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Shape restrictions have played a central role in economics as both testable implica-
tions of theory and sufficient conditions for obtaining informative counterfactual pre-
dictions. In this paper, we provide a general procedure for inference under shape re-
strictions in identified and partially identified models defined by conditional moment
restrictions. Our test statistics and proposed inference methods are based on the mini-
mum of the generalized method of moments (GMM) objective function with and with-
out shape restrictions. Uniformly valid critical values are obtained through a bootstrap
procedure that approximates a subset of the true local parameter space. In an empirical
analysis of the effect of childbearing on female labor supply, we show that employing
shape restrictions in linear instrumental variables (IV) models can lead to shorter con-
fidence regions for both local and average treatment effects. Other applications we
discuss include inference for the variability of quantile IV treatment effects and for
bounds on average equivalent variation in a demand model with general heterogeneity.

KEYWORDS: Shape restrictions, inference on functionals, conditional moment
(in)equality restrictions, instrumental variables, nonparametric and semiparametric
models, Banach space, Banach lattice, Koltchinskii coupling.

1. INTRODUCTION

SHAPE RESTRICTIONS HAVE PLAYED A CENTRAL ROLE IN ECONOMICS as both testable
implications of classical theory and sufficient conditions for obtaining informative coun-
terfactual predictions. A long tradition in applied and theoretical econometrics has as a
result studied shape restrictions, their ability to aid in identification, estimation, and in-
ference, and the possibility of testing for their validity (Matzkin (1994)). A canonical ex-
ample of this interplay between theory and practice is consumer demand analysis, where
theoretical predictions such as Slutsky conditions have been extensively tested for and
employed in estimation (Hausman and Newey (2016)). The empirical analysis of shape
restrictions, however, goes well beyond this important application with recent examples
including, among others, studies into the monotonicity of the state price density (Jackw-
erth (2000)) and the existence of complementarities in demand (Gentzkow (2007)).

Shape restrictions are often equivalent to inequality restrictions on parameters of inter-
est and on certain unknown functions. For example, Slutsky negative semidefiniteness and
monotonicity require that certain functions satisfy inequality restrictions. Inference with
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inequality restrictions is difficult. Such restrictions lead to discontinuities in (pointwise)
limiting distributions where the inequality restrictions are “close” to binding, which makes
inference challenging due to non-pivotal and potentially unreliable pointwise asymptotic
approximations. Limit discontinuities further make it difficult to construct confidence in-
tervals with uniform coverage.

We address these challenges by obtaining critical values through a bootstrap procedure
that uniformly approximates a subset of the local parameter space. The proposed critical
values simultaneously deliver uniformly valid inference and pointwise limiting rejection
probabilities that, under the null hypothesis, equal the nominal level of the test in many
applications. Our results apply to a class of conditional moment restriction models that
encompasses parametric (Hansen (1982)), semiparametric (Ai and Chen (2003)), and
nonparametric (Newey and Powell (2003)) instrumental variable (IV) models, as well as
the study of plug-in functionals. For parametric IV, our results deliver novel uniformly
valid tests of inequality and equality restrictions as well as confidence intervals for param-
eters of interest in the presence of inequality restrictions in both identified and partially
identified models.

Our test statistics and proposed inference methods are based on the difference of the
minimum of a generalized method of moments (GMM) objective function with and with-
out inequality restrictions. The value of the test statistic increases when more binding
constraints are imposed. To ensure uniform validity, critical values are obtained through
a bootstrap procedure that acknowledges that some inequalities that do not bind in the
sample could have bound under a different draw of the sample. Intuitively, in the boot-
strap, we impose the inequalities that are within a region of the boundary that shrinks
slower than the convergence rate of the shape restricted estimator. The bootstrap proce-
dure can further be set to ignore inequalities that are outside this shrinking region, lead-
ing to pointwise rejection probabilities that, under the null hypothesis, equal the nominal
level in many applications. As always, uniformity is essential for confidence intervals to
be asymptotically valid over a set of unknown parameter values. The resulting inference
is powerful in exploiting the large amount of information that inequality restrictions can
provide in many cases relevant for applications.

Our tests and confidence intervals remain valid under partial identification. In this set-
ting, the tests and confidence intervals give an accurate and computationally feasible
method of doing inference for a subvector of parameters. Indeed, these methods have
been used by Torgovitsky (2019) to construct informative confidence intervals for par-
tially identified state dependence parameters in the presence of unobserved heterogene-
ity. Also, Kline and Walters (2021) used these methods to test shape constraints implied
by a model of callback probabilities for employment applications. By incorporating nui-
sance parameters into the definition of the parameter space, our results can further be
applied to partially identified semi/nonparametric models defined by conditional moment
inequalities.

We demonstrate the usefulness of this approach in an empirical application. Specifi-
cally, we conduct inference on the causal effect of childbearing on female labor force par-
ticipation by relying on the instrumental variables approach of Angrist and Evans (1998).
We find that monotonicity of the local average treatment effect (LATE) in education
is not rejected by the data and neither is monotonicity and negativity; these restrictions
were discussed, but not formally tested, by Angrist and Evans (1998). We further find
that imposing these shape restrictions yields narrower confidence intervals for the LATE
at different schooling levels. Finally, we obtain similar results for the partially identified
average treatment effect (ATE), though the data are less informative about the ATE be-
cause of the low proportion of compliers.
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The inequalities associated with nonparametric shape restrictions necessitate consider-
ation of parameter spaces that are sufficiently general yet endowed with enough structure
to ensure a fruitful asymptotic analysis. An important theoretical insight of this paper is
that this simultaneous flexibility and structure is possessed by sets defined by inequality
restrictions on Abstract M (AM) spaces, that is, Banach lattices whose norm obeys a con-
dition discussed in Section 3. We also introduce potentially regularized approximations
to the local parameter spaces in order to account for the curvature present in nonlinear
constraints. While aspects of our analysis are specific to models defined by conditional
moment restrictions, the role of the local parameter space is solely dictated by the shape
restrictions. As such, we expect the insights of the setup here to be applicable to the study
of shape restrictions in alternative models as well. The critical values are shown to be
uniformly asymptotically valid by developing strong approximations to both the test and
bootstrap statistics. Our coupling arguments and the use of AM spaces are key features
of the theory that enable us to show that inference is uniformly valid and that partial
identification is permitted.

We illustrate the general applicability of our analysis by obtaining novel, uniformly valid
inference results in a variety of problems. Specifically, we: (i) conduct inference about
partially identified sets of average equivalent variation and other objects of interest in de-
mand estimation with general heterogeneity and smooth demand functions; (ii) test and
impose shape restrictions on structural functions identified through quantile conditional
moment restrictions; and (iii) impose the Slutsky restrictions to conduct inference in a
linear conditional moment restriction model. The latter two examples are discussed in
detail in the Supplemental Material (Chernozhukov, Newey, and Santos (2023)).

Our paper contributes to an extensive literature studying semiparametric and nonpara-
metric models under partial identification. Freyberger and Horowitz (2015), for instance,
developed inference methods for shape restricted partially identified discrete IV models;
their approach, however, is based on limiting distributions that are discontinuous in the
true parameters leading to nonuniform inference. When specialized to finite dimensional
models, our results enable us to conduct inference on functionals of the identified set in
models defined by moment (in)equalities. In that context, our results are complementary
to those of Bugni, Canay, and Shi (2017) and Kaido, Molinari, and Stoye (2019), who
provided uniformly valid procedures for subvector inference. Their analysis is focused
on convex models and can thus be invalid or conservative when conducting inference on
nonlinear functionals or imposing non-convex restrictions; we emphasize, however, that
their analysis is also motivated by a different set of models than the ones we consider. Our
analysis is further related to Santos (2012), Tao (2014), and Chen, Tamer, and Torgovitsky
(2011) who studied inference on functionals of potentially partially identified structural
functions, but did not allow for shape constraints as we do.

Following the original version of this paper, Zhu (2019) and Fang and Seo (2019) pro-
posed inference methods for convex restrictions which, while applicable to an important
class of problems, rule out inference on nonlinear functionals or tests of certain shape
restrictions. Also related is Freyberger and Reeves (2018) who developed uniform in-
ference for functionals under shape restrictions while imposing point identification. Our
paper is of course part of a large literature on shape restrictions. We highlight here an
important literature on linear Gaussian models focused on adaptivity (which we do not
establish), but not applicable to many of the models that motivate us; see, for example,
Armstrong (2015) and references therein. The results here are also highly complementary
to Chetverikov and Wilhelm (2017) in providing inference for nonparametric IV under
shape restrictions while they showed that imposing monotonicity can greatly improve the
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convergence rate of the estimator; an observation that additionally motivates our use of
test statistics based on shape constrained (instead of unconstrained) estimators.

The remainder of the paper is organized as follows. In Section 2, we show how to im-
plement our tests in a linear IV model with inequality restrictions under both point and
partial identification. Section 2 further illustrates our results by revisiting the analysis of
Angrist and Evans (1998). Section 3 contains our main theoretical results, while Section 4
applies them to conduct inference in the heterogeneous demand model of Hausman and
Newey (2016). The Supplemental Material includes further applications of our general
results and additional background on AM spaces. All mathematical derivations may be
found in the working paper Chernozhukov, Newey, and Santos (2022).

2. APPLICATION FOR LINEAR INSTRUMENTAL VARIABLES

To fix ideas, we first describe our test in a linear instrumental variables model and illus-
trate its implementation by revisiting the analysis of Angrist and Evans (1998).

2.1. Linear Instrumental Variables

As perhaps the simplest possible example, we first consider a linear instrumental vari-
ables model in which θ0 ∈� ⊆ Rdθ is identified through the moment conditions

EP

[(
Y −W ′θ0

)
Z
]= 0�

where Y is a scalar, W and Z are vectors, and P denotes the distribution of V ≡
(Y�W �Z). We are interested in testing whether θ0 belongs to a set R characterized by

R= {θ ∈ Rdθ : Fθ = f�Gθ ≤ g
}
� (1)

for known matrices F and G and known vectors f and g.
We consider tests based on minimizing the norm of the weighted sample moments as

in Hansen (1982). To this end, we define the criterion

Qn(θ) ≡
∥∥∥∥∥�̂n

{
1
n

n∑
i=1

(
Yi −W ′

i θ
)
Zi

}∥∥∥∥∥
2

� (2)

where ‖ · ‖2 is the standard Euclidean norm and �̂n is consistent for (E[ZZ′U2])−1/2 with
U ≡ Y −W ′θ0. Our analysis then enables us to employ tests based on the statistics

In(R) ≡ min
θ∈�∩R

√
nQn(θ)� In(�) ≡ min

θ∈�
√
nQn(θ); (3)

for example, we may consider a test that rejects for large values of In(R) − In(�). In what
follows, we also let θ̂n and θ̂u

n denote the minimizers of Qn over �∩R and �, respectively.
We construct critical values by relying on the Gaussian multiplier bootstrap. Specifi-

cally, let b ∈ {1� � � � �B} index a bootstrap draw, {ωb
i}

n
i=1 be i.i.d. and independent of the

data with ωb
i ∼N(0�1), and for any θ ∈ Rdθ define

Ŵ
b
n(θ) ≡ 1√

n

n∑
i=1

ωb
i

{(
Yi −W ′

i θ
)
Zi − 1

n

n∑
j=1

(
Yj −W ′

j θ
)
Zj

}
�
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which is a simulated draw of the true (centered) moment functions.1 We also require an
estimator of the derivative of the moment conditions, and to this end we set

D̂n[h] ≡ −1
n

n∑
i=1

ZiW
′
i h�

Here, we can think of h as a local parameter, representing the possible values that the
random variable

√
n{θ̂n − θ0} may take (recall θ̂n is the minimizer of Qn over �∩R).

Finally, we need to enforce the inequality constraints in the bootstrap in a way that
delivers a uniformly valid critical value. To this end, we account for the variation in Gjθ̂n −
gj for each j, where Gj is the jth row of G and gj the jth coordinate of g. That is, we
account for the likelihood that a constraint will bind at the restricted estimator θ̂n when
computing In(R) = √

nQn(θ̂n). For this purpose, we introduce the set

V̂n(θ̂n�R) ≡ {h ∈ Rdθ : Fh= 0�Gjh≤ √
nmax

{
0�−(rn +Gjθ̂n − gj)

}
for all j

}
� (4)

where rn > 0 is a slackness parameter whose choice we discuss shortly. The set V̂n(θ̂n�R)
can be thought of as a local version of R, approximating the set of values h that could
equal

√
n{θ̂n − θ0}. Our bootstrap approximations to In(R) and In(�) are then

Ûb
n (R) ≡ min

h∈V̂n(θ̂n�R)

∥∥�̂n

{
Ŵ

b
n(θ̂n) + D̂n[h]

}∥∥
2
� (5)

Ûb
n (�) ≡ min

h∈Rdθ

∥∥�̂n

{
Ŵ

b
n

(
θ̂u
n

)+ D̂n[h]
}∥∥

2
� (6)

Thus, we may obtain a level α test by rejecting whenever the test statistic In(R) − In(�)
exceeds the 1 − α quantile of Ûb

n (R) − Ûb
n (�) across the B bootstrap draws. The main

assumption required for the test to be asymptotically valid is that θ0 be strongly identified,
that is, θ0 can be consistently estimated uniformly in P .

The critical value depends on the choice of rn. When applied to linear instrumental
variables, our asymptotic theory requires that rn tend to zero slower than the convergence
rate of the restricted estimator, which is 1/

√
n. Heuristically, when rn tends to zero, any

constraint that is not binding at θ0 will also not be binding in the bootstrap with probability
approaching 1 (under pointwise in P asymptotics). Consequently, inference is not asymp-
totically conservative for a fixed data generating process. Setting rn → 0 while satisfying
rn

√
n → ∞ leads to uniformly valid inference with constraints only being conservatively

enforced when they are within order 1/
√
n of binding at θ0. Setting rn = +∞ is always

theoretically valid, but it may be conservative and result in a loss of power. Other, smaller
choices of rn can lead to smaller, valid critical values and so may result in more powerful
tests and tighter confidence intervals than rn = +∞.

Intuitively, rn is meant to quantify the sampling uncertainty in G{θ̂n − θ0}. Since the
distribution of θ̂n cannot be uniformly consistently estimated, we suggest linking rn to the
degree of sampling uncertainty in G{θ̂u

n − θ0} instead. Specifically, for θ̂u	
n a “bootstrap”

1We follow previous work (e.g., Hansen (1996)) in considering Gaussian {ωi}ni=1 because it simplifies the
proofs of our main results. We expect our analysis extends to other distributions of {ωi}ni=1—for example, for
ωi following an exponential distribution, which results in a version of the Bayesian bootstrap.
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analogue of θ̂u
n and some γn → 0, we recommend setting rn to satisfy

P
(

max
j

Gj

{
θ̂u
n − θ̂u	

n

}≤ rn
∣∣Data

)
= 1 − γn� (7)

This approach changes the problem of selecting rn into the problem of selecting γn. How-
ever, γn is more interpretable: If we employed V̂n(θ̂u

n�R) in place of V̂n(θ̂n�R) in (5), then
a Bonferroni bound implies that the test that rejects whenever In(R) − In(�) exceeds the
1 − α quantile of Ûb

n (R) − Ûb
n (�) has asymptotic size at most α + γn even if γn is fixed

with n.2 In particular, if we employed the 1 − α + γn quantile of Ûb
n (R) − Ûb

n (�) as a
critical value instead, then the resulting test would have asymptotic size at most α (even
if γn is fixed). In simulations, however, we find the described bound to be pessimistic in
that, when setting rn according to (7), our test has a rejection probability under the null
hypothesis of at most α for a wide range of choices of γn.

REMARK 2.1: Our results may be employed to obtain confidence regions for a coordi-
nate of θ0 while imposing restrictions of the form Gθ0 ≤ g on θ0 (e.g., sign or monotonicity
restrictions on w 
→ w′θ0). For example, for θ(k) the kth coordinate of θ ∈ Rdθ , we may set
Rλ = {θ ∈ Rdθ : θ(k) = λ�Gθ ≤ g} and obtain a confidence region for θ

(k)
0 by conducting

test inversion in λ employing the test based on In(Rλ) − In(�); see also Remark 3.1 for
alternative constructions based on our analysis.

REMARK 2.2: In certain applications, it may be desirable to studentize the constraints
in our bootstrap approximation, that is, replace Gj and gj by Gj/σ̂j and gj/σ̂j everywhere
in (4) (and in (7) if employed). In the empirical analysis below, we proceed in this manner
by setting σ̂2

j to be an estimate of the asymptotic variance of
√
nGj{θ̂u

n − θ0}.

2.1.1. Fertility and Labor Supply: LATE

We illustrate the preceding discussion by revisiting the study by Angrist and Evans
(1998) on the causal effect of childbearing on female labor force participation. Like An-
grist and Evans (1998), we employ the 1980 Census Public Use Micro Sample restricted to
mothers aged 21–35 with at least two children, and set: (i) D ∈ {0�1} to indicate whether
a mother has more than two children (the treatment); (ii) Y ∈ {0�1} to indicate whether
a mother is employed (the outcome of interest); and (iii) Z ∈ {0�1} to indicate whether
the first two children are of the same sex (the instrument). We further adopt the het-
erogeneous treatment effects model of Imbens and Angrist (1994) and let Yd denote the
potential outcome under treatment status d ∈ {0�1} and employ “C,” “NT,” and “AT” to
denote compliers, never takers, and always takers.

Angrist and Evans (1998) documented that the impact of childbearing on labor force
participation depends on observable characteristics. In particular, their two stage least
squares (2SLS) estimates suggest a negative impact of childbearing on labor force par-
ticipation across different levels of schooling, but that the magnitude of the impact de-
creases with schooling—a phenomenon that may reflect that more educated mothers have
a stronger attachment to the labor force. To formally examine this claim, we introduce

2While we may replace V̂n(θ̂n�R) with V̂n(θ̂u
n�R) in identified models, in partially identified models we em-

ploy V̂n(θ̂n�R) due to the identified set potentially not being a subset of R under the null hypothesis.
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dummy variables S for each year of schooling between 9 and 16 and for the categories
“less than 9” and “more than 16.” Defining the local average treatment effects

LATE(S) ≡ E[Y1 −Y0|C� S]�

we then test whether: (i) LATE(·) is increasing in schooling, and (ii) LATE(·) is increasing
in schooling and nonpositive. Both hypotheses fall within the framework of the preceding
section because LATE(·) is identified through linear moment restrictions and the hypoth-
esized restrictions are linear in LATE(·). Employing five thousand bootstrap replications
and setting rn = +∞ or rn as suggested in (7) with γn = 0�05 yields, in this case, equal
p-values that fail to reject either null hypothesis. The p-value for LATE(·) being nonde-
creasing is 0.21 and for it being nondecreasing and nonpositive is 0.394.

In Figure 1, we study the values of LATE(S) at different schooling levels. The first panel
displays the unconstrained 2SLS estimates and their monotonicity restricted counterparts;
the latter are negative and hence additionally demanding nonpositivity does not change
the estimates. Unfortunately, two sided confidence regions based on the (pointwise in
P) asymptotic distribution of the shape-restricted 2SLS estimator can asymptotically un-
dercover the true parameter. In the second panel of Figure 1, we instead proceed as in
Remark 2.1 to obtain 95% confidence intervals while imposing monotonicity and again
selecting rn by setting γn = 0�05 in (7). Imposing monotonicity in this manner yields con-
fidence intervals that are sometimes substantially shorter than their 2SLS counterparts.
Notably, we observe lower upper ends for the restricted confidence intervals at the lower
education levels and higher lower ends at higher education levels. The third panel of Fig-
ure 1 shows that additionally imposing LATE(·) be nonpositive reduces the upper bound
of our confidence intervals at higher education levels.

2.2. Partial Identification

We next illustrate the implementation of our results in a partially identified setting.
With an eye towards extending the preceding empirical analysis to study average treat-
ment effects (ATEs), we maintain that the parameter of interest θ0 ∈� ⊆ Rdθ satisfies

EP

[(
Y −W ′θ0

)
Z
]= 0� (8)

but no longer assume θ0 is identified by (8). Instead, we define the identified set

�0 ≡ {θ ∈ � :EP

[(
Y −W ′θ

)
Z
]= 0

}
(9)

and consider the problem of testing whether the intersection of �0 and R is nonempty
(i.e., �0 ∩ R �= ∅). Such hypotheses can be employed, for instance, to build confidence
regions for functionals of the identified set; see Remark 2.3 below. We also now set

R= {θ ∈ Rdθ :ϒF (θ) = 0�Gθ ≤ g
}
� (10)

for ϒF a known possibly nonlinear function—for example, ϒF (θ) = Fθ− f recovers (1).
We continue to rely on the statistics In(R) and In(�) (as in (3)) for inference. However,

since in many settings in which θ0 fails to be identified by (8) we will have that the dimen-
sion of Z is smaller than that of W , in what follows we assume for ease of exposition that
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FIGURE 1.—First panel: Unconstrained and shape restricted LATE estimates (imposing monotonicity or
monotonicity and negativity yield the same estimates). Second and third panels: 95% Confidence intervals for
LATE at different education levels.

In(�) = 0 (almost surely); see Section 3.2.2 for a general discussion. Another distinction
relative to Section 2.1 is that the choice of �̂n (as in (2)) may need to be modified in set-
tings in which U ≡ Y − W ′θ0 cannot be consistently estimated due to θ0 being partially
identified. In such instances we may, for example, set

�̂n ≡
(

1
n

n∑
i=1

ZiZ
′
i

(
Yi −W ′

i θ̂
u
n

)2

)−1/2

�

where we now interpret θ̂u
n as the minimum norm minimizer of Qn over �. While the

choice of �̂n has an impact on how local power is directed, we note that the test has
correct asymptotic size provided �̂n converges in probability to a non-stochastic limit.
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Our bootstrap procedure requires two modifications relative to our preceding discus-
sion. First, because in (10) we consider nonlinear equality constraints, we now set

V̂n(θ�R) ≡
{
h ∈ Rdθ :ϒF

(
θ+ h√

n

)
= 0�Gjh≤ √

nmax
{
0�−(rn +Gjθ− gj)

}
for all j

}

(notice that if ϒF (θ) = Fθ− f , then we recover (4)). A distinction with Section 2.1 is that
if one aims to employ (7) to select rn, then an alternative to an unrestricted estimator θ̂u

n

may be necessary; see Section 2.2.1 for an example. Second, our bootstrap approximation
employs an estimator �̂r

n for �0 ∩R. To this end, we set

�̂r
n ≡
{
θ ∈ �∩R :Qn(θ) ≤ inf

θ∈�∩R
Qn(θ) + τn

}
�

where τn ≥ 0 is a bandwidth whose choice we discuss shortly—that is, �̂r
n is the set of

“near” minimizers of Qn over �∩R. Our bootstrap approximation to In(R) then equals

Ûb
n (R) ≡ min

θ∈�̂r
n

min
h∈V̂n(θ�R)

∥∥�̂n

{
Ŵ

b
n(θ) + D̂n[h]

}∥∥
2
�

Thus, to obtain a level α test, we reject the null hypothesis whenever In(R) exceeds the
1 − α quantile of Ûb

n (R) across bootstrap draws. Paralleling Section 2.1, a principal as-
sumption for the test to be asymptotically valid is that �0 be strongly identified.

When specialized to the current setting, our asymptotic theory requires that τn tend to
zero. It is theoretically valid to set τn = 0, which simplifies the computation of our boot-
strap statistic. However, setting τn = 0 can result in lower power in applications for which
the corresponding �̂r

n is not (Hausdorff) consistent for �0 ∩R—to ensure consistency, τn
must in addition satisfy τn

√
n → ∞. For applications in which it is desirable to set τn > 0,

we propose a procedure inspired by Romano and Shaikh (2010). Specifically, for any set
K ⊆�∩R, we define the quantile q̂n(K) according to

P
(

sup
θ∈K

∥∥�̂nŴn(θ)
∥∥

2
≤ q̂n(K)

∣∣Data
)

= 1 − γn�

where γn ∈ (0�1). Letting S1 ≡ � ∩ R, we then inductively define Sj+1 ≡ {θ ∈ � ∩ R :√
nQn(θ) ≤ q̂n(Sj)}, noting that, by construction, Sj+1 ⊆ Sj . To select τn, we proceed in-

ductively until we find Sj = ∅, in which case we set τn = 0, or Sj+1 = Sj �= ∅, in which case
we set τn = q̂n(Sj). Heuristically, under such a choice of τn, the set �̂r

n may be interpreted
as a 1 − γn confidence region for �0 ∩ R. While power considerations suggest setting γn

to tend to zero, for practical considerations we suggest simply setting 1 − γn to be a high
quantile fixed with n (e.g., 1 − γn = 0�8).

REMARK 2.3: The introduced test can be employed to obtain confidence regions for
functionals of the identified set satisfying the coverage requirement advocated by Imbens
and Manski (2004). Specifically, given a functional ϒF , we may set Rλ ={θ ∈ Rdθ :ϒF (θ) =
λ�Gθ ≤ g} and obtain the desired confidence region by conducting test inversion in λ of
the null hypothesis that the set �0 ∩Rλ is not empty.
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2.2.1. Fertility and Labor Supply: ATE

Returning to our analysis of the causal impact of fertility on female labor force par-
ticipation, we next turn to estimating the average treatment effect at different education
levels S (denoted ATE(S)). Following the literature, we decompose ATE(S) into

LATE(S)P(C|S) +E[Y1 −Y0|AT� S]P(AT|S) +E[Y1 −Y0|NT� S]P(NT|S)� (11)

where recall C, AT, and NT denote “compliers,” “always takers,” and “never takers.” With
the exception of E[Y0|AT� S] and E[Y1|NT� S], all terms in (11) can be identified through
linear moment restrictions. Because S has ten support points, we obtain sixty moments
and eighty parameters so that In(�) = 0 almost surely.

Following our analysis of LATE(S), we conduct inference on ATE(S) under three
increasingly stringent sets of restrictions: (i) the logical bounds implied by Yd ∈ {0�1};
(ii) adding to (i) that the average treatment effect be increasing in schooling among all
types (C, NT, and AT); (iii) adding to (ii) that average treatment effects be nonpositive for
all levels of education and types. Figure 2 reports the resulting 95% confidence regions
obtained through the approach described in Remark 2.3; here, the restriction Gθ ≤ g
imposes the described shape constraints while the nonlinear restriction ϒF (θ) = 0 cor-
responds to imposing a hypothesized value for ATE(S) through (11). In our bootstrap
approximation, we let τn = 0 and set rn according to (7) with γn = 0�05 and where we
used the distribution of estimators of identified parameters for their partially identified
counterparts.3 We do not report estimates of the identified sets for ATE(S) as they are
very close to the obtained confidence intervals: On average, the bounds of the confidence
intervals exceed the bounds of the estimates by 0.011. Nonetheless, the unrestricted con-
fidence intervals are large as the estimates for the identified set are large—a result driven
by the low proportion of compliers (5% on average across S). Imposing monotonicity
across types carries identifying information on the upper end of the identified set at low
levels of education and on the lower end of the identified set at high levels of education.
Additionally imposing nonpositivity sharpens the upper bound of the identified set at all

FIGURE 2.—95% Confidence intervals for ATE at different education levels. “Unr.” uses bounds implied by
Yd ∈{0�1}; “Mon. Restr.” adds that average treatment effects be increasing in education for all types; “Mon. +
Neg. Restr.” also requires they be negative.

3For example, for the constraint E[Y1|NT� S] ≤ 1, we substituted the corresponding Gj{θ̂u
n − θ̂u	

n } term in (7)
with a mean zero normal distribution with the variance of the estimator for E[Y0|NT� S].
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TABLE I

POINT ESTIMATES AND 95% CONFIDENCE INTERVALS FOR THE AVERAGE TREATMENT EFFECT AT DIFFERENT
GROUPS DEFINED BY SCHOOLING LEVELS UNDER DIFFERENT SHAPE RESTRICTIONS.

Subgroup

Estimate

Unrestricted Mon. Restr. Mon. + Neg Restr.

HS Drop [−0�520�0�426] [−0�489�0�346] [−0�489�−0�008]
Coll. Drop [−0�561�0�380] [−0�447�0�325] [−0�447�−0�004]
Coll. Grad [−0�579�0�375] [−0�446�0�328] [−0�446�−0�002]
All [−0�545�0�395] [−0�467�0�328] [−0�467�−0�008]

Subgroup

95% Confidence Interval

Unrestricted Mon. Restr. Mon. + Neg Restr.

HS Drop [−0�526�0�432] [−0�500�0�356] [−0�501�−0�008]
Coll. Drop [−0�566�0�385] [−0�460�0�337] [−0�462�0�000]
Coll. Grad [−0�586�0�382] [−0�462�0�339] [−0�464�0�000]
All [−0�547�0�398] [−0�477�0�338] [−0�478�−0�003]

schooling levels. The resulting confidence regions sign ATE(S) at all education levels
(weakly) smaller than 12 as strictly negative, though very close to zero.

Finally, as a preview of our general analysis in Section 3, in Table I we employ the
same shape restrictions to report estimates and 95% confidence intervals for the iden-
tified sets of the average treatment effects for: High School Dropouts (edu ∈ [9�12)),
College Dropouts (edu ∈ [13�15)), College Graduates (edu ≥ 16), and the overall aver-
age treatment effect. These confidence regions are obtained through test inversion after
noting that a hypothesized value for the average treatment effect of a subgroup can be
written as a nonlinear moment restriction in θ0 through (11); nonlinear moment restric-
tions fall within our general framework but outside the scope of Section 2.2. Overall, the
impact of imposing shape restrictions parallels the results in Figure 2.

3. GENERAL ANALYSIS

We next develop a general inferential framework that encompasses the tests discussed
in Section 2. The class of models we consider are those in which the parameter of interest
θ0 ∈ � satisfies a finite number J of conditional moment restrictions

EP

[
ρj(X�θ0)|Zj

]= 0 for 1 ≤ j ≤J

with ρj : X × � → R, X ∈ X, and Zj ∈ Zj. For notational simplicity, we also let Z ≡
(Z1� � � � �ZJ ) and V ≡ (X�Z) with V ∼ P ∈ P. In some of the applications that motivate
us, the parameter θ0 is not identified. We therefore define the identified set

�0 ≡ {θ ∈� :EP

[
ρj(X�θ)|Zj

]= 0 for 1 ≤ j ≤J
}

and employ it as the basis of our statistical analysis—we emphasize that �0 depends on
P , but leave such dependence implicit to simplify notation. For a set R of parameters
satisfying a conjectured restriction, we develop a test for the hypothesis

H0 :�0 ∩R �= ∅� H1 :�0 ∩R = ∅; (12)
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that is, we devise a test of whether at least one element of the identified set satisfies the
posited constraint. In what follows, we denote the set of distributions P ∈ P satisfying the
null hypothesis in (12) by P0. We also note that in an identified model, a test of (12) is
equivalent to a test of whether θ0 itself satisfies the hypothesized constraint.

The defining elements determining the type of applications encompassed by (12) are
the choices of � and R. In imposing restrictions on � and R, we therefore aim to allow
for a general framework while simultaneously ensuring enough structure for a fruitful
asymptotic analysis. To this end, we require � to be a subset of a complete vector space B
with norm ‖ · ‖B (i.e., (B�‖ · ‖B) is a Banach space) and consider sets R satisfying

R= {θ ∈ B :ϒF (θ) = 0 and ϒG(θ) ≤ 0
}
� (13)

where ϒF : B → F and ϒG : B → G are known maps. Our first assumption formalizes the
basic structure of the hypothesis testing problem we study.

ASSUMPTION 3.1: (i) {Vi}ni=1 is i.i.d. with V ∼ P ∈ P; (ii) � ⊆ B, where (B�‖ · ‖B) is a
Banach space; (iii) ϒF : B → F and ϒG : B → G, where (F�‖ · ‖F) is a Banach space and
(G�‖ · ‖G) is an AM space with order unit 1G.

Through Assumption 3.1(i), we focus on the i.i.d. setting, though extensions to other
sampling frameworks are feasible. Assumption 3.1(ii) allows us to address paramet-
ric, semiparametric, and nonparametric models, while Assumption 3.1(iii) allows ϒF to
impose both finite dimensional or infinite dimensional equality restrictions. Assump-
tion 3.1(iii) further requires that ϒG take values in an AM space G; we provide an
overview of AM spaces in the Supplemental Material. Heuristically, the key properties
of G are: (i) G is a vector space equipped with a partial order “≤”; (ii) the partial or-
der and the vector space operations interact in the same manner they do on R (e.g., if
θ1 ≤ θ2, then θ1 + θ3 ≤ θ2 + θ3); and (iii) the order unit 1G ∈ G is an element such that for
any θ ∈ G, there exists a scalar λ > 0 satisfying |θ|≤ λ1G (e.g., when G = Rd we may set
1G ≡ (1� � � � �1)′ ∈ Rd). These properties of an AM space will prove instrumental in our
analysis. In particular, the order unit 1G will provide a crucial link between the partial or-
der “≤” and the norm ‖ · ‖G, and (through smoothness of ϒG) allow us to leverage a rate
of convergence in B to build a suitable sample analogue to the local parameter space.

3.1. Main Results

Our analysis centers around a statistic In(R) that constitutes a “building block” for dif-
ferent tests of (12)—for example, it may be employed to implement generalizations of the
J or incremental J tests. In this section, we first introduce In(R), obtain an approximation
to its distribution, and devise a bootstrap procedure for estimating its quantiles.

3.1.1. The Building Block

We first introduce the statistic In(R) that we employ to build different tests. To this
end, for each instrument Zj, we consider transformations {qk�j}

kn�j
k=1 and let q

kn�j
j (zj) ≡

(q1�j(zj)� � � � � qkn�j�j(zj))′. Recalling that Z ≡ (Z1� � � � �ZJ ), we further set kn ≡∑J
j=1 kn�j,

qkn (z) ≡ (qkn�1
1 (z1)′� � � � � qkn�J

J (zJ )′)′, ρ(x�θ) ≡ (ρ1(x�θ)� � � � � ρJ (x�θ))′, and let

ρ(Xi�θ) ∗ qkn (Zi) ≡
⎛
⎜⎝

ρ1(Xi�θ)qkn�1
1 (Zi�1)

���

ρJ (Xi�θ)qkn�J
J (Zi�J )

⎞
⎟⎠ ;
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that is, for each θ, we take the product of each “residual” ρj(X�θ) with the transforma-
tions of its respective instrument Zj. For a kn × kn matrix �̂n, we then define

Qn(θ) ≡
∥∥∥∥∥1
n

n∑
i=1

ρ(Xi�θ) ∗ qkn (Zi)

∥∥∥∥∥
�̂n�p

�

where ‖a‖�̂n�p
≡ ‖�̂na‖p and ‖ · ‖p is the p-norm on Rkn for any p ≥ 2—that is, ‖a‖p ≡

(
∑d

i=1|a(i)|p)1/p for any a ≡ (a(1)� � � � � a(d))′ ∈ Rd . Letting �n ∩ R be a finite dimensional
subset of �∩R that grows dense in �∩R, we then define In(R) to equal

In(R) ≡ inf
θ∈�n∩R

√
nQn(θ)�

We note that setting p = 2 is often computationally attractive. However, we allow for
p > 2 because higher values of p enable us to establish distributional approximations
under weaker conditions on the number of unconditional moments kn.

Intuitively,
√
nQn should diverge to infinity when evaluated at any θ /∈ �0 and remain

“stable” when evaluated at a θ ∈ �0. Thus, examining the minimum of
√
nQn over R

should reveal whether there is a θ that simultaneously makes
√
nQn(θ) “stable” (θ ∈

�0) and satisfies the conjectured restriction (θ ∈ R). This intuition suggests In(R) may
be employed as a test statistic that is similar in spirit to the J test of Hansen (1982).
Alternatively, we may build a test by considering the recentered test statistic In(R) −
In(�), which is similar in spirit to the incremental J test. Conceptually, it is important
to note that In(�) is a special case of In(R) (i.e., set R = �). We refer to In(R) as a
“building block” in the sense that, together with closely related variants like In(�), it may
be employed to obtain a variety of different tests.

3.1.2. Strong Approximation

We next obtain a strong approximation to In(R). To this end, we first define the class

Fn ≡ {ρj(·� θ) : θ ∈�n ∩R and 1 ≤ j ≤J
}
� (14)

The “size” of Fn plays a crucial role, and we control it through the bracketing integral

J[ ]

(
δ�Fn�‖ · ‖P�2

)≡ ∫ δ

0

√
1 + logN[ ]

(
ε�Fn�‖ · ‖P�2

)
dε�

where ‖f‖P�2 ≡ (EP[f 2(V )])1/2 and N[ ](ε�Fn�‖ · ‖P�2) is the smallest number of ε-brackets
(under ‖ · ‖P�2) required to cover Fn. Finally, we denote the empirical process by

Gn(θ) ≡ 1√
n

n∑
i=1

{
ρ(Xi�θ) ∗ qkn (Zi) −EP

[
ρ(X�θ) ∗ qkn (Z)

]}
�

Our next assumptions impose requirements on �n ∩R and the transformations qkn .

ASSUMPTION 3.2: (i) max1≤j≤J max1≤k≤kn�j ‖qk�j‖∞ ≤ Bn with Bn ≥ 1; (ii) the eigenvalues
of EP[qkn�j

j (Zj)q
kn�j
j (Zj)′] are bounded uniformly in kn�j and P ∈ P; (iii) Fn has envelope Fn,

supP∈P ‖Fn‖P�2 < ∞, and supP∈P J[ ](‖Fn‖P�2�Fn�‖ · ‖P�2) ≤ Jn with Jn <∞.
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ASSUMPTION 3.3: (i) supθ∈�n∩R ‖Gn(θ) − WP (θ)‖p = oP (an) uniformly in P ∈ P for
some an = o(1) and Gaussian WP satisfying E[WP (θ)] = 0 and Cov{WP (θ)�WP (θ′)} =
CovP{Gn(θ)�Gn(θ′)}; (ii) there is a norm ‖ · ‖E, κρ > 0, and Kρ < ∞ such that EP[‖ρ(X�

θ1) − ρ(X�θ2)‖2
2] ≤ K2

ρ‖θ1 − θ2‖2κρ
E for all θ1� θ2 ∈ �n ∩R and P ∈ P.

Assumptions 3.2(i),(ii) impose standard requirements on the transformations qkn—for
example, Assumption 3.2(i) holds with Bn = 1 for trigonometric series and Bn � √

kn

for normalized B-splines. Assumption 3.2(iii) controls the “size” of Fn. We allow Jn to
depend on n to accommodate non-compact parameter spaces (Chen and Pouzo (2015)).
Assumption 3.3(i) requires that the empirical process be approximately Gaussian. The
sequence {an}∞

n=1 denotes a bound on the rate of coupling, which in turn characterizes
the rate of convergence of our strong approximation. In the Supplemental Material, we
verify Assumption 3.3(i) by relying on existing results or a novel extension of Koltchinskii’s
coupling. Assumption 3.3(ii) imposes a mild restriction on the moment functions that
ensures WP is equicontinuous with respect to ‖ · ‖E.

In establishing our strong approximation to In(R), it is helpful to derive the rate of
convergence of the minimizer of Qn over �n ∩R. To this end, we follow the literature on
set estimation (Chernozhukov, Hong, and Tamer (2007)), and for any sets A and B, we
define

−→
d H

(
A�B�‖ · ‖E

)≡ sup
a∈A

inf
b∈B

‖a− b‖E�

which is known as the directed Hausdorff distance. For each θ ∈ �∩R, we further let �nθ
denote its approximation on �n ∩R and denote the approximation to �0 ∩R by

�r
0n ≡{�nθ : θ ∈ �0 ∩R}� (15)

Our next assumption enables us to obtain a rate of convergence (under ‖ · ‖E) to �r
0n.

ASSUMPTION 3.4: There are Vn(P) ⊆ �n ∩ R and a sequence of constants {νn} with 0 <
ν−1
n = O(1) such that: (i) for any θ ∈ Vn(P), it holds that

ν−1
n

−→
d H

(
θ��r

0n�‖ · ‖E

)≤ sup
θ̃∈�r

0n

∥∥EP

[(
ρ(X�θ) − ρ(X� θ̃)

) ∗ qkn (Z)
]∥∥

�P�p
;

(ii) there is a θ̂n ∈ Vn(P) satisfying Qn(θ̂n) ≤ infθ∈�n∩RQn(θ) + o(an/
√
n) with probability

tending to 1 uniformly in P ∈ P0.

Assumption 3.4(ii) requires that an approximate minimum of Qn over �n ∩ R be at-
tained at a point θ̂n in a set Vn(P) with high probability. Typically, Vn(P) may be taken
to equal the entire sieve in convex models, or it may be taken to equal a local neigh-
borhood of �r

0n after establishing the consistency of θ̂n through standard arguments. As-
sumption 3.4(i) introduces a local identification condition on Vn(P) by requiring that the
moments “change” at a rate ν−1

n as θ moves away from �r
0n. The parameter ν−1

n , which
implicitly depends on kn and the choice of sieve �n ∩ R, is conceptually related to sieve
measure of ill-posedness (Blundell, Chen, and Kristensen (2007)).
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By employing Assumption 3.4, we are able to show that with arbitrarily high probability,
θ̂n is contained in a ‖ · ‖E-neighborhood of �r

0n that shrinks at a rate

Rn ≡ νn

{k1/p
n

√
log(1 + kn)JnBn√

n

}
� (16)

where recall Bn and Jn were introduced in Assumption 3.2. Under assumptions on the
(Hausdorff) distance between �r

0n and �0 ∩ R, the triangle inequality can yield a rate of
convergence of θ̂n to �0 ∩ R. Heuristically, we focus on convergence to �r

0n (instead of
�0 ∩R) because our strong approximation will rely on undersmoothing.

In our final assumptions, we follow the literature and accommodate non-differentiable
moment functions by requiring that their conditional expectations be differentiable (Chen
and Pouzo (2015)). Specifically, for each 1 ≤ j ≤J and θ ∈ �, we set

mP�j(θ)(Zj) ≡EP

[
ρj(X�θ)|Zj

];
that is, mP�j maps each θ ∈ � to a square integrable function of Zj. Letting Bn denote the
vector subspace generated by �n ∩R, we then impose the following:

ASSUMPTION 3.5: There is a norm ‖ · ‖L on Bn, linear maps ∇mP�j(θ) : B → L2
P , and

constants ε > 0 and Km�M < ∞ such that for all P ∈ P, h ∈ Bn, 1 ≤ j ≤ J , and ele-
ments θ1� θ2 ∈ {θ ∈ �n ∩ R : −→

d H (θ��r
0n�‖ · ‖E) ≤ ε}, we have: (i) ‖mP�j(θ1) − mP�j(θ2) −

∇mP�j(θ2)[θ1 −θ2]‖P�2 ≤Km‖θ1 −θ2‖L‖θ1 −θ2‖E; (ii) ‖∇mP�j(θ1)[h] −∇mP�j(θ2)[h]‖P�2 ≤
Km‖θ1 − θ2‖L‖h‖E; (iii) ‖∇mP�j(θ2)[h]‖P�2 ≤ M‖h‖E.

ASSUMPTION 3.6: (i) k1/p
n

√
log(1 + kn)Bn supP∈P J[ ](Rκρ

n �Fn�‖ · ‖P�2) = o(an);
(ii) supP∈P0

supθ∈�r
0n

√
n‖EP[ρ(X�θ) ∗ qkn (Z)]‖�P�p = o(an).

ASSUMPTION 3.7: (i) For each P ∈ P, there is a kn × kn matrix �P > 0 such that ‖�̂n −
�P‖o�p = oP (1∧an{k1/p

n

√
log(1 + kn)BnJn}−1) uniformly in P ∈ P; (ii) ‖�P‖o�p and ‖�−1

P ‖o�p

are uniformly bounded in kn and P ∈ P.

Assumption 3.5(i) ensures mP�j is approximated by linear maps ∇mP�j with an approx-
imation error that is controlled by ‖ · ‖E and a potentially stronger norm ‖ · ‖L. In turn,
Assumptions 3.5(ii),(iii) impose continuity conditions on ∇mP�j; these assumptions are
not used in this section, but will be needed for our bootstrap results. Assumption 3.6 con-
tains our key rate restrictions. Assumption 3.6(i) ensures the rate of convergence Rn (as
in (16)) is sufficiently fast to overcome an asymptotic loss of equicontinuity—a require-
ment that can hold even when Rn is slower than the traditional o(n−1/4) rate employed to
linearize nonlinear models. Assumption 3.6(ii) is an undersmoothing assumption, which
ensures that In(R) is properly centered under the null hypothesis. Finally, Assumption 3.7
requires �̂n to converge to an invertible matrix �P at a suitable rate; here, ‖ · ‖o�p denotes
the operator norm when Rkn is endowed with ‖ · ‖p.

The introduced assumptions suffice for obtaining a strong approximation through a
local reparameterization. Formally, we denote the local deviations from θ ∈ �n ∩R by

Vn(θ�R|�) ≡
{
h ∈ Bn : θ+ h√

n
∈�n ∩R and

∥∥∥∥ h√
n

∥∥∥∥
E

≤ �

}
�
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Recall Bn denotes the vector subspace generated by �n ∩R, and for any h ∈ Bn, set

DP (θ)[h] ≡ EP

[∇mP (θ)[h](Z) ∗ qkn (Z)
]
�

where ∇mP (θ)[h](Z) ≡ (∇mP�1(θ)[h](Z1)� � � � �∇mP�J (θ)[h](ZJ ))′. For any given se-
quence �n, we then define a sequence of random variables UP (R|�n) to be given by

UP (R|�n) ≡ inf
θ∈�r

0n

inf
h∈Vn(θ�R|�n)

∥∥WP (θ) +DP (θ)[h]
∥∥
�P�p

� (17)

As a final piece of notation, for any two norms ‖ · ‖A1
and ‖ · ‖A2

defined on Bn, we set

Sn(A1�A2) ≡ sup
b∈Bn

‖b‖A1

‖b‖A2

�

which we note depends on the sample size n only through the choice of sieve �n ∩R.
The next result establishes the relation between UP (R|�n) and In(R). It is helpful to

recall here that the norm ‖ · ‖L and constants Km, introduced in Assumption 3.5, control
the linearization of the moments and that Km = 0 for linear models.

THEOREM 3.1: Let Assumptions 3.1(i), 3.2, 3.3, 3.4, 3.5(i), 3.6, and 3.7 hold. Then: (i) For
any �n ↓ 0 satisfying k1/p

n

√
log(1 + kn)Bn × supP∈P J[ ](�

κρ
n �Fn�‖ · ‖P�2) = o(an) and Km�

2
n ×

Sn(L�E) = o(ann
−1/2), it follows uniformly in P ∈ P0 that

In(R) ≤UP (R|�n) + oP (an)�

(ii) If, in addition, KmR2
n × Sn(L�E) = o(ann

−1/2), then �n may be additionally chosen to
satisfy Rn = o(�n), in which case it follows uniformly in P ∈ P0 that

In(R) = UP (R|�n) + oP (an)�

Theorem 3.1 is perhaps best understood as establishing the validity of a family (indexed
by {�n}) of strong approximations that differ on the size of the local neighborhoods of �r

0n
that they employ. Its proof crucially relies on the linearization

DP (θ)[h] ≈ √
n

{
EP

[
ρ

(
X�θ+ h√

n

)
∗ qkn (Z)

]
−EP

[
ρ(X�θ) ∗ qkn (Z)

]}
� (18)

which holds for nonlinear moments (Km �= 0) when h/
√
n is sufficiently small. In particu-

lar, if the infimum defining In(R) is attained at a point θ̂n that converges to �r
0n sufficiently

fast, then we may apply (18) to establish Theorem 3.1(ii). Regrettably, in certain models,
the rate of convergence of θ̂n may be too slow to apply the approximation in (18) to θ̂n. In
such instances, we may instead rely on the inequality

In(R) = inf
θ∈�n∩R

√
nQn(θ) ≤ inf

(θ�h)∈(�r
0n�Vn(θ�R|�n))

√
nQn

(
θ+ h√

n

)
(19)

and successfully couple the right-hand side of (19) by restricting attention to sequences �n
for which (18) is accurate. Thus, by regularizing the local parameter space through a norm
bound, we obtain in Theorem 3.1(i) a distributional approximation that, while potentially
conservative, holds under weaker requirements on the rate of convergence.
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3.1.3. Bootstrap Approximation

Theorem 3.1 shows that the distribution of UP (R|�n) is a suitable approximation for the
distribution of In(R). We next develop a bootstrap procedure for estimating the distribu-
tion of UP (R|�n) with the goal of obtaining valid critical values.

We estimate the distribution of UP (R|�n) by replacing population parameters with suit-
able sample analogues. The key ingredients are: (i) a random variable Ŵn whose distri-
bution conditional on the data is consistent for the distribution of WP ; (ii) an estimator
D̂n(θ) for DP (θ); (iii) an estimator �̂r

n for �r
0n (as in (15)); and (iv) a sample analogue

V̂n(θ�R|�n) for the local parameter space Vn(θ�R|�n). We then approximate the distribu-
tion of UP (R|�n) by the distribution (conditional on the data) of

Ûn(R|�n) ≡ inf
θ∈�̂r

n

inf
h∈V̂n(θ�R|�n)

∥∥Ŵn(θ) + D̂n(θ)[h]
∥∥
�̂n�p

�

For concreteness, we employ the following sample analogues in our construction.

GAUSSIAN DISTRIBUTION: We estimate the distribution of WP with the multiplier
bootstrap. Specifically, for i.i.d. {ωi}ni=1 with ωi ∼ N(0�1) independent of {Vi}ni=1, we let

Ŵn(θ) ≡ 1√
n

n∑
i=1

ωi

{
ρ(Xi�θ) ∗ qkn (Zi) − 1

n

n∑
j=1

ρ(Xj�θ) ∗ qkn (Zj)

}
�

We focus on the multiplier bootstrap due to its theoretical tractability, though we note
that alternative bootstrap approaches can also be valid.

THE DERIVATIVE: We estimate DP (θ) by employing a construction that is applicable
to non-differentiable moments. Specifically, for any θ ∈�n ∩R and h ∈ Bn, we set

D̂n(θ)[h] ≡ 1√
n

n∑
i=1

(
ρ

(
Xi�θ+ h√

n

)
− ρ(Xi�θ)

)
∗ qkn (Zi)�

We employ D̂n(θ) due to its general applicability, though alternative approaches may be
preferable in some applications. In particular, if moments are differentiable, then em-
ploying n−1

∑n

i=1 ∇θρ(Xi�θ)[h] ∗ qkn (Zi) as an estimator for DP (θ)[h] leads to a compu-
tationally simpler bootstrap statistic.

THE IDENTIFIED SET: We estimate the identified set by employing the set of (approxi-
mate) minimizers of Qn on �n ∩R. Formally, for a sequence τn ↓ 0, we let

�̂r
n ≡
{
θ ∈�n ∩R :Qn(θ) ≤ inf

θ∈�n∩R
Qn(θ) + τn

}
� (20)

We may set τn = 0 in identified models, in which case �̂r
n reduces to the minimizer of Qn.

In partially identified models, �̂r
n can be shown to asymptotically lie in a shrinking neigh-

borhood of �r
0n provided τn → 0. In order for �̂r

n to additionally be Hausdorff consistent
for �r

0n, however, τn must not tend to zero too fast.
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LOCAL PARAMETER SPACE: We account for the role inequality constraints play in de-
termining the local parameter space by estimating “binding” sets in analogy to approaches
pursued in the moment inequalities literature (Chernozhukov, Hong, and Tamer (2007),
Andrews and Shi (2013)). Specifically, for a sequence rn and any θ ∈ �n ∩R, we define

Gn(θ) ≡
{
h ∈ Bn :ϒG

(
θ+ h√

n

)
≤
(
ϒG(θ) −Kgrn

∥∥∥∥ h√
n

∥∥∥∥
B

1G

)
∨ (−rn1G)

}
�

where recall 1G is the order unit in G and g1 ∨ g2 represents the supremum of any
g1� g2 ∈ G. The constant Kg, formally introduced in Assumption 3.8 below, is related to
the curvature of ϒG and equals zero for linear ϒG. For any �n, we then define

V̂n(θ�R|�n) ≡
{
h ∈ Bn : h ∈ Gn(θ)�ϒF

(
θ+ h√

n

)
= 0� and

∥∥∥∥ h√
n

∥∥∥∥
B

≤ �n

}
; (21)

that is, in comparison to Vn(θ�R|�n), we: (i) replace ϒG(θ + h/
√
n) ≤ 0 by h ∈ Gn(θ);

(ii) retain ϒF (θ+ h/
√
n) = 0; and (iii) substitute ‖h/√n‖E ≤ �n with ‖h/√n‖B ≤ �n.

Before establishing the asymptotic validity of the proposed bootstrap procedure, we
require some additional notation. For any set A ⊆ Bn, we let (A)ε ≡ {θ ∈ Bn : infa∈A ‖a−
θ‖B ≤ ε}. We further denote the closure of the linear span of ϒF (Bn) by Fn, and for any
linear map � on B, we let N (�) ≡{h ∈ B : �(h) = 0} denote its null space. In what follows,
it is helpful to recall that �r

0n is implicitly a function of P .

ASSUMPTION 3.8: For some Kg�M < ∞, ε > 0, and all n, P ∈ P0, θ1� θ2 ∈ (�r
0n)ε: (i) ϒG

is Fréchet differentiable with ‖ϒG(θ1) − ϒG(θ2) − ∇ϒG(θ1)[θ1 − θ2]‖G ≤ Kg‖θ1 − θ2‖2
B;

(ii) ‖∇ϒG(θ1) − ∇ϒG(θ2)‖o ≤Kg‖θ1 − θ2‖B; (iii) ‖∇ϒG(θ1)‖o ≤ M .

ASSUMPTION 3.9: For some Kf�M < ∞, ε > 0, and all n, P ∈ P0, θ1� θ2 ∈ (�r
0n)ε: (i) ϒF

is Fréchet differentiable with ‖ϒF (θ1) − ϒF (θ2) − ∇ϒF (θ1)[θ1 − θ2]‖F ≤ Kf‖θ1 − θ2‖2
B;

(ii) ‖∇ϒF (θ1) −∇ϒF (θ2)‖o ≤Kf‖θ1 −θ2‖B; (iii) ‖∇ϒF (θ1)‖o ≤M ; (iv) ∇ϒF (θ1) : Bn → Fn

admits a right inverse ∇ϒF (θ1)− with Kf‖∇ϒF (θ1)−‖o ≤M .

ASSUMPTION 3.10: Either (i) ϒF : B → F is affine, or (ii) there are constants ε > 0, M <
∞ such that, for every P ∈ P0, n, and θ ∈�r

0n, there exists an h ∈ Bn ∩N (∇ϒF (θ)) satisfying
ϒG(θ) + ∇ϒG(θ)[h] ≤ −ε1G and ‖h‖B ≤M .

Assumption 3.8 imposes that ϒG be Fréchet differentiable. The constant Kg, employed
in the construction of V̂n(θ�R|�n), may be interpreted as a bound on the second derivative
of ϒG and equals zero when ϒG is linear. Assumptions 3.9 and 3.10 mark an important
difference between hypotheses in which ϒF is linear and those in which ϒF is nonlinear—
note linear ϒF automatically satisfy Assumptions 3.9 and 3.10. This distinction reflects
that when ϒF is linear, its impact on the local parameter space is known and need not
be estimated.4 Thus, while Assumptions 3.9(i)–(iii) impose conditions analogous to those
required of ϒG, Assumption 3.9(iv) additionally demands that ∇ϒF (θ) possess a norm

4For linear ϒF , the requirement ϒF (θ+ h/
√
n) = 0 is equivalent to ϒF (h) = 0 for any θ ∈R.



CONSTRAINED CONDITIONAL MOMENT RESTRICTION MODELS 727

bounded right inverse on (�r
0n)ε—the existence of a right inverse is equivalent to a classi-

cal rank condition.5 Finally, for nonlinear ϒF , Assumption 3.10(ii) requires the existence
of a local perturbation to any θ ∈ �r

0n that relaxes “active” inequality constraints without
a first-order effect on the equality restrictions.

We impose a final set of assumptions in order to couple our bootstrap statistic.

ASSUMPTION 3.11: supθ∈�n∩R ‖Ŵn(θ) −W
	
P (θ)‖p = oP (an) uniformly in �× P with P ∈

P for � the standard normal distribution, an = o(1), and W
	
P independent of {Vi}ni=1 and

having the same distribution as WP .

ASSUMPTION 3.12: (i) For some M < ∞, ‖h‖E ≤ M‖h‖B for all h ∈ Bn; (ii) there is an
ε > 0 such that P((�̂r

n)ε ⊆ �n) tends to 1 uniformly in P ∈ P0; (iii) for Vn(P) as in Assump-
tion 3.4, P(�̂r

n ⊆ Vn(P)) tends to 1 uniformly in P ∈ P0.

ASSUMPTION 3.13: (i) Either ϒF and ϒG are affine or (Rn + νnτn) × Sn(B�E) = o(1);
(ii) the sequences �n, τn satisfy k1/p

n

√
log(1 + kn)Bn×supP∈P J[ ](�

κρ
n ∨ (νnτn)κρ�Fn�‖ · ‖P�2) =

o(an), Km�n(�n + Rn + νnτn) × Sn(L�E) = o(ann
−1/2), and �n(�n + {Rn + νnτn} ×

Sn(B�E))1{Kf > 0}= o(ann
−1/2); (iii) the sequence rn satisfies lim supn→∞ 1{Kg > 0}�n/rn <

1/2 and (Rn + νnτn) × Sn(B�E) = o(rn).

Assumption 3.11 demands that Ŵn be coupled with a Gaussian W
	
P independent of

{Vi}ni=1. This condition implies the multiplier bootstrap is valid in our potentially non-
Donsker setting. More generally, we note that our analysis remains valid if the multiplier
bootstrap is replaced with any other re-sampling scheme (e.g., nonparametric bootstrap)
satisfying a coupling requirement like Assumption 3.11. Assumption 3.12(i) ensures that
‖ · ‖B is (weakly) stronger than ‖ · ‖E. Assumption 3.12(ii) demands that �̂r

n be asymptot-
ically contained in the interior of �n. This requirement does not rule out that parameter
space restrictions be binding at �r

0n; instead, Assumption 3.12(ii) requires that all such
restrictions be stated through R. Together with Assumption 3.4(i), Assumption 3.12(iii)
enables us to obtain a rate of convergence for �̂r

n and may be verified in the same manner
as Assumption 3.4(ii).

Assumption 3.13 contains our main rate requirements. In particular, Assump-
tion 3.13(i) ensures the one-sided Hausdorff convergence of �̂r

n to �r
0n under ‖ · ‖B

whenever ϒF or ϒG is nonlinear. The main conditions on �n, employed in constructing
V̂n(θ�R|�n), are contained in Assumption 3.13(ii). These conditions ensure the consis-
tency of D̂n(θ)[h], the applicability of Theorem 3.1, and that V̂n(θ�R|�n) be well approxi-
mated by the true local parameter space. Heuristically, whenever the rate of convergence
Rn is too slow, regularizing the local parameter space by selecting a small �n can ensure
the asymptotic validity of the test. As in Section 2, however, we note that whenever the
rate of convergence Rn is sufficiently fast, such regularization is unnecessary and it is
possible to set �n = +∞; in such applications, setting �n to be too small can lead to a loss
of power. In turn, Assumption 3.13(iii) requires that rn not decrease to zero faster than
the ‖ · ‖B-rate of convergence of �̂r

n. Assumption 3.13(iii) is always satisfied if rn = +∞,

5Recall for a linear map � : Bn → Fn, its right inverse is a map �− : Fn → Bn such that ��−(h) = h for
any h ∈ Bn. The right inverse �− need not be unique if � is not bijective, in which case Assumption 3.9(iv) is
satisfied as long as it holds for some right inverse of ∇ϒF (θ) : Bn → Fn.
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though setting rn → 0 can improve power against certain alternatives. Similarly, we note
that the requirements on τn imposed by Assumption 3.13 can always be satisfied by setting
τn = 0, but, as discussed in Section 2.2, such a choice can lead to a loss of power in certain
partially identified models.

Our next result provides a coupling result for our bootstrap statistic. In its statement,
U	

P (R|�n) is defined identically to UP (R|�n) but with W
	
P in place of WP .

THEOREM 3.2: If Assumptions 3.1, 3.2, 3.3, 3.4(i), 3.5, 3.6(ii), 3.7, 3.8, 3.9, 3.10, 3.11,
3.12, 3.13 hold, then there is �̃n � �n so that, uniformly in P ∈ P0,

Ûn(R|�n) ≥ U	
P (R|�̃n) + oP (an)�

Theorem 3.2 shows that with probability tending to 1 uniformly on P ∈ P0, our boot-
strap statistic is bounded from below by a random variable that is independent of the
data. Crucially, the lower bound is equal in distribution to the coupling to In(R) obtained
in Theorem 3.1. Thus, Theorems 3.1 and 3.2 provide the basis for constructing tests that
employ increasing functions of In(R) as a test statistic and the analogous bootstrap quan-
tiles of Ûn(R|�n) as critical values. The resulting tests may be conservative if the inequali-
ties in Theorems 3.1 and 3.2 are not “sharp.” In particular, in order for the pointwise (in
P) rejection probability to equal the nominal level of the test under the null hypothesis,
we require the following to hold: (i) the rate of convergence Rn must be sufficiently fast
for Theorem 3.1(ii) to apply (in which case setting �n = +∞ is often valid); (ii) we should
select rn to tend to zero with n; and (iii) in partially identified settings, τn must tend to
zero sufficiently slowly so that �̂r

n is Hausdorff consistent for �r
0n.

3.2. The Tests

We next employ the theoretical results of Section 3.1 to establish the asymptotic validity
of different tests of the null hypothesis defined in (12). In what follows, for any statistic
T̂n that is a function of {Vi}ni=1 and the bootstrap weights {ωi}ni=1, we let q̂τ(T̂n) denote its
conditional τth quantile given {Vi}ni=1. For example, we have that

q̂1−α

(
Ûn(R|�n)

)= inf
{
u : P(Ûn(R|�n) ≤ u|{Vi}ni=1

)≥ 1 − α
}
�

3.2.1. Tests Based on In(R)

We first examine a test that employs In(R) as a test statistic. As has been shown in the
literature, uniform consistent estimation of approximating distributions is not sufficient
for characterizing the asymptotic size of a test. Heuristically, to establish the asymptotic
validity of a test, the approximating distributions must additionally be suitably uniformly
continuous. Our next assumption suffices for verifying this final requirement.

ASSUMPTION 3.14: There are η ≥ 0 and �n = o(a−1
n ) such that for ĉn = q̂1−α(Ûn(R|�n))

and any �̃n � �n: (i) P(In(R) > ĉn) = P(In(R) > ĉn ∨ η) + o(1) uniformly in P ∈ P0, and
(ii) supP∈P0

supt∈(η−an�+∞) P(|UP (R|�̃n) − t|≤ ε) ≤ �n(ε∧ 1) + o(1).

Assumption 3.14(i) trivially holds with η = 0 since both In(R) and Ûn(R|�n) are
(weakly) positive. However, in some applications, it is possible to verify Assump-
tion 3.14(i) in fact holds with η > 0 by arguing that the bootstrap quantiles of Ûn(R|�n)
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are suitably bounded away from zero when In(R) is strictly positive. Establishing Assump-
tion 3.14(i) holds with η> 0 eases the verification of Assumption 3.14(ii), which requires
that UP (R|�̃n) be continuously distributed on (η − an�+∞) with a density bounded by
a, possibly diverging, �n. Because UP (R|�̃n) is a functional of the Gaussian measure WP ,
Assumption 3.14(ii) can in some applications be verified using available results in the lit-
erature. For instance, when UP (R|�̃n) is a convex function of WP , as in Section 2.1.1, the
distribution of UP (R|�̃n) can readily be shown to be continuous on (0�+∞).

The next result establishes the asymptotic validity of a test based on In(R).

COROLLARY 3.1: Let Assumption 3.14 hold and the conditions of Theorem 3.1(i) and
Theorem 3.2 be satisfied. If ĉn = q̂1−α(Ûn(R|�n)), then it follows that

lim sup
n→∞

sup
P∈P0

P
(
In(R) > ĉn

)≤ α�

In Algorithm 1 below, we describe how to compute the p-value of the test described in
Corollary 3.1 when the moments are differentiable. We note that if there are no inequality
constraints, then it is possible to show that the test in Corollary 3.1 is similar and its
asymptotic size equals the nominal level whenever the conditions of Theorem 3.1(ii) hold.
The consistency of the test against any P ∈ P \ P0 for which maxj ‖EP[ρj(X�θ)|Zj]‖P�2 is
bounded away from zero (in θ ∈ � ∩ R) is also straightforward to establish. Finally, we
note that if we instead employ the critical value ĉn = q̂1−α+δ(Ûn(R|�n)) + δ for any δ > 0,
then the conclusion of Corollary 3.1 holds without needing to impose Assumption 3.14.

Algorithm 1 Computing the p-value of the test based on In(R).

Require: �n, ϒF , ϒG, {ρ(Xi�θ) ∗ qkn (Zi)}ni=1, �̂n, rn, τn, �n

� Compute the test statistic
1: Qn(θ) ← ‖�̂n{1

n

∑n

i=1 ρ(Xi�θ) ∗ qkn (Zi)}‖p � Criterion Function
2: R ←{θ :ϒF (θ) = 0�ϒG(θ) ≤ 0} � Constraint Set
3: In(R) ← minθ∈�n

√
nQn(θ) s.t. θ ∈R � Test Statistic

� Prepare variables for bootstrap problem
4: D̂n(θ)[h] ← 1

n

∑n

i=1 ∇θρ(Xi�θ)[h] ∗ qkn (Zi) � Moments Derivative
5: �̂r

n ←{θ ∈�n ∩R :Qn(θ) ≤ In(R)/
√
n+ τn} � Boot Constraint θ

6: Gn(θ) ←{h :ϒG(θ+ h/
√
n) ≤ (ϒG(θ) −Kgrn‖h/√n‖B1G) ∨ (−rn1G)}

7: V̂n(θ�R|�n) ←{h ∈Gn(θ) :ϒF (θ+ h/
√
n) = 0�‖h‖B ≤ �n

√
n} � Boot Constraint h

� Compute B bootstrap statistics and obtain p-value
8: for b = 1 to B do
9: {ωb

i}
n
i=1 ← Generate i.i.d. sample of N(0�1) variables

10: Ŵ
b
n(θ) ← 1√

n

∑n

i=1 ω
b
i{ρ(Xi�θ) ∗ qkn (Zi) − 1

n

∑n

j=1 ρ(Xj�θ) ∗ qkn (Zj)}

11: Fb
n (θ�h) ← ‖�̂n{Ŵb

n(θ) + D̂n(θ)[h]}‖p � Boot Criterion
12: Boot[b] ← minθ�h F

b(θ�h) s.t. θ ∈ �̂r
n, h ∈ V̂n(θ�R|�n) � Boot Statistic

13: end for
14: pval ← 1

B

∑B

b=1 1{In(R) ≤ Boot[b]} � Compute p-value



730 V. CHERNOZHUKOV, W. K. NEWEY, AND A. SANTOS

This modification to the critical value was originally proposed in a different context by
Andrews and Shi (2013), who suggested setting δ= 10−6.

REMARK 3.1: Suppose θ0 is identified; we aim to test whether ϒF (θ0) = 0, and we are
confident θ0 satisfies ϒG(θ0) ≤ 0. We could then set R to equal R1 or R2, where

R1 = {θ ∈ B :ϒG(θ) ≤ 0 and ϒF (θ) = 0
}
� R2 = {θ ∈ B :ϒF (θ) = 0

}
�

The power functions of the corresponding tests are not necessarily ranked. It can
therefore be desirable to combine both tests by, for instance, using the test statistic
Tn ≡ max{F1(In(R1))�F2(In(R2))} for F1, F2 increasing functions, and the quantiles of
max{F1(Ûn(R1|�n))�F2(Ûn(R2|�n))} as critical values. The asymptotic validity of this test
follows from Theorems 3.1 and 3.2 under a modification of Assumption 3.14.

3.2.2. Tests Based on In(R) − In(�)

We next establish the asymptotic validity of a test based on In(R) −In(�) by also relying
on Theorems 3.1 and 3.2. In what follows, we signify parameters associated with setting
R = � by a “u” superscript—for example, F u

n is understood to be as in (14) but with
R =�.

In order to obtain a distributional approximation to the recentered statistic, we may
simply apply Theorem 3.1(i) to In(R) and Theorem 3.1(ii) to In(�) to conclude that

In(R) − In(�) ≤UP (R|�n) −UP

(
�|�u

n

)+ oP (an)� (22)

Moreover, by Theorem 3.2, we may approximate the distribution of UP (R|�n) by using
Ûn(R|�n). Similarly, to obtain a bootstrap approximation to UP (�|�u

n), we define

�̂u
n ≡
{
θ ∈�n :Qn(θ) ≤ inf

θ∈�n

Qn(θ) + τu
n

}
;

that is, �̂u
n is simply the set estimator in (20) applied with �= R. For Bu

n the closed linear
span of �n, we then approximate the law of UP (�|�u

n) by employing

Ûn(�|+ ∞) ≡ inf
θ∈�̂u

n

inf
h∈Bu

n

∥∥Ŵn(θ) + D̂n(θ)[h]
∥∥
�̂n�p

;

that is, the bootstrap approximation equals that of Theorem 3.2, with the local parameter
space being unconstrained due to the absence of equality or inequality restrictions.

The preceding discussion suggests that the quantiles of Ûn(R|�n) − Ûn(�|+ ∞) condi-
tional on the data provide valid critical values for the recentered statistic. Our next result
formally establishes that the resulting test is indeed asymptotically valid.

COROLLARY 3.2: Let the conditions of Theorems 3.1(i) and 3.2 hold with R as in (13),
the conditions of Theorems 3.1(ii) and 3.2 hold with R = �, and Assumption 3.14 hold
with In(R) − In(�), Ûn(R|�n) − Ûn(�|+ ∞), and UP (R|�̃n) −UP (�|�̃u

n) in place of In(R),
Ûn(R|�n), and UP (R|�̃n) with �̃u

n satisfying Ru
n = o(�̃u

n) and Assumption 3.13(ii) with R =�.
If τu

n ↓ 0 satisfies Ju
nBnk

1/p
n

√
log(1 + kn)/n = o(τu

n) and νu
nτ

u
n × Su

n (B�E) = o(1), then for
ĉn ≡ q̂1−α(Ûn(R|�n) − Ûn(�|+ ∞)), it follows that

lim sup
n→∞

sup
P∈P0

P
(
In(R) − In(�) > ĉn

)≤ α�
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It is worth emphasizing that in coupling In(�), we must rely on Theorem 3.1(ii) instead
of Theorem 3.1(i) in order to ensure that (22) holds. As a result, whenever moments are
nonlinear, Corollary 3.2 requires the rate of convergence of the unconstrained estimator
to be sufficiently fast for Theorem 3.1(ii) to apply. Similarly, in coupling Ûn(�|+ ∞), it
is important that �̂u

n be consistent in the Hausdorff metric. Thus, while we may set τu
n = 0

in identified models, in partially identified models we require that τu
n not tend to zero

too fast. Finally, we note that in identified models, it is possible to employ either Ŵn(θ̂n)
or Ŵn(θ̂u

n) in constructing both Ûn(R|�n) and Ûn(�|+ ∞)—a change that results in an
asymptotically equivalent coupling but ensures that the bootstrap statistic Ûn(R|�n) −
Ûn(�|+ ∞) is (weakly) positive.

4. HETEROGENEITY AND DEMAND ANALYSIS

As an example, we next illustrate how to conduct inference in the heterogeneous de-
mand model of Hausman and Newey (2016); for alternative models of demand under con-
ditional moment restrictions, see Chen and Christensen (2018) and references therein.
Specifically, for Y ∈ [0�1] the expenditure share on a commodity, W ∈ W a vector of
prices, income, and covariates, and η unobserved individual heterogeneity, suppose

Y = g(W�η)� (23)

where g is a known function of (W�η). As in Hausman and Newey (2016), we note that
the unobserved heterogeneity η can potentially be infinite dimensional.

If the covariates W are independent of η, then, for any c ∈ R, it follows that

P(Y ≤ c|W ) = P
(
g(W�η) ≤ c|W

)= ∫ 1
{
g(W�η) ≤ c

}
μ0(dη)� (24)

where μ0 denotes the unknown distribution of η. Result (24) restricts the possible values
of μ0 and hence the identified set for functionals of μ0, such as average exact consumer
surplus or average share. Specifically, for �(g�η) an object of interest for preferences de-
noted by η, such as equivalent variation, Hausman and Newey (2016) studied functionals∫

�(g�η)μ0(dη)� (25)

which is the average across individuals. By evaluating the set of values of (25) which can
be generated by a distribution μ0 satisfying (24) at a grid {cj}J

j=1, Hausman and Newey
(2016) provided estimates of the identified set for the functional of interest. We further
note bounds on the distribution of �(g�η) under μ0 can be obtained by replacing �(g�η)
in (25) with an indicator that �(g�η) be less than or equal to some number.

In what follows, we apply our results to conduct inference on functionals as in (25).
To this end, we let FP (cj|W ) ≡ P(Y ≤ cj|W ) for a given grid {cj}J

j=1. To define B, we sup-
pose η ∈ � for some known Hausdorff space �, set B to be the Borel σ-algebra on �,
let M be the space of regular signed Borel measures on �, and let ‖ · ‖TV denote the
total variation norm. Assuming FP (cj|·) ∈ CB(W) for CB(W) the space of continuous and
bounded functions on W, we set B = (

⊗J
j=1 CB(W)) ×M, for any ({F (cj|·)}J

j=1�μ) = θ ∈ B
let ‖θ‖B =∑J

j=1 ‖F (cj|·)‖∞ + ‖μ‖TV, and set

�=
{({

F (cj|·)
}J
j=1

�μ
)= θ ∈ B : max

1≤j≤J

∥∥F (cj|·)
∥∥

∞ ≤ 2
}
� (26)
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where the “2” norm bound is simply selected to ensure �0 is in the interior of �.
Letting X = (Y�W ) and setting Zj =W for every 1 ≤ j ≤J , we then define

ρj(X�θ) = 1{Y ≤ cj}− F (cj|W )� (27)

which yields conditional moment restrictions that identify FP (cj|W ); note, however, that
μ0 is potentially partially identified. For a grid {wl}L

l=1 ⊆ W, we test whether a hypothesized
value λ belongs to the identified set for the functional in (25) by setting

R =
{({

F (cj|·)
}J
j=1

�μ
) : μ(�) = 1�μ(B) ≥ 0 for all B ∈ B�

∫
�(g�η)μ(dη) = λ�

and F (cj|wl) =
∫

1
{
g(wl�η) ≤ cj

}
μ(dη) for all 1 ≤ j ≤J �1 ≤ l ≤L

}
� (28)

Thus, the null hypothesis that �0 ∩ R is nonempty corresponds to requiring that there
exist a distribution μ for η satisfying the restrictions in (24) at the points (cj�wl) and
yielding a value for the functional in (25) of λ. By conducting test inversion in λ, we can
obtain a confidence region for the desired functional. To map R into the framework of
Section 3, we set G = �∞(B) for �∞(B) the set of bounded functions on B, and for any
({F (cj|·)}J

j=1�μ) = θ ∈ B let ϒG : B → �∞(B) be given by

ϒG(θ)(B) = −μ(B)� (29)

Finally, we set ϒF : B → RJL+2 to equal ϒF (θ) = (ϒ(e)
F (θ)�ϒ(μ)

F (θ)�ϒ(s)
F (θ)), where

ϒ
(e)
F (θ) =

{
F (cj|wl) −

∫
1
{
g(wl�η) ≤ cj

}
μ(dη)

}
1≤j≤J �1≤l≤L

�

ϒ
(μ)
F (θ) = μ(�) − 1�

ϒ
(s)
F (θ) =

∫
�(g�η)μ(dη) − λ�

(30)

Given these definitions, we may then map R (as introduced in (28)) into the framework
of Section 3 by noting that R={θ ∈ B :ϒF (θ) = 0 and ϒG(θ) ≤ 0}.

As in Hausman and Newey (2016), we can impose utility maximization by requiring
that the support � consist only of η such that g(·�η) satisfies the Slutsky conditions. One
may sample from � by drawing randomly from sets of η that satisfy Slutsky symmetry and
only keeping those where the compensated price effects matrix is negative semidefinite
on a grid. This is the procedure followed in Hausman and Newey (2016) for two goods.
Importantly, we emphasize that because the utility maximization restrictions are imposed
through �, they do not affect the basic structure of ϒF and ϒG—that is, ϒF and ϒG remain
linear maps satisfying Assumptions 3.8–3.10. In this sense, as long as they are imposed
through the support � of η, our procedure allows us to accommodate a wide array of
shape restrictions on individual demand g(·�η).

Given a collection of orthogonal probability measures {δs}
sn
s=1 ⊆M, we employ

Mn =
{
μ ∈M : μ =

sn∑
s=1

αsδs for some {αs}
sn
s=1 ∈ Rsn

}
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as a sieve for M. Employing orthogonal measures, such as distinct Dirac measures, is
computationally attractive as it simplifies imposing the nonnegativity constraint on any
μ ∈ Mn. As a sieve for {FP (cj|·)}J

j=1, we employ approximating functions {pj}
jn
j=1. In par-

ticular, setting pjn (w) = (p1(w)� � � � �pjn (w))′, we set as our sieve

�n =
{({

pjn′βj

}J
j=1

�μ
) : μ ∈Mn and max

1≤j≤J

∥∥pjn′βj

∥∥
∞ ≤ 2

}
�

Similarly, for a sequence {qk}
kn
k=1 and kn × kn positive definite matrices {�̂j�n}J

j=1, we set
qkn (w) = (q1(w)� � � � � qkn (w))′, and for any ({F (cj|·)}J

j=1�μ) = θ define

Qn(θ) =
{

J∑
j=1

∥∥∥∥∥1
n

n∑
i=1

(
1{Yi ≤ cj}− F (cj|Wi)

)
qkn (Wi)

∥∥∥∥∥
2

�̂j�n�2

}1/2

� (31)

The statistics In(R) and In(�) then equal the minimums of
√
nQn over �n ∩R and �n.

Our next set of assumptions enable us to couple In(R) and In(R) − In(�).

ASSUMPTION 4.1: (i) {Yi�Wi}ni=1 is i.i.d. with (Y�W ) ∼ P ∈ P; (ii) supw ‖pjn (w)‖2 �
√
jn;

(iii) EP[pjn (W )pjn (W )′] has eigenvalues bounded away from zero and infinity uniformly in
P ∈ P and jn; (iv) for each P ∈ P0 and θ ∈ �0 ∩R, there exists a �nθ = ({Fn(cj|·)}J

j=1�μn) ∈
�n∩R such that

∑J
j=1 ‖EP[(Fn(cj|W )−FP (cj|W ))qkn (W )]‖2 = O((n log(n))−1/2) uniformly

in P ∈ P0 and θ ∈�0 ∩R.

ASSUMPTION 4.2: (i) max1≤k≤kn ‖qk‖∞ �
√
kn; (ii) EP[qkn (W )qkn (W )′] has eigenvalues

bounded uniformly in P ∈ P and kn; (iii) EP[qkn (W )pjn (W )′] has singular values bounded
away from zero uniformly in P ∈ P and (kn� jn); (iv) k2

njn log3(n) = o(n1/2).

ASSUMPTION 4.3: For all 1 ≤ j ≤J : (i) ‖�̂j�n −�j�P‖o�2 = oP (1/kn

√
jn log2(n)) uniformly

in P ∈ P; (ii) the kn × kn matrices �j�P are invertible and ‖�j�P‖o�2 and ‖�−1
j�P‖o�2 are bounded

uniformly in P ∈ P and kn.

Assumptions 4.1(ii)–(iv) state the conditions on �n, with Assumptions 4.1(ii),(iii) be-
ing satisfied by standard choices such as B-Splines or wavelets. Assumption 4.1(iv) is an
asymptotic unbiasedness requirement—a condition that is eased by noting no require-
ments are imposed on the approximating space for μ0. The requirements on {qk}

kn
k=1 are

imposed in Assumptions 4.2(i),(iii) and are again satisfied by standard choices. Assump-
tion 4.2(iv) states a rate condition that suffices for verifying the coupling requirements of
Theorem 3.1. Assumption 4.3 imposes the requirements on the weighting matrices.

Our next result employs Theorem 3.1(ii) to obtain strong approximations.

THEOREM 4.1: Let Assumptions 4.1, 4.2, 4.3 hold, an = (log(n))−1/2, and for any
θ = ({F (cj|·)}J

j=1�μ) ∈ B let ‖θ‖E =∑J
j=1 supP∈P ‖F (cj|·)‖P�2. If �n� �u

n ↓ 0 satisfy kn

√
jn ×

log2(n)(�n ∨ �u
n) = o(1) and kn

√
jn log(n)/

√
n = o(�n ∧ �u

n), then uniformly in P ∈ P0

In(R) =UP (R|�n) + oP (an)�

In(R) − In(�) =UP (R|�n) −UP

(
�|�u

n

)+ oP (an)�
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In order to conduct inference, we next aim to estimate the distributions of UP (R|�n) and
UP (�|�u

n). To this end, we note that �r
0n (as in (15)) is potentially non-singleton and we

therefore employ a set estimator �̂r
n (as in (20)) to estimate the distribution of UP (R|�n).

In contrast, since UP (�|�u
n) only depends on the identified component {FP (cj|·)}J

j=1, for
the unconstrained problem we employ any minimizer θ̂u

n of Qn over �n. With regard to
the local parameter space, we note that in this application,

Gn(θ) = {({pjn′βj�h

}J
j=1

�μh

) : μh(B) ≥ √
nmin

{
rn −μ(B)�0

}
for all B ∈ B

}
(32)

for any θ = ({F (cj|·)}J
j=1�μ). Computationally, since any μ�μh ∈ Mn has the structure

μ =∑sn
s=1 αsδs and μh =∑sn

s=1 αshδs, it follows that the constraints in (32) reduce to αsh ≥√
nmin{rn − αs�0} for all 1 ≤ s ≤ sn whenever {δs}

sn
s=1 are orthogonal. Furthermore, since

moments and restrictions are linear, we may let �n = +∞ and set

V̂n(θ�R|+ ∞) = {({pjn′βj�h

}J
j=1

�μh

) : h ∈ Gn(θ)�ϒF (h) = 0
}
� (33)

For each θ ∈ �n, we denote the bootstrap process for the jth conditional moment by

Ŵj�n(θ) = 1√
n

n∑
i=1

ωi

{
ρj(Xi�θ)qkn (Wi) − 1

n

n∑
j=1

ρj(Xj�θ)qkn (Wj)

}
�

Similarly, we set D̂j�n[h] = −∑n

i=1 q
kn (Wi)pjn (Wi)′βj�h/n for any h = ({pjn′βj�h}J

j=1�μh).
Thus, the estimators of the strong approximations obtained in Theorem 4.1 equal

Ûn(R|+ ∞) = inf
θ∈�̂r

n

inf
h∈V̂n(θ�R|+∞)

{
J∑
j=1

∥∥Ŵj�n(θ) + D̂j�n[h]
∥∥
�̂j�n�2

}1/2

�

Ûn(�|+ ∞) = inf
h

{
J∑
j=1

∥∥Ŵj�n

(
θ̂u
n

)+ D̂j�n[h]
∥∥
�̂j�n�2

}1/2

�

Before stating our final assumption, we need an auxiliary result. To this end, define

�n(θ) ≡ {μ̃ ∈Mn : θ̃ = ({F (cj|·)
}J
j=1

� μ̃
)

satisfies ϒF (θ̃) = 0�ϒG(θ̃) ≤ 0
}

(34)

for any θ = ({F (cj|·)}J
j=1�μ)—that is, �n(θ) is the set of distributions of η that agree with

the restrictions implied by {F (cj|·)}J
j=1. Our next result bounds the ‖ · ‖TV-Hausdorff dis-

tance between �n(θ1) and �n(θ2), which we denote by dH (�n(θ1)��n(θ2)�‖ · ‖TV).

LEMMA 4.1: If the probability measures {δs}
sn
s=1 are orthogonal, then, for every n, there

is a ζn < ∞ satisfying dH (�n(θ1)��n(θ2)�‖ · ‖TV) ≤ ζn
∑J

j=1 ‖F1(cj|·) − F2(cj|·)‖∞ for any
({F1(cj|·)}J

j=1�μ1) = θ1 ∈ �n ∩R, and ({F2(cj|·)}J
j=1�μ2) = θ2 ∈ �n ∩R.

We introduce our final assumption to show the validity of our bootstrap procedure.

ASSUMPTION 4.4: (i) �(g� ·) is bounded on �; (ii) the probability measures {δs}
sn
s=1 are

orthogonal; (iii) k4
nj

5
n log5(n)/n = o(1); (iv) �nθ = ({Fn(cj|·)}J

j=1�μn) satisfies ‖Fn(cj|·) −
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FP (cj|·)‖∞ = o(1) uniformly in θ ∈ �0 ∩ R and P ∈ P0; (v) kn

√
jn log2(n)τn = o(1), and

ζn(knjn log(n)/
√
n+√jnτn) = o(rn).

The boundedness of �(g� ·) on � ensures ϒ(s)
F (as in (30)) is continuous, while Assump-

tion 4.4(ii) allows us to apply Lemma 4.1. Assumption 4.4(iii) is a low-level sufficient con-
dition for verifying the bootstrap coupling requirement of Assumption 3.11. These rate
requirements could be improved under smoothness conditions on FP (cj|·). Finally, As-
sumption 4.4(iv) imposes a mild requirement on the sieve, while Assumption 4.4(v) states
conditions on τn and rn—note τn = 0 and rn = +∞ are always valid, though such choices
can lead to lower local power against certain alternatives.

Our final result obtains a coupling for our bootstrap approximations.

THEOREM 4.2: Let the conditions of Theorem 4.1 hold and Assumption 4.4 be satis-
fied. Then: there are sequences �n� �

u
n ↓ 0 satisfying kn

√
jn log(n)/

√
n = o(�n ∧ �u

n) and
kn

√
jn log2(n)(�n ∨ �u

n) = o(1) such that, uniformly in P ∈ P0,

Ûn(R|+ ∞) ≥U	
P (R|�n) + oP (an)�

Ûn(R|+ ∞) − Ûn(�|+ ∞) ≥U	
P (R|�n) −U	

P

(
�|�u

n

)+ oP (an)�

In particular, since the conditions on �n and �u
n imposed in Theorems 4.1 and 4.2 are

the same, it follows that we may employ the quantiles of Ûn(R|+ ∞) and Ûn(R|+ ∞) −
Ûn(�|+ ∞) conditional on the data as critical values for In(R) and In(R) − In(�).
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