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This supplemental material contains four appendices. In Appendix SA, we show the
validity of bootstrap confidence bands for general counterfactual functionals. In Ap-
pendix SB, we compare the performance of quantile and distribution regression as es-
timators of the conditional and counterfactual distribution functions in Monte Carlo
simulations. We calibrate our data generating process to fit several characteristics of
the Current Population Survey data used in Section 6 of the paper. We find that quan-
tile regression works better than distribution regression when the distribution of the
dependent variable is continuous, but it performs worse in the presence of a small and
realistic amount of rounding in the data. Appendices SC and SD complement the em-
pirical results presented in Section 6. Appendix SC contains descriptive statistics, addi-
tional results for men, and all the results for women. Appendix SD gives more details
about the variance decomposition of the composition effect into between-group and
within-group components.
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APPENDIX SA: VALIDITY OF BOOTSTRAP CONFIDENCE BANDS AND
UNIFORM CONSISTENCY OF BOOTSTRAP VARIANCE ESTIMATORS

WE CONSIDER A GENERAL COUNTERFACTUAL FUNCTIONAL

�(w)=φ
(
FY 〈j|k〉 : (j�k) ∈JK

)
(w)

and its plug-in estimator

�̂(w)=φ
(
F̂Y 〈j|k〉 : (j�k) ∈JK

)
(w)

for w ∈ W . In Sections 4 and 5 of the main paper (hereafter CFM), we estab-
lished conditions for the functional central limit theorem,

Ẑ := √
n(�̂−�) �Z in �∞(W)�

where Z is a zero-mean Gaussian process with a.s. continuous sample paths
and pointwise variance function Σ(w) = E[Z2(w)]. Let

�̂∗(w) = φ
(
F̂∗
Y 〈j|k〉 : (j�k) ∈JK

)
(w)

be the bootstrap version of �̂(w). We also gave conditions for the bootstrap
functional central limit theorem:

Ẑ∗ := √
n
(
�̂∗ − �̂

)
�P Z in �∞(W)�
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Let t̂∗1−α be the 1 − α quantile of the bootstrap version of the Kolmogorov–
Smirnov maximal t-statistic,

t̂∗ = sup
w∈W

Σ̂∗(w)−1/2
∣∣Ẑ∗(w)

∣∣�
conditional on the data. As a robust estimator of Σ(w), we consider the
rescaled squared bootstrap quantile spread,

Σ̂∗(w) := [
Ẑ∗

τ1
(w)− Ẑ∗

τ2
(w)

]2
/[Zτ1 −Zτ2]2�(SA.1)

where Ẑ∗
τ (w) is the τ quantile of Ẑ∗(w) conditional on the data, Zτ is the τ

quantile of the N(0�1), and 0 < τ2 < τ1 < 1. The bootstrap versions of the
end-point functions of the 1 − α confidence band are

�̂±∗(w) = �̂(w)± t̂∗1−αΣ̂
∗(w)1/2/

√
n�

The following lemma establishes that the bootstrap confidence band [�̂−∗(w)�

�̂+∗(w)] covers �(w) uniformly over w ∈W with asymptotic probability 1 − α.
It is based on Theorems 1 and 2, and Lemma 1 in Chernozhukov and
Fernández-Val (2005), adapted to our setting.

LEMMA SA.1—Consistency of Bootstrap Confidence Bands: Suppose that
Ẑ � Z and Ẑ∗ �P Z in �∞(W), where Z is a tight zero-mean Gaussian process
with continuous paths in W and variance function Σ(w) that is bounded away
from zero and from above uniformly over w ∈W . Then (a) the variance estimator
specified in (SA.1) is uniformly consistent,

sup
w∈W

∣∣Σ̂∗(w)−Σ(w)
∣∣ →P 0�

and (b)

lim
n→∞

P
{
�(w) ∈ [

�̂−∗(w)� �̂+∗(w)
]

for all w ∈W
} = 1 − α�

To state the proof formally, we follow the notation and definitions in van der
Vaart and Wellner (1996). Let Dn denote the data vector and let Mn be the
vector of random variables used to generate bootstrap draws or simulation
draws given Dn (this may depend on the particular resampling or simulation
method). Consider the random element Z∗

n = Zn(Dn�Mn) in a normed space D.
We say that the bootstrap law of Z∗

n consistently estimates the law of some tight
random element Z and we write Z

∗
n �P Z in D if

dBL

(
Z

∗
n�Z

) := sup
h∈BL1(D)

∣∣EMnh
(
Z

∗
n

) −Eh(Z)
∣∣ →P 0�(SA.2)
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where BL1(D) denotes the space of functions that map D to the real line with
Lipschitz norm at most 1 and where EMn denotes the conditional expectation
with respect to Mn given the data Dn.

PROOF OF LEMMA SA.1:
STEP 1: Here we establish claim (a). Note that for each w ∈ W , Z(w) ∼

N(0�Σ(w)), so that the τ quantile of Z(w) is Zτ(w)= Σ(w)1/2Zτ, and Σ(w) =
[Zτ1(w)−Zτ2(w)]2/[Zτ1 −Zτ2]2. Let

F(ν�w) := P
[
Z(w)≤ ν

] =�
(
Σ−1/2(w)ν

)
�

where � is the c.d.f. of the N(0�1). Note that w �→ Σ(w)1/2 is continuous in
w ∈W by Gaussianity of Z and a.s. continuity of its sample paths with respect
to w ∈ W . Moreover, w �→ Σ−1/2(w) is uniformly continuous on W due to the
continuity of w �→ Σ1/2(w) and Σ1/2(w) being bounded away from zero uni-
formly over W . This implies that (ν�w) �→ F(ν�w) is uniformly continuous on
(ν�w) ∈ R×W and that Zτ(w) = infν∈R{F(ν�w) ≥ τ} is uniformly continuous
in (τ�w) ∈ T ×W , where T is a compact subinterval of (0�1). In the paragraph
below, we deduce that F̂(ν�w) :=EMn1{Ẑ∗(w) ≤ ν} obeys

F̂(ν�w) →P F(ν�w) uniformly in (ν�w) ∈ R×W �(SA.3)

By Lemma 1 in Chernozhukov and Fernández-Val (2005), these properties im-
ply that

Ẑ∗
τ(w) →P Zτ(w) uniformly in (τ�w) ∈ T ×W �(SA.4)

Therefore, uniformly in w ∈W , by the continuous mapping theorem,

Σ̂∗(w)= [Ẑ∗
τ1
(w)− Ẑ∗

τ2
(w)]2

[Zτ1 −Zτ2]2
→P

[Zτ1(w)−Zτ2(w)]2

[Zτ1 −Zτ2]2
= Σ(w)�

The argument to show (SA.3) is based in part on the proof of Theorem 2
in Chernozhukov and Fernández-Val (2005). Let u �→ Kδ�ν(u) := 1(u ≤ ν) +
1(ν < u ≤ ν + δ)(ν + δ − u)/δ denote a smoothed approximation to the indi-
cator function u �→ 1(u ≤ ν), with δ > 0 denoting the smoothing parameter.
Then the collection of maps that map z ∈ �∞(W) to R, defined as Gδ = {z �→
Kδ�ν(z(w)) :ν ∈ R�w ∈ W}� is a subset of δ−1 BL1(�

∞(W)). By Ẑ∗ �P Z in
�∞(W), supg∈Gδ

|EMng(Ẑ
∗) − Eg(Z)| ≤ δ−1dBL(Ẑ

∗�Z) →P 0� Therefore, uni-
formly in w ∈W and ν ∈R,

F̂(ν�w) =EMn1
{
Ẑ∗(w) ≤ ν

} ≤ EMnKδ�ν

[
Ẑ∗(w)

] →P EKδ�ν

[
Z(w)

]
�(SA.5)

We have that F(ν�w) ≤ EKδ�ν[Z(w)] ≤ F(ν + δ�w). By uniform continuity of
F(·� ·), as δ↘ 0, EKδ�ν[Z(w)] → F(ν�w) uniformly in (ν�w) ∈ R×W . There-
fore, we conclude that F̂(ν�w) ≤ F(ν�w)+oP(1) uniformly in (ν�w) ∈ R×W .



4 V. CHERNOZHUKOV, I. FERNÁNDEZ-VAL, AND B. MELLY

Arguing similarly, we can also deduce that F̂(ν�w) ≥ F(ν�w) + oP(1) uni-
formly in (ν�w) ∈ R×W .

STEP 2: Here we establish that

t̂∗ �P sup
w∈W

Σ(w)−1/2
∣∣Z(w)

∣∣ =: t

in R. Let t̃∗ = supw∈W Σ(w)−1/2|Ẑ∗(w)|. The collection of functions that
map elements z ∈ �∞(W) to the real line, defined as G = {z �→ gm(z) :=
m(‖Σ−1/2(·)|z(·)|‖W) :m ∈ BL1(R)}� is a subset of M · BL1(�

∞(W)), where
M = sup{Σ−1/2(w) :w ∈ W}, since |gm(z) − gm(z̃)| ≤ M(|z − z̃|W ∧ 1). There-
fore, dBL(̃t

∗� t) ≤ MdBL(Ẑ
∗�Z) →P 0� where the latter holds by the defi-

nition of Ẑ∗ �P Z. Moreover, t̂∗ = t̃∗ + oP(1)� since uniformly over W ,
Σ̂∗(w)−1/2|Ẑ∗(w)| = Σ(w)−1/2|Ẑ∗(w)| + [Σ̂∗(w)−1/2 − Σ(w)−1/2]|Ẑ∗(w)| =
Σ(w)−1/2|Ẑ∗(w)| + oP(1) by part (a) of the lemma. Hence t̂∗ �P t follows from

dBL

(̂
t∗� t

) ≤ dBL

(̃
t∗� t

) +EMn

[∣∣̃t∗ − t̂∗
∣∣ ∧ 1

] →P 0�

where EMn[|̃t∗ − t̂∗| ∧ 1] →P 0 by Markov inequality and E[EMn[|̃t∗ − t̂∗| ∧ 1] ≤
E[|oP(1)| ∧ 1] → 0.

STEP 3: Here we show that the limit t is a continuous random variable and
t̂∗1−α →P t1−α, where t1−α is the 1 − α quantile of t. The continuity of the distri-
bution of t follows from Theorem 11.1 of Davydov, Lifshits, and Smorodina
(1998) using that Σ(w) is nondegenerate over W . The claim t̂∗1−α →P t1−α fol-
lows from Step 2, because by the same argument as in Step 1, t̂∗ �P t in R and
t having a continuous distribution function implies convergence of quantiles,
namely t̂∗1−α →P t1−α. We also remark that this part of the proof is standard; see,
for example, Beran (1984).

STEP 4: Here we show claim (b) of the lemma. The argument is standard
(e.g., Beran (1984)). Let t̂ = supw∈W Σ̂∗(w)−1/2|Ẑ(w)|. By the continuous map-
ping theorem, t̂ � t in R. The event{

�(w) ∈ [
�̂−∗(w)� �̂+∗(w)

]
for all w ∈W

}
is equivalent to the event {̂t ≤ t̂∗1−α}. By t̂∗1−α →P t1−α in Step 3, for any ε > 0 and
all sufficiently large n, t1−α − ε < t̂∗1−α < t1−α + ε� Consequently, P{̂t ≤ t1−α −
ε} + o(1)≤ P{̂t ≤ t̂∗1−α} ≤ P{̂t ≤ t1−α + ε} + o(1)� Taking limits as n → ∞ yields

P{t ≤ t1−α − ε} ≤ lim inf
n→∞

P
{̂
t ≤ t̂∗1−α

}
≤ lim sup

n→∞
P
{̂
t ≤ t̂∗1−α

} ≤ P{t ≤ t1−α + ε}�

where we use that t̂ � t in R and continuity of the distribution function of t.
The result follows from taking ε → 0, using the continuity of the distribution
of t, and P{t ≤ t1−α} = 1 − α. Q.E.D.
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APPENDIX SB: COMPARISON OF QUANTILE AND DISTRIBUTION
REGRESSION: A SIMULATION EXERCISE

In this appendix, we compare quantile and distribution regression as estima-
tors of the conditional and counterfactual distribution functions.

SB.1. Data Generating Processes

We calibrate the data generating processes to fit several characteristics of
the CPS data sets used in the application in Section 6 of CFM. In particular,
we draw the covariate vector X88 from the empirical distribution in 1988 (con-
taining 74,661 observations). We consider a model with 8 covariates: a dummy
variable for living in metropolitan areas, a dummy variable for part-time work,
a dummy variable for not being white, experience, experience squared, a union
indicator, education and education squared. These covariates are only a subset
of the covariates that we include in the application because we want to con-
sider samples of moderate sizes, which would lead to frequent multicollinearity
problems with the 45 covariates used in the application. To estimate a counter-
factual distribution, we also draw independent samples of the covariate vec-
tor X79 from the empirical distribution in 1979 (containing 21,483 observa-
tions).

We consider three different data generating processes (DGP) for the condi-
tional distribution of the outcome Y88 given X88. We start with a very simple
DGP and then show that the conclusions do not change with more realistic
models. DGP 1 is the linear location shift model

Yi =X ′
iβ+ ui� i = 1� � � � � n�

where the errors ui are i.i.d. logistically distributed. The coefficient vector β
is calibrated to the ordinary least squares (OLS) estimate of the log hourly
wage on the covariate vector using the whole 1988 CPS sample. Similarly, the
variance of ui is calibrated to the OLS residual variance.

DGP 2 is the same as DGP 1 except that the errors ui are drawn i.i.d. from
the empirical distribution of the OLS residuals in the whole sample.

DGP 3 is the linear location-scale shift model,

Yi =X ′
iβ+ (

X ′
iδ

) · ui� i = 1� � � � � n�

where the errors ui are randomly drawn from the empirical distribution of the
OLS residuals in the whole sample rescaled to have variance 1. The coefficient
vector β is the same as in the first two DGPs. The coefficient vector δ is cali-
brated to its OLS estimate obtained by regressing the squared OLS residuals
on X88. (We checked that X ′

iδ > 0 for i = 1� � � � � n.)
Our analysis of the wage distribution in Section 6 reveals a considerable

amount of discreteness in the data. A natural mass point is found at the level
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FIGURE SB.1.—Amount of discreteness in the real and simulated data.

of the minimum wage, but other mass points are observed at different lev-
els. Rounded hourly wages are natural focal points in wage negotiation, which
could explain the presence of mass points. To analyze the effect of rounding on
the quality of the estimation, we consider a version of the three DGPs where
wages are rounded to the next dollar with probability 1/3.

Figure SB.1 compares the amount of rounding present in the wage data in
1988 and the amount of rounding implied by our data generating process.1 It
appears that the simulated data match very well the probability that the wage
takes exactly one of the ten most frequent values. For instance, the observed
wages take one of the two most frequent values with probability 8.7%, while
this probability is 8.6% for the simulated data. Our data generating process
does not round the dependent variable enough when we consider the values
that are not among the ten most frequent values. In this sense, the discreteness
implied by our DGPs is more modest than that observed in the data.

1We plot these probabilities for DGP 1. The probabilities are very similar for the two other
DGPs.
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SB.2. Estimands of Interest and Estimators

The first estimand of interest is the conditional distribution function of Y88

given X88,

FY88|X88(y|x) for (y�x) ∈YX �

where YX is the joint support of Y88 and X88. We are interested in the condi-
tional distribution because this quantity is often of direct economic interest and
it is the first step in the estimation of the counterfactual distributions. Our sec-
ond and main estimand is the counterfactual distribution obtain by integrating
this distribution over the empirical marginal distribution of X in 1979:

FY 〈88|79〉(y)=
∫
X
FY88|X88(y|x)dFX79(x)�

We implement the distribution regression estimator using the logistic link
function. For 500 different cutoff values y located at equidistant marginal
quantiles of Y88, we regress 1(Y88 ≤ y) on X88 using a linear logit regression.
The estimated conditional distribution is obtained as

F̂DR
Y88|X88

(y|x)= Λ
(
x′β̂(y)

)
�

where Λ(·) is the logistic distribution function. Since this estimated conditional
distribution function may be nonmonotonic in y , we also apply the mono-
tonization method of Chernozhukov, Fernández-Val, and Galichon (2010)
based on rearrangement. The rearranged c.d.f. is2

F̂∗
Y88|X88

(y|x)= inf
{
u :

∫ ∞

0
1
(
F̂DR
Y88|X88

(t|x)≤ u
)
dt ≥ y

}
�

To implement the quantile estimator, we estimate 500 linear quantile regres-
sions of Y88 on X88 (Koenker and Bassett (1978)) and obtain

Q̂Y88|X88(τ|x) = x′β̂(τ) for τ = 0�001� � � � �0�999�

We invert this estimated quantile function to obtain the c.d.f. using

F̂QR
Y88|X88

(y|x)= 1
1000

+
∫ 999/1000

1/1000
1
(
Q̂Y88|X88(u|x) ≤ y

)
du�

The counterfactual distribution of interest, FY 〈88|79〉(y), is estimated by aver-
aging the estimator of the conditional distribution in 1988 over the covariate

2This expression is simplified by the fact that Y is nonnegative.
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distribution in 1979, that is,

F̂Y 〈88|79〉(y)= 1
n

n∑
i=1

F̂Y88|X88(y|X79�i)�

where F̂Y88|X88 is F̂DR
Y88|X88

, F̂∗
Y88|X88

, or F̂QR
Y88|X88

. Thus, two independent samples
of size n are used to estimate this counterfactual distribution: n observations
drawn from (X88�Y88) to obtain F̂Y88|X88 and n observations drawn from X79 to
obtain (X79�1� � � � �X79�n)

SB.3. Results

We measure the performance of the estimators by the integrated mean
squared error (MSE) and the integrated Anderson–Darling weighted MSE.
The MSEs for the counterfactual and conditional distributions are∫

Y

(
F̂Y 〈88|79〉(y)− FY 〈88|79〉(y)

)2
dFY 〈88|79〉(y)�∫

X

∫
Y

(
F̂Y88|X88(y|x)− FY88|X88(y|x)

)2
dFY88|X88(y|x)dFX88(x)�

Similarly, the Anderson–Darling weighted MSEs are

∫
Y

(F̂Y 〈88|79〉(y)− FY 〈88|79〉(y))2

FY 〈88|79〉(y)(1 − FY 〈88|79〉(y))
dFY 〈88|79〉(y)�

∫
X

∫
Y

(F̂Y88|X88(y|x)− FY88|X88(y|x))2

FY88|X88(y|x)(1 − FY88|X88(y|x))
dFY88|X88(y|x)dFX88(x)�

These integrals are approximated numerically by averages over 1000 points
of x drawn randomly from the distribution of X88 and over 100 points of y
corresponding to 100 quantiles of Y88 on a uniform grid between 0 and 1.

Tables SB.I–SB.VI report the results. Since the relative efficiency of the es-
timators does not vary when we consider the MSE or the weighted MSE, we
will comment in detail on the MSE results only. This similarity means that the
relative performance of the estimators does not change much when we move
from the center of the distribution to the tails.

Tables SB.I and SB.II provide the detailed results for DGP 1 in the absence
and in the presence of rounding for 100, 1000, and 10,000 observations. When
the dependent variable is continuous, the quantile regression estimator pro-
duces the most accurate estimates for both the counterfactual and the condi-
tional distributions, and for all sample sizes considered. In this DGP, all esti-
mators are correctly specified. The distribution regression estimator performs
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TABLE SB.I

SQUARE ROOT MSE OF THE DISTRIBUTION AND QUANTILE ESTIMATORS FOR THE DGP 1a

No Rounding Rounding With Pr = 1/3

Estimand No. of Obs. F̂DR
Y F̂∗

Y F̂QR
Y F̂DR

Y F̂∗
Y F̂QR

Y

Counterfactual 100 5�09 4�73 3�96 5�53 5�16 4�50
distribution 1000 1�42 1�41 1�19 1�54 1�54 1�86

10,000 0�46 0�46 0�39 0�50 0�50 1�40

Conditional 100 18�76 16�11 12�41 20�35 17�56 13�68
distribution 1000 5�11 4�94 3�86 5�55 5�38 4�66

10,000 1�57 1�57 1�23 1�72 1�71 2�44

aAll numbers are multiplied by 1000.

worse because it binarizes the information contained in the value of the de-
pendent variable. Rearranging the estimates always improves the performance
of the distribution regression estimator, although this improvement vanishes
when the sample size increases.

The right panels of Tables SB.I and SB.II provide the results in the presence
of discrete mass points in the wage distribution. Rounding one-third of the
wages to the next dollar is enough to reverse the order between the MSE of
the quantile and distribution regression estimators, when the number of obser-
vations is above 100 for the counterfactual distribution and when the number
of observations is above 1000 for the conditional distribution. The rounding
introduces a misspecification of the linear quantile regression model while it
does not affect the validity of the logit model for the conditional distribution.
Thus, the linear quantile regression estimator is a better estimator when the
dependent variable is continuous, but a realistic amount of rounding is enough
to reverse the results.

TABLE SB.II

SQUARE ROOT ANDERSON–DARLING WEIGHTED MSE OF THE DISTRIBUTION AND QUANTILE
ESTIMATORS FOR THE DGP 1a

No Rounding Rounding With Pr = 1/3

Estimand No. of Obs. F̂DR
Y F̂∗

Y F̂QR
Y F̂DR

Y F̂∗
Y F̂QR

Y

Counterfactual 100 14�80 11�55 9�64 16�35 12�60 10�95
distribution 1000 3�48 3�44 2�86 3�78 3�75 4�36

10,000 1�12 1�12 0�93 1�22 1�22 3�22

Conditional 100 54�51 38�40 30�39 59�87 42�03 33�58
distribution 1000 12�85 11�85 9�46 14�05 12�95 11�28

10,000 3�78 3�76 3�03 4�14 4�12 5�64

aAll numbers are multiplied by 1000.
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TABLE SB.III

SQUARE ROOT MSE OF THE DISTRIBUTION AND QUANTILE ESTIMATORS FOR THE DGP 2a

No Rounding Rounding With Pr = 1/3

Estimand No. of Obs. F̂DR
Y F̂∗

Y F̂QR
Y F̂DR

Y F̂∗
Y F̂QR

Y

Counterfactual 100 5�04 4�69 3�99 5�46 5�09 4�5
distribution 1000 1�44 1�43 1�19 1�56 1�55 1�8

10,000 0�46 0�46 0�39 0�5 0�5 1�33

Conditional 100 18�62 15�9 12�29 20�24 17�38 13�54
distribution 1000 5�11 4�93 3�87 5�56 5�38 4�62

10,000 1�62 1�61 1�23 1�77 1�76 2�32

aAll numbers are multiplied by 1000.

One may argue that DGP 1 favors the distribution regression estimator be-
cause the error terms are logistically distributed. The results for DGP 2 re-
ported in Tables SB.III and SB.IV show that this ingredient is not crucial.
Replacing the logistic distribution with the empirical distribution of the OLS
residuals in the whole population does not change qualitatively the results.

DGP 3 relaxes the independence assumption between regressors and er-
rors by introducing linear multiplicative heteroscedasticity. In the absence of
rounding, the linear quantile regression estimator is still correctly specified,
while the logit regression is doubly misspecified (nonlogistic error terms and
heteroscedasticity). In this sense, DGP 3 favors the quantile regression esti-
mator. Despite this, the results for the counterfactual distribution in Tables
SB.V and SB.VI show again that the distribution regression estimator per-
forms better than quantile regression in the presence of rounding and at least
1000 observations. The difference is that now quantile regression is a better
estimator of the conditional distribution even in the presence of rounding. In

TABLE SB.IV

SQUARE ROOT ANDERSON–DARLING WEIGHTED MSE OF THE DISTRIBUTION AND QUANTILE
ESTIMATORS FOR THE DGP 2a

No Rounding Rounding With Pr = 1/3

Estimand No. of Obs. F̂DR
Y F̂∗

Y F̂QR
Y F̂DR

Y F̂∗
Y F̂QR

Y

Counterfactual 100 14�51 11�45 9�66 16�02 12�48 10�95
distribution 1000 3�51 3�47 2�87 3�83 3�79 4�28

10,000 1�12 1�12 0�94 1�23 1�23 3�11

Conditional 100 54�05 38�00 30�20 59�67 41�73 33�37
distribution 1000 12�84 11�87 9�49 14�11 13�01 11�23

10,000 3�88 3�87 3�04 4�28 4�26 5�43

aAll numbers are multiplied by 1000.
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TABLE SB.V

SQUARE ROOT MSE OF THE DISTRIBUTION AND QUANTILE ESTIMATORS FOR THE DGP 3a

No Rounding Rounding With Pr = 1/3

Estimand No. of Obs. F̂DR
Y F̂∗

Y F̂QR
Y F̂DR

Y F̂∗
Y F̂QR

Y

Counterfactual 100 4�98 4�63 3�98 5�43 5�06 4�52
distribution 1000 1�43 1�42 1�18 1�55 1�54 1�86

10,000 0�5 0�5 0�39 0�55 0�55 1�42

Conditional 100 18�94 16�16 12�27 20�62 17�68 13�56
distribution 1000 5�75 5�58 3�9 6�19 6�03 4�74

10,000 3�02 3�02 1�29 3�17 3�17 2�54

aAll numbers are multiplied by 1000.

our application, the main objects of interest are counterfactual distributions,
we have more than 20,000 observations in one period and more than 70,000 in
the other, and the amount of rounding is at least as high as in the simulations.
Therefore, even if the true DGP corresponded to DGP 3, we would prefer the
distribution regression approach.

Since the presence of mass points in the distribution of the dependent vari-
able penalizes the relative performance of the quantile regression estimator,
we considered applying a small random noise to the dependent variable (also
called dithering or jittering). This noise artificially restores the continuity of
the distribution. The results, however, showed no improvement (even a small
deterioration) in the MSE of the quantile regression estimator. On the other
hand, it may be a way to restore the validity of the inference procedures.

TABLE SB.VI

SQUARE ROOT ANDERSON–DARLING WEIGHTED MSE OF THE DISTRIBUTION AND QUANTILE
ESTIMATORS FOR THE DGP 3a

No Rounding Rounding With Pr = 1/3

Estimand No. of Obs. F̂DR
Y F̂∗

Y F̂QR
Y F̂DR

Y F̂∗
Y F̂QR

Y

Counterfactual 100 14�35 11�27 9�63 15�77 12�33 10�96
distribution 1000 3�46 3�42 2�85 3�76 3�73 4�40

10,000 1�19 1�19 0�93 1�29 1�29 3�30

Conditional 100 54�95 39�01 30�54 60�41 42�80 33�76
distribution 1000 14�64 13�74 9�67 15�76 14�81 11�58

10,000 7�66 7�65 3�31 7�98 7�97 6�00

aAll numbers are multiplied by 1000.
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SB.4. Conclusion

We draw two main lessons from this section. First, the quantile regression
estimator is more accurate than the distribution regression estimator for data
generating processes that satisfy the assumptions of both models. Our results
agree with the recent simulations of Koenker (2010). Second, introducing a
realistic amount of discreteness of the dependent variable is enough to revert
the results. The distribution regression approach is naturally robust to such a
ubiquitous phenomenon, while quantile regression is not.

Quantile and distribution regression make different parametric assump-
tions. It is, therefore, easy to find data generating processes for which one
estimator dominates the other because of misspecification. This was not the
goal of this simulation exercise, but this is an empirical question, the response
to which changes from one case to the other. In our application, for instance,
we think that it is important to allow for different coefficients below and above
the minimum wage. Moreover, the misspecification tests reported in Rothe and
Wied (2012) reject the quantile regression, but not the distribution regression
estimator for a similar data set.

On the bright side, both distribution regression (independently of the link
function) and quantile regression give numerically identical results in saturated
models. Therefore, the choice between distribution or quantile regression be-
comes immaterial if we have a flexible enough specification. In our application,
while the results are significantly different statistically, their economic interpre-
tation remains extremely similar.

APPENDIX SC: ADDITIONAL EMPIRICAL RESULTS

Table SC.I contains descriptive statistics for the data sets used in CFM and
in this appendix. Between 1979 and 1988, the average real wage decreased for
men while it increased for women. The level of potential experience decreased
because of the entry of the baby-boom generation into the labor market and
because of longer education. Educational attainment increased clearly over the
period. As is well known, de-unionization was important with a 11 percent fall
in union members for men and 5 percent for women. The rise of the service
sector is another remarkable change that took place during this period.

Figure SC.1 presents robustness checks with respect to the link functions
used for the distribution regression estimation. The differences between the es-
timates obtained with the logistic, normal, uniform (linear probability model),
Cauchy, and complementary log–log link functions are so modest that the lines
are almost indistinguishable.

Table SC.II and Figure SC.2 present robustness checks with respect to the
wage mechanism below the minimum wage. The assumptions about the mini-
mum wage are particularly delicate, since the mechanism that generates wages
strictly below this level is not clear; it could be measurement error, noncov-
erage, or noncompliance with the law. To check the robustness of the results
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TABLE SC.I

SUMMARY STATISTICSa

Males Females

Variable 1979 1988 1979 1988

No. of obs. 21,483 74,661 16,911 70,089
Wage 7�24 (3�71) 7�01 (4�32) 4�75 (2�39) 5�05 (2�99)
Education 12�44 (2�98) 12�95 (2�80) 12�47 (2�48) 13�02 (2�44)
Experience 18�69 (13�55) 18�02 (12�25) 18�28 (13�66) 17�81 (12�39)
Union 31�77 (46�56) 20�58 (40�43) 17�21 (37�75) 12�65 (33�24)
Primary sector 4�59 (20�93) 3�81 (19�14) 1�20 (10�89) 1�06 (10�22)
Secondary sector 39�99 (48�99) 34�90 (47�67) 19�06 (39�28) 15�20 (35�90)
Tertiary sector 55�42 (49�71) 61�29 (48�71) 79�74 (40�19) 83�74 (36�90)
Part-time 6�93 (25�39) 10�55 (30�73) 22�20 (41�56) 25�30 (43�47)
Non-white 9�79 (29�72) 11�30 (31�66) 13�09 (33�73) 13�68 (34�37)
SMSA 59�17 (49�15) 73�09 (44�35) 60�84 (48�81) 73�72 (44�02)

aMean of selected variables. The standard deviations are reported in parentheses. When the variable is binary, the
results are reported in percentage.

FIGURE SC.1.—Comparison of the distribution regression estimates of the quantile effects
based on five different link functions: logistic, normal, uniform, Cauchy and complementary
log-log.
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TABLE SC.II

DECOMPOSING CHANGES IN MEASURES OF WAGE DISPERSION: MEN, CENSORED MODELSa

Effect of

Statistic Total Change Minimum Wage Unions Individual Attributes Coefficients

CDR:
Standard deviation 8�2 (0�3) 3�3 (0�0) 0�6 (0�0) 1�9 (0�2) 2�4 (0�2)

40�7 (1�4) 7�9 (0�5) 22�5 (1�8) 28�9 (2�4)

90–10 21�5 (1�0) 11�2 (0�1) 0�0 (0�0) 9�2 (0�8) 1�1 (1�3)
52�1 (2�4) 0�0 (0�1) 42�6 (4�4) 5�3 (5�9)

50–10 11�3 (1�4) 11�2 (0�1) −2�0 (1�0) 5�1 (0�4) −3�1 (1�1)
99�6 (14�1) −17�9 (11�2) 45�5 (8�3) −27�2 (14�0)

90–50 10�2 (1�2) 0�0 (0�0) 2�0 (1�0) 4�0 (0�8) 4�2 (1�1)
0�0 (0�0) 19�7 (8�4) 39�3 (8�8) 41�0 (9�8)

75–25 15�4 (1�1) 0�0 (0�0) 4�1 (1�0) 0�3 (1�3) 11�1 (1�2)
0�0 (0�0) 26�5 (6�2) 1�7 (8�6) 71�8 (8�7)

95–5 36�4 (2�1) 26�4 (0�7) 0�0 (0�6) 8�5 (1�1) 1�4 (1�5)
72�7 (3�8) 0�0 (1�5) 23�4 (2�7) 3�9 (4�0)

Gini coefficient 4�2 (0�1) 1�6 (0�0) 0�4 (0�0) 0�3 (0�1) 1�8 (0�1)
37�9 (1�1) 10�7 (0�5) 7�1 (1�6) 44�2 (1�6)

CQR:
Standard deviation 9�0 (0�3) 4�1 (0�0) 0�3 (0�0) 1�8 (0�1) 2�8 (0�2)

45�3 (1�5) 3�2 (0�5) 20�0 (1�6) 31�4 (2�2)

90–10 22�3 (1�1) 14�2 (0�4) −0�5 (0�1) 7�2 (0�4) 1�4 (1�1)
63�6 (3�4) −2�2 (0�6) 32�3 (2�8) 6�2 (5�1)

50–10 9�5 (0�9) 14�2 (0�4) −1�8 (0�1) 4�6 (0�4) −7�5 (0�9)
149�2 (16�7) −18�7 (3�0) 48�0 (9�0) −78�5 (21�6)

90–50 12�7 (0�7) 0�0 (0�0) 1�3 (0�1) 2�6 (0�3) 8�8 (0�5)
0�0 (0�0) 10�1 (1�0) 20�6 (2�4) 69�3 (2�5)

75–25 12�7 (0�6) 0�0 (0�0) 1�7 (0�1) 2�0 (0�4) 9�1 (0�5)
0�0 (0�0) 13�0 (1�2) 15�5 (3�0) 71�4 (3�1)

95–5 39�2 (0�8) 30�6 (0�0) −0�5 (0�1) 7�4 (0�5) 1�6 (0�8)
78�1 (1�8) −1�2 (0�3) 18�9 (1�2) 4�2 (2�1)

Gini coefficient 4�5 (0�1) 1�9 (0�0) 0�3 (0�0) 0�3 (0�1) 2�1 (0�1)
42�2 (1�1) 5�9 (0�4) 6�1 (1�4) 45�8 (1�4)

aCDR and CQR denote censored distribution regression and censored quantile regression, respectively. The cen-
sored logit distribution regression and the censored linear quantile regression estimators have been applied. All num-
bers are in percentages. Bootstrapped standard errors with 100 repetitions are given in parentheses. The second line
in each cell indicates the percentage of total variation.

to the DFL assumptions about the minimum wage and to our semiparamet-
ric model of the conditional distribution, we reestimate the decomposition us-
ing censored linear quantile regression and censored distribution regression
with a logit link, censoring the wage data at the level of the minimum wage.
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FIGURE SC.2.—Comparison of the distribution regression, censored distribution regression
and censored quantile regression estimates of the quantile effects.

For censored quantile regression, we use Powell’s (1986) censored quantile
regression estimated using Chernozhukov and Hong’s (2002) algorithm. For
censored distribution regression, we simply censor to zero the distribution re-
gression estimates of the conditional distributions below the minimum wage
and recompute the functionals of interest. Overall, we find that the results are
very similar for the quantile and distribution regressions, and they are not very
sensitive to the censoring. Table SC.III shows that reversing the order of the
factors to (i) labor force composition, (ii) de-unionization, (iii) minimum wage,
and (iv) wage structure has little qualitative effect.

We present our results for female workers in Tables SC.IV and SC.V as well
as Figures SC.3–SC.7. Table SC.IV reports the decomposition of the changes
in various measures of wage dispersion between 1979 and 1988 estimated us-
ing logit distribution regressions. Table SC.V reports the results of the same
decomposition estimated using the censored distribution regression and the
censored quantile regression estimators. Figures SC.3–SC.5 refine these re-
sults by presenting estimates and 95 percent simultaneous confidence bands
for quantile, distribution, and Lorenz effects. The procedures used are exactly
the same as were used to produce the tables and figures for men. Figures SC.6
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TABLE SC.III

REVERSING THE ORDER OF THE DECOMPOSITIONa

Effect of

Statistic Total Change Individual Attributes Unions Minimum Wage Coefficients

Men:
Standard deviation 8�0 (0�3) 0�9 (0�2) 1�5 (0�1) 2�8 (0�1) 2�7 (0�3)

11�4 (2�3) 19�2 (1�0) 35�3 (1�5) 34�1 (2�5)

90–10 21�5 (1�1) 0�4 (1�2) 8�8 (1�2) 11�2 (0�3) 1�1 (1�3)
1�8 (5�7) 40�7 (5�7) 52�1 (3�1) 5�3 (5�9)

50–10 11�3 (1�4) 2�5 (1�5) 0�7 (1�2) 11�2 (0�3) −3�1 (1�1)
21�8 (12�6) 5�8 (11�6) 99�6 (15�1) −27�1 (15�2)

90–50 10�2 (1�2) −2�1 (1�1) 8�1 (0�8) 0�0 (0�0) 4�2 (1�3)
−20�1 (11�9) 79�1 (10�6) 0�0 (0�0) 41�0 (10�3)

75–25 15�4 (1�0) 6�4 (1�2) −2�1 (1�3) 0�0 (0�0) 11�1 (1�1)
41�6 (6�6) −13�4 (9�0) 0�0 (0�0) 71�8 (8�3)

95–5 33�0 (2�0) 2�6 (1�5) 5�9 (1�1) 23�0 (0�8) 1�4 (1�3)
7�9 (4�1) 17�9 (3�5) 69�9 (4�0) 4�3 (4�0)

Gini coefficient 4�1 (0�1) −0�3 (0�1) 1�0 (0�0) 1�3 (0�0) 2�0 (0�1)
−6�8 (2�4) 24�1 (1�0) 32�4 (1�4) 50�4 (2�0)

Women:
Standard deviation 10�9 (0�4) 4�5 (0�2) 0�0 (0�0) 4�0 (0�2) 2�5 (0�3)

41�1 (1�9) −0�2 (0�2) 36�5 (1�7) 22�6 (2�6)

90–10 39�8 (1�4) 11�2 (0�7) 0�0 (0�4) 27�2 (0�3) 1�3 (1�2)
28�2 (1�6) 0�0 (1�0) 68�4 (2�4) 3�4 (2�8)

50–10 33�0 (0�7) 7�9 (0�9) −0�8 (0�5) 27�2 (0�3) −1�4 (0�8)
24�1 (2�5) −2�4 (1�7) 82�6 (2�2) −4�3 (2�4)

90–50 6�8 (1�4) 3�3 (0�8) 0�8 (0�5) 0�0 (0�0) 2�8 (1�4)
47�9 (13�3) 11�7 (7�0) 0�0 (0�0) 40�3 (10�1)

75–25 12�8 (0�9) 2�8 (0�8) 0�0 (0�5) 5�5 (0�1) 4�5 (0�8)
22�0 (5�4) 0�0 (3�8) 43�0 (3�1) 35�0 (5�1)

95–5 38�8 (1�7) 17�4 (0�9) 0�0 (0�3) 9�0 (2�7) 12�4 (2�4)
44�8 (2�7) 0�0 (0�9) 23�3 (6�4) 31�9 (6�1)

Gini coefficient 5�1 (0�2) 0�7 (0�1) 0�1 (0�0) 2�8 (0�1) 1�5 (0�2)
13�9 (1�9) 1�1 (0�3) 55�9 (2�4) 29�1 (2�5)

aThe logit distribution regression model has been applied. All numbers are in percentages. Bootstrapped standard
errors with 100 repetitions are given in parentheses. The second line in each cell indicates the percentage of total
variation.

and SC.7 show that these results are not sensitive to the choice of the estimator
of the conditional distribution.

Most of the patterns for women are similar to men, although there are a few
interesting differences in the strength of the effects that explain the changes
in inequality. First, de-unionization is virtually irrelevant for women. This is
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TABLE SC.IV

DECOMPOSING CHANGES IN MEASURES OF WAGE DISPERSION: WOMEN,
DISTRIBUTION REGRESSIONa

Effect of

Statistic Total Change Minimum Wage Unions Individual Attributes Coefficients

Standard deviation 10�9 (0�4) 3�8 (0�1) 0�4 (0�0) 4�7 (0�2) 2�1 (0�3)
34�9 (1�6) 3�2 (0�4) 42�8 (1�6) 19�1 (2�5)

90–10 39�8 (1�1) 23�0 (0�3) 0�9 (0�5) 14�5 (0�7) 1�3 (0�9)
57�9 (1�5) 2�3 (1�2) 36�4 (1�6) 3�4 (2�1)

50–10 33�0 (0�8) 23�0 (0�3) 0�0 (0�1) 11�3 (0�4) −1�4 (0�8)
69�9 (1�9) 0�0 (0�4) 34�4 (1�4) −4�3 (2�8)

90–50 6�8 (1�3) 0�0 (0�0) 0�9 (0�5) 3�1 (0�7) 2�8 (1�3)
0�0 (0�0) 13�6 (7�0) 46�0 (11�6) 40�3 (9�7)

75–25 12�8 (0�9) 0�0 (0�0) 0�0 (0�5) 8�3 (0�2) 4�5 (0�8)
0�0 (0�0) 0�0 (3�5) 65�0 (5�1) 35�0 (4�3)

95–5 38�8 (1�6) 16�8 (0�6) 0�7 (0�7) 16�4 (2�0) 5�0 (2�0)
43�2 (2�4) 1�9 (2�0) 42�1 (4�9) 12�8 (5�1)

Gini coefficient 5�1 (0�2) 2�4 (0�1) 0�2 (0�0) 1�3 (0�1) 1�2 (0�1)
47�3 (2�0) 3�5 (0�4) 24�9 (1�2) 24�2 (2�3)

aThe logit distribution regression model has been applied. All numbers are in percentages. Bootstrapped standard
errors with 100 repetitions are given in parentheses. The second line in each cell indicates the percentage of total
variation.

due to the fact that the proportion of unionized female workers has always
been small. The decline in the unionization rate is smaller for females than for
males in absolute value. In addition, unions do not compress the conditional
female wage distribution, while they do reduce the conditional variance of the
male wage distribution. Second, the decrease in the real value of the minimum
wage explains a larger increase in wage inequality for women than for men.
The reason is that the proportion of workers at or below the minimum wage
is higher for female than for male workers. Thus, mechanically, women will be
more affected by a decrease in the value of the minimum wage. Third, changes
in individual attributes generally have a more important effect than changes in
the wage structure, which is not true for men. The robustness checks using the
censored distribution and quantile models as well as the different link functions
for the distribution regression estimators confirm these results.

APPENDIX SD: VARIANCE DECOMPOSITION INTO BETWEEN-GROUP AND
WITHIN-GROUP COMPONENTS

By the law of total variance, we can decompose the variance as

Var(Y) = Var
[
E(Y |X)

] +E
[
Var(Y |X)

]
�
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TABLE SC.V

DECOMPOSING CHANGES IN MEASURES OF WAGE DISPERSION: WOMEN, CENSORED MODELSa

Effect of

Statistic Total Change Minimum Wage Unions Individual Attributes Coefficients

CDR:
Standard deviation 12�7 (0�4) 5�6 (0�0) 0�3 (0�0) 5�1 (0�2) 1�7 (0�3)

44�1 (1�2) 2�2 (0�3) 39�9 (1�4) 13�8 (2�2)

90–10 43�2 (1�1) 26�4 (0�3) 0�9 (0�5) 14�5 (0�7) 1�3 (0�9)
61�2 (1�5) 2�2 (1�1) 33�5 (1�5) 3�1 (1�9)

50–10 36�4 (0�8) 26�4 (0�3) 0�0 (0�1) 11�3 (0�4) −1�4 (0�8)
72�7 (1�8) 0�0 (0�4) 31�2 (1�2) −3�9 (2�5)

90–50 6�8 (1�3) 0�0 (0�0) 0�9 (0�5) 3�1 (0�7) 2�8 (1�3)
0�0 (0�0) 13�6 (7�0) 46�0 (11�6) 40�3 (9�7)

75–25 12�8 (0�9) 0�0 (0�0) 0�0 (0�5) 8�3 (0�2) 4�5 (0�8)
0�0 (0�0) 0�0 (3�5) 65�0 (5�1) 35�0 (4�3)

95–5 52�7 (1�2) 30�6 (0�0) 0�7 (0�3) 16�7 (0�8) 4�7 (1�1)
58�1 (1�5) 1�4 (0�6) 31�6 (1�4) 8�8 (0�2)

Gini coefficient 6�4 (0�1) 3�6 (0�0) 0�1 (0�0) 1�7 (0�1) 0�9 (0�1)
57�1 (1�3) 2�0 (0�2) 27�1 (1�0) 13�8 (1�8)

CQR:
Standard deviation 12�9 (0�3) 6�2 (0�0) 0�3 (0�1) 4�5 (0�2) 1�8 (0�3)

48�2 (1�3) 2�6 (0�4) 35�2 (1�5) 13�9 (2�2)

90–10 48�5 (0�9) 30�6 (0�0) 0�7 (0�2) 14�6 (0�6) 2�5 (0�9)
63�2 (1�2) 1�5 (0�3) 30�2 (1�1) 5�1 (1�7)

50–10 37�2 (0�6) 30�6 (0�0) −0�3 (0�1) 10�9 (0�5) −4�1 (0�5)
82�3 (1�3) −0�7 (0�2) 29�4 (1�3) −10�9 (1�6)

90–50 11�3 (0�8) 0�0 (0�0) 1�0 (0�1) 3�7 (0�4) 6�5 (0�8)
0�0 (0�0) 9�1 (1�1) 32�8 (3�8) 58�1 (4�0)

75–25 15�2 (0�8) 0�0 (0�0) 0�8 (0�1) 11�9 (0�6) 2�5 (0�8)
0�0 (0�0) 5�6 (0�7) 78�1 (4�9) 16�4 (4�9)

95–5 50�1 (1�2) 30�6 (0�0) 1�0 (0�2) 15�1 (0�7) 3�4 (1�1)
61�1 (1�4) 2�0 (0�4) 30�2 (1�2) 6�7 (2�0)

Gini coefficient 6�5 (0�1) 4�0 (0�0) 0�1 (0�0) 1�5 (0�1) 0�9 (0�1)
60�9 (1�3) 2�1 (0�3) 23�1 (1�2) 13�9 (1�8)

aCDR and CQR are as defined in Table SC.II. All numbers are in percentages. Bootstrapped standard errors with
100 repetitions are given in parentheses. The second line in each cell indicates the percentage of total variation. The
censored distribution regression estimator with logistic link and the censored linear quantile regression estimator have
been applied.
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FIGURE SC.3.—Observed quantile functions, observed differences between the quantile func-
tions and their decomposition into four quantile effects. The 95% simultaneous confidence bands
were obtained by empirical bootstrap with 100 repetitions. Results for women.
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FIGURE SC.4.—Observed distribution functions, observed differences between the distribu-
tion functions and their decomposition into four distribution effects. The 95% simultaneous con-
fidence bands were obtained by empirical bootstrap with 100 repetitions. Results for women.
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FIGURE SC.5.—Observed Lorenz curves, observed differences between the Lorenz curves and
their decomposition into four Lorenz effects. The 95% simultaneous confidence bands were ob-
tained by empirical bootstrap with 100 repetitions. Results for women.
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FIGURE SC.6.—Comparison of the distribution regression estimates of the quantile effects
based on five different link functions: logistic, normal, uniform, Cauchy and complementary
log-log. Results for women.

where the first term is the between-group variance and the second term is
the within-group variance. The regression models for conditional distributions
considered in CFM naturally lead to models for the conditional mean and vari-
ance of Y given X . By definition,

E(Y |X = x)=
∫

y dFY |X(y|x) and

Var(Y |X = x)=
∫ (

y −E(Y |X = x)
)2
dFY |X(y|x)�

For conditional quantile models, the direct expressions are

E(Y |X = x)=
∫ 1

0
QY |X(u|x)du and

Var(Y |X = x)=
∫ 1

0

(
QY |X(u|x)−E(Y |X = x)

)2
du�
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FIGURE SC.7.—Comparison of the distribution regression, censored distribution regression
and censored quantile regression estimates of the quantile effects. Results for women.

For linear quantile regression models, this simplifies to

E(Y |X = x)= x′E
[
β(u)

]
and

Var(Y |X = x)= x′ Var
[
β(u)

]
x�

such that the variance decomposition takes the simple form (equation (6.7) in
CFM)

Var[Y ] = E
[
β(U)

]′
Var[X]E[

β(U)
] + trace

{
E

[
XX ′]Var

[
β(U)

]}
�

Both the between and the within components are functions of the condi-
tional distribution FY |X (that determines E(Y |X = x) and Var(Y |X = x)) and
the covariate distribution FX . Our counterfactual changes consists of changing
FX while keeping FY |X fixed. In general, the between and within components
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of the variance of the counterfactual outcome Y 〈j�k〉 are

Var
[
E

(
Y 〈j�k〉|X)] =

∫ [
E(Yj|Xj = x)−E

(
Y 〈j�k〉)]2

dFXk
(x) and

E
[
Var

(
Y 〈j�k〉|X)] =

∫
Var(Yj|Xj = x)dFXk

(x)�

In Section 6 of CFM, the whole composition effect (i.e., the effect of changing
the distribution of both union status and other individual characteristics) is
defined as the difference between FY 〈(1�0)|(1�1)〉 and FY 〈(1�0)|(0�0)〉. Therefore, the
composition effects on between-group and within-group inequality are

Var
[
E

(
Y

〈
(1�0)|(1�1)

〉∣∣X)] − Var
[
E

(
Y

〈
(1�0)|(0�0)

〉∣∣X)]
and

E
[
Var

(
Y

〈
(1�0)|(1�1)

〉∣∣X)] −E
[
Var

(
Y

〈
(1�0)|(0�0)

〉∣∣X)]
�

When we use the logit distribution regression model to estimate the con-
ditional distribution FY(1�0)|X1 , we find that between-group inequality increased
from 0.147 to 0.163 as a consequence of the composition changes, which repre-
sents an increase of 10.6 percent. Similarly, within-group inequality increased
from 0.125 to 0.136, which represents an increase of 9.1 percent. Note that the
dependent variable is the hourly log wage.

When we use the censored quantile regression model to estimate the con-
ditional distribution that censors wages below the minimum wage, we obtain
increases in between-group and within-group inequality from 0.135 to 0.145
(7.5 percent) and from 0.120 to 0.131 (9.1 percent), respectively. If we do not
censor wages below the minimum wage, then we can use directly the expres-
sions in equation (6.7). In this case, we obtain increases for between-group
and within-group inequality from 0.201 to 0.217 (7.9 percent) and from 0.152
to 0.164 (8.4 percent), respectively.
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