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This supplemental appendix provides the following supporting materials. Sec-
tions SA–SC provide the proofs of Lemmas A1–A7 in the appendix to the main text
Cheng, Dou, and Liao (2022). Section SA provides the proofs of several lemmas on
the asymptotic convergence of the random components in the test statistic T and the
conditional critical value cα(d̂). Section SB verifies the bounded Lipschitz properties of
the test statistic and the conditional critical value, which are used to show their weak
convergence in large samples. Section SC includes some auxiliary lemmas. Section SD
provides additional theoretical results on the power of the proposed conditional test.
Section SE provides comparison with some power envelopes through simulations. Sec-
tion SF collects details and additional results of the empirical application.

SA. PROOFS FOR ASYMPTOTIC CONVERGENCE

THIS SECTION provides the proofs of Lemmas A1, A2, A6, and A7 in the Appendix to
Cheng, Dou, and Liao (2022) under their Assumptions 1, 2, 3, and 4. The proofs of Lem-
mas A3, A4, and A5 in the Appendix to Cheng, Dou, and Liao (2022) are in Sections SB
and SC of this supplement. Throughout this supplement, we use λmin(A) to denote the
minimal eigenvalue of a real symmetric matrix A, and ‖ · ‖ denotes the matrix Frobenius
norm.

PROOF OF LEMMA A1: (a) DefineC1�n ≡ supθ∈�|ḡ(θ)′(�̂(θ))−1ḡ(θ)−G(θ)′(�(θ))−1 ×
G(θ)|, where G(θ) ≡ E[ḡ(θ)]. Then by Assumptions 1(i), (iii), 2(i), and 3(iii),

C1�n = op(1)� (SA.1)

uniformly over P ∈P0. Consider any ε > 0. By the definition of θ̂ and θ0,

sup
P∈P0

P
(‖θ̂− θ0‖ ≥ ε)

≤ sup
P∈P0

P

(
min

θ∈Bcε(θ0)
ḡ(θ)′(�̂(θ)

)−1
ḡ(θ) ≤ ḡ(θ0)′(�̂(θ0)

)−1
ḡ(θ0)

)

≤ sup
P∈P0

P

(
min

θ∈Bcε(θ0)
G(θ)′(�(θ)

)−1
G(θ) ≤ 2C1�n

)
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≤ sup
P∈P0

P
(
c−1
λ δ

2
ε ≤ 2C1�n

)
� (SA.2)

where the second inequality is by the definition of C1�n and the third inequality is by As-
sumption 3. Combining the results in (SA.1) and (SA.2), we deduce that

lim
n→∞

sup
P∈P0

P
(‖θ̂− θ0‖ ≥ ε) = 0 for any ε > 0
 (SA.3)

Let C2�n ≡ supθ∈� ‖q(θ) −Q(θ)‖. Then, by Assumption 1(ii),

C2�n = op(1) uniformly over P ∈P 
 (SA.4)

Applying the first-order expansion, we get

g(θ̂) = g(θ0) + q(θ̃)n1/2(θ̂− θ0)� (SA.5)

where θ̃ is the mean value between θ0 and θ̂ and it may vary across rows. By Assump-
tion 1(ii), the consistency of θ̂, and (SA.4),

q(θ̃) =Q(θ̃) + op(1) =Q+ op(1) =Op(1) uniformly over P ∈P0
 (SA.6)

Similarly, we can show that

q(θ̂) =Q(θ̂) + op(1) =Q+ op(1) =Op(1) uniformly over P ∈P0
 (SA.7)

By Assumption 2(i), (ii) and the consistency of θ̂,

�̂≡ �̂(θ̂) =�+ op(1) (SA.8)

uniformly over P ∈P0. Applying the chain rule, we get the first-order condition of θ̂:

0dθ×1 = 2q(θ̂)′�̂−1g(θ̂) −
(
n−1/2g(θ̂)′�̂−1 ∂�̂(θ̂)

∂θj
�̂−1g(θ̂)

)
j=1�


�dθ

� (SA.9)

where (aj)j=1�


�dθ ≡ (a1� 
 
 
 � adθ)
′ for any real numbers a1� 
 
 
 � adθ . By Assumptions 1(i),

(iii), 2(iv), and 3(iii), the consistency of θ̂, (SA.5), (SA.6), (SA.7), and (SA.8),

q(θ̂)′�̂−1g(θ̂)

= q(θ̂)′�̂−1g(θ0) + q(θ̂)′�̂−1q(θ̃)n1/2(θ̂− θ0)

=Q′�−1g(θ0) + (
Q′�−1Q+ op(1)

)
n1/2(θ̂− θ0) + op(1) (SA.10)

uniformly over P ∈P0. Similarly, we can show that for j = 1� 
 
 
 � dθ,

n−1/2g(θ̂)′�̂−1 ∂�̂(θ̂)
∂θj

�̂−1g(θ̂) = n1/2(θ̂− θ0)op(1) + op(1)

uniformly over P ∈P0
 (SA.11)
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Combining the results in (SA.9), (SA.10), (SA.11), and applying Assumptions 1(iii) and
3(iii), we deduce that

n1/2(θ̂− θ0) = −(
Q′�−1Q

)−1
Q′�−1g(θ0) + op(1) =Op(1) (SA.12)

uniformly over P ∈P0, which proves the first claim of the lemma.
(b) This claim follows by Assumptions 1 and 3(iii), (SA.5), (SA.6), and (SA.12).
(c) This claim has been proved in (SA.8).
(d) By Assumptions 2(iv) and 3(iii), and (SA.8),

lim
n→∞

inf
P∈P0

P
(
K−1 ≤ λmin(�̂) ≤ λmax(�̂) ≤K) = 1
 (SA.13)

By Assumptions 1(iii) and 3(iii), (SA.7), and (SA.8), we have

q(θ̂)′�̂−1q(θ̂) =Q′�−1Q+ op(1) uniformly over P ∈P0� (SA.14)

which together with Assumption 1(iii), 2(iv), and 3(iii) implies that

lim
n→∞

inf
P∈P0

P
(
K−1 ≤ λmin

(
q(θ̂)′(�̂)−1q(θ̂)

) ≤ λmax

(
q(θ̂)′(�̂)−1q(θ̂)

) ≤K) = 1
 (SA.15)

Let ‖ · ‖S denote the matrix operator norm. By (7.2.13) in Horn and Johnson (1990),

∥∥�̂1/2 −�1/2
∥∥
S
≤ ‖�̂−�‖S

∥∥�−1/2
∥∥
S
� (SA.16)

which together with Assumption 3(iii) and (SA.8) implies that

∥∥�̂1/2 −�1/2
∥∥
S
= op(1) uniformly over P ∈P0
 (SA.17)

By (SA.17) and the relation between the operator norm and the Frobenius norm,

∥∥�̂1/2 −�1/2
∥∥ = op(1) uniformly over P ∈P0
 (SA.18)

By Assumptions 1(iii) and 3(iii), (SA.7), and (SA.18),

�̂−1/2q(θ̂) =�−1/2Q+ op(1) =Op(1) (SA.19)

uniformly over P ∈P0. The claim in the lemma follows by (SA.14), (SA.15), and (SA.19).
(e) By Assumption 2(i), (ii) and the consistency of θ̂,

sup
θ∈�

∥∥�̂(θ� θ̂) −�(θ�θ0)
∥∥ = op(1) uniformly over P ∈P0
 (SA.20)

By (SA.13) and (SA.20),

sup
θ∈�

∥∥(
�̂(θ� θ̂) −�(θ�θ0)

)
�̂−1

∥∥ ≤ (
λmin(�̂)

)−1
sup
θ∈�

∥∥�̂(θ� θ̂) −�(θ�θ0)
∥∥

= op(1) (SA.21)
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uniformly over P ∈ P0, where the inequality is by the Cauchy–Schwarz inequality. Simi-
larly,

sup
θ∈�

∥∥�(θ�θ0)
(
�̂−1 −�−1

)∥∥ = sup
θ∈�

∥∥�(θ�θ0)�̂−1(�̂−�)�−1
∥∥

≤ (
λmin(�̂)λmin(�)

)−1
sup
θ�θ̃∈�

∥∥�(θ� θ̃)
∥∥‖�̂−�‖

= op(1) (SA.22)

uniformly over P ∈P0, where the inequality is by the Cauchy–Schwarz inequality, and the
last equality is by Assumptions 2(iv) and 3(iii), (SA.8), and (SA.13). Collecting the results
in (SA.21) and (SA.22), we deduce that

sup
θ∈�

∥∥V̂ (θ) − V (θ)
∥∥

≤ sup
θ∈�

∥∥(
�̂(θ� θ̂) −�(θ�θ0)

)
�̂−1

∥∥ + sup
θ∈�

∥∥�(θ�θ0)
(
�̂−1 −�−1

)∥∥
= op(1) (SA.23)

uniformly over P ∈P0. By Assumptions 2(iv) and 3(iii),

sup
θ∈�

∥∥V (θ)
∥∥ ≤ sup

θ∈�

∥∥S0�(θ�θ0)�−1
∥∥ ≤ (

λmin(�)
)−1

sup
θ∈�

∥∥�(θ�θ0)
∥∥ ≤ c−1

λ C�� (SA.24)

which finishes the proof. Q.E.D.

PROOF OF LEMMA A2: To link ξ̂ and ξ∗, we first define

ξ̃≡ (
ṽ′� m̃(·)′� vec

(
V (·))′

� vech(�)′� vech
(
�0(·))′

� vech(M)′)′
� (SA.25)

where ṽ ≡ �1/2M�−1/2g(θ0) and m̃(·) ≡ g0(·) − V (·)ṽ. The difference between ξ̃ and ξ∗

lies in the first two elements, where ṽ and m̃(·) in ξ̃ involve the empirical process g(·),
but �1/2Mυ∗ and m∗(·) in ξ∗ involve the limiting Gaussian process ψ(·). Under Assump-
tion 1(i), g(·) −E[g(·)] weakly converges to ψ(·), which is equivalent to

lim
n→∞

sup
P∈P0

sup
f∈BL1

∥∥E[
f
(
g−E[g]

)] −E[
f (ψ)

]∥∥ = 0
 (SA.26)

Furthermore, Assumptions 1(iii), 2(iv), and 3(iii) imply that ṽ and m̃(·) are Lipschitz in
g(·), and hence any bounded Lipschitz function of ξ̃ can be written as a bounded Lipschitz
function of ξ̃1, where ξ̃1 replaces g0(·) in ξ̃ with g0(·) − E[g0(·)], which together with
(SA.26) implies that

lim
n→∞

sup
P∈P0

sup
f∈BL1

∥∥E[
f (ξ̃)

] −E[
f
(
ξ∗)]∥∥ = 0
 (SA.27)

Next, note that the difference between ξ̂ and ξ̃ is that �̂, M̂ , and V̂ (θ) in ξ̂ are replaced
by their probability limits in Lemma A1(c), (d), (e) of Cheng, Dou, and Liao (2022). Thus,
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we have ξ̂= ξ̃+ op(1) uniformly over P ∈ P0 following Lemma A1(c), (d), (e) in Cheng,
Dou, and Liao (2022), which implies

lim
n→∞

sup
P∈P0

sup
f∈BL1

∥∥E[
f (ξ̂)

] −E
[
f (ξ̃)

]∥∥ = 0
 (SA.28)

The desirable result follows from (SA.27), (SA.28), and the triangle inequality. Q.E.D.

PROOF OF LEMMA A6: Since 0 ≤ L(υ;d∗) ≤ υ′Mυ for any υ ∈ R
k and utC (u) ≤ C for

any u≥ 0, we have
∣∣LC(υ;d∗) −LC

(
υ;d∗)∣∣ =L(

υ;d∗)tC(υ′Mυ
)
I
{‖υ‖2 >C

} ≤ CI{‖υ‖2 >C
}

(SA.29)

for any υ ∈R
k, which implies that

P
(∣∣LC(υ∗� d∗) −LC

(
υ∗� d∗)∣∣> ε) ≤ P(

I
{∥∥υ∗∥∥2

>C
}
> ε/C

) ≤ P(∥∥υ∗∥∥2
>C

)

 (SA.30)

Since ‖υ∗‖2 follows the chi-square distribution with degree of freedom k, there exists a
constant Cδ such that P(‖υ∗‖2 > Cδ) ≤ δ/4 which together with (SA.30) implies that, for
any C ≥ Cδ,

P
(∣∣LC(υ∗� d∗) −LC

(
υ∗� d∗)∣∣> ε) ≤ δ/4
 (SA.31)

By the union bound of probability and (SA.31), we have, for any C ≥ Cδ,
P

(
LC

(
υ∗� d∗)> cα�C(d∗) + ε)

≤ P(
LC

(
υ∗� d∗) + ∣∣LC(υ∗� d∗) −LC

(
υ∗� d∗)∣∣> cα�C(d∗) + ε)

≤ P(
LC

(
υ∗� d∗)> cα�C(d∗)) + δ/4 ≤ α+ δ/4� (SA.32)

where the last inequality is by the definition of cα�C (d∗). Since RC (ξ∗) = LC (υ∗� d∗) by
definition, the claim of the lemma follows from (SA.32). Q.E.D.

PROOF OF LEMMA A7: (a) Since υ∗ = Op(1), by Assumptions 1(iii), 2(iv), and 3(iii),
Lemma A1(b), (d) in Cheng, Dou, and Liao (2022), and (SA.18), we have, uniformly over
P ∈P0,

�̂1/2M̂υ∗ − g(θ̂) =�1/2M�−1/2
(
�1/2υ∗ − g(θ0)

) + op(1) =Op(1)� (SA.33)

which together with Lemma A1(e) in Cheng, Dou, and Liao (2022) implies that

sup
θ∈�

∥∥V̂ (θ)
(
�̂1/2M̂υ∗ − g(θ̂)

)∥∥ =Op(1) uniformly over P ∈P0
 (SA.34)

Therefore, by the triangle inequality, Assumption 1, and (SA.34),

sup
θ∈�

∥∥n−1/2
(
m̂(θ) + V̂ (θ)�̂1/2M̂υ∗) −E

[
g0(θ)

]∥∥
≤ sup

θ∈�

∥∥n−1/2g0(θ) −E
[
g0(θ)

]∥∥ + sup
θ∈�

∥∥n−1/2V̂ (θ)
(
�̂1/2M̂υ∗ − g(θ̂)

)∥∥
= op(1) (SA.35)
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uniformly over P ∈ P0. By Assumptions 1(iii), 2(i), 3(iii), and 4(i), and (SA.35), we can
apply similar arguments in the proof of (SA.3) to deduce that

θ̂∗ = θ0 + op(1) (SA.36)

uniformly over P ∈ P0 ∩ P00. Applying the chain rule, we get the first-order condition of
θ̂∗:

0dθ×1 = 2
(
∂

∂θ′
(
m̂

(
θ̂∗) + V̂S

(
θ̂∗)υ∗))′(

�̂∗
0

)−1(
m̂

(
θ̂∗) + V̂S

(
θ̂∗)υ∗)

−
((
m̂

(
θ̂∗) + V̂S

(
θ̂∗)υ∗)′(

�̂∗
0

)−1 ∂�̂0

(
θ̂∗)

∂θj

(
�̂∗

0

)−1

× (
m̂

(
θ̂∗) + V̂S

(
θ̂∗)υ∗))

j=1�


�dθ

� (SA.37)

where �̂∗
0 ≡ �̂0(θ̂∗) and V̂S(θ̂∗) ≡ V̂ (θ̂∗)�̂1/2M̂ . Using (SA.36) and similar arguments for

showing (SA.5) and (SA.6), we obtain

g0

(
θ̂∗) = g0(θ0) + n1/2

(
θ̂∗ − θ0

)(
Q0 + op(1)

) =Op(1) + n1/2
(
θ̂∗ − θ0

)
Op(1) (SA.38)

uniformly over P ∈P0. By (SA.34) and (SA.38),

m̂
(
θ̂∗) + V̂S

(
θ̂∗)υ∗ = g0

(
θ̂∗) + V̂ (

θ̂∗)(�̂1/2M̂υ∗ − g(θ̂)
)

=Op(1) + n1/2
(
θ̂∗ − θ0

)
Op(1)� (SA.39)

which together with Assumptions 2 and 3(iii), (SA.36), and the Cauchy–Schwarz inequal-
ity implies that, for any j = 1� 
 
 
 � dθ,

n−1/2
(
m̂

(
θ̂∗) + V̂S

(
θ̂∗)υ∗)′(

�̂∗
0

)−1 ∂�̂0

(
θ̂∗)

∂θj

(
�̂∗

0

)−1(
m̂

(
θ̂∗) + V̂S

(
θ̂∗)υ∗)

= n1/2
(
θ̂∗ − θ0

)
op(1) + op(1)�

uniformly over P ∈P0 ∩P00
 (SA.40)

By Assumptions 2(iii, iv) and 3(iii),

max
1≤j≤dθ

sup
θ∈�

∥∥V̂ (θ)/∂θj
∥∥ =Op(1) uniformly over P ∈P0� (SA.41)

which combined with (SA.33) implies that

∂

∂θ′ V̂
(
θ̂∗)(�̂1/2M̂υ∗ − g(θ̂)

) =Op(1) (SA.42)

uniformly over P ∈P0 ∩P00. By Assumption 1(ii) and (SA.36),

n−1/2 ∂g0

(
θ̂∗)

∂θ′ =Q0 + op(1) uniformly over P ∈P0 ∩P00
 (SA.43)
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Collecting the results in (SA.42) and (SA.43), we have

n−1/2 ∂

∂θ′
(
m̂

(
θ̂∗) + V̂S

(
θ̂∗)υ∗)

= n−1/2 ∂

∂θ′g0

(
θ̂∗) + n−1/2 ∂

∂θ′ V̂
(
θ̂∗)(�̂1/2M̂υ∗ − g(θ̂)

)
=Q0 + op(1) (SA.44)

uniformly over P ∈P0 ∩P00. Apply the first-order expansion to get

m̂
(
θ̂∗) + V̂S

(
θ̂∗)υ∗

= g0

(
θ̂∗) + V̂ (

θ̂∗)(�̂1/2M̂υ∗ − g(θ̂)
)

= g0(θ0) + V̂ (θ0)
(
�̂1/2M̂υ∗ − g(θ̂)

)

+ ∂g0

(
θ̃∗)

∂θ′
(
θ̂∗ − θ0

) + ∂V̂
(
θ̃∗)

∂θ′
(
θ̂∗ − θ0

)(
�̂1/2M̂υ∗ − g(θ̂)

)

= g0(θ0) + V̂ (θ0)
(
�̂1/2M̂υ∗ − g(θ̂)

)
+ (
Q0 + op(1)

)
n1/2

(
θ̂∗ − θ0

) + op(1) (SA.45)

uniformly over P ∈ P0 ∩ P00, where the third equality is by Assumption 1(ii), (SA.33),
(SA.36), and (SA.41). By V (θ0) = S0, Lemma A1(b), (e) in Cheng, Dou, and Liao (2022),
and (SA.33),

V̂ (θ0)
(
�̂1/2M̂υ∗ − g(θ̂)

) = S0�
1/2M�−1/2

(
�1/2υ∗ − g(θ0)

) + op(1) (SA.46)

uniformly over P ∈P0. By (SA.45) and (SA.46), we have, uniformly over P ∈P0 ∩P00,

m̂
(
θ̂∗) + V̂S

(
θ̂∗)υ∗

= (
Q0 + op(1)

)
n1/2

(
θ̂∗ − θ0

)
+Q0

(
Q′�−1Q

)−1
Q′�−1g(θ0) + S0�

1/2Mυ∗ + op(1)
 (SA.47)

By Assumptions 3(iii) and 4(ii),Q′
0�

−1
0 Q0 is positive definite. Therefore, collecting the re-

sults in (SA.37), (SA.40), (SA.44), (SA.47), and applying Assumption 2(i), (ii) and (SA.36)
to �̂∗

0, we obtain

n1/2
(
θ̂∗ − θ0

) = −(
Q′�−1Q

)−1
Q′�−1g(θ0)

− (
Q′

0�
−1
0 Q0

)−1
Q′

0�
−1
0 S0�

1/2Mυ∗ + op(1) (SA.48)

uniformly over P ∈P0 ∩P00, which proves part (a) of the lemma.
(b) By (SA.48), Assumptions 1(iii), 2(iv), 3(iii), and 4(ii),

n1/2
(
θ̂∗ − θ0

) =Op(1) uniformly over P ∈P0 ∩P00
 (SA.49)
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By Assumptions 2(iv), 3(iii) and 4(ii), (SA.47), and (SA.48), we have, uniformly over P ∈
P0 ∩P00,

m̂
(
θ̂∗) + V̂S

(
θ̂∗)υ∗ = −Q0

(
Q′

0�
−1
0 Q0

)−1
Q′

0�
−1
0 S0�

1/2Mυ∗ + S0�
1/2Mυ∗ + op(1)

=�1/2
0 M0�

−1/2
0 S0�

1/2Mυ∗ + op(1)

=�1/2
0 M0�

−1/2
0 S0�

1/2υ∗ + op(1) =Op(1)� (SA.50)

where M0 ≡ Ik0 −�−1/2
0 Q0(Q′

0�
−1
0 Q0)−1Q′

0�
−1/2
0 and the third equality is by M0�

−1/2
0 Q0 =

0k0×1. By Assumptions 2(i), (ii) and 3(iii), (SA.36), and (SA.50), we deduce that, uniformly
over P ∈P0 ∩P00,

(
m̂

(
θ̂∗) + V̂S

(
θ̂∗)υ∗)′(

�̂∗
0

)−1(
m̂

(
θ̂∗) + V̂S

(
θ̂∗)υ∗) = υ∗′M̃0υ

∗ + op(1)� (SA.51)

where M̃0 ≡ (�−1/2
0 S0�

1/2)′M0(�−1/2
0 S0�

1/2). Since υ∗ =Op(1), Lemma A1(d) implies that

υ∗′M̂υ∗ = υ∗′Mυ∗ + op(1) (SA.52)

uniformly over P ∈P0, which together with (SA.51) finishes the proof.
(c) Since M ≡ Ik −�−1/2Q(Q′�−1Q)−1Q′�−1/2, M2 =M . Moreover,

M̃2
0 = (

�−1/2
0 S0�

1/2
)′
M0

(
�−1/2

0 S0�
1/2

)(
�−1/2

0 S0�
1/2

)′
M0

(
�−1/2

0 S0�
1/2

)
= (
�−1/2

0 S0�
1/2

)′
M0

(
�−1/2

0 S0�
1/2

) = M̃0 (SA.53)

and

M̃0M = M̃0 − (
�−1/2

0 S0�
1/2

)′
M0

(
�−1/2

0 S0�
1/2

)
�−1/2Q

(
Q′�−1Q

)−1
Q′�−1/2

= M̃0� (SA.54)

where the second equality is by M0�
−1/2
0 Q0 = 0k0×1. Similarly, MM̃0 = M̃0. Therefore,

(M − M̃0)2 = M2 − MM̃0 − M̃0M + M̃2
0 = M − M̃0, which implies that M − M̃0 is an

idempotent matrix. The rank of M − M̃0 equals the trace of M − M̃0 since M − M̃0 is
idempotent. By the definition of M and M̃0,

tr(M) = k− tr
(
�−1/2Q

(
Q′�−1Q

)−1
Q′�−1/2

) = k− dθ (SA.55)

and

tr(M̃0) = tr
((
�−1/2

0 S0�
1/2

)′
M0

(
�−1/2

0 S0�
1/2

))
= tr

(
M0

(
�−1/2

0 S0�S
′
0�

−1/2
0

)) = tr(M0) = k0 − dθ� (SA.56)

which implies that tr(M−M̃0) = k−k0 = k1. Therefore,M−M̃0 is an idempotent matrix
with rank k1 which together with υ∗ ∼N(0� Ik) proves the claim (c). Q.E.D.
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SB. PROOFS FOR BOUNDED LIPSCHITZ CONDITIONS

This section contains the proofs of Lemmas A4 and A5 in Cheng, Dou, and Liao (2022),
and the auxiliary results used to show them.

LEMMA SB1: Consider ξ≡ (x′� d′)′, where d satisfies Assumptions 2 and 3. Then we have,
for any given C > 0:

(i) R(ξ) is bounded and Lipschitz in ξ on the set {ξ :R(ξ) ≥ 0 and x′�−1
d x≤ C};

(ii) L(υ;d) is bounded and Lipschitz in d on the set {(υ�d) :L(υ;d) ≥ 0 and ‖υ‖ ≤ C}.

PROOF OF LEMMA SB1: (i) Let Sξ ≡ {ξ : R(ξ) ≥ 0 and x′�−1
d x ≤ C}. By the definition

ofR(ξ),R(ξ) ≤ x′�−1
d x≤ C for any ξ ∈ Sξ, which shows thatR(ξ) is bounded on Sξ. Next,

we want to show that for any ξ1� ξ2 ∈ Sξ,∣∣R(ξ1) −R(ξ2)
∣∣ ≤ CR‖ξ1 − ξ2‖s (SB.1)

for some constant CR. By the triangle inequality,∣∣R(ξ1) −R(ξ2)
∣∣ ≤R(ξ1) +R(ξ2) ≤ x′

2�
−1
d�2x2 + x′

1�
−1
d�1x1 = 2C� (SB.2)

which implies that the claimed result holds with a Lipschitz constant CR = 2 if ‖ξ1 −ξ2‖s >
C. Thus, it is only necessary to consider the case that ‖ξ1 − ξ2‖s ≤ C.

DefineAj(θ) ≡md�j(θ) +Vd�j(θ)xj for j = 1�2. Consider any ξ1� ξ2 ∈ Sξ, by the triangle
inequality,∣∣R(ξ1) −R(ξ2)

∣∣
≤ ∣∣x′

1�
−1
d�1x1 − x′

2�
−1
d�2x2

∣∣
+

∣∣∣min
θ∈�

A1(θ)′(�0�d�1(θ)
)−1
A1(θ) − min

θ∈�
A2(θ)′(�0�d�2(θ)

)−1
A2(θ)

∣∣∣
 (SB.3)

By the triangle inequality, the Cauchy–Schwarz inequality, x′
1�

−1
d�1x1 ≤ C, and x′

2�
−1
d�2x2 ≤

C, ∣∣x′
1�

−1
d�1x1 − x′

2�
−1
d�2x2

∣∣
≤ ∣∣(x1 − x2)′�−1

d�1x1

∣∣ + ∣∣x′
2�

−1
d�2(�d�1 −�d�2)�−1

d�1x1

∣∣ + ∣∣x′
2�

−1
d�2(x1 − x2)

∣∣

≤
[ (
x′

1�
−1
d�1x1

)1/2

(
λmin(�d�1)

)1/2 +
(
x′

2�
−1
d�2x2

)1/2

(
λmin(�d�2)

)1/2

]
‖x1 − x2‖

+
(
x′

1�
−1
d�1x1

)1/2(
x′

2�
−1
d�2x2

)1/2

(
λmin(�d�1)λmin(�d�2)

)1/2 ‖�d�1 −�d�2‖

≤ 2c−1/2
λ C1/2‖x1 − x2‖ + c−1

λ C‖�d�1 −�d�2‖ ≤ C1‖ξ1 − ξ2‖s (SB.4)

for some constant C1.
Let θj denote the minimizer of Aj(θ)′(�0�d�j(θ))−1Aj(θ) for j = 1�2. By the triangle

inequality, we have
∣∣∣min
θ∈�

A1(θ)′(�0�d�1(θ)
)−1
A1(θ) − min

θ∈�
A2(θ)′(�0�d�2(θ)

)−1
A2(θ)

∣∣∣
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≤ max
{θ1�θ2}

∣∣A1(θ)′(�0�d�1(θ)
)−1
A1(θ) −A2(θ)′(�0�d�2(θ)

)−1
A2(θ)

∣∣
≤ max

{θ1�θ2}

∣∣(A1(θ) −A2(θ)
)′(
�0�d�1(θ)

)−1
A1(θ)

∣∣
+ max

{θ1�θ2}

∣∣A2(θ)′(�0�d�1(θ)
)−1(

A1(θ) −A2(θ)
)∣∣

+ max
{θ1�θ2}

∣∣A2(θ)′((�0�d�1(θ)
)−1 − (

�0�d�2(θ)
)−1)

A2(θ)
∣∣
 (SB.5)

We next investigate the three terms after the second inequality of (SB.5) one by one. By
the triangle inequality and the Cauchy–Schwarz inequality,

max
{θ1�θ2}

∥∥A1(θ) −A2(θ)
∥∥

≤ sup
θ∈�

∥∥md�1(θ) −md�2(θ)
∥∥ + ‖x1‖ sup

θ∈�

∥∥Vd�1(θ) − Vd�2(θ)
∥∥ + sup

θ∈�

∥∥Vd�2(θ)
∥∥‖x1 − x2‖

≤ ‖ξ1 − ξ2‖s + λmax(�d�1)
(
x′

1�
−1
d�1x1

)1/2‖ξ1 − ξ2‖s +CV ‖ξ1 − ξ2‖s� (SB.6)

where CV ≡ c−1
λ C� and the second inequality is by the definition of ‖ξ1 − ξ2‖s and

supθ∈� ‖V2�d(θ)‖ ≤ c−1
λ C� (which is proved in Lemma A1(e) of Cheng, Dou, and Liao

(2022)). Therefore, by Assumption 2(iv) and (SB.6),

max
{θ1�θ2}

∥∥A1(θ) −A2(θ)
∥∥ ≤ (

1 + (CC�)1/2 +CV
)‖ξ1 − ξ2‖s� (SB.7)

which together with the triangle inequality, Assumption 2(iv), the restrictions on ξ1 and
ξ2, and ‖ξ1 − ξ2‖s ≤ C implies that

max
{θ1�θ2}

∥∥A1(θ)
∥∥

≤ ∥∥A1(θ1)
∥∥ + ∥∥A1(θ2)

∥∥
≤ ∥∥A1(θ1)

∥∥ + ∥∥A2(θ2)
∥∥ + ∥∥A1(θ2) −A2(θ2)

∥∥
≤ C1/2

�

((
A1(θ1)′(�d�1�0(θ1)

)−1
A1(θ1)

)1/2 + (
A2(θ2)′(�d�2�0(θ2)

)−1
A2(θ2)

)1/2)
+ (

1 + (CC�)1/2 +CV
)‖ξ1 − ξ2‖s

≤ 2(C�C)1/2 + (
1 + (CC�)1/2 +CV

)
C
 (SB.8)

By the same arguments, the inequality in (SB.8) applies to max{θ1�θ2} ‖A2(θ)‖. By the
Cauchy–Schwarz inequality, Assumption 3(iii), (SB.7), and (SB.8),

max
{θ1�θ2}

∣∣(A1(θ) −A2(θ)
)′(
�d�1�0(θ)

)−1
A1(θ)

∣∣
≤ max

{θ1�θ2}

(
λmin

(
�0�d�1(θ)

))−1∥∥A1(θ) −A2(θ)
∥∥∥∥A1(θ)

∥∥ ≤ C2‖ξ1 − ξ2‖s (SB.9)

for some constant C2. Similarly, we can show that

max
{θ1�θ2}

∣∣A2(θ)′(�0�d�1(θ)
)−1(

A1(θ) −A2(θ)
)∣∣ ≤ C2‖ξ1 − ξ2‖s
 (SB.10)
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By the Cauchy–Schwarz inequality, Assumption 3(iii), and (SB.8),

max
{θ1�θ2}

∣∣A2(θ)′((�0�d�1(θ)
)−1 − (

�0�d�2(θ)
)−1)

A2(θ)
∣∣

≤
max
{θ1�θ2}

∥∥A2(θ)
∥∥2∥∥�0�d�1(θ) −�0�d�2(θ)

∥∥
(

inf
θ∈�
λmin

(
�0�d�1(θ)

)
inf
θ∈�
λmin

(
�0�d�2(θ)

))−1

≤ C3 sup
θ∈�

∥∥�0�d�1(θ) −�0�d�2(θ)
∥∥ (SB.11)

for some constant C3. Collecting the results in (SB.5), (SB.9), (SB.10), and (SB.11), we
get

∣∣∣min
θ∈�

A1(θ)′(�0�d�1(θ)
)−1
A1(θ) − min

θ∈�
A2(θ)′(�0�d�2(θ)

)−1
A2(θ)

∣∣∣
≤ (2C2 +C3)‖ξ1 − ξ2‖s� (SB.12)

which together with (SB.3) and (SB.4) implies that the Lipschitz constant is CR = C1 +
2C2 +C3.

(ii) Note that under the condition L(υ;d) ≥ 0 and ‖υ‖ ≤ C , we have 0 ≤ L(υ;d) ≤
υ′Mdυ≤ C2. To show L(υ;d) is Lipschitz in d, we write

L(υ;d) ≡ υ′Mdυ− min
θ∈�

(
md(θ) + Vd�S(θ)υ

)′(
�d�0(θ)

)−1(
md(θ) + Vd�S(θ)υ

)
� (SB.13)

where Vd�S(·) ≡ Vd(·)�1/2
d Md . This functional form is analogous to R(ξ), with�d and Vd(·)

in R(ξ) replaced by Md and Vd�S(·), respectively. Given that Vd�S(·) is Lipschitz in d (es-
tablished in Lemma SC4 below) and supθ∈� ‖Vd�S(θ)‖ ≤ C1/2

� CV (by Assumptions 2(iv) and
3(iii) and Lemma A1(e) of Cheng, Dou, and Liao (2022)), showing L(υ;d) is Lipschitz
in d is analogous to showing R(ξ) is Lipschitz in ξ. The only difference is that Md is not a
full rank matrix, unlike�d , which is the reason that we have to bound ‖υ‖ directly instead
of bounding υ′Mdυ. Because (SB.4) in the proof of part (i) uses the full rank condition
of �d , we replace (SB.4) with the following argument to show υ′Mdυ is Lipschitz in Md .
Given ‖υ‖ ≤ C, we have

∣∣υ′Md�1υ− υ′Md�2υ
∣∣ = ∣∣υ′(Md�1 −Md�2)υ

∣∣
≤ ‖υ‖2‖Md�1 −Md�2‖ ≤ C2‖Md�1 −Md�2‖ (SB.14)

by the Cauchy–Schwarz inequality. The rest of the proof is analogous to that in the proof
of Lemma SB1(i) and hence is omitted. Q.E.D.

PROOF OF LEMMA A4: The truncation function tC (u) satisfies the following proper-
ties: (i) for any u ∈ R

+, 0 ≤ tC (u) ≤ 1 and utC (u) ≤ u; (ii) for any u1, u2 ∈ R, |tC (u1) −
tC (u2)| ≤ C−1|u1 − u2|, which implies that tC (u) is Lipschitz in u. Therefore,

0 ≤RC (ξ) ≤ (
x′�−1

d x
)
tC

(
x′�−1

d x
) ≤ C� (SB.15)

which means that RC (ξ) is bounded.
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Next, we show that RC (ξ) is Lipschitz in ξ. That is, for any ξj with R(ξj) ≥ 0 (j = 1�2),
∣∣RC (ξ1) −RC (ξ2)

∣∣ ≤ CR‖ξ1 − ξ2‖s� (SB.16)

where CR is a constant. Without loss of generality, we assume that x′
2�

−1
d�2x2 ≤ x′

1�
−1
d�1x1.

By the triangle inequality,
∣∣RC (ξ1) −RC (ξ2)

∣∣ ≤ ∣∣(R(ξ1) −R(ξ2)
)
tC

(
x′

1�
−1
d�1x1

)∣∣
+ ∣∣(tC(x′

1�
−1
d�1x1

) − tC
(
x′

2�
−1
d�2x2

))
R(ξ2)

∣∣
 (SB.17)

We have (SB.16) holds with CR = CR1 +CR2 if we can show that
∣∣(R(ξ1) −R(ξ2)

)
tC

(
x′

1�
−1
d�1x1

)∣∣ ≤ CR1‖ξ1 − ξ2‖s (SB.18)

and
∣∣(tC(x′

1�
−1
d�1x1

) − tC
(
x′

2�
−1
d�2x2

))
R(ξ2)

∣∣ ≤ CR2‖ξ1 − ξ2‖s (SB.19)

for some constants CR1 and CR2 .
We first consider (SB.18). First, note that it holds trivially if x′

1�
−1
d�1x1 > 2C because, in

this case, tC (x′
1�

−1
d�1x1) = 0. Second, given x′

2�
−1
d�2x2 ≤ x′

1�
−1
d�1x1 ≤ 2C, we deduce that

∣∣(R(ξ1) −R(ξ2)
)
tC

(
x′

1�
−1
d�1x1

)∣∣ ≤ ∣∣R(ξ1) −R(ξ2)
∣∣ ≤ CR1‖ξ1 − ξ2‖s� (SB.20)

where the first inequality is by property (i) of tC (u), and the second inequality is by
Lemma SB1(i).

Next, we show (SB.19). First, note that it holds trivially if 2C < x′
2�

−1
d�2x2. In this case,

tC
(
x′

1�
−1
d�1x1

) = tC
(
x′

2�
−1
d�2x2

) = 0 (SB.21)

following the definition of tC (u). Second, given x′
2�

−1
d�2x2 ≤ 2C, we have

∣∣(tC(x′
1�

−1
d�1x1

) − tC
(
x′

2�
−1
d�2x2

))
R(ξ2)

∣∣ ≤ ∣∣R(ξ2)
∣∣ ≤ x′

2�
−1
d�2x2 ≤ 2C
 (SB.22)

Thus, (SB.19) holds with CR2 = 1 if ‖ξ1 −ξ2‖s > 2C. Third, it remains to consider the case
where x′

2�
−1
d�2x2 ≤ 2C and ‖ξ1 −ξ2‖s ≤ 2C. In this case, Lemma SC3 in Section SC implies

that x′
1�

−1
d�1x1 ≤ C∗ for some constant C∗. In this case,

∣∣(tC(x′
1�

−1
d�1x1

) − tC
(
x′

2�
−1
d�2x2

))
R(ξ2)

∣∣
≤ ∣∣tC(x′

1�
−1
d�1x1

) − tC
(
x′

2�
−1
d�2x2

)∣∣x′
2�

−1
d�2x2 ≤ 2C

∣∣x′
1�

−1
d�1x1 − x′

2�
−1
d�2x2

∣∣ (SB.23)

using 0 ≤R(ξ2) ≤ x′
2�

−1
d�2x2 ≤ 2C and |tC (u1) − tC (u2)|≤ C−1|u1 − u2| which follows from

property (ii) of tC (u). Then we can show |x′
1�

−1
d�1x1 − x′

2�
−1
d�2x2|≤ CR2‖ξ1 − ξ2‖S for some

constant CR2 by the same arguments that show (SB.4) but with x′
1�

−1
d�1x1 ≤ 2C replaced by

x′
1�

−1
d�1x1 ≤ C∗. Q.E.D.

LEMMA SB2: Given L(υ;d) ≥ 0, LC (υ;d) is bounded and Lipschitz in d.
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PROOF OF LEMMA SB2: The proof is analogous to that of Lemma A4 with the trunca-
tion function tC (x′�−1

d x) replaced by tC (υ′Mdυ)I{‖υ‖2 ≤ C} and Lemma SB1(i) replaced
by Lemma SB1(ii), and hence is omitted. Q.E.D.

PROOF OF LEMMA A5: Since 0 ≤ L(υ;d) ≤ υ′Mdυ for any υ ∈ R
k and utC (u) ≤ C for

any u≥ 0, we have

LC (υ;d) =L(υ;d)tC
(
υ′Mdυ

)
I
{‖υ‖2 ≤ C} ≤L(υ;d)tC

(
υ′Mdυ

) ≤ C� (SB.24)

which implies that cα�C (d) is bounded. For any υ, any d1 and d2, by Lemma SB2 there
exists a constant CL such that

∣∣LC (υ;d1) −LC (υ;d2)
∣∣ ≤ CL‖d1 − d2‖s
 (SB.25)

Since LC (υ;d1) ≥LC (υ;d2) −CL‖d1 − d2‖s for any υ and P∗(LC (υ∗;d1) > cα�C (d1)) ≤ α,
we have P(LC (υ∗;d2) > cα�C (d1) +CL‖d1 − d2‖s) ≤ α, which implies that

cα�C (d2) ≤ cα�C (d1) +CL‖d1 − d2‖s
 (SB.26)

Similarly, we also have

cα�C (d1) ≤ cα�C (d2) +CL‖d1 − d2‖s
 (SB.27)

Combining (SB.26) and (SB.27), we get
∣∣cα�C (d1) − cα�C (d2)

∣∣ ≤ CL‖d1 − d2‖s� (SB.28)

which shows the claim of the lemma. Q.E.D.

SC. ADDITIONAL AUXILIARY LEMMAS

This section contains the proof of Lemma A3 in Cheng, Dou, and Liao (2022) and some
other auxiliary results.

PROOF OF LEMMA A3: For any square matrices A1 and A2, let diag(A1�A2) denote
the block-diagonal matrix created by aligning the input matrices A1 and A2 along the
diagonal. Since θ̂ ∈� is the minimizer of g(θ)′(�̂(θ))−1g(θ),

R(ξ̂) ≥ g(θ̂)′�̂−1g(θ̂) − g0(θ̂)′�̂−1
0 g0(θ̂)

= g(θ̂)′(�̂−1 − diag
(
�̂−1

0 �0k1×k1

))
g(θ̂)� (SC.1)

where �̂ ≡ �̂(θ̂� θ̂) and �̂0 is the leading k0 × k0 submatrix of �̂. Let �̂0�1 denote the
upper-right k0 × k1 submatrix of �̂ and �̂1�0 ≡ �̂′

0�1. Since �̂ is positive definite,

�̂
(
�̂−1 − diag

(
�̂−1

0 �0k1×k1

))
�̂= diag

(
0k0×k0� �̂1 − �̂1�0�̂

−1
0 �̂0�1

)
(SC.2)

is a positive semi-definite matrix, which together with (SC.1) proves the first claim of the
lemma.
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To prove the second claim, we first notice that m̂(θ̂) = g0(θ̂) − V̂ (θ̂)g(θ̂) = 0k0×1, which
implies that, for any υ ∈ R

k,

L(υ; d̂) ≥ υ′M̂υ− υ′V̂S(θ̂)′�̂−1
0 V̂S(θ̂)υ� (SC.3)

where V̂S(θ) ≡ S0�̂
1/2M̂ . Therefore,

L(x; d̂) ≥ υ′M̂�̂1/2
(
�̂−1 − diag

(
�̂−1

0 �0k1×k1

))
�̂1/2M̂υ≥ 0� (SC.4)

where the second inequality holds since the matrix in (SC.2) is positive semi-definite.
Q.E.D.

LEMMA SC3: For any ξ1 and ξ2 with x′
2�

−1
d�2x2 ≤ C and ‖ξ1 − ξ2‖s ≤ C, where C is a

constant, we have x′
1�

−1
d�1x1 ≤ C∗ for some constant C∗, which depends the constant C of the

lemma, and C� and cλ in Assumptions 2(iv) and 3(iii), respectively.

PROOF OF LEMMA SC3: Since �−1
d�1 is symmetric and positive definite under Assump-

tion 3(iii),

x′
1�

−1
d�1x1 ≤ 2x′

2�
−1
d�1x2 + 2(x1 − x2)′�−1

d�1(x1 − x2)

= 2x′
2�

−1
d�2x2 + 2x′

2

(
�−1
d�1 −�−1

d�2

)
x2 + 2(x1 − x2)′�−1

d�1(x1 − x2)

≤ 2C + 2x′
2

(
�−1
d�1 −�−1

d�2

)
x2 + 2(x1 − x2)′�−1

d�1(x1 − x2)� (SC.5)

where the second inequality is by x′
2�

−1
d�2x2 ≤ C as assumed in the lemma. By Assump-

tion 3(iii) and ‖ξ1 − ξ2‖s ≤ C,

(x1 − x2)′�−1
d�1(x1 − x2) ≤ (

λmin(�d�1)
)−1‖x1 − x2‖2 ≤ C2c−1

λ 
 (SC.6)

Similarly, by Assumption 3(iii) and ‖ξ1 − ξ2‖s ≤ C,
∣∣x′

2

(
�−1
d�1 −�−1

d�2

)
x2

∣∣2 = ∣∣x′
2�

−1
d�1(�d�1 −�d�2)�−1

d�2x2

∣∣2

≤ (
x′

2�
−2
d�1x2

)(
x′

2�
−2
d�2x2

)‖�d�1 −�d�2‖2

≤ λmax(�d�2)
(
x′

2�
−1
d�2x2

)2

λmin(�d�2)
(
λmin(�d�1)

)2 ‖�d�1 −�d�2‖2

≤ C4c−3
λ C�� (SC.7)

where the last inequality is by x′
2�

−1
d�2x2 ≤ C, Assumptions 2(iv) and 3(iii), and ‖ξ1 −ξ2‖s ≤

C. The claim of the lemma follows from (SC.5)–(SC.7). Q.E.D.

LEMMA SC4: For any ξ1 and ξ2, define Vd�S�j(θ) ≡ Vd�j(θ)�1/2
d�jMd�j for j = 1�2. Then, we

have

sup
θ∈�

∥∥Vd�S�1(θ) − Vd�S�2(θ)
∥∥ ≤ C1/2

�

(
1 + c−1

λ C
1/2
� + c−1

λ C�
)‖ξ1 − ξ2‖s� (SC.8)

where C� and cλ are in Assumptions 2(iv) and 3(iii), respectively.
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PROOF OF LEMMA SC4: By definition,

Vd�S�1(θ) − Vd�S�2(θ)

= [
Vd�1(θ) − Vd�2(θ)

]
�1/2
d�1Md�1

+ Vd�2(θ)
(
�1/2
d�1 −�1/2

d�2

)
Md�1 + Vd�2(θ)�1/2

d�2(Md�1 −Md�2)
 (SC.9)

By the properties of �d�j and Md�j ,

sup
θ∈�

∥∥[
Vd�1(θ) − Vd�2(θ)

]
�1/2
d�1Md�1

∥∥ ≤ C1/2
� sup

θ∈�

∥∥Vd�1(θ) − Vd�2(θ)
∥∥
 (SC.10)

By the properties of Vd�j(θ) and Md�j , and (7.2.13) in Horn and Johnson (1990),

sup
θ∈�

∥∥Vd�2(θ)
(
�1/2
d�1 −�1/2

d�2

)
Md�1

∥∥ ≤ sup
θ∈�

∥∥Vd�2(θ)
∥∥∥∥�1/2

d�1 −�1/2
d�2

∥∥
S

≤ c−1
λ C�

∥∥�−1/2
d�2

∥∥
S
‖�d�1 −�d�2‖

≤ c−2
λ C�‖�d�1 −�d�2‖
 (SC.11)

Similarly,

sup
θ∈�

∥∥Vd�2(θ)�1/2
d�2(Md�1 −Md�2)

∥∥ ≤ c−1
λ C

3/2
� ‖Md�1 −Md�2‖
 (SC.12)

The desirable result follows by (SC.9)–(SC.12) and the triangle inequality. Q.E.D.

SD. THEORETICAL POWER PROPERTIES OF THE NEW TEST

In this section, we investigate the power properties of the conditional specification test
in two cases. First, when the asset pricing moments are globally misspecified, we show
that the conditional specification test rejects these moments wpa1, and thus is consistent
regardless of the identification strength in the baseline moments. Second, when baseline
moments provide strong identification and the asset pricing moments are locally misspec-
ified, we show that the conditional test has the same asymptotic local power as the C test.
Thus, it shares the power optimality of the C test in standard scenarios.

ASSUMPTION SD1: The following conditions hold for any P ∈ P1�∞ ⊂ P :
(i) infθ∈� ‖E[ḡ1(θ)]‖ > cg1 for some cg1 > 0; (ii) λmin(�0(θ0)) ≥ cλ, λmin(�̂) ≥ cλ, and
λmin(Q̂′Q̂) ≥ cλ wpa1.

Assumption SD1(i) implies that there are globally misspecified moments in E[ḡ1(θ0)] =
0k1×1. Assumption SD1(ii) requires that the eigenvalues of �̂ and Q̂′Q̂ are bounded away
from zero wpa1. In view of Assumptions 1(ii) and 2(i), this condition holds if the eigenval-
ues of �(θ1) and Q(θ1)Q(θ1)′ are bounded away from zero, where θ1 denotes the pseudo
true value under misspecification. Therefore, Assumption SD1(ii) is the counterpart of
Assumption 3(iii) under the alternative.

THEOREM SD1: Suppose Assumptions 1, 2, and SD1 hold. For any P ∈ P1�∞, P(T >

cα(d̂)) → 1 as n→ ∞.
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PROOF OF THEOREM SD1: We first show that the test statistic T , written as R(ξ̂), di-
verges at rate n under global misspecification. By Assumptions 2(i), (iv) and SD1(ii),

R(ξ̂) = min
θ∈�

g(θ)′(�̂(θ)
)−1
g(θ) − min

θ∈�
g0(θ)′(�̂0(θ)

)−1
g0(θ)

≥ (C� + 1)−1 min
θ∈�

∥∥g(θ)
∥∥2 − c−1

λ

∥∥g0(θ0)
∥∥2

wpa1� (SD.1)

where

∥∥g(θ)
∥∥2 ≥ 1

2

∥∥E[
g(θ)

]∥∥2 − ∥∥g(θ) −E
[
g(θ)

]∥∥2

 (SD.2)

By Assumption SD1(i), there exists a constant cg1 > 0 such that minθ∈� ‖E[ḡ(θ)]‖2 ≥ cg1 ,
which combined with (SD.1), (SD.2), and Assumptions 1(i) and 2(iv) implies that

R(ξ̂) ≥ n
(
K−1 min

θ∈�

∥∥E[
ḡ(θ)

]∥∥2 − op(1)
)

≥ ncg1K
−1 wpa1. (SD.3)

The critical value satisfies cα(d̂) ≤ q1−α(χ2
k) wpa1, because L(υ∗; d̂) ≤ υ∗′M̂υ∗ ≤ ‖υ∗‖2

wpa1 given that M̂ is an idempotent matrix wpa1 under Assumption SD1(ii) and q1−α(χ2
k)

is the 1 − α quantile of ‖υ∗‖2. Therefore, by (SD.3) and cα(d̂) ≤ q1−α(χ2
k) wpa1, we have

P
(
R(ξ̂) > cα(d̂)

) ≥ P
(
ncg1K

−1 > q1−α
(
χ2
k

)) − o(1)� (SD.4)

where the right-hand side of the above inequality goes to 1 as n→ ∞. Q.E.D.

The consistency of the conditional specification test holds no matter whether the pa-
rameter θ0 (or its subvector) is strongly, weakly, or not identified by the baseline moments.
We next study the local power of the conditional specification test when the baseline mo-
ments provide strong identification.

ASSUMPTION SD2: The following conditions hold for any P ∈P1�A ⊂P :
(i) E[ḡ1(θ0)] = an−1/2 for some a ∈ R

k1 with ‖a‖<∞;
(ii) Assumptions 3(ii) and 3(iii) hold for any P ∈P1�A.

THEOREM SD2: Suppose Assumptions 1, 2, 4, and SD2 hold. For any P ∈P00 ∩P1�A, we
have

P
(
T > cα(d̂)

) → P
(
χ2
k1

(
a′
�Ma�

)
> q1−α

(
χ2
k1

))
� as n→ ∞�

where a� ≡�−1/2a and χ2
k1

(a′
�Ma�) denotes a non-central chi-square random variable with

degree of freedom k1 and non-central parameter a′
�Ma�.

PROOF OF THEOREM SD2: Under Assumptions 1 and 2, the strong identification in
baseline moments in Assumption 4, and the local misspecification in Assumption SD2,
θ̂ and θ̂0 are consistent by the standard arguments and results in (A.19) and (A.20) of
Cheng, Dou, and Liao (2022) remain valid. Therefore,

R(ξ̂) →d

(
�−1/2υ+ a�

)′
M

(
�−1/2υ+ a�

) − υ′
0�

−1/2
0 M0�

−1/2
0 υ0� (SD.5)
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where a� ≡�−1/2a, υ is a multivariate normal random variable with mean zero and vari-
ance �, and υ0 denotes the leading k0 subvector of υ. By the standard arguments in the
GMM literature (e.g., Hall (2005, Section 5)), we have

(
�−1/2υ+ a�

)′
M

(
�−1/2υ+ a�

) − υ′
0�

−1/2
0 M0�

−1/2
0 υ0 ∼ χ2

k1

(
a′
�Ma�

)

 (SD.6)

We next study cα(d̂) under the local misspecification. Since θ̂ is n1/2 consistent under the
local misspecification, Lemma A7 of Cheng, Dou, and Liao (2022) remains valid for any
P ∈P00 ∩P1�A. Therefore, for any P ∈P00 ∩P1�A,

L
(
υ∗� d̂

) = υ∗′(M − M̃0)υ∗ + op(1) ∼ χ2
k1

 (SD.7)

By (SD.7) and arguments analogous to those used to show Theorem 2(ii), we have
cα(d̂) →p q1−α(χ2

k1
), which together with (SD.5) and (SD.6) proves the claim of the theo-

rem. Q.E.D.

As long as a′
�Ma� > 0, we have P(χ2

k1
(a′

�Ma�) > q1−α(χ2
k1

)) >α. Moreover, this prob-
ability is strictly increasing in the non-central parameter a′

�Ma�. If the baseline moments
E[ḡ0(θ0)] = 0k0×1 only depend on a subvector θc�0 of θ0 with dimension dc and strongly
identify θc�0, arguments analogous to those used to show Theorem SD2 give

P
(
T > cα(d̂)

) → P
(
χ2
k1+dc−dθ

(
a′
�Ma�

)
> q1−α

(
χ2
k1+dc−dθ

))
as n→ ∞
 (SD.8)

When the baseline moments provide strong identification, the conditional specifica-
tion test is asymptotically equivalent to the C test following Theorems 2, SD1, and SD2.
1 In particular, it shares the same (asymptotic) local power function with the C test and
thus achieves optimality under local misspecification (Newey (1985)). Nevertheless, the
conditional specification test compares favorably to the C test for its correct asymptotic
size even with weak identification in the baseline moments, an important property for its
applications to many macro-finance asset pricing models.

SE. COMPARISON TO SOME POWER ENVELOPES

In this section, we derive some power envelopes in a Gaussian experiment as in Sec-
tion 4.1 of Cheng, Dou, and Liao (2022). These power envelopes are akin to those in
Section 3.4 of Andrews and Mikusheva (2016). We compare the power of the proposed
conditional specification test to these power envelopes through simulation studies.

Setup. We observe (i) a Gaussian process g0�∞(·) with covariance matrix �0(·� ·), and
(ii) a Gaussian random vector g∞(θ̂) which satisfies

g∞(θ̂) ≡ (
Ik −Q(

Q′�−1Q
)−1
Q′�−1

)
g∞(θ0) =�1/2M�−1/2g∞(θ0)� (SE.1)

where g∞(θ0) ≡ (g0�∞(θ0)′� g1�∞(θ0)′)′ is normal with covariance matrix �, g0�∞(θ0) and
g1�∞(θ0) are k0 × 1 and k1 × 1, respectively, Q ≡ (Q′

0�Q
′
1)′, Q0 and Q1 are k0 × dθ and

k1 × dθ (k1 ≥ dθ) matrices, respectively. We assume that Q1 has full rank, and �0(·� ·), �,
Q, and the covariance between g0�∞(·) and g∞(θ0) are known.

1See, for example, Hall (2005) for detailed derivations for the C test.



18 X. CHENG, W. W. DOU, AND Z. LIAO

We are interested in testing

H0 : η= 0k1×1 where η≡ E
[
g1�∞(θ0)

]
� (SE.2)

while maintaining E[g0�∞(θ0)] = 0k0×1 under both the null and the alternative hypotheses.
The alternative hypothesis is written as

H1 : η �= 0
 (SE.3)

The true value of θ0 is unknown under both the null and the alternative.

Power Envelopes. Let Q⊥ denote the orthogonal complement of Q. It is clear that
Q′�−1 and Q⊥′ are the left eigenvectors of Ik −Q(Q′�−1Q)−1Q′�−1 with respect to the
(left) eigenvalues 0 and 1, respectively. Let D = (Q⊥��−1Q)′; then D is non-singular.
Moreover,

Dg∞(θ̂) =D(
Ik −Q(

Q′�−1Q
)−1
Q′�−1

)
g∞(θ0) =

(
Q⊥′g∞(θ0)

0dθ×k

)

 (SE.4)

Based on (SE.4), observing g∞(θ̂) is equivalent to observing

Y ≡Q⊥′g∞(θ0) ∼N(
A(η)�Q⊥′�Q⊥)

� where A(η) ≡Q⊥′
(

0k0×1

η

)

 (SE.5)

We next consider inference of η based only on Y .
Since the uniformly most powerful (UMP) test does not exist for (SE.3), we follow An-

drews and Mikusheva (2016) and derive several power envelopes by reducing the alterna-
tive hypothesis (SE.3) and/or imposing restrictions on the class of tests. If the alternative
hypothesis (SE.3) is reduced to a single value η∗ with A(η∗) �= 0, then the Neyman–
Pearson lemma implies that the UMP test rejects H0 if

A
(
η∗)′(

Q⊥′�Q⊥)−1
Y(

A
(
η∗)′(

Q⊥′�Q⊥)−1
A

(
η∗))1/2 > z1−α� (SE.6)

where z1−α denotes the 1 − α quantile of the standard normal distribution. It is clear that
the optimality of the test in (SE.6) depends on η∗ by construction. Its power may be low if
the true value η under the alternative is different from η∗. In the simulation study below,
we let the test in (SE.6) depend on the true value under the alternative η (i.e., we replace
η∗ by η) and call its power (as a function of η) as PE-1. Next, we consider a subset of
alternative hypothesis (SE.3) which is proportional to a known vector η∗ with A(η∗) �= 0,
that is, H1 : η = aη∗. Since η∗ is known, the subset of alternative hypothesis becomes
H1 : a �= 0. As noticed in Andrews and Mikusheva (2016), the UMP unbiased test for this
reduced problem rejects H0 if

∣∣∣∣ A
(
η∗)′(

Q⊥′�Q⊥)−1
Y(

A
(
η∗)′(

Q⊥′�Q⊥)−1
A

(
η∗))1/2

∣∣∣∣> z1−α/2
 (SE.7)

In the simulation study below, we let the test in (SE.7) also depend on the true value
η under the alternative and call its power (as a function of η) as PE-2. Both PE-1 and
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PE-2 are infeasible because they require the knowledge of the true value η under the
alternative. Finally, the following feasible test:

Y ′(Q⊥′�Q⊥)−1
Y > q1−α

(
χ2
k−dθ

)
(SE.8)

is the UMP invariant test, whose power function is called PE-3. This is equivalent to the
J test.

Conditional Specification Test. In this setup, the test statistic T in the paper is the QLR
statistic written as

T ≡ g∞(θ̂)′�−1g∞(θ̂) − min
θ∈�

g0�∞(θ)′(�0(θ)
)−1
g0�∞(θ)� (SE.9)

where �0(θ) ≡ �0(θ�θ). We apply the conditional inference based on this test statistic.
Define

m0�∞(θ) ≡ g0�∞(θ) − V (θ)g∞(θ̂)� (SE.10)

where V (θ) ≡ Cov(g0�∞(θ)� g∞(θ0))�−1 is a known function of θ. Then, under the null
hypothesis, Cov(m0�∞(θ)� g∞(θ̂)) = 0, which implies that m0�∞(θ) and g∞(θ̂) are inde-
pendent by their joint normal distribution. The conditional inference is conducted using
the critical value of

T = g∞(θ̂)′�−1g∞(θ̂)

− min
θ∈�

(
m0�∞(θ) + V (θ)g∞(θ̂)

)′(
�0(θ)

)−1(
m0�∞(θ) + V (θ)g∞(θ̂)

)
(SE.11)

conditioning on m0�∞(θ).

Simulation. Next, we compare the power of the proposed test with the three power
envelopes through simulation studies. To this end, we consider a specific example where
dθ = 1, k0 = qk1, k1 = 2, and

g0�∞(θ) ≡ g0�∞(θ0) + (θ− θ0)Q0�∞� (SE.12)

where Q0�∞ is a k0 × 1 random vector. The distribution of the random vector (g∞(θ0)′�
Q′

0�∞)′ is specified as follows:
⎛
⎝g0�∞(θ0)
g1�∞(θ0)
Q0�∞

⎞
⎠ ∼N

⎛
⎝

⎛
⎝0k0×1

η
μg

⎞
⎠ ��

⎞
⎠ � where �≡

⎛
⎝�00 �01 �0g

�10 �11 �1g

�g0 �g1 �gg

⎞
⎠ � (SE.13)

μg is a k0 × 1 real vector. We shall consider two cases for Q0�∞. In the first case, Q0�∞ is a
non-random vector as in the simple disaster risk model in Section 2 of Cheng, Dou, and
Liao (2022). In this case, �gg, �g1, �1g, �0g, and �g0 are zero matrices, and Q0�∞ = μg. In
the second case, Q0�∞ is a non-degenerate normal random vector.

By the definition of g0�∞(θ) and the joint distribution of (g∞(θ0)′�Q′
0�∞)′, �0(θ) and

V (θ), both of which show up in the conditional specification test, take the following form:

�0(θ) =�00 + (θ− θ0)(�0g +�g0) + (θ− θ0)2�gg�
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V (θ) = (
�00 �01

)
�−1 + (θ− θ0)

(
�g0 �g1

)
�−1� (SE.14)

where �=
(
�00 �01

�10 �11

)



We generate the covariance matrix � as follows:

�=
((

1 + ρ2
)−1(

Ik0 + ρ21q×q ⊗�u

)
ρ1q×1 ⊗�u

ρ11×q ⊗�u �u

)
�

where �u =
(

1 λ
λ 1

)
�

(SE.15)

where A⊗ B denotes the Kronecker product of two real matrices A and B. The param-
eter λ determines the correlation between the two moments in g1�∞(θ0), while ρ mainly
controls the correlations between moments in g0�∞(θ0) and g1�∞(θ0). In the case thatQ0�∞
is a non-degenerate normal random vector, we let

�gg = Ik0 , �0g =�′
g0 = λIk0� and �1g =�′

g1 = λ11×q ⊗ Ik1� (SE.16)

where we also use λ to control the correlation between Q0�∞ and g∞(θ0).
Throughout this simulation, we let θ0 = 0, �= [−1�1], Q0 = cg1k0×1, Q1 = (j−1)j=1�


�k1 ,

μg = cμ1k0×1, η= a1k1×1, and λ= 0
1. We consider a benchmark case and three deviations
from the benchmark, which are defined as follows:

Benchmark case: ρ= 0
4� cg = 0� cμ = 1, non-random Q0�∞� q= k0/k1 = 1 or 2;
Deviation case 1: ρ= 0
2 or 0
8, and q= 2;
Deviation case 2: cg = 0
1;
Deviation case 3: random Q0�∞


In the benchmark case, we set cg = 0 to model weak baseline moments whose deriva-
tives Q0 are 0 in the limiting experiment. The deviation cases enable us to investigate
how the power properties of the conditional test change when: (1) the baseline moments
and the asset pricing moments have correlation; (2) the baseline moments provide non-
trivial identification when combined with the asset pricing moments; (3) the matrix Q0�∞
is random. The simulation results in the benchmark case and in the three deviation cases
are presented in Figure S1 and Figures S2–S4, respectively. We plot the finite-sample re-
jection probability against a, where η = (a�a)′ under the alternative. All the results are
calculated with 10,000 simulation replications.

Discussion. In all cases, the power of the proposed conditional specification test is be-
tween PE-2 and PE-3 (J test). PE-2 is the power of the UMP unbiased test with respect to
a smaller subset of the general alternative hypothesis in (SE.3) and it is constructed using
the true alternative value η, whereas the conditional specification test does not require
such information. Simulation results show that the power function of the conditional spec-
ification test is rather close to PE-2 in many cases with a substantial improvement from
PE-3. The benchmark case in Figure S1 shows that increasing the number of baseline mo-
ments significantly enlarges the power gain compared to PE-3 while roughly maintaining
the same amount of power loss compared to PE-2. Figure S2 and Figure S3 show that
increasing the correlation between the baseline moments and the asset-pricing moments,
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FIGURE S1.—Power comparison in the benchmark case. Note: In the benchmark case, we have
ρ= 0
4, cg = 0� cμ = 1�non-random Q0�∞, q= k0/k1 = 1 or 2.

or increasing the identification strength of the baseline moments to the structural param-
eter, make all powers higher and reduce the power difference between the conditional
specification test and PE-2. Figure S4 shows that reducing the signal-to-noise ratio in the
baseline moments results in a larger gap between the power of the conditional specifica-
tion test and PE-2. Nevertheless, we still see noticeable improvement over PE-3 in the
two scenarios of this case.

FIGURE S2.—Power comparison in the deviation case 1. Note: In the deviation case 1, we have ρ = 0
2 or
0
8, cg = 0, cμ = 1, non-random Q0�∞� q= 2.
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FIGURE S3.—Power comparison in the deviation case 2. Note: In the deviation case 2, we have cg = 0
1,
ρ= 0
4, cμ = 1, non-random Q0�∞, q= 1 or 2.

SF. ADDITIONAL DETAILS OF THE EMPIRICAL APPLICATION

We have eight baseline moment conditions E[ḡ0(θ)] = 08×1 when θ = θ0, where θ ≡
(θ1� 
 
 
 � θ4) is the reparameterized parameter defined as

θ1 ≡ p

α− γ �θ2 ≡ σ2
p

1 − ρ2 � θ3 ≡ ρ� and θ4 ≡ γ
 (SF.1)

In the model, ḡ0(θ) only depends on a subvector of θ. We have six asset pricing moment
conditions E[ḡ1(θ0)] = 06×1, where ḡ1(θ) depends on all the components in θ.

We consider the following calibrated values for the nuisance parameters:

(δ�gc� gd�σc�φ�υ�q) = (0
97�0
02�0
02�0
02�3
5�0
07�0
4)
 (SF.2)

FIGURE S4.—Power comparison in the deviation case 3. Note: In the deviation case 4, we have random
Q0�∞, ρ= 0
4, cg = 0, cμ = 1, and q= 1 or 2.
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We consider p ∈ {0
3%�0
5%�0
7%�0
9%�1
1%}, where p = 0
7% is our benchmark
case and the other four values of p are used for the robustness check. The parameter
space � for the unknown parameter is set to �≡�1 ×�2 ×�3 ×�4, where

�1 ≡ [0
001�0
02]� �2 ≡ [5�12]�

�3 ≡ [0
95�0
999]� and �4 ≡ [3�6]

(SF.3)

To compute the CUE estimator, the J statistic, and the statistic of the conditional specifi-
cation test, we search through equally spaced grid points with step size (i.e., the distance
between two adjacent points) 0
001 in �1 and �3, and step size 0
01 in �2 and �4.2 The
critical values of the conditional specification test are simulated using B= 2500 Gaussian
random vectors.

To calculate the model uncertainty set for p ∈ {0
5%�0
7%�0
9%}, we consider a
smaller parameter space �2 ≡ [5�8] and a larger step size 0
1 of the grid points in �2

and �4 to reduce the computational cost. The parameter spaces �j (j = 1�3�4) and the
grid points in �1 and �3 are unchanged. The reduced space �2 still covers the CUE esti-
mators of θ2 for the three values of p considered. The model uncertainty sets of (η1�η3)
and (η3�η4) are calculated through grid search with equally spaced grid points for ηj
(j = 1�3�4) with step size 0
001. The parameter spaces for ηj (j = 1�3�4) are set large
enough such that the model uncertainty sets from the J test are contained in the interior
of these parameter spaces.
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