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BY ANNA MIKUSHEVA

This supplementary appendix contains proofs of some results stated in the paper. In
particular, it provides a proof of a statement about strong approximation, and proofs
of Lemmas 11 and 12 about the asymptotic approximations for a scheme of series. It
also proves results stated in Remarks 2, 3, and 4 for AR(1) processes with a linear
time trend. Section S5 proves the validity of parametric and nonparametric grid boot-
strap procedures for AR(p) processes with at most one root close to the unit circle.
Section S7 contains an extensive Monte Carlo study of finite-sample properties of dis-
cussed methods. We keep the notation introduced in the paper.

S1. AN ARBITRARY VARIANCE

THIS SECTION CONTAINS the proof of the result stated in Section 2.3 of the
paper. _

LetY = (i, ..., yr) be asample from an AR(1) process defined by an equa-
tion

(Sl) Sszfj—f—c, %j:p%j—l_f'gj’ j=0,...,T, %QZO

ASSUMPTIONS Al—Repeated: Let (g;, F;) be a martingale difference se-
quence with E (E?l]—"j,l) =o?and sup; E([&;]"|Fj-1) < oo almost surely for some
2<r<4. '

Note that if the variance of error terms o is known, then the process
y; =y;/o is an AR(1) process with errors ¢; = €;/o satisfying the set of As-
sumptions A and all inferences can be made using the three methods discussed
in the paper.

Lete; =Y — poisy), be the ordinary least squares (OLS) residuals. Let us
deﬁne an estimator of ¢ to be a sample variance of the OLS residuals: 62 =
T ZT AZ . Despite the fact that the estimator pOLs of the autoregression (AR)
coefﬁcwnt is biased toward zero, the estimator & of the variance is uniformly
consistent.

Let us define Studentized statistics

S, R

0= (\/g(T—ma?Zy”g"’g(T )52 Z( )

LEMMA S1—Lemma 3 from the Paper: Let us consider a model (S1) with
error terms satisfying the set of Assumptions Al. Then, for every & > 0,

>8} 0.
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Any statistic @(17, T,p)=¢(S, R , T, p) for ¢ € H is uniformly approximated by
the corresponding statistic ¢1 = ¢(S, R, T, p), where the pair (S, R) is defined
for the process y; =y;/o. In particular, the three methods discussed in the paper
could be used to make inferences.

PROOF: We note that ¢; — &% = (pos — p)¥}-,. As a result,
1< 1 «
~ _ 1 ~HN2 s 2 ~H 2
o= T ;(81- )"+ (pors — p) T j;(y]'_l)

. I ~
+2(pors — P)T Z)’f—ﬁj

j=1

1 AN
7 (L 1) 4t VETE 20
— 1= = g — — .
e T\TEY e

8(T,p)

It is easy to see that all four terms converge to zero in probability uniformly
over p € @7 and uniformly over all values of o* > 0.
From the definition of the class of functions H, we have

P{1$(S, R, p) — &(5, R, p)| > x)
<P{IR| < C} + P{M.(IS — S| + IR — R|) > x}.

From the uniform approximation of R by R and Lemma 10, we know that R
is uniformly separated from zero. It is easy to note that S — S =S (;—z —1) and
R—R= R(g—i — 1). By combining these facts with uniform consistency of the
variance estimator, we obtain the statement of the lemma. O.E.D.

S2. ABOUT STRONG APPROXIMATION

LEMMA S2: Let (&;, F;) be a martingale difference sequence satisfying the set
of Assumptions A. Let S; = Y"!_, &; be partial sums. Then we can construct a
sequence of processes nr(t) = %S[,T] and a sequence of Brownian motions wr
on a common probability space so that for every & > 0, we have

sup [n7(t) —wr(t)| = o(TV*4) s,

0<t<1

PROOF: According to Lemma 6.2 from Park and Phillips (1999), conditions
of the lemma imply the existence of an increasing sequence of stopping times
{7:};=1 and a Brownian motion w(-) defined on the same probability space such
that {S;} =7 {w(7;)} and sup,_;r (7 — 7)/T?| — 0 almost surely as T — oo,
for any 6 > 2/r.
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Similar to the proof of Theorem 2.2.4 in Csdrg6 and Révész (1981), it is easy
to show that sup,_,_,(|w(7y) — w(s))/(T*?/log T) — 0 almost surely. This
implies that for every & > 0,

|w<nm>/ﬁ wr(1)]

T—1/2+1/r+e

— 0 as.,

0<t<1

where wy(t) = w(tT)/~/T. We define n7(t) = w(ryr)/~/T, which completes
the proof of Lemma S2. Q.E.D.

S3. AR(1) MODEL WITH A LINEAR TIME TREND

This section shows that all results could be generalized to a model with a
linear time trend. We prove statements in Remarks 2 and 3. Let us consider a
process y; = a+ bj+ x;, where x; = px;_; + &;. Then the modified test statistics
are

1
(ST, R") = (WZ)’, O =Py ) Z(y, 1)>

where y/ denotes the detrended version of y.: yi , =y 1 —y — (Z,-T:1( Vic1
G -2/ (ZiT:](i — IH)?). The normalizing function is calculated as the
mathematical expectation g"(T, p) = E, Zszl( y][l)z. Then the pair (S, R™) is
invariant with respect to the values of constants a and b.

Let (", R™") be the corresponding detrended version of the statistics gen-
erated in a model with normal errors.

LEMMA S3: Assume that we have an AR(1) model with a linear trend and
error terms satisfying the set of Assumptions A. Then for any function ¢ € H we
have that

hm sup sup|P {6(S",R", T, p) < x}

X peOdr x

_P{(b(ST,N’RT’Na T7 P) < x}| =0.

PROOF: Our proof follows the framework suggested in Lemma 2. We start
by checking conditions 2 and 3 of Lemma 2:

T T T+ X

j=1
E (ZiT:I yz‘M—li)z
Y= Ty
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It is easy to see that uniformly over Br we have limy_, . sup ey 187 (T, p)/8(T,
p) — 1| =0. We note that

g(T, p)
S(T,p)= | Z2"=8(T,
(T, p) o(T. p) (T, p)

_ ( ZiT:1yl'M—1i ) ZzT:I &l .
NCEU DN SR N SN e

We can see that the term Z?:l v/ (/g (T, p)y/ Z;(i - %)2) converges to
zero in probability uniformly over By by taking the mathematical expectation
of its square and using Chebyshev’s inequality. The term Ziil et/ (ZiT:l(i -
Ti1)2)172 is asymptotically normal. In the proof of Theorem 1, we showed that
the distribution of S(7', p) is asymptotically approximated by the standard nor-
mal distribution uniformly over Br. This implies that condition 2 of Lemma 2
is satisfied for the pair of statistics S and S™V.

It is easy to see that

T
R'(T, p) = g(T, p)

T TN
TR~ s L
g (T, p) g (T.p) YT (i— Ly

Since the second term converges to zero in probability uniformly over Br, we
have that condition 3 of Lemma 2 is satisfied for statistics R™ and R™".

In the end, we are checking the closeness of the pairs (§7,R") and
(S™N, R™N) in proximity to the unit root. From discrete integration by parts, it
is easy to see that

1 < 1 <
T3/2 Z il — T3/2 Ze”]
j=1 j=1

L3 ()-S5

j=1

1 T
< sup (1) —wr (D)l Y 1=o(T 1) s,

0<r<1 j=1

By simple algebraic transformations, we have

T

1 1 o 1 < Y1
T Zyj—lgj =7 Zy/’—lgj - (ﬁ ZY;—l JT
j=1 j=1 j=1
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1 . T+1
(TS/zzyf - T5/2Zy 2 >

j=1
1 T T
X (ﬁ Z €j-1] — T5/ )

j=1

T3
- Ty

By using statements (d) and (f) of Lemma 4, we can see that

T
T T
ny 18) sz—lef

j:l

— O(T—1/2+1/r+3) a.s.

pe()T 1+ P)T +1

Similarly,

1< 1< 1 &Y
T2 Z()’,—h)z =7 Z(Yj—l)z - (m Zyjl)
j=1 j=1 j=1

2
1 - . 1 < T+1
—<m2)’jﬂ—mz}’jl 2 )
j=1 j=1

T3
X —/—————.
Y= 5

From statements (e) and (f) of Lemma 4, we have

1 & 1 &
T2 Z(YJ'TA)Z T 2(2;71)2
j=1 j=1

Since we have supp€A+(T2/(gT(T, p))) = O(T'~%), condition 1 of Lemma 2 is
satisfied for 3 + y<a<l O.E.D.

sup =o(TV/*Vr+ey  as.

pedT

Let the local-to-unity statistics be

1 : 1 :
ST,C’RT,C — J’ d , —— J;- Zd >’
( ) (W/o + () dw(x) gT(C)/o ety dx

where J7(x) =J.(x) — f01(4 —or)J.(r)dr — xf01(12r —6)J.(r)dr and g"(c) =
E [}(J1(x))*dx.
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LEMMA S4: Assume that we have an AR(1) model with a linear trend and the
error terms satisfying the set of Assumptions A. Then for any function ¢ € H, we
have that

Tlim sup sup |P{¢(S",R", T, p) < x}

pe@r x

- P{d)(ST,C(T,p), RT,C(T’p)9 T7 P) < x}| = 05
where c(T, p) = T log(p).
PROOF: It is enough to show that

Tlim sup sup |P{¢(S™, R"N, T, p) < x}

peOT x

— P{$(S™T7, RO, T, p) < x}| =0,

We check that the conditions of Lemma 2 are satisfied. By simple algebraic
manipulation, we have

1
JI(x)=JF(x)—-6(1/2 - x)/ (1/2 —r)J¥(r)dr.
0
It is easy to see that E(f01(1/2 — r)JE(r)dr)* < 1/c* As a result, we have

lime__o(1/g()E(f, (1/2—r)J#(r) dr)* = 0 and lim,_._ |g(c)/g"(c)—1| = 0.

By using Chebyshev’s inequality, we can also note that (1/,/g(c)) fo] (172 -
r)J*(r)dr —7 0 as ¢ —» —oo. This implies that

Sr,c — g(C) Sc
g7 (c)
- 6 /1<1 —x) dw(x) /1(1 —r>]“(r) dr
Ve (e) Jo \2 0o \2 ¢

= N(@,1)

1 2
Rre=89 pe_ 1 (6/ (1 —r)Jé*(r)dr) —"1
g(c) g\ Jo \2

as ¢ — —OoQ.

and

As a result, conditions 2 and 3 of Lemma 2 are satisfied for the pairs
(ST,C(T,p), RT,C(T,p)) and (S’T,N, RT,N)‘
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Now we check condition 1 of Lemma 2 for the detrended pairs:

1 & . T+1 zia =5
mzzfl(f ) Z“

j=1

LT 1 ! ¢/T(IT1-[Ts]-1) [77]
-[(F-3) [ ’{“T}d“’“)‘”
/ / ([l‘T] 1) ¢/ TATA~Ts]— 1)1{ [T]}dtd (s).
T

Similarly, [, (¢ — 1/2)J*(t)dt = [ [ (t —1/2)e*"~ dt dw(s). As a result,

T ! 2
E(Ti/Z j=1 Z]H_1<j - TTH> _/0 (t - %>J£L(t) dt)
:/1(/1<[t—]"] 1) c/T([Tt]-[Ts]— 1)[ dt
0 s T 2 {s<[Tt]/T}
1 1 :
[ (= g)erar) as

< const(log(p))>.

Taking into account that suppeA;(Tz/(gT(T,p))) = O(T'"%) and
lim, . sup . .+ (T2g7(c(T, p)))/(87(T, p))) =1, we have

1 T
lim sup P | ——=——) 2z\,j
T%OOPEA[ { /gT(T’ p)T3/2 IX_; j—1

JE(t) dt

>x} 0.

W/(t__)

It is easy to determine that

T

J
N T O

X peAr

hm sup P{

>x} 0.

m/ (1=3) aw
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We note that

ST’N(T’ P) =

T3
(57 )
Y= (T+1)/2)

gremp _ [ 8T5P) qurp)
§"(T,p)

1 o
—6 — - JHnd
(e L (=)o)

(e (=)o)
g7 (c(T, p)) Jo 2 ’

_ g(T, p) RV(T,
g (T, p)

B 1 XT:Z” (._T+1) ’
/g7 (T, p) T3> = -1\ J 5

T° ?
-
Zj:l(] —(T+1)/2)

and

R™N(T, p) p)

T, p) 6 Y, 1 ’
R~Top) — 871, ReT.p) _ (7/ (t— —)J’u(l‘) dt) .
g (T, p) Ve e, p)y o\ 2/
Since in Theorem 2 we proved that condition 1 is satisfied for the pairs
(S<T-» R<T-») and (SN, RV), we have

im sup P{|S™M(T, p) — §7*"?| + |R™™(T, p) — R™""| > x} =0.

1
T%mpeAT

As a result, all conditions of Lemma 2 are satisfied. O.E.D.
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S4. HANSEN’S BOOTSTRAP

This section proves some of the results stated in Section 5 of the paper.
Lemma S5 below (stated in the paper as Lemma 11) shows that the normal
approximation in the stationary region holds uniformly for arrays of random
errors.

LEMMA S5—Lemma 11 from the Paper: Let {er;;j=1,...,T; T eN} bea
triangular array of random variables such that for every T, variables {er;}]_, are
independent and identically distributed with distribution Fr. Assume that yr ; =
pyr.j-1 + er,j. Then, for any sequence pr such that T(1 — pr) — oo, we have

lim sup  sup sup —®(x)

T—>00 pres,(K,M,0) Ipl<pr  x

A

=0

and, for every € > 0,

e}:O,
>e} 0.

PrOOF: This statement is a generalization of the main result of Giraitis and
Phillips (2006) for arrays, where the distribution of error terms is allowed to be
different for different sample sizes. First, we check the statement for variables
that possesses a bounded fourth moment. Then we apply truncation methods
to the case when variables may have infinite fourth moment.

Assume that r = 4. Let us define variables X; = (1/,/g(T, p))yr,j-1€r,; and
ij = {ZlE(Xﬂ]:,-,]) = (1/g(T, p)) Z/.T:I y%jfl. Then from the Corollary to
Theorem 1 in Hall and Heyde (1981), it follows that

1 T
lim su sup P 2 —1 >
Eovr oo { STy 2T

T—00 prec,(K,M,0) |pl<pr

T=00 prec, (K,M,0) |pl<pr

lim  sup sup P{

mfzy“ !

sup —d(x)

{Jga—pzy“ o=t
T
sc<ZE|X,~|“+E(VT2—1>2>,

j=1

where C is an absolute constant.
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We should note that

T

T
sup ¥ E|X;|* = sup C,———=Ey; .
”lpr,Z_lj : oi<pr  8(T, p)? i1
C T CT
= Sup =sup ———
pzpr 8T, p)2(1—p2)? o, (T - 117925)2
—p
CcT C 1
= 1-p2T\2 = 1 2?
(T T PTT ) (1 - T(l—pZT))
— 0,

where C; is a constant depending on M, C, is a constant depending on M, and
K, C is a constant depending on M, K and a sequence py.
Now let us estimate the second summand:

2
1 T
E(WV?—1)7= V70— Eyi )
T o(T, p)? ; Y1,j-1 Yr,j-1

1 T
= D07~ Evi)’
g(T, p)z(jzl ! !

T
+2 Z Z pZ(j_i)(Y%,i—l - EyYZ",i—l)z)

j=1 i=1

1 C
<W1 <Z(}’T,1 EYT, 1))

T
4(j—k)E 4)
E E p £
g(T g(T, p)21—p? (1 -

k=1
1 cC T
<
g, p)l—p*1—p*

The last expression converges to zero uniformly over {|p| < pr}. This com-
pletes the proof of asymptotic normality for the case when variables have a
bounded fourth moment. It also proves the uniform convergence of X

g(T )
Z =1 Vi j—1 to 1in probability. The last statement of the lemma can be checked

by showing that

lim sup E

1 r ’
> yrj) =0
T=00p<pr \/g(T,p)«/T =
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and applying Chebyshev’s inequality.

The proof for the case when variables can have an infinite fourth moment
follows from the truncation argument of the proof of Lemma 2.1 (part b) in
Giraitis and Phillips (2006). Q.E.D.

LEMMA S6—Lemma 12 from the Paper: Let {e7;;j=1,...,T; T e N} bea
triangular array of random variables such that for every T, the variables {er. ]-}J,T:l
are independent and identically distributed with cumulative distribution function
Fre L(K,M,0). Then we can construct a process nr(t) = % ZEZ] er,; and
Brownian motions wr on a common probability space in such a way that for every

e >0, we have

lim sup P{ sup |nr(t) —w(t)| > aT“s} =0

T= prer (K,M,0)  Lo<i<1

for some & > 0.

PROOF: By Skorohod representation, for every T there exists an increasing
sequence of stopping times 7r; < 77, <--- < 71,7 such that:

L Aw(rr;) — w(TT,j—l)}jT:l =4 {GT,/}jT:l;

2. spj = 7r; — Tr,j—1 are independent and identically distributed positive
random variables with mean Esr; = u,(Fr) and E|sr;|"* < C,u,(Fr).

Let us define the process n7(¢) = w(rr,,y/T). Let ar be a sequence of non-
random positive numbers. Then

P{sup lr(t) — ()] > 7

0<r<1

< P{ sup sup |w(t+s) —w(t)| > sT’S}
0<t<10<s=<ar
> aT}.

From Lemma 1.2.1 in Csorg6 and Révész (1981), it follows that

T(T1) ¢

+P{sup

0<t<1

C 1 e 2
P{sup sup |w(t+s)—w(t)]>el°t <—ex (——<7) )
{05151 Ofsfgr | | } ar p 3\ 7% /ar

The right-hand side of the last inequality converges to zero for the sequence
ar =T77if y > 6. As a result, it is enough to prove that

lim  sup P{ sup

T—ooprer, kM0 o<t<1

TTara _ t' > T‘V} =0
T



12 ANNA MIKUSHEVA
for some y > 0. We can note that

1T {

lim  sup P{ sup > TV}

T—>0prer, (kM0 lo<t<1

< lim sup P{ sup |77, — jua(Fr)| > le}

T—>ooprec,(k,M,0) |0<j<T

+lim  sup  P{lp(Fr) —1]>T7"}.

T—00 prer, (K,M,0)

The last term converges to 0 by definition of the class L.(K, M, 0) if
v > 0.
From the results of Montgomery-Smith (1993), there exists an absolute con-
stant ¢ > 0 such that
> Tl_y}

P{ sup
1=j=T |
T
> .
c

ch{

By applying Theorem 27 from Petrov (1975, Chap. 9), we have

I-y
P{ > T }
C

< G (Fr(Yp))(TT- 072 4 70007072,

J

sri— Jua(Fr)
1

T
Z sri — T (Fr)

i=1

T
Z ST,i — TMz(FT)

i=1

If we choose 0 < 6 <y <min{(r/2 —1)/6, (r/2 — 1)2/r}, then we will achieve
the required convergence. Q.E.D.

The lemma below proves the result stated in Remark 4.

LEMMA S7: Assume that we have an AR(1) model with a linear trend and
the error terms satisfying the set of Assumptions A. Let yr ; = pyr j_1 + er,;, where
er,j are independent and identically distributed random variables with distribution
function F™(x|3r, p), which is an empirical distribution function of residuals.
Then for any function ¢ € H, we have that for almost all realizations of error
term X,

Tlim sup sup |P{¢(S",R", T, p) < x}

pe@T x

— P{$(S™, R™, T, p) < x|Y}| =0,
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where the pair of statistics (S™*, R™*) is detrended statistics for the sample Y* =
Yets oo Y1)

PROOF: The proof consists of two steps. First, we show that

(S2) lim sup sup sup|P{cl>(ST R, T,p) <x}

T—00 prer, (K,M,0) peOr x

— P{$(S™, R™, T, p) < x}| =0.

In the second step, we check that for almost all realizations of error term 3,
there are constants K (%) and M (2) such that F;*(-|3, p) € L,(K, M, 6).

Assume that Fr € £,.(K, M, 0). According to Lemma S6 there exists an al-
most sure approximation of the partial sum process by a sequence of Brownian
motions. Following the proof of Lemma S3 it is easy to prove that

lim sup P{|S™"(T, p) — S”*| +|R"™(T, p) — R™*| > x} =0,

T—o0 peAT

that is, condition 1 of Lemma 2 is satisfied.

The only things that need to be proved are uniform convergence of the dis-
tribution of the statistic S* to the standard normal uniformly over B; and
uniform convergence in probability of the statistic R™* to 1 over By.

From the proof of Theorem 3, it follows that

lim sup  supsup|P{(S* (T, p) <x}—P(x)|=0

T> Fres,(K,M,0) pe®r x

and limr_, oo SUPg, < x,11,9) SUP o, PR (T, p) — 1| > £} = 0 for every £ > 0.
It is enough to show that

Zl IyTz 1l
lim sup P
T—>oop€OT \/m / l ](l T+1 )2
and

T no

. 1
lim sup { izt o1, x} —P(x)| =
T—>00 ,e@ ZiT:I(i _ %)2

The first can easily be checked by Chebyshev’s inequality. For the proof of the
second, one can check conditions of Theorem 1 in Hall and Heyde (1981). As
a result, conditions 2 and 3 of Lemma 2 are satisfied. According to Lemma 2,
the uniform approximation (S2) holds for the detrended statistics.

Now we turn to the second step of the proof. We check that the resid-
ual based bootstrap produces Fr that belongs to the £,(K, M, 6) class. We
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define the destribution function F}*(x) = %Zle I5,<), where e; are resid-
uals from the regression of y; on a constant, linear trend j and y; ;. Then
T o~
I-Lr(FT) = % ijl(ej)r-
The first condition of the class is trivially satisfied. For the third condition,
we have

T

1 G 1 G 1 ¢
Z2 el =Gy e — el + G ) el
j=1 j=1

Let us consider each term separately. The second term is bounded almost
survely due to the strong law of large numbers. We note that e; — &} =

Z,il SiYiT—1/(ZiT:1(yiT—1)2)y/‘T—1’

T

1 ~ 1 Iy]
= le; — ‘ /= v,
TZ ' Ty (ry)? Z i
_constl—| Z’ 18/y71|r —constl(isT(T’ P) )r
T (3 )?)r T\ /R (T, p)

— OP(T—1+£)

for every e > 0.
Now, we check the second condition for the residual based bootstrap:

L 1 §7(T, p)?
7;@ —1== Z( )—1+3TRT(T ok

The last expression converges almost surely to zero with a nontrivial speed
since E|¢g;|" < oo for r > 2. QO.E.D.

S5. UNIFORM INFERENCES IN AR( p) MODELS
S5.1. About AR(p) Models

In this section we consider an AR(p) model with at most one root close to
the unit circle. Let us consider an AR(p) model in augmented Dickey—Fuller
(ADF) form,

p—-1
(S3) Ye=pYi1+ Z ajAyi_j+ &,

j=1

where error terms satisfy the set of Assumptions C.
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ASSUMPTIONS C: Let {&,}2, be independent and identically distributed error
terms with zero mean Eg, = 0, unit variance E&* = 1, and finite fourth moments
Eg&} < c0.

We restrict ourselves to processes with at most one root close to the unit
circle. The process (S3) could be described by the equation a(L)y, = &,, where
a(L)y=1-pL— Z;:ll a;(1—L)L’. Let us represent the polynomial as a(L) =
(1= L) - (1 —p,L), where || < |po| < <|mpl < 1. Letusfix 0 < & <
1. For every p € (0, 1), we define R, to be a set of all possible values of the
nuisance parameter o = (ay, ..., a,_;) such that [u,_,| < 6.

The lemma below demonstrates some properties of an AR(p) process with
at most one root close to the unit circle.

LEMMA S8: Assume that a(L) = (1 — L) --- (1 —pu,L), where || < |u| <
< |1l <8 <1. Let i(;LL) =) oL . Then:

(@) i lejl < Ci(d);

(b) Fory; =Y, ciciyj, we have | Z}io Yl < Co(6);

() For I jx = 3 72 CiCrviCipjCiks we have | 35052 57 (T k| < C3(8),
where C;(8) are constants depending only on 6 and p, but not on the value of the
roots.

PROOF: (a) We have

(1-L) Sy g
—(1-L iri)... i
A=l (A=) )<,§“1 ) (,-ZUMP )

=(1-L)
o0
ky  ka kp j
X Z My o’y | LY
7=0 \ky oy i3y ki=j
As a result, we have
_ ki ky kp
Cj= Z Moy o™ e fp
kl,kz,...,kptzik,‘=j
ky ko kp
- Z Moy Mo™ e p
kl’kZ’-")k[l:Ziki:j_l
_ ki ky kp
=—1=p,) Z Moy Mo e Mep
kl,kz,...,kpiziki:j—l
ki ko kp-1
+ Z N I . )

kikosskp 103 k=]
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S el W”'(é"’“”) (gm,,v)

1 11—yl )
< 4+ 1) <const(d).
(1—28)r! (1 — 1l
This ends the proof of part (a).
(b) We have
Z%’ = Z lyil = Z ZCiCi+j
j=0 j=0 j=0 | i=0
[e o] (o] (o] 2
<> Y leilleil < <Z |c,-|) < Cy(8).
j=0 i=0 i=0
(c) The proof is totally similar to that of part (b). Q.E.D.

LEMMA S9: Let us have two AR(p) processes y, = py,_1 + Zf;ll ajAy,_;+ &
and z;, = pz;_; + Z;’;ll BjAz,_; + &, where error terms &; are independent and
identically distributed standard normal random variables. Then we have:

() SUP,cq, 1) SUP,er, SUPger, ((E, (3 — 21)*)/ Var(y)) < C(&) [l — BII%;

(b) SUP,0.1)SUPcr, SUPger, (E,(Ay, — Az)*)/ Var(Ay,)) < C(8) [l — BII%;

(€) SUP,0.1) SUPyere, SUPgere, |(Var(y)/ Var(z,)) — 1] < C(8) [l — Bl

(d) SUP,cq,1)SUP,er, SUPger, |(Var(Ay,)/ Var(Az,)) — 1| < C(8)lla — BI;

(€) SUP,cq1) SUP,er, SUPger, ((E,(y7 — 21))/(Var(y))?) = C(8)lla — BII%;

(f) sup,..1, SUPer, supﬁeﬁp((Ep(AytAy,,j — Az,Az, ;)*)/(Var(Ayz,))?) <
C(d)lla— Bl

(8) SUP,cq,1) SUPLer, SUPger, ((E, Ay — z:Az,;)*)/(Var(Ay,))*)
<C(d)la—BI*
Here we have || a — B|| = max; |a; — B;|. The constant C(8) depends only on 6
and the order of the process p.

PROOF: (a) First of all, we can note that any complex root has a complex
conjugate. Since we restrict ourselves to at most one root close to the unit
circle, then if there is such a root it must be real.

Let us introduce polynomials a(L) =1 — pL — Zf;ll a;(1 — L)L"™" and
b(Ly=1-pL—Y"7B;(1-L)Li""=(1—pL)-- (1—p,L). Then we have
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a(L)y, = &, and b(L)z, = &,. We can note that
< a(L)> L(—-L)f(L)
Y — 2z, = 1-— Y= 3
b(L) (1—pmL)Y(A = oLy -+ (1 — p,L)
_ (1-L)f(L) ,
(I = L)A = L) -+ (1= ppL)

where f(L) = fo+ fiL + -+ + f,oL?%, f; = (ajs1 — Bj+1), and max; |fj| =
la — B|l. We also assume that [u]| < [u,| < - <|up1| <0< 1.
Let

t—1»

(1—L)f(L) ™
(1= L) = poL) - (1= p,L) ,2_0: ]

Theny, — z, = Z,Oio d;y,—j_1. It is easy to show that

00 2
Var(y, — z,) < <Z |d1|> Var(y,).

i=1

We can note that } 77 |d;| < (p — 2)ll@ — Bl 3_7Z, I¢;l, where ¢; are defined
as in Lemma S8. The statement of part (a) follows from the statement (a) of
Lemma SS.

(b) The proof is absolutely similar to that of (a) and follows from the fact
that Ay, — Az, = (1 — 4&)Ay,.

b(L)

(c) We have Zif; ¥, = z,. Using the same reasoning as before, we get
2
a(L) i
Var(z,) < (Z,: |f,~|) Var(y,), where "D Zi:fiL .

It is easy to see that f; =d; for i > 1 and f, = d + 1, where d; are defined in
the proof of part (a) of Lemma S9. Then

Var(z,) ( )2
-1=< |dil +1) —1=<C(8)|la— Bl
Var(y:) Z P
Similarly, z::gi; — 1< C(8)|le — BI|, which gives us statement (c).

Proof of part (d) is analogous to that of part (c).
(e) It is easy to note that

E(y? =z <VEQ — z0*VE(y + z)*.



18 ANNA MIKUSHEVA

By reasoning similar to that in the proof of part (a), E(y, —z,)* < (3_ -, |di])* x
Ey!, where d; are defined in the proof of part (a). We also have E(y, + z,)* <
O, gD Ey?, where “(L”b‘“ =Y. gL' Itis easy to see that g; = d; for i > 1
and go=dy+2. Asa result

E(y; -2z’ < (Z |di|) (Z |gi|> Ey, < const(8)|la — BIEy;.
i=0 i=0

The only thing left to check is that the expression Ey!/(Ey?)? is bounded.
Lety, =), hie, ;. Then Ey' =Y hiEel+ (3, h})*(Ee?)* < (O, h})*(Eel +
(Ee®)?) = (Ey?)*(1+ Eef ). That finishes the proof of part (e).

(Ee})?

The proofs of parts (f) and (g) are similar to the proof of part (¢). Q.E.D.

S5.2. Estimation of the Nuisance Parameters

Let us have a sample Y = (y;, ..., yr) from the process (S3) with at most
one root close to the unit circle. We should note that the parameter a =
(a1, ..., a, 1) is a nuisance parameter for the hypothesis Hy: p = py. As a re-
sult, it is impossible to construct an exact confidence interval for the parameter
p even if we deal with an AR( p) model with normal errors.

As part of a procedure to test that the sum of AR coefficient is equal to p, we
calculate an estimate @(p) of the nuisance parameter « as the OLS estimate in
a regression model with the null hypothesis imposed:

p—1

(S4) Vi — PV = Z Ay, + &,

j=1
that is, we regress y, — py,1 on Ay,_1, ..., Ay_pi1.

LEMMA S10: Assume that we have an AR(p) process defined by Equa-
tion (S3) with error terms satisfying the set of Assumptions C. Let us define
Y.(p) =y — pyi—1and X, = (Ay,_1, ..., Ay,_pi1). Let a(p) be the OLS estimate
of ain the regression of Y,(p) on X,. Then a(p) is a uniformly consistent estimate
of a, that is, the following convergence holds:

(S5) lim sup sup P{lla —al >€}=0 foreverye>D0.

T—0 pel0,1) aeR,

PROOF: Let X = (X;,...,X}) and 37 = (&y,...,er). Then

_ 1 A 1 ,
d-a=(———XX) —7——X'3;
> ., Var(Ay,) > ., Var(Ay,)
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We prove two statements: 1/ (Zil Var(Ay,))X'3r —? 0 uniformly and
1/ (Zth1 Var(Ay,)) X' X —? A uniformly, where det(A) is uniformly bounded
away from 0.

The first statement can be obtained by noting that E[(1/ ZZT:IVar(Ay,))

ST Ayie? =1/(31, Var(Ay,)) — 0 uniformly, since Var(Ay,) > Var(e,).
For the proof of the second statement, we note that Ay, = Y > ci&, i,
where the coefficients ¢; are defined in Lemma S8. Then E[Ay,Ay,_;]=v; =

o0
ZI:O CiCryj- . .
Let us consider the covariance of the form

cov, ;= E(AyAy,_; — EAy, Ay, ;) (Ay,Ay,_j — EAy,Ay,_)).
It is easy to see that
EAYAYAYAY ) =7 + Yoy F Viejos Viessin + E& Tissimis
where y; and I, are defined in Lemma S8. Then
COVie = Vg F Vieims Vimstit + E€ D CimiCiiijCisCimya.
i=0

After applying Lemma S8, it is easy to show that ZST:l I Jcov,,. I=<COT.
As a final step we can note that

T
Bl s (Ay,Ay, . — EAy,Ay, )
[Z,T_.Var(Ay,) ; ViV YAy,

IA

2
ZsT:l ZtT:I lcov, s
(XL, Var(Ay,))?

_ const(S).
- T
This ends the proof of Lemma S10. Q.E.D.

S5.3. Grid Bootstrap

To perform a test that the sum of AR coefficient is equal to p, we calcu-
late the conventional ¢-statistic #(p, yi, ..., yr) for this hypothesis in the re-
gression model (S3). We also calculate estimates a(p) of the nuisance para-
meters « as in Lemma S10. Then we compare the calculated conventional
t-statistic 7(p, Y) with a critical value function g(p, T, @(p)), which depends
on the tested value p of the parameter of interest on the estimated nuisance
parameter and on the sample size.

The confidence set for the parameter p is constructed as a set of values for
which the corresponding hypothesis is accepted:
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We consider two sets of critical value functions: the one obtained by para-
metric grid bootstrap, which is a generalization of Andrews’ (1993) method,
and that obtained by Hansen’s (1999) nonparametric grid bootstrap. In the
parametric grid bootstrap, critical value functions are quantiles of the distrib-
ution of the ¢-statistic #(p, Z) in the model

p—1
(S7)  z=pza+) @p)hz_;+e,

j=1

where error terms e, are independently normally distributed with zero mean
and unit variance. In the nonparametric grid bootstrap, we simulate criti-
cal value functions as quantiles of the distribution of the z-statistic in the
model (S7) with independent and identically distributed error terms distrib-
uted according to the empirical distribution of the demeaned residuals from
regression (S4).

Below we prove the validity of both procedures. The proofs are based on the
uniform approximation of the unknown distribution of the ¢-statistic #(p, Y)
provided by the distributions calculated via parametric and nonparametric grid
bootstraps.

To formulate the results, let us introduce some notations. Let statistics S and
R be defined by

S(Y,p,a,T)=G(p,a) " *Ye,
R(Y,p,a,T)=G(p,a) " *Y'YG(p, ) 2,

where ?t = (yt—la Ayl‘—h s Ayt—p+1)a i; = (?1/’ LR} ?]/")/5 &= (81’ L) ST),y and
G(p,a) = diag(zti1 Var(y,), ZIT:I Var(Ay,), ..., Zthl Var(Ay,)). Then the -
statistic for testing the hypothesis that the sum of AR coefficients equals p is

(Y, p.a,T)=LR(Y, p,a, T)S(Y, p,a, T)/\/ iR \(Y. p, . T)L,,

where [, = (1,0, ...,0).

S5.4. Parametric Grid Bootstrap
S5.4.1. Parametric grid bootstrap for AR (p) processes with normal errors

In the case of AR(1) processes with normal error terms, the parametric grid
bootstrap (Andrews’ method) provides an exact confidence interval for the
autoregressive coefficient p. As mentioned before, the generalization of the
method to AR( p) models is not exact, even if the error terms are normally dis-
tributed, because the approximating distribution employs an estimate of the
nuisance parameter rather than the true value of the nuisance parameter. We
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prove that the procedure provides a uniform approximation of the unknown
distribution of the ¢-statistic in a model with normal errors as long as the esti-
mate of the nuisance parameter is uniformly consistent.

THEOREM S1: Let us have two AR( p) processes y, = py,_1 + Z;:ll aly,_j+e

and z; = pz,_1+ ij;ll a@;Az,_;+¢&,, where error terms ¢; are independent standard
normal random variables. Assume that the parameter @ uniformly converges to a
as the sample size increases, that is, convergence (S5) holds. Then we have the
following uniform approximations:

(a) limz o sup, 1, SUP,cr, PAIS(Y,p,a, T) - S(Z, p,EE | >e€}=

(b) limz_ o sup, 1, SUP,cr, P{IR(Y,p,a,T)—R(Z, p, ,T)| > €} = O

(c) limr_ SUP ,c(0,1) SUPger, P{t(Y,p,a,T)—t(Z,p,a,T)| > €} =

PROOF: By combining (a), (b), (c), and (d) of Lemma S9 with Chebyshev’s
inequality we have

P{IS(y, p,a, T) = S(z,p, @, T)| > €} < Llla —all.

Parts (c), (d), (e), (f), and (g) of Lemma S9 combined with Chebyshev’s
inequality give

P{IR(y. pra T) — R(z, p, @, T)| > €} < %na _al.

Using the uniform consistency of the nuisance parameter estimate (S5), we
get statements (a) and (b) of Theorem S1.

Statement (c) follows from parts (a) and (b), continuity of the ratio function,
and the fact that statistic R is uniformly separated from 0. Q.E.D.

S5.4.2. Parametric grid bootstrap. Approximation in the near unity region

To prove that the parametric grid bootstrap is an asymptotically valid pro-
cedure for constructing confidence sets in models with nonnormal errors, we
employ the same idea as in Section 2 of the paper. We divide the set of values
of p into two subsets. One of the two subsets is increasing, while the second
subset is contracting toward the unit root with a speed slower than 1/ 7T as the
sample size T increases. Over the first subset, the standard normal distribu-
tion provides the uniform approximation of the unknown distribution of the
t-statistic. We obtain an approximation over the second set via constructing
an AR(p) process with the same AR coefficients and normal errors, such that
the ¢-statistic for this process is uniformly close to the initial ¢-statistic. This
allows us to state that the distribution of the ¢-statistic for an AR(p) process
is uniformly approximated by the distribution of the ¢-statistic for an AR(p)



22 ANNA MIKUSHEVA

process with the same AR coefficients, but with normal errors. Given that the
parametric grid bootstrap works for models with normal errors, we obtain the
validity of the procedure for models with nonnormal error terms.

LEMMA S11: Assume that Y = (y1, ..., yr) is a sample from an AR(p)
process described by Equation (S3) with error terms satisfying the set of Assump-
tions C. Let z; be an AR(p) process with normal errors:

k
Z=pza+ Y aidz_j+e, e~iid NO,1), t=1,...,T.

j=1

Then there exists a completion of the initial probability space and the realization
of process z, on this probability space such that, for every 8 > 0, we have:

() SUP,(,1)SUPer, SUPj_1. 7 1i/NT — z;/]T| = o(T~*?) a.s.,
() SUPse(0,1) SUPaer, SUPj=1,...T |yT,j/ﬁ| =0() a.s.,
(€) SUP,e,1) SUPuere, |1/ T Xy yiaey — (/T XL 2 1e5] = o(T~14+)

(d) SUP,c 1) SUPer, [(1/ T X1y y2, = (/T X1 22 | = o(T4) as.
The statistic S(Y, p,a, T) is a p dimensional vector. Let S;(Y,p,a, T) =
I\S(Y,p,a,T) be the first component, while S,..,,(Y,p,a,T) is the (p—1)
dimensional vector consisting of the last p — 1 components of the vector
S(Y,p,a,T). Then:
(€) sup,. 4, SUP,cr, SUP 1S:1(Y,p,a, T) —Si(Z, p,a, T)| = 0(1) a.s.,
® SUP ¢ 4, SUPger, SUP, [P{Se.n(Y,p,a, T) > x} — P{§ > x}| = o(1),
where £ ~ N0, T).

The statistic R(Y, p, a, T) isa p x p dimensional matrix. Let R\ (Y, p,a, T) =
LR(Y,p,a,T)l, be the left upper corner element of R(Y,p,a,T). Let
Ric.,»(Y,p,a,T) be the (p — 1) dimensional vector consisting of the ele-
ments of the first column of the matrix, excluding the first element. We denote
by Ria..py,o-. (Y, p,a, T) the right lower square (p — 1) x (p — 1) submatrix of
R(Y, p,a, T). That is,

a.s

Ry, R’
R(Y,p,a,T)= L@ ),
( p,a ) (R1,(2mp> R(zA“p),(z“.p))

Then:
(2) SUP,,c 4, SUP e, SUP IR(Y,p,a,T)— R\ (Z,p,a, T)|=0(1) a.s.,
(h) sup,_ 4, SUP,cr, P{{Ri,c.»n(Y,p,a, T)| > x}=o0(1) forany x >0,
(i) sup,c4, SUP,.r, P{IRGp.2-pp (Y, pr 0, T) — I'l > x} = o(1) for any
x> 0.
Finally:
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(k) limr_ SUP,c 4, SUPycre, SUP, |P{t(Y,p,a,T) > x} — P{t(Z,p,a,T) >
x} =0.
Here a set Ar of parameters p is defined by Ar = {p € (0,1):|1 —p| < T~'**} for
a sufficiently small & > 0. All limits are taken as T increases to infinity.

PROOF: In the proof, the word “uniformly” always mean “uniformly over
peArandaeR,.”

(a) We can find a probability space with a realization of the partial sum
process nr(t) and a sequence of Brownian processes wy(¢) on it such that
SUpy-,-; Imr(t) — wr(#)] = O(T~/*?) almost surely. As before, we define the
realization of error terms to be the normalized increments of the correspond-
ing processes:

o) (7). Gl ()

Let us define a sequence of numbers d; by the equality ﬁ = Z;’io d;L’. Then
the sequence ¢; = d; — d;_, is the same as in Lemma S8. We have

t t t—] t Z’—J
)’t=Zd18t—j=Z(dj_dj—1)”f]T< T ) =Zcﬂ7T( T

j=0 Jj=0 j=0

t t t—j t t—j
Z,:Zdje,j:Z(dj—dj1)wT( T ) :ZC]'U)T( T >.

=0 j=0 j=0

Then by using statement (a) from Lemma S8, we get

and

yr,j 21

sup sup su
PPPT T

pe(0,1) aeR) j=1,..., T

< ( sup sup » |c,.|) sup |n7(1) —wr ()] = O(T™/*?%)  as.

pe(0,1) @eRp =0 0<t<1

This ends the proof of the part (a).
(b) We have

»J

YTT < <sup sup Z|cj|> sup |wr(?)]

sup Sup Sup |——=
pe(0,1) aeR) j=0 0<r<1

pe(0,1) aeR, j=1,..., T

=0(1) as.
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(c) We have

T

1 1
T Z)’Haj T sz,lej
i

=1 j=1

£ % (H)-E5()

j=1

b e())

Let us consider the first term:

= Ay i\ Az j
-1 -1
—_ J— w J—
L7 nT<T) LT T)

sup sup
pe(0,1) @eR)p j=1
T . T .
Y iCigji < J ) 2 Cieji < J )
= sup sup =l =) - wr| =
pe(0,1) acR, ; vT T ; vT T

< ( sup sup Z |c,-|> max

pe(0,1) aeR)p i

=o(TV*%) as.

According to part (c) of Lemma 3, the following asymptotic equality has place:

1 & j 1 < j
7o )en = gz lur(f)ers

From the parts (a) and (b) of Lemma S11, it is easy to determine that

=o(T7V*?) as.

yr,r(p) zr,7(p)
VT VT

The last three limits give us statement (c).
(d) The statement easily follows from parts (a) and (b):

1 & 1 &
TN L
j=1

sup Sup
pe(0,1) @eR)p

nr(1) —

wT(l)‘ =o(T V*%) as.

Sup Sup
pe(0,1) @eR)p

j=1
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(sup )

(e) The statistic S(Y, p, «, T) is a p dimensional vector, the first component

of which, I'!S(Y,p,a,T) = ZzT:l y,_ls,/,/zlil Var(y,) may have nonstandard

behavior.
We note that 3 Var(y,) =T Y7

see that ) d7 > C(8) ~. Then

;(Z}’t 18t — Zzt let)
vV Zr , Var(y)

1< 1<
<CyT( - p)(? ;yz—lgt - T ;:Ztlet)
=T —p)o(TV*?)=0(1) as.

uniformly over the set Ar. This gives us that there exist realizations of

processes y, and z, on the same probability space such that /{S(Y, p, @, T) and

I'S(Z, p, o, T) are almost surely uniformly close to each other over the set Ayz.
(f) We note that

Nex

f

< sup supsup|—=— —=

pe(0,1) aeRp | \/_ \/_

=o(T Y% as.

+ Sup

=0 I,wherey, ZI yd;e,_;. It is easy to

Ay, === ppy-1+ Y,

where (1 — uL)---(1 — u,_1L)Y, = g is a stationary process with all roots
strictly outside the 1/8 circle. It is easy to see that

E<(1 - /-Lp) ZtTYt—jsz g

) =(1-p,)*— 0 uniformly over Ayz.
,/ZtT Var(y,)

As a result, we have that the sequence ((1—p,) Y.} yi_j&/)/y/ .1 Var(y,) con-

verges in probability to zero uniformly over A7.
We need to check that

1 T
F-“Zﬁ Y (Y., Y pie) = NO,1,.),

where I'=E[(Y,_1,..., Yi_p11) (Y1, ..., Y,_,41)'] and the convergence is tak-
ing place uniformly over all possible processes with roots outside the 1/8 circle.
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The statement follows from the central limit theorem for martingale differ-
ences.
(g) From the definition of the statistics, we have R (Y, p,a,T) =1/

(Z,'T:1 Var(y;)) Zle yjz_l and R (Z,p,a,T) = 1/(2121 Var(z;)) Z].Tzl z]?_l.
From statement (d) of Lemma S11, we obtain, uniformly over A7,

|Rll(y7 paaa T) _Rll(za P,a, T)I
1 < 1 <

STA=p)|m D V=75 )7

j=1

j=1
=T —p)o(TV*) =o(T V") =0(1) as.
The last inequality holds if ¢ < 1/4.

(h) Since Ay, = —(1 — u,)y. + Y,, where the process Y, is defined by the
equation (1 —uL)--- (1 —p,_1L)Y, =g, then

T T T
D oylya=—p)Y v+ yY;
j=1 j=1 j=1

We have

1 .
T3/2 (1= pp) Zy/‘
j=1

Yi

A

=O((1 = p,)VT)=0O(T~V***) a.s. uniformly over Ar.

j=1,..T

1 T
:(l—up)ﬁﬁnyf(l—Mp)ﬁ< max
j=1

We note that 3", Var(y,) > CTﬁ; and 3" Var(Ay,) > T. As a result,

T3/2
- - <JT(1-p)
\/thl Var(yt)\/thl Var(AYt)

and

(S8)

1 T
(1=p,) Y yp=O0(T7'*7) as.
\/Zszl Var(yt)\/Zszl Var(Ay,) j=1
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Now let us turn to the second term. First of all, we note that y, =}, d;&, ;
and Y, = Z; die, j, where

J
|dj| = <> 18w,
=0

S ey

Kyt tk p=j

< wv’Zl"(
=0

o

!
< Clu,l'.
Iupl) !

The constant C depends on 6 but not on w, or other roots. The inequality
holds if |u] <--- < |p,-1| < 8, and p € Ay for sufficiently large 7 such that
1—p,l<(1=p)/(1—8)*"<1—(8+ e) for some fixed € > 0.

. k,_ .
Similarly, |d| =3, ,...ck, - ! e < CHL
We have that

E(YTYTYT—jYT—j)

2
=Ee&} Y dididd;,; + (Z d,»d;*)
(S0 (S (£ ) ()

By using inequalities for d; and d}*, we can get |[E(yrYryr—jYr_p)| < G +
Co((Ipp)'87) /(1 = |upl)). As a result,

T
1_|/~‘4p|.

T 2 T
E(Z»K) <TY NErYryrYr )l < CT*+ G
t=1

j=1
By using Chebyshev’s lemma, we have, uniformly over Az,

T

1
sup supP{ = - 2 Y >x}
peAr acr, \/thl Var(yt)\/ 21 Var(Ay,) j=i
1—p
< ~P(c T2 C s T—1+£ .
=" ( 117+ 31—|Mp|> ( )

By joining the last inequality with (S8), we obtain statement (h) of the lemma.
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(i) We use the fact that Ay, = —(1 — w,)y,—1 + Y, where Y, is defined in
the proof of statement (f):

wp)?
(S9) —ZA)’; Ve—j = Tp Zytyt—j

t=1

(T =pp)

- Z(yt Yo+ YY) + = ZY,Y,,

t=1

As in the proof of part (h) we can show that ((1 — u,)/T¥*) Y. vy =
O(T~"**) almost surely uniformly over Ar. This gives us ((1 — u,)*/T) x
Z; Yiyi—j = O(T~12*) = o(1) almost surely uniformly over Az.

As in the proof of part (h), we can show that 1/ (\/Var(Ay,)\/Var(y,)) X
ZL( Yi-1Yi—j + yi—j-1Y,) converges in probability to zero uniformly over A;.
Given that (\/Var(Ayt)\/Var(y,))/T(l — i) = o(1) uniformly, we conclude
that the second term in (S9) uniformly converges to zero in probability.

The only thing left is to prove that %ZIT:, Y,Y,_; uniformly converges in
probability to E(Y,Y,_;). For this statement, we show that E (% Zthl Y, Y,;
E(Y,Y,_;))* converges uniformly to zero and then we use Chebyshev’s inequal-
ity.

yWe already showed that Y, = Z;’io die,jwith |dj| < C &/

EYYo YY) =Ee') di did;, d, + (Z d:‘d;;,)
(Z dt*dl*+s) (Z dt*dt*ﬁ—s+]) (Z d;kd:—s j) s
D didid;dy

(Z d,*d:;) + S,

< (Cé8%.

|cov(Yo Yo, Y,Y, )| < E&*

Z dz*d;:—s —j

As a result,

T 2
( > YY, - E(Y,Y._ ,))

=1
1 « c
= T2 ZZ|C0V(Yth_j, YsYs—j)| < ?,

t=1 s=1
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where C depends only on 6 and p.
(k) Since matrix R(Y, p, a, T) is asymptotically uniformly close in proba-
bility to the matrix,

o 1 ZT JERNY
R(Z,p,a,T) = ( YL Var(z) &=t=1"1 > ’
P . .

where 0 is a zero p x 1vector. Then R7'(Y, p, a, T) is asymptotically uniformly
close in probability to the matrix

1 T /
R'(Zp,aT)= (Z— o Yar 0 ) :
0 r-!

where we used that 3! z2/(3"]_, Var(z,)) is uniformly separated from zero in

the sense of Lemma 13. Given the fact that S; (..., (Y, p, a, T') is asymptotically
uniformly normally distributed, we have that

LRN(Y, p,a, T)S(Y, p,a, T)

tY, s 9T =
Fopra ) JERTY, p, e, D,

is uniformly close in probability to (Rff(Z, p,a, T)S1(Z,p,a, T)) /(R (Z,

p,a, T))'/%. The last expression is equal to Y./, z,_je,/\/ > I, z? and it is as-
ymptotically uniformly close in probability to ¢(Z, p, «, T). This ends the proof
of Lemma S11. Q.E.D.

S5.4.3. Parametric grid bootstrap. Approximation in the stationary region

LEMMA S12: Assume that Y = (y1,...,yr) is a sample from an AR(p)
process defined by Equation (S3) with error terms satisfying the set of Assump-
tions C. Let us define a set By = {p € (0,1):1 — p > CT~*¢} for arbitrar-
ily small € > 0. Let Y be the correlation matrix for a random vector X, =
V-1, A1, oo, Ayi_ps1). Then:

(a) limy_ SUP 5, SUPer, P{{R(Y,p,a,T)—Y| > €} =0forevery € > 0;

(b) lim7_csup, s, SUP,cr, SUP |P{a’'S(Y,p,a, T) < x} — ®(x)| =0, for
any p dimensional vector a such that a'Ya = 1;

(c) limr_ SUP,c 4, SUPycre, SUP, |P{t(Y,p,a, T) <x}—P(x)|=0.

PROOF: The proof is totally analogous to that of Lemmas 2.1 and 2.2 from
Giraitis and Phillips (2006). Since we assumed the existence of a finite fourth
moment, we do not need to use the truncation argument.
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(da) A? befo;e, vzle us\thhlellt yi=2_~ydjejand |d;| < Cl|u,|, where C de-
pends only on § and p. We have

C )
|COV(y0,ys)|<Es Zd?dlzﬂ (de,+s> < )2|Mp|2°.

i=0

As a result,

2
E T Var
T2 Var (h ( y[ (yt )

t=1

1
T Var’(y,)(1 — p,)3

W(JZWOV(YO,}’SN <

C
< -
T(1—pup)

This gives us

— 0.

1 L
- 1>
T Var(y,) ;yt

X peBr aER)p

(S10) hm sup sup P:

e} =0 foreverye > 0.

Similarly, since Ay, =}~ ¢;&,; and |¢;| < C&/, we have

| COV(Y:AYi—js YirsAVrrs—i)|

< E«‘;‘? Z Cidi+jci+sdi+j+s + <Z Cici+s> (Z didi+s>
i=0

i=0 i=0

+ (Z cidi+j+s) (Z Ci+sdi+j)
i=0 i=0

< C | |S8s
_4M .
(A=l "
2
1
E Ay =T Ay,
T2 Var(y,) Var(Ay,) <;yt YVi—j cov(y,, Ay, 1))
1 T
< Ay, - s'A o
= TVar(y,)Var(Ay[)ghov(Yz Vi—js> YersAVer ])|

<C ! <=
T Var(y)(1—|u,) — T
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This gives us

(S11) hm sup sup P{

T—oo pEBT AER)

T\/Var(yt)\/Var(Ay, Zyt Yici

t=1

>e} =0.

In the proof of step (b) of Lemma S10 we showed that

— corr(y,, Ay,—;)

1 T
T > Ay Ay, — cov(Ay,, Ay,))

t=1

(S12) hm sup sup P{

® peBr aER)p

>e}=0

Putting together equations (S10), (S11), and (S12) we obtain statement (a) of
the lemma.

(b) Let a be a p dimensional vector such that a'Ya = 1. We consider the
sequence of random variables

for every € > 0.

1
(S13)  &ir= ﬁa/ diag(Var(y,), Var(Ay, 1), ..., Var(Ay,_,.1)) "*X,e

In order to prove that Z; &, r converges to N(0, 1) as the sample size in-
creases, we need to check three conditions:
(1) E(¢ir|Fim) =0,
) ZzT:l E (fiﬂ]ﬂ_l) converges uniformly in probability to 1,
3) XL, E(&; 11¢, 1=l Fi-1) converges uniformly in probability to 0.
The first condition is trivially satisfied since (&,, F({e;}!__.)) is a martin-

gale difference sequence. For the second condition, we note that 3"/, E (&7l
Fi_1) =a'R(y, p, a, T)a that, according the part (a) of Lemma S12, converges
to 1.

We check the third condition:

T
£ (Z E(gtz,TI\St,Tbe |~Fz—l ))
=1
T
<€’E (Z E(f?,Tlle))
=1

1 T
-2 = Z E (a/ diag(Var(y,),

t=1
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4
Var(Ay;_1), ..., Var(Ayt_pH))l/zXZ)

_ Ay,_
E(a1 Yi—1 ta Yi-1

SVar(y ) /Var(yy)

Ayt—p-H )4

g v Var(Ay,_pi1)

-2
T
+--4a

It is enough to show that

4
Vi1 Ay,
E<7> <C and E(i) e
Vv Var(y,_1) v/ Var(Ay, )

which can be shown easily.

(c) By applying parts (a) and (b) of the lemma with a = Y~'1,/,/I} Y], to
the formula
l/lRil(y7 P, «, T)S(y’ pa a, T)

\/l/lR7] (y7 P, T)ll

t(y,P’% T):

2

we get the statement (c).
Q.E.D.

S5.4.4. Parametric grid bootstrap. Main theorem

The validity of the parametric bootstrap procedure is stated in the theorem
below.

THEOREM S2: Assume that the process y, is an AR(p) process defined by
Equation (S3) with error terms satisfying the set of Assumptions C. Let z, be
an AR(p) process with normal errors defined by Equation (S7), where a(p) de-
notes the OLS estimates in a regression model (S4). Then the distribution of the
t-statistic based on the process y, could be uniformly approximated by the distrib-
ution of the t-statistic based on the process z,:

lim sup sup sup |P{t(Y, p,a, T)>x}—P{t(Z,p,a,T) > x}| =0.

THOOpe(O,l)aeRp x

As a result, the set defined by (S6) with q:(p, T, a(p)), i =1, 2, being quantiles of
the distribution of t(Z, p, a, T), is an asymptotic confidence set for p.
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PROOF: Let a process &, be defined as an AR(p) process with the same
coefficients as y, with normal errors:

k
E=péa+ Y abé_jt+e, e~iidN©O1), t=1,...,T.

j=1
It follows from Lemmas S11 and S12 that

lim sup sup sup|P{t(y,p,a, T) <x}— P{t(¢,p, e, T) < x}| =0.

T_N-’ope[o,l)oceR‘,J X
Theorem S1 states that

lim sup sup sup|P{t(§, p,a, T) < x}

T—20 her0,1) aERy X

—Plt(z,p,a(p), T) <x}| =0

as long as a(p) is a uniformly consistent estimator of «. The uniform con-
sistency was obtained in Lemma S10. This ends the proof of the theorem.
Q.E.D.

S5.5. Nonparametric Grid Bootstrap

The nonparametric grid bootstrap procedure uses an approximation of the
unknown distribution of the #-statistic #(Y, p, @, T') by the distribution of the #-
statistic #(Z, p, a, T), where z, is an AR( p) process defined by (S7) with error
terms having distribution Fr. We consider Fr to be an empirical distribution
function of the residuals from the regression (S4). The distribution function
Fr (3, po, p, @) depends on the realization of error terms of the process y,, on
the coefficients p and « of the process y;, and on the null value p, tested.

The validity of Hansen’s grid bootstrap is proven in the same way as we
proved it for AR(1), given the validity of Andrews’ method.

THEOREM S3: Assume that the process y, is an AR(p) process defined by
Equation (S3) with error terms satisfying the set of Assumptions C. Let z, be an
ARC(p) process defined by Equation (S7), where a(p) denotes the OLS estimates
in a regression model (S4). Assume that the errors e, of the process z, are indepen-
dent and identically distributed with the distribution function Fr.

(1) We have

lim sup sup sup sup|P{t(Y,p, o, T)> x}

T—0 pe(0,1) aeRp FreLy(K,M,0) x

—P{t(Z,p,a,T) > x}|=0.
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(2) Foralmost all realizations of error terms 3 = {¢4, ..., €j, ...}, let there exist
constants K(3) >0, M(2) > 0, and & > 0 such that, for all p € O,

FT(Z, PP, a) € £4(K3 M’ 0)
Then

lim sup sup sup|P,{t(Y,p, e, T) > x}

Tﬂwpe(o,l)aeRp x
—P{t(Z,p,a, T) > x|2}| =0 as.

That is, the bootstrap provides a uniform asymptotic approximation for almost all
realizations of error terms.

Let C(Y) be a set defined by Equation (S6) with q;(p, T, a(p)) = qi(p, T,
a(p)|Y),i=1,2, being quantiles of the distribution of the statistic t(Z, p,a, T),
given the realization of Y. Then the set C(Y) is an asymptotic confidence set.

(3) Let Fg™ be an empirical distribution function of the residuals from the re-
gression (S4). Then, for almost all realizations of error term 3, there exist constants
K(2)>0,M(3)>0,and & > 0 such that F§™ € L,(K, M, 0).

PROOF: According to Lemma 15, there exist realizations of a partial sum
process and a sequence of Brownian motions such that

lim sup  P{sup [nr() —w(n)| > 5T~} =o0.

T>0prer,(K,M,0) lo<t<1

In the part (k) of Lemma S10, we proved that having such realizations of the
processes leads to a uniform approximation in the near unity region.

In the proof of part (a) of Lemma S12, we showed that for any element ¢ of
the matrix R(y, p, a, T) — Y we have that E(§)? < T(lpr)’ where C is a constant
that depends only on p, §, M, and K. This implies that for every sequence of
sets Br = [—pr, pr] such that T (1 — pr) — oo, we have

lim supsup  sup  P{IR(y,p,a,T) = Y|>x}=0

T—>00 peBr acRy FreLy(K,M,0)

for any x > 0.

Let &, r be defined by Equation (S13). Then according to the corollary to The-
orem 1 of Heyde and Hall (1981), we have

T
P{Z Er > x} —d(x)
=1

sup

X

T
< c(ZE@t,T)“ +ER(y, p,a, T)a— 1>2>.

=1
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In the proof of part (b) of Lemma S11, we showed that the first term is less
than C/T, where C depends only on p, 6, M, and K. As a result, we have
convergence of the distribution of a’'S(y, p, o, T') to N(0, 1) uniformly over By
and uniformly over Fr € £4(K, M, 0). This finishes the proof of part (1).

The proof of part (2) is exactly the same as the proof of Theorem 3.

(3) Let X, be defined as in Lemma S9. Then ¢, = ¢, + (a — a(p))' X,. We
have

1< 1<
/-L2(F;rr) —1= (7 ZS? - 1) +2(a —OI(P))'TZ&X;

=1 =1
1 T
+(a—a(p) 7 ) X X[(@—G(p)).
t=1

From Lemma S9, we know that @(p) is a uniformly consistent estimate of a.
According to law of large numbers £ 3"/ e2—1— 0as, 23 &X, - Oas.,
and ZLI X, X is bounded almost surely. As a result, we have convergence of
M2(F5™) — 1 to zero almost surely. The third condition of the class £4(K, M, 0)
can be checked in a similar way. Q.E.D.

S6. SUBSAMPLING

In this section we clarify some technical details of the proof of subsampling
invalidity (Theorem 4 of the paper).

First, we note that local-to-unity asymptotic results (Phillips (1987) were es-
tablished for processes starting from zero, whereas for subsampling we need to
make a different assumption about initial condition.! If |p| < 1, the initial vari-
able z, is normally distributed with mean a/(1 — p) (here a is the value of the
intercept) and variance 1/(1 — p*). When p = 1, the initial value is an arbitrary
constant. Lemma S13 below follows the line of reasoning proposed by Elliott
(1999) and Elliott and Stock (2001).

LEMMA S13: Let u; = pu;_, + e;, ug = 0 with errors e; being independent and
identically distributed standard normal. Let us define z; = p/(£//1— p*) + u;,
where & ~ N (0, 1) is distributed independently of {e;}?2,. Let
Z/’T:I Zf—le/'

Sl

!T thank Don Andrews and Patrik Guggenberger for pointing this out.

t =
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We consider p = 1+c/ T forsome c < 0. Let K.(s) = J.(s)+ (e*//—2c) &, where
J. is an Ornstein—-Uhlenbeck process independent on &. Let

1 é‘; 1— e
K* :KC — KC dt = J"* cs
c(s) (s) /0 (t)dt C(S)+\/—_2€(e — )

stay for the demeaned version of K. Then

1
K*(t) dw(t
tﬂ:w as T—)OO.

VK ()2 dt

PROOF: All asymptotic convergence statements below hold simultaneously.
It is easy to see that

lXT: . _li . _{_ili j=lo.
Tj:l ijleJ—Tj:1 Uj-1€; /—l—pzT ':1p €j

= [ J. (t)dw(t)—l——/ e“ dw(s) = / K. (s)dw(s).

For the denominator, we have

g )2 1 2(j—1
+ ( _ Zp G-
V1—p2 T2 =
We know that (1/7?) Z].T:I Ui = fol JZ(t)dt (Phillips (1987). We notice that
1/(T(1 - p*)) = 1/(=2c¢) and (1/7T) Zle PP =1~ p")/(T(A - p*) —
(1 — e*)/(—2c). The next observation is

T _AT-i)

1 -1 i : il—p
e 0 = g e Do) =g e

j=1
1 L T

I P P
- (1—p2>T3/2;e'p =™



INFERENCE IN AUTOREGRESSIVE MODELS 37

1
= L(/ e’ dw(s) — eCJc(1)>.
—2c 0

As a result,

1 T 1 f 1 1
— ) 7 :>/J2tdt+2——<f e’ dw(s —ecfcl)
Tz; i 0 2(1) 2 2c\, (s) (1)

( g >2 1 5 ezc
+ .
v —=2c —2c
‘We notice that

1
/ K2(s)ds
0

_ ! f cs
_/0 (Jc(s)—l— _2ce )ds

1 é‘_— 1 § 2 1
= | JXs)d 2—/ J.(5)e®)d ( ) / 2 ds.
/0 S(s)ds+ NEr: 0( (s)e“)ds + NEr: i e K

Consider in more detail the integral

1
/ (J.(8)e“)ds
0

1 s 1 1
:/ (/ e dw(t) e”) ds :/ e (/ e>ct=D ds) dw(t)
0 0 0 K

1

T Z2¢ ),

1
e'(1 — > dw(t) = ch (/ e dw(s) — e"JC(l)>-
- 0

So we have
1 & !
ﬁsz?l@/ K(t)dt.
j=1 0

Now let us move to a model with demeaning. What will change in our re-
sults? For the numerator, we have

1 < 1 1 « 1—pf
i _ n i—1
T;Z/—le/—T;”j—lej'i‘uo?z:(l)] - —T(l—p))ej

j=
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= /1J“(t)dw(t) + L</1e%1w(s) 1= ecw(1)>
0 - v —=2c \Jo —C

1
=/ K*(t) dw(t).
0

We handle the denominator in a similar way:

' n -1 1-p" 3 ’
Z( Z(”’ 1+<” W(l—p))F_pz)

j=1
T
Z’“’“
=1

T

Z j= 1)2+2

Jj=1

+(¢_—pz) Z( i)

Similarly to above, we can determine that

1 ¢ !
EZ(Z;L_I)2:> f (K¥(1))*dt.
j=1 0
Finally we get

Ly K dw(n)

P el et ey
VS KE)? dt Q.E.D.

The quantiles of the distribution of #5 = (f) K*(t) dw(t))/,/ [} (K¥ () dt
have not been reported in literature, so we have to simulate critical values. We
also show that for at least one ¢ < 0, if we use an equitailed interval based on
the distribution of ¢, whereas the true variable is normal, then the coverage
will be smaller than declared.

We simulated quantiles and coverage for —c = 0.05, 0.1, 0.5, 1, 2, 4, 10, 15,
20, 25. The simulations are based on samples of size T = 300. We performed
5,000 simulations. The results are reported in Figures S1 and S2.

The second technicality we address in this appendix is related to the rate of
mixing coefficients decay for summands in empirical cumulative distribution
functions.



critical values

-3.5

FIGURE S1.—Th

INFERENCE IN AUTOREGRESSIVE MODELS 39

Critical values for t—statistic based on KC processes

0 5 10 15 20 25
-C

e 2.5% and 97.7% quantiles of statistic ¢;. Quantiles are based on simulated

t-statistics for AR (1) processes with a constant and stationary initial distribution for values of the

AR parameter p =
normal errors.

0.95
0.9

0.85

coverage
o
N ©
o ®

o
\,

0.65

0.6

0.55
0

14 ¢/ T local to unity. Number of simulations 5,000; sample size 7" = 300;

Asymptotic coverage along sequences

T T T T

5 10 15 20 25
—C

FIGURE S2.—Coverage of equitailed intervals based on the distribution of ¢, whereas the true
distribution is standard normal. Based on simulated quantiles as in Figure S1.
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LEMMA S14: Given the assumptions made in Section 6 of the paper, we have

fol K*(s)dw(s) _

VK (5))? ds

PrROOF: We follow the lines of the proof of Theorem 3.1 of Romano and
Wolf (2001), substituting their statistic for the corresponding ¢-statistic. The
only thing we need to check is that

lim sup

T—o0

Ly,(x)— P{ xH =0 in probability.

T-br

1
T Z aT,bT(h) -0 as T— oo,

h=1

where ar,,(h) are strong mixing coefficients for an array of variables

{t,(bT)}jT;le. The a-mixing coefficient ar;, (h) does not exceed the a-mixing
coefficients for a set of subsamples {zi, ..., z,} and {z11, ..., z,1s}, Where z; is
a Gaussian AR(1) process with AR coefficient p = 1 + ¢/b7. The latter is not
bigger than the «-mixing coefficient (4 — by) for the process z.

We use a statement proved below that a,(h) < p”. Then

T—br T—by
1

1 1 . h—b
— arp(h) < = min{1, N=C————0
7 2 arer (< ) minlpr )= Cr— o

as T — oo.

The last statement holds since (1 — p7)T — oo. QO.E.D.

LEMMA S15: Let z, = pz,_1 + u, be a stationary Gaussian AR(1) process.
Then

a.(h) <p".

PROOF: From the definition of mixing coefficients, we have «,(h) < p,(h).
Here the p-mixing coefficient p,(/) is the maximum correlation between the
variables that are measurable with respect to the two ¢ algebras. According
to Kolmogorov and Rozanov (1960), it is enough to restrict attention to linear
functions of the variables {z;};-, and {z;} >/ .

According to Ibragimov (1970) (see formula (4.2)),

A / PP (M)e™ f(N)dA|,

p(n) =sup|(ge™, )| = sup

o oy

where f(A) =Y 1 e**pl*l is a spectral density function, and ¢ and ¢ are
polynomials of e** with the condition | ¢|; = |||l = 1. Here we use (¢, ¢); =

T e(MP N FA) dA.
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Let o(A) = Y1, are™ and y(\) = Zj‘io b;e". Then

|7 o) ()e™ f(A)dA|
lelplldlly

kjakb]p ‘
PN, biby )

Let us define matrices 4 = (p"/');; and B = (p"~?), ;. Then

p(n) = p"sup

a,b

a/
va Aavb' Ab ‘7

where a = (ay, a1, ...,ay), b= (b, ...,by),and M = max{L, K}. We also de-
fine a matrix

JI—p2 0 0 0 0

p 1 0 0 0

I — 0 —p 1 0 0
0 0 0 -« —p 1

Then LAL' = diag(1 — p?,1 - p?,...,1 — p*) = A and LBL' = diag(l —
p?,0,...,00=B.Leta= (L) 'aand b= (L')~'b. Then

_ |@Bb
p(n)=p" Sup ‘
VaAa\/bA \/aAa\/b/
|Gyby| n
= p" SUP

|
NSO Q.E.D.

S7. SIMULATIONS

We performed a small simulation study to assess the extend to which asymp-
totic results are reflected in finite samples. The study is intended to fulfill the
goals listed below:

e Check finite-sample performance of the three procedures, the validity of
which was proven in the paper.

e Explore sensitivity of the described methods to nonsymmetry or heavy-
tailedness of the distribution of error terms.

e Compare the accuracy of the three methods.

o Assess the size distortion of subsampling; that is, whether it is as extreme as

predicted by the asymptotic results of Andrews and Guggenberger (2007).
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e Examine how coverage properties of subsampling intervals depend on block
size and determine for what range of AR coefficients it is safe to use sub-
sampling.

We start with the first group of objectives concerning the three methods for
which we provided proofs. We simulate an AR(1) model with a linear trend
since this is the setup where the distortions are most pronounced. We used
normal errors, errors having centered y? distributions with 4 and 8 degrees of
freedom, and errors following the ARCH(1) process with parameters 0.3 and
0.85. Those specifications are taken from Andrews (1993). We used sample
size T = 120 as a typical one for macroeconomic time series. We performed
simulations for p equals to 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99 and 1. This range of
values of p covers some values in the stationary region, in close proximity to
the unit root, as well as in the intermediate range. The number of simulations
is equal to 1000. Some of the results are reported in Tables I and II.

All three methods achieved 95% coverage for an AR(1) model with linear
trend and normal errors for all values of p that we checked (we did not re-
port these results in the tables). Table I is intended to show that all methods
seems to be robust toward asymmetry and heavy-tailedness of the distribution
of error terms. We should also note that there is no strong leader among the
three methods. In Table II we allowed conditional heteroscedasticity. Strictly
speaking our proofs do not allow for heteroscedasticity. We can see that the
methods failed in this setup, and the coverage may fall as low as 70%.

Now we turn to subsampling. According to our results reported in Section 6
of the paper, the subsampling procedure fails to provide asymptotically correct
confidence sets. According to Andrews and Guggenberger (2007), the asymp-
totic coverage is as low as 26% for an AR (1) with a linear time trend. We would
like to know the extent to which these asymptotic results are reflected in finite
samples.

TABLE I

COVERAGE OF INTERVALS FOR THE AR COEFFICIENT IN AN AR(1) MODEL WITH A LINEAR
TREND (y; = a + bt + x, X, = px,_1 + &; SAMPLE SIZE 120)

i~ i~ g8

Andrews Stock Hansen Andrews Stock Hansen

p (1993) (1991) (1999) (1993) (1991) (1999)
0.3 0.95 0.97 0.97 0.96 0.96 0.96
0.5 0.96 0.96 0.96 0.96 0.96 0.96
0.7 0.97 0.96 0.96 0.96 0.95 0.95
0.8 0.97 0.96 0.96 0.96 0.95 0.95
0.9 0.97 0.96 0.96 0.97 0.96 0.96
0.95 0.97 0.96 0.96 0.96 0.97 0.96
0.99 0.95 0.95 0.95 0.96 0.96 0.95

1 0.95 0.96 0.96 0.96 0.95 0.96
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TABLE II

COVERAGE OF INTERVALS FOR THE AR COEFFICIENT IN AN AR (1) MODEL WITH A LINEAR
TREND (y, = a + bt + x,, X, = px,_1 + &; SAMPLE SIZE 120)

&; ~ ARCH(0.3) &; ~ ARCH(0.85)

Andrews Stock Hansen Andrews Stock Hansen
p (1993) (1991) (1999) (1993) (1991) (1999)
0.3 0.89 0.88 0.90 0.70 0.72 0.73
0.5 0.92 0.89 0.90 0.72 0.72 0.73
0.7 0.93 0.90 0.91 0.73 0.76 0.77
0.8 0.93 0.91 0.92 0.77 0.79 0.80
0.9 0.94 0.92 0.92 0.83 0.84 0.85
0.95 0.95 0.94 0.94 0.85 0.88 0.87
0.99 0.96 0.95 0.95 0.90 0.90 0.92
1 0.95 0.95 0.95 0.91 0.91 0.93

According to the proof of Theorem 4, bad coverage is expected for inter-
mediate values of p. Romano and Wolf (2001) provided some simulations re-
garding the coverage of subsampling intervals, but for a very restricted set of
values of p € {0.6,0.9,0.95,0.99, 1}. We repeated their exercise for a wider
range of p’s and for several different sample sizes T = 120, 240, 480, 960. For
each sample size we tried several block sizes. For 7' = 120 and 240, we used
the same set of block sizes as used by Romano and Wolf. For 7' = 480 and
960, we used block sizes b that approximately follow the rule proposed by Ro-
mano and Wolf: b = ¢T"2, ¢ € [0.5, 3]. For all simulations we used a model
with normal homoscedastic errors only. All results are summarized on Fig-
ure S3.

First of all, we should note that subsampling yields undercoverage for quite
a wide range of p’s. However, the amount of undercoverage is not as extreme
as predicted by Andrews and Guggenberger (2007). One more interesting as-
pect could be noted: the size property of the procedure becomes worse as the
sample size increases! According to the intuition of Theorem 4, the size distor-
tion becomes pronounced when 7/br is large, which can only be true for large
sample sizes. As for the right choice of block size, there is no clear leader:
for different ranges of p and for different 7, different block sizes serve bet-
ter.

One main conclusion of our simulation study is that we do not recommend
the use of the subsampling procedure in empirical studies to make inferences
about the persistence of a time series.

Dept. of Economics, Massachusetts Instiyute of Technology, 50 Memoriol Drive,
Cambridge, MA 02142, U.S.A.; amikushe @mit.edu.
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FIGURE S3.——Coverage of equitailed subsampling intervals with nominal level 95% for an
AR(1) model with a linear time trend and normal errors. Number of simulations 1,000.
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