 0] = c.
Moreover, E[Pn

s |V = 0] = 0, because otherwise any type θ′ ∈ E(1/2), which wins an ob-
ject in state V = 0 in market s with probability converging to 1, would receive a negative
payoff.

We now show that limE[Pn
m|V = 1] = 1 for m ∈ {r� s}. Steps 5 and 6 establish that

Fn
s (E(1)|1) > 0 for all sufficiently large n and, thus, limE[Pn

s |V = 1] ≤ limE[Pn
r |V = 1].

Moreover, if Fn
s (E(1)|1) → 0, then Fn

r (E(1)|1) → 1 − g > κr and limE[Pn
s |V = 1] =

limE[Pn
r |V = 1]. Since bn

r (θ) = 1 for θ ∈ E(1), we find limE[Pn
r |V = 1] = 1 and, there-

fore, limE[Pn
s |V = 1] = 1. Alternatively, suppose limFn

s (E(1)|1) > 0. If lim(Fn
s (E(1)|1)+

Fn
s (E(1/2)|1)) > κs, then limE[Pn

s |V = 1] = 1 by Step 4 and, therefore, limE[Pn
r |V =

1] = 1. If lim(Fn
s (E(1)|1) + Fn

s (E(1/2)|1)) ≤ κs, then limE[Pn
s |V = 0] = 0, because

limFn
s (E(1/2)|0) < κs. However, if limE[Pn

s |V = 0] = 0, then limE[Pn
s |V = 1] = 1, be-

cause otherwise types in E(1/2) make positive profit in market s, contradicting Step 3.
Q.E.D.
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