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APPENDIX D: PROOF OF THEOREM A.1

IT IS CLEAR that FSII =⇒ FS. Hence, it suffices to prove that FS =⇒ WQ and that
WQ =⇒ FSII. We first extend the demand correspondence to allow for some infinite
prices (as in the definition of WQ in Appendix A) and formulate full substitutability in
terms of the (extended) demand correspondence. We then derive relationships between
the (extended) demand correspondence and the indirect utility function. Finally, we use
these relationships to prove the two desired implications.

For the remainder of the proof, we fix a firm f ∈ F whose preferences we analyze.

D.1. The Extended Demand Correspondence

Given a price vector p ∈ Pf and a set Ξ ⊆Ωf of trades, let

Uf(Ξ|p)= uf (Ξ� (pΞf→� (−p)Ξ→f
�0Ωf \Ξ

))
denote f ’s utility of executing the trades in set Ξ of trades at prices given by p, where
we write uf (Ξ� t)= −∞ if tω = −∞ for any ω ∈Ωf . Note that, by construction, we have
thatUf

(
Ξ

∣∣p�f ) =Uf(κ([Ξ;p])) for allΞ ⊆Ωf and p ∈ R��Define the extended demand
correspondence Df : Pf ⇒P(Ωf ) by

Df (p)= arg max
Ξ⊆Ωf

Uf (Ξ|p)�

Note that the restriction of the extended demand correspondence to RΩf is the demand
correspondence Df . Topologizing R∪ {−∞} and R∪ {∞} with the disjoint union topolo-
gies in the definition of Pf � Berge’s Maximum Theorem guarantees that Df is upper
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hemicontinuous. We can apply a perturbation argument to show that Df is generically
single-valued.

CLAIM D.1: The set
{
p ∈ Pf

∣∣ |Df (p)| = 1
}

is open and dense in Pf .

PROOF: Let Sf = {
p ∈ Pf

∣∣ |Df (p)| = 1
}
. The set Sf is open because Df is upper hemi-

continuous and non-empty-valued and P(Ωf ) is discrete. To see that Sf is dense, note
that for all Ξ �=Ξ′ ⊆Ωf , the set{

p ∈ Pf
∣∣Uf(Ξ|p)=Uf(Ξ′|p) �= −∞}

is nowhere dense. Indeed, if Uf(Ξ|p) = Uf(Ξ′|p) �= −∞, then we must have that
Uf(Ξ|p′) �=Uf(Ξ′|p′) for all price vectors p′ ∈ Pf of the form p′ = (pΩ\{ω}�pω + ε) with
ε > 0 and all ω ∈ (Ξ \Ξ′)∪ (Ξ′ \Ξ). Q.E.D.

In the course of the proof of Theorem A.1, it will be useful to express full substitutability
as a condition on the (extended) demand correspondence. We therefore write full substi-
tutability in demand language similarly to Hatfield, Kominers, Nichifor, Ostrovsky, and
Westkamp (2019).

ASSUMPTION D.1—Full Substitutability in Demand Language (FS-D): For all price vec-
tors p≤ p′ ∈ Pf , if Df (p)= {Ξ} and Df (p′)= {Ξ′}, then we have that

Ξ′ ∩ {
ω ∈Ωf→

∣∣ pω = p′
ω

} ⊆Ξ�
Ξ ∩ {

ω ∈Ω→f

∣∣ pω = p′
ω

} ⊆Ξ′�

We also write the constituent conditions of full substitutability including indifferences
in demand language similarly to Hatfield et al. (2019).

ASSUMPTION D.2—Increasing Price Full Substitutability for Sales in Demand Lan-
guage (IFSS-D): For all p≤ p′ ∈ Pf and Ξ ∈ Df (p), there exists Ξ′ ∈ Df (p′) with

Ξ′ ∩ {
ω ∈Ωf→

∣∣ pω = p′
ω

} ⊆Ξ�

ASSUMPTION D.3—Decreasing Price Full Substitutability for Sales in Demand Lan-
guage (DFSS-D): For all p ≥ p′ ∈ Pf and ψ ∈ Ξ ∈ Df (p) with ψ ∈ Ωf→ and pψ = p′

ψ,
there exists Ξ′ ∈ Df (p′) with ψ ∈Ξ′.

The substitutability conditions in choice language are equivalent to their demand-
language analogues, as the following result shows formally.

CLAIM D.2: FS (resp. IFSS, DFSS) is equivalent to FS-D (resp. IFSS-D, DFSS-D).

PROOF: Given a finite set of contracts Y ⊆X , define a price vector pf(Y) ∈ RΩf by

pf(Y)ω =
⎧⎨⎩

sup
(ω�q)∈Y

q for ω ∈Ωf→�

inf
(ω�q)∈Y

q for ω ∈Ω→f �
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so pf(Y)ω is the most favorable price at which ω is available in Y . It follows from the
definitions of Cf and Df that

Cf(Y)=
{{(
ω�pf (Y)ω

) ∣∣ω ∈Ψ} ∣∣∣Ψ ∈ Df
(
pf(Y)

)}
holds for all finite sets Y ⊆X . It follows that, FS-D (resp. IFSS-D, DFSS-D) implies FS
(resp. IFSS, DFSS), as claimed. The definitions of Cf and Df also imply that

Df (p)=
{
τ(Y)

∣∣∣ Y ∈Cf
({
(ω�pω)

∣∣ pω ∈R
})}

holds for all price vectors p ∈ Pf . It follows that FS (resp. IFSS, DFSS) implies FS-D
(resp. IFSS-D, DFSS-D), as claimed. Q.E.D.

D.2. Relating the Indirect Utility Function to Demand

We next relate the indirect utility function to properties of the (extended) demand cor-
respondence. We use these relationships in the proof of Theorem A.1.

Throughout this section, we use a monotonicity property of the indirect utility function.
Specifically, the monotonicity of the utility function in transfers implies that

V f (p)≥ V f (q) whenever pΩf→ ≥ qΩf→ and pΩ→f
≤ qΩ→f

� (D.1)

Our first claim shows that there is a selection from the (extended) demand correspon-
dence in which no sale in a set 
 of sales is demanded if and only if some (or, equivalently,
every) reduction in the prices of all sales in 
 weakly increases f ’s indirect utility.

CLAIM D.3: Let p ∈ Pf and let 
⊆Ωf→ be such that pω ∈R for all ω ∈ 
. The following
are equivalent.

(1) There exists Ξ ∈ Df (p) with 
∩Ξ = ∅.
(2) For all r ∈ Pf with rΩf \
 = pΩf \
, we have that V f (r)≥ V f (p).
(3) There exists r ∈ Pf such that rΩf \
 = pΩf \
, rω < pω for all ω ∈ 
, and V f (r)≥ V f (p).

PROOF: We first show that (1) =⇒ (2). Suppose thatΞ ∈ Df (p) is such that 
∩Ξ = ∅.
Let r ∈ Pf such that rΩf \
 = pΩf \
. Note that pΞ = rΞ , and hence Uf(Ξ|p)=Uf(Ξ|r). By
the definition of V f , it follows that

V f (p)=Uf(Ξ|p)=Uf(Ξ|r)≤ V f (r)�

as desired.
It is clear that (2) =⇒ (3). We next show that (3) =⇒ (1). Suppose that r ∈ Pf is such

that rΩf \
 = pΩf \
, rω < pω for all ω ∈ 
, and V f (r)≥ V f (p). Let Ξ ∈ Df (r) be arbitrary.
Due to the monotonicity of the utility function in transfers, we have Uf(Ξ|r)≤Uf(Ξ|p)
with equality if and only if 
∩Ξ = ∅. By the definition of V f , it follows that

Uf(Ξ|p)≤ V f (p)≤ V f (r)=Uf(Ξ|r)≤Uf(Ξ|p)�
Therefore, we must have that V f (p) = Uf(Ξ|p) ≤ Uf(Ξ|r), and hence that Ξ ∈ Df (p)
and that 
 ∩ Ξ = ∅. In particular, there exists Ξ ∈ Df (p) with 
 ∩ Ξ = ∅, as desired.

Q.E.D.
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Our second claim shows that a sale ω is demanded in some selection from the (ex-
tended) demand correspondence if and only if every increase in the price of ω raises f ’s
indirect utility.

CLAIM D.4: Let p ∈ Pf and let ω ∈Ωf→ satisfy pω ∈R. The following are equivalent.
(1) There exists Ξ ∈ Df (p) with ω ∈Ξ.
(2) We have that V f (r) > V f (p) for all p< r ∈ Pf with rΩf \{ω} = pΩf \{ω}.

PROOF: We first show that (1) =⇒ (2). Let Ξ ∈ Df(p) be such that ω ∈Ξ. Suppose
that p< r ∈ Pf is such that rΩf \{ω} = pΩf \{ω}. Due to the monotonicity of the utility function
in transfers, we must have that Uf(Ξ|r) > Uf (Ξ|p). By the definition of V f , we have that

V f (p)=Uf(Ξ|p) <Uf(Ξ|r)≤ V f (r)�

We next show that (2) =⇒ (1). We prove the contrapositive. Suppose that ω /∈Ξ for all
Ξ ∈ Df (p). Due to the upper hemicontinuity of Df and the discreteness of P(Ωf ), there
is an open neighborhood V ⊆ Pf of p such that Df (r)⊆ Df (p) for all r ∈ V. Let ε > 0 be
such that r = (pΩf \{ω}� (p+ ε)ω) ∈ V, and let Ξ ∈ Df (r)⊆ Df (p). As ω /∈Ξ, we have that
Uf(Ξ|r)=Uf(Ξ|p). By the definition of V f , it follows that

V f (p)=Uf(Ξ|p)=Uf(Ξ|r)= V f (r)�

In particular, we have that V f (r)≤ V f (p). Q.E.D.

D.3. Proof that FS =⇒ WQ

We first prove that V f (p ∨ q) > V f (q) =⇒ V f (p) > V f (p ∧ q) whenever p�q ∈ Pf

are such that pΩf→ ≤ qΩf→ or pΩ→f
≤ qΩ→f

. We prove the contrapositive. Suppose that
V f (p)≤ V f (p∧ q); we prove that V f (p∨ q)≤ V f (q).

If pΩf→ ≤ qΩf→ , then we have that (p∨ q)Ωf→ = qΩf→ . As p∨ q≥ q, (D.1) implies that
V f (p∨ q)≤ V f (q), as desired. Hence, we can assume that pΩ→f

≤ qΩ→f
.

Define a set of trades by


= {
ω

∣∣ pω > qω} ⊆Ωf→�

Note that


= {
ω

∣∣ pω > (p∧ q)ω
} = {

ω
∣∣ (p∨ q)ω > qω

}
�

Since V f (p∧ q)≥ V f (p), the (3) =⇒ (1) implication of Claim D.3 guarantees that there
exists Ξ ∈ Df (p) such that 
∩Ξ = ∅.

To complete the argument, we perturb p and q to move to the locus on which the
extended demand correspondence is single-valued, and then use Claim D.3 and full sub-
stitutability in demand language to conclude that V f (q) ≥ V f (p ∨ q). More formally,
because Df is upper hemicontinuous and P(Ωf ) is discrete, there exists ε > 0 such that
Df (p + s) ⊆ Df (p) and Df (p ∨ q + s) ⊆ Df (p ∨ q) for all s ∈ RΩf with ‖s‖ < 2|Ωf |ε.
Consider the price change vector

s = (
(−ε)Ωf→\Ξ�0Ω→f∪Ξ

)
�

The monotonicity of uf in transfers implies that

Uf(Ψ |p)≥Uf(Ψ |p+ s)
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for all Ψ ⊆Ωf , with equality if and only if Ψf→ ⊆Ξ. It follows that Ψf→ ⊆Ξ ⊆Ωf \
 for
all Ψ ∈ Df (p+ s). Due to Claim D.1 and the upper hemicontinuity of Df , there exists a
perturbation s′ ∈ RΩf with ‖s′‖ < ε such that |Df (p+ s + s′)| = |Df (p ∨ q + s + s′)| = 1
and Df (p ∨ q+ s + s′)⊆ Df (p ∨ q). Let Df (p+ s + s′)= {Ψ }. By construction, we have
that ‖s+ s′‖< 2|Ωf |ε and that Ψ ∩ 
= ∅.

Let Df (p ∨ q + s + s′) = {Ψ ′}. Note that p
 = (p ∨ q)
 by construction. Claim D.2
implies that FS-D must be satisfied, and FS-D guarantees that Ψ ′ ∩ 
 ⊆ Ψ . Hence, we
have that Ψ ′ ∩
⊆Ψ ∩
= ∅. By construction, we have that Ψ ′ ∈ Df (p∨ q+ s)⊆ Df (p).
By the (1) =⇒ (2) implication of Claim D.3, it follows that V f (q)≥ V f (p∨ q).

An analogous argument—exchanging the roles of purchases and sales—shows that
V f (p ∧ q) > V f (p) =⇒ V f (q) > V f (p ∨ q) whenever p�q ∈ Pf are price vectors such
that pΩf→ ≤ qΩf→ or pΩ→f

≤ qΩ→f
.

D.4. Proof that WQ =⇒ FSII

By symmetry, it suffices to prove that WQ implies IFSS and DFSS. In light of Claim D.2,
it therefore suffices to prove that WQ implies IFSS-D and DFSS-D.

We first prove that WQ implies IFSS-D. To prove this implication, we exploit Claim D.3.
Formally, let p≤ p′ ∈ Pf and let Ξ ∈ Df (p). Define a set of trades by


= {
ω ∈Ωf→ \Ξ ∣∣ pω = p′

ω ∈ R
}
�

Define a price change vector s = ((−1)
�0Ωf \
). By construction, we have 
 ∩Ξ = ∅ and
that pω ∈ R for all ω ∈ 
. Therefore, the (1) =⇒ (2) implication of Claim D.3 implies
that V f (p− s) ≥ V f (p). Letting q = p′ − s, we have that p− s = p ∧ q and p′ = p ∨ q.
As pΩ→f

≤ p′
Ω→f

= qΩ→f
, WQ implies that V f (p′ − s) ≥ V f (p′). The (3) =⇒ (1) impli-

cation of Claim D.3 therefore implies that there exists Ξ′ ∈ Df (p′) with 
 ∩Ξ′ = ∅. By
construction, we have that ω /∈Ξ′ for all ω ∈Ωf with p′

ω = −∞. Therefore, we must have
that

Ξ′ ∩ {
ω ∈Ωf→

∣∣ pω = p′
ω

} ⊆Ξ�
as desired.

We next prove that WQ implies DFSS-D. To derive this implication, we exploit
Claim D.4. Let q≥ q′ ∈ Pf and letΞ ∈ Df (q). Suppose that ω ∈Ξf→ is such that qω = q′

ω.
By construction, we must have that qω ∈ R. By the (1) =⇒ (2) implication of Claim D.4,
we have that

V f (qΩf \{ω}� sω) > V f (q)

for all s > qω. Letting p = (
q′
Ωf \{ω}� sω

)
and noting that pΩ→f

= q′
Ω→f

≤ qΩ→f
, that

(qΩf \{ω}� sω)= p∨ q, and that q′ = p∧ q, WQ implies that

V f
(
q′
Ωf \{ω}� sω

)
> V f(q′)

for all s > qω = q′
ω. The (2) =⇒ (1) implication of Claim D.4 therefore implies that there

exists Ξ′ ∈ Df (q′) with ω ∈Ξ′, as desired.



6 FLEINER, JAGADEESAN, JANKÓ, AND TEYTELBOYM

APPENDIX E: OTHER COOPERATIVE SOLUTION CONCEPTS

In this appendix, we examine the relationships between competitive equilibrium, trail
stability, and other cooperative solution concepts for matching in trading networks—
formally developing the results that we described in Section 6. We start by deriving general
properties of stability and chain stability: we show that under FS, stable and chain-stable
outcomes are trail-stable, and that under FS and BCV, they lift to competitive equilibria.
We then consider vertical supply chain settings—showing that stable and trail-stable out-
comes coincide under FS and obtaining sufficient conditions for the existence of stable
outcomes. Finally, we analyze trading networks without frictions—providing conditions
under which competitive equilibrium outcomes, stable outcomes, chain-stable outcomes,
and strongly group stable outcomes coincide with one another and with trail-stable out-
comes.

E.1. Stability and Chain Stability in Trading Networks

As we have already defined stability (in Section 5.1), we begin by defining chain stability.
Chains are the sets that consist of all of the contracts in a trail. A blocking chain is a
blocking set (in the sense of Definition 3) that is a chain. Chain stability rules out the
existence of blocking chains.

DEFINITION E.1—Ostrovsky (2008), Hatfield, Kominers, Nichifor, Ostrovsky, and
Westkamp (2018): A chain is a set of contracts of the form {z1� � � � � zn}, where (z1� � � � � zn)
is a trail. An outcome is chain-stable if it is individually rational and there is no blocking
chain.

Under FS, it turns out that stability and chain stability refine trail stability.

PROPOSITION E.1: Under FS, every chain-stable outcome is trail-stable.

Proposition E.1 is a version of Proposition 8 in Fleiner, Jankó, Tamura, and Teytelboym
(2018) for settings with continuous prices. To prove Proposition E.1, we adapt Fleiner
et al.’s argument to our setting. Formally, a locally blocking circuit is a circuit in which
every pair of adjacent contracts is demanded by their common firm in every choice set.

DEFINITION E.2: Let Y be an outcome. A sequence of contracts (z1� � � � � zn) is a locally
blocking circuit if for all 1 ≤ i ≤ n, we have {zi−1� zi} ⊆W for all W ∈ Cfi(Yfi ∪ {zi−1� zi}),
where fi = s(zi)= b(zi−1) and z0 = zn.

To prove Proposition E.1, we show (as in Fleiner et al. (2018)) that every shortest locally
blocking circuit or locally blocking trail gives rise to a blocking chain; Proposition E.1
follows directly from this claim.

CLAIM E.1: LetY be an individually rational outcome. Under FS, if (z1� � � � � zn) is shortest
among all locally blocking circuits and locally blocking trails for Y , then the chain {z1� � � � � zn}
blocks Y .

PROOF: We prove the contrapositive of the claim. Suppose that (z1� � � � � zn) is a locally
blocking circuit or locally blocking trail but that Z = {z1� � � � � zn} does not block Y . Then,
there is a firm f , a contract zj ∈ Zf , and a set W ∈ Cf(Yf ∪ Zf) with zj /∈ W . Without
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loss of generality, we can assume that f = s(zj), so f = fj . We show that there is a locally
blocking circuit or locally blocking trail that is shorter than (z1� � � � � zn).

By Theorem A.1, FSII must be satisfied. We divide into cases based on whether j = 1
and whether we have a trail or a circuit to complete the proof of the claim.

Case 1: j = 1 and (z1� � � � � zn) is a locally blocking trail. By IFSS, there must exist a set
W ′ ∈ Cf(Yf ∪Zf→) with z1 /∈W ′. Among all such W ′, we take W to minimize |W ′ \ Yf |.
As Yf /∈Cf(Yf ∪ {z1}), we have that Yf /∈Cf(Yf ∪Zf→), and hence that W � Yf .

Let zk ∈ W \ Yf be arbitrary. The selection of W ensures that W \ Yf ⊆ Y ′ for all
Y ′ ∈Cf(W ∪Yf), so in particular zk ∈ Y ′ for all Y ′ ∈ Cf(W ∪Yf). By IFSS, it follows that
zk ∈W0 for all W0 ∈Cf(Yf ∪ {zk}), so (zk� � � � � zn) is a shorter locally blocking trail.

Case 2: j �= 1 or (z1� � � � � zn) is a locally blocking circuit. In either case, the contract zj−1

is well-defined. By IFSS, there exists W ′ ∈ Cf(Yf ∪ {zj−1} ∪Zf→) with zj /∈W ′. Among all
such W ′, we take W to minimize |W ′ \Yf |.

As {zj−1� zj} ⊆ B holds for all B ∈ Cf(Yf ∪ {zj−1� zj}), we have that zj−1 ∈W ′ for all sets
W ′ ∈ Cf(Yf ∪ {zj−1} ∪Zf→) by DFSP. In particular, we have that zj−1 ∈W .

Let zk ∈ W \ Yf be arbitrary. The selection of W ensures that W \ Yf ⊆ Y ′ for all
Y ′ ∈ Cf(W ∪ Yf), so in particular zk ∈ Y ′ for all Y ′ ∈ Cf(W ∪ Yf). By IFSS, it follows
that zk ∈ B for all B ∈ Cf(Yf ∪ {zj−1� zk}). If k < j, then (zk� � � � � zj−1) is a shorter locally
blocking circuit. If k > j and (z1� � � � � zn) is a locally blocking circuit (resp. trail), then
(z1� � � � � zj−1� zk� � � � � zn) is a shorter locally blocking circuit (resp. trail).

The cases exhaust all possibilities, completing the proof of the claim. Q.E.D.

The next example shows that FS is generally needed for stable or chain-stable outcomes
to be trail-stable—even if there are no technological constraints or distortionary frictions.

EXAMPLE E.1—Stable Outcomes May Not Be Trail-Stable Without FS: As depicted in
Figure 1(a), there are two firms, f1 and f2, which interact via two trades, ζ and ψ. There
are no taxes. The firms have quasilinear utility functions (see (1)) with valuation functions
defined by

vf1(∅)= vf2(∅)= 0�

vf1
({ζ}) = vf1

({ψ}) = vf2
({ζ�ψ}) = 1�

vf1
({ζ�ψ}) = vf2

({ζ}) = vf2
({ψ}) = −100�

The autarky outcome is stable, as no non-empty set of contracts is individually rational
for both f1 and f2. However, the trail

(
(ζ�0)� (ψ�0)

)
locally blocks the autarky outcome.

Thus, the autarky outcome is stable but not trail-stable.
Note that trades ζ and ψ are not (cross-side) complementary for firm f1, which implies

that f1’s preferences are not fully substitutable.

We next show that stable and chain-stable outcomes lift to competitive equilibria under
the conditions for the existence of competitive equilibria.

THEOREM E.1: Under FS and BCV, chain-stable outcomes lift to competitive equilibria.
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It follows that stable outcomes lift to competitive equilibria under FS and BCV—
generalizing Theorem 6 in Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013)
to trading networks with distortionary frictions and income effects. Recall, however, that
stable and chain-stable outcomes do not generally exist in our model (even under FS and
BCV—see Example 4 and Footnote 27).

To prove Theorem E.1, we consider a chain-stable outcomeA. We construct a modified
economy (as in the proof of Theorem 1)—in which FS and BWP are satisfied—by giving
every firm the option to execute any trade by paying a large cost Π. Unlike in the proof
of Theorem 1, we chooseΠ to depend on the prices in A. We show that A is chain-stable
in the modified economy. Proposition E.1 implies that A is trail-stable in the modified
economy, and hence Theorem 3 guarantees that A lifts to a competitive equilibrium in
the modified economy. To complete the proof, we use the result that every competitive
equilibrium in the modified economy is in fact a competitive equilibrium in the original
economy under BCV for Π sufficiently large (Lemma B.4). We cannot apply the argu-
ments from Hatfield et al. (2013) to prove Theorem E.1 because those arguments rely
on the efficiency of competitive equilibria in a modified economy and frictions generally
make competitive equilibria inefficient (see also Footnote 24).

Formally, letA be a chain-stable outcome, and letΞ = τ(A). For each tradeω ∈ τ(A),
let pω be the unique price such that (ω�pω) ∈A.

As in Appendix B, let

Kf = − inf
uf (Ξ�t)≥uf (∅�0)

∑
ω∈Ωf

tω

for f ∈ F , which is finite by BCV. Define a quantity

Π = 1 +
∑
f∈F

Kf + 2
∑
ω∈Ξ

|pω|�

Recall the definition of ûf :P(Ωf )×RΩf → R from Appendix B, which is

ûf (Ξ� t)= max
Ξ⊆Ψ⊆Ωf

uf
(
Ψ�

(
tΩf \Ψ∪Ξ� (t −Π)Ψ\Ξ

))
�

Consider a modified economy in which utility functions are given by ûf for f ∈ F . The
following claim asserts that A is a chain-stable outcome in the modified economy.

CLAIM E.2: Under BCV, if A is chain-stable in the original economy, then A is chain-
stable in the modified economy.

PROOF: The outcome A is clearly individually rational in the modified economy. It
remains to prove that A is not blocked by any chain in the modified economy. Suppose
for the sake of deriving a contradiction that there is a blocking chain Z in the modified
economy.

Let Ĉf and Û
f

denote f ’s choice correspondence and utility function over sets of con-
tracts, respectively, in the modified economy. For f ∈ F and Yf ∈ Ĉf (Af ∪Zf), note that
Û
f
(Y f )≥ Û f

(∅). Hence, we have that

−Kf ≤
∑

(ω�p′
ω)∈Yff→

p′
ω −

∑
(ω�p′

ω)∈Yf→f

p′
ω ≤

∑
(ω�p′

ω)∈Zf→
p′
ω −

∑
(ω�p′

ω)∈Z→f

p′
ω +

∑
ω∈Ξf

|pω|�



TRADING NETWORKS WITH FRICTIONS 9

where the first inequality is due to Lemma B.3(a). It follows that∑
(ω�p′

ω)∈Zf→
p′
ω −

∑
(ω�p′

ω)∈Z→f

p′
ω +

∑
ω∈Ξf

|pω| +Kf ≥ 0�

But note that∑
f∈F

( ∑
(ω�p′

ω)∈Zf→
p′
ω −

∑
(ω�p′

ω)∈Z→f

p′
ω +

∑
ω∈Ξf

|pω| +Kf

)
= 2

∑
ω∈Ξ

|pω| +
∑
f∈F

Kf =Π − 1�

It follows that ∑
(ω�p′

ω)∈Zf→
p′
ω −

∑
(ω�p′

ω)∈Z→f

p′
ω +

∑
ω∈Ξf

|pω| +Kf ≤Π − 1<Π

for all f ∈ F , so ∑
(ω�p′

ω)∈Yff→

p′
ω −

∑
(ω�p′

ω)∈Yf→f

p′
ω ≤ −Kf +Π − 1<−Kf +Π�

Hence, the contrapositive of Lemma B.3(b) implies that Û
f
(Y f )≤Uf(Y f ) for all f ∈ F .

By the definition of ûf , we must therefore have that Û
f
(Y f )=Uf(Y f ).

Let W ∈ Cf(Af ∪Zf) be arbitrary. In light of the previous paragraph and the fact that
Uf(W )≤ Û f

(W ), we must have thatW ∈ Ĉf (Af ∪Zf). Since Z blocksA in the modified
economy, we must have that Zf ⊆ W . Hence, Z blocks A in the original economy—
contradicting the hypothesis that A is chain-stable in the original economy. Q.E.D.

PROOF OF THEOREM E.1: Claim E.2 guarantees that A is chain-stable in the modified
economy. By Proposition E.1, A is trail-stable in the modified economy. Lemmata B.1
and B.2 ensure that FS and BCV are satisfied in the modified economy. Hence, by The-
orem 3, there exists a competitive equilibrium [Ξ;p] in the modified economy with
κ([Ξ;p]) = A. Lemma B.4 guarantees that [Ξ;p] is a competitive equilibrium in the
modified economy. Q.E.D.

Hatfield et al. (2013) showed that stable outcomes need not lift to competitive equilibria
without FS (see Example 1 in Hatfield et al. (2013)). It turns out that FS is not sufficient
for stable outcomes to lift to competitive equilibria—essentially for the same reason that
FS is not sufficient for the existence of competitive equilibria.

EXAMPLE E.2—Stable Outcomes Need Not Lift to Competitive Equilibria Under FS
Alone: Consider the trading network from Example 3. The autarky outcome is stable,
because s is not willing to sell at any finite price. As there are no competitive equilibria,
there is a stable outcome that does not lift to a competitive equilibrium.

E.2. Supply Chains

In supply chains, or acyclic trading networks, no firm can be simultaneously upstream
and downstream from another firm even via intermediaries (Ostrovsky (2008), Westkamp
(2010), Hatfield and Kominers (2012)).
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ASSUMPTION E.1—Acyclicity (AC): There do not exist n≥ 1 and trades ω1� � � � �ωn such
that s(ωi)= b(ωi−1) for all 1 ≤ i≤ n, where ω0 =ωn.

As shown by Ostrovsky (2008) and Hatfield and Kominers (2012), imposing acyclicity
can help ensure the existence of stable outcomes in trading networks with discrete and
bounded prices. In supply chains, trail stability is equivalent to chain stability (see, e.g.,
Fleiner et al. (2018)). The following lemma relates stability and chain/trail stability in
supply chains.

LEMMA E.1: Under FS and AC, every trail-stable outcome is stable.

PROOF: The proof is similar to the proof of Theorem 7 in Hatfield and Kominers
(2012). By Theorem A.1 in Appendix A, we can assume that FSII is satisfied.

We prove the contrapositive. LetA be outcome that is not stable. IfA is not individually
rational, then clearlyA is not trail-stable. Thus, we can assume thatA is blocked by a non-
empty blocking set Z.

Since Z is non-empty and the trading network is acyclic, there is a firm f1 such that
Z→f1 = ∅ and Zf1→ �= ∅. Let z1 ∈ Zf1→ be arbitrary. By IFSS, we have that z1 ∈ Y for all
Y ∈ Cf1(Af1 ∪ {z1}). Let f2 = b(z1).

If z1 ∈ Y for all Y ∈ Cf2(Af2 ∪ {z1}), then (z1) is a locally blocking trail. Hence, we can
assume that z1 /∈ Y for some Y ∈ Cf2(Af2 ∪ {z1}). By revealed preference, we must have
that Af2 ∈ Cf2(Af2 ∪ {z1}). DFSP implies that z1 ∈W ′ for all W ′ ∈ Cf2(Af2 ∪ {z1} ∪Zf2→).
Let W ∈ Cf2(Af2 ∪ {z1} ∪Zf2→) minimize |W ′ \A| among all W ′ ∈Cf2(Af2 ∪ {z1} ∪Zf2→).
By IFSS, we must have that W = {z1� z2} for some z2 ∈Zf2→. Note that {z1� z2} ⊆ Y for all
Y ∈ Cf2(Af2 ∪ {z1� z2}) by construction.

A similar argument to the previous paragraph shows that (z1� z2) is a locally blocking
trail or there exists a contract z3 ∈ Z with s(z3) = b(z2) such that {z2� z3} ⊆ Y holds for
all Y ∈Cf2(Af2 ∪ {z2� z3}). By induction and due to acyclicity, we obtain a locally blocking
trail. Hence, A is not trail-stable. Q.E.D.

Proposition E.1 and Lemma E.1 imply that trail-stable, stable, and chain-stable out-
comes coincide in supply chains under FS, yielding a continuous-price version of Theo-
rem 7 in Hatfield and Kominers (2012).

COROLLARY E.1: Under FS and AC, trail-stable outcomes, stable outcomes, and chain-
stable outcomes coincide.

PROOF: Trail-stable outcomes are stable by Lemma E.1. Stable outcomes are always
chain-stable. Chain-stable outcomes are trail-stable by Proposition E.1. Q.E.D.

Combining Corollary E.1 with our results on trading networks with frictions, we obtain
that competitive equilibrium, trail stability, stability, and chain stability are all essentially
equivalent in supply chains (under FS and BCV).

COROLLARY E.2: Under FS, BCV, and AC, competitive equilibrium outcomes, trail-stable
outcomes, stable outcomes, and chain-stable outcomes exist and coincide.

PROOF: Competitive equilibria exist by Theorem 1. Competitive equilibrium outcomes
are trail-stable by Theorem 2. Trail-stable outcomes, stable outcomes, and chain-stable
outcomes coincide by Corollary E.1. Chain-stable outcomes lift to competitive equilibria
by Theorem E.1. Q.E.D.
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Corollary E.2 in particular entails that stable and chain-stable outcomes exist in supply
chains under FS and BCV. This existence result is a version of Theorem 1 in Ostrovsky
(2008) and Theorem 3 in Hatfield and Kominers (2012) for settings in which prices are
continuous. However, Corollary E.2 holds even when willingness to pay is unbounded
(i.e., BWP is not satisfied), unlike the existence results of Ostrovsky (2008) and Hatfield
and Kominers (2012).

E.3. Trading Networks Without Frictions

In the presence of distortionary frictions, firms have different marginal rates of substi-
tution between forms of transfer. For example, in the presence of transaction taxes, all
firms find reductions in outgoing payments more desirable than equal increases in incom-
ing payments.

We formalize “equalization of marginal rates of substitution between forms of transfer”
as “indifference between all forms of transfer” in defining our “no frictions” condition.
Intuitively, if the firms share the same marginal rates of substitution between forms of
transfer, then transfers can be redenominated so that the marginal rates of substitution
become 1. The possibility of redenomination is precisely why, for example, the presence
of multiple currencies does not cause frictions per se.

ASSUMPTION E.2—No Frictions (NF): For all f ∈ F and all transfer vectors t� t ′ ∈ RΩf

with
∑

ω∈Ωf tω = ∑
ω∈Ωf t

′
ω, we have that uf (Ξ� t)= uf (Ξ� t ′) for all Ξ ⊆Ωf .

Recall that, in Examples 1 and 2, paying one unit is more costly for firms than receiving
one unit (due to transaction taxes). NF rules out these differences in the costs of transfers
and requires that firms only care about the net transfers that they receive or pay. There-
fore, NF requires that a unit of transfer for one trade be equivalent to a unit of transfer
for any other trade. In particular, any transferable utility economy satisfies NF. Under
NF, we can write uf (Ξ� t)= ũf (Ξ� t̃), where t̃ = ∑

ω∈Ω tω is the net transfer.
While NF rules out distortionary frictions—such as variable transaction taxes and

commissions—utility does not need to be perfectly transferable under NF because in-
come effects are still permitted. For example, terminal buyers and sellers (i.e., firms who
only buy or only sell) with unit demand can experience arbitrary income effects under FS
and NF because full substitutability holds automatically for terminal firms that make only
trade. Income effects are also possible for terminal firms with multi-unit demand.

REMARK E.1: However, under FS and NF, firms cannot experience income effects
along the locus of prices at which they have multi-unit demand for both upstream and
downstream trades. To see why, note that NF requires that the income effect associated
to a small decrease in the price of a demanded upstream trade ζ equal the income effect
associated to a small increase in the price of a demanded downstream trade ψ. However,
FS (or, equivalently, FS-D from Appendix D.1 in the Supplemental Material) requires
that the income effect associated to a decrease in the price of ζ reduce demand for other
upstream trades and raise demand for downstream trades. Conversely, FS requires that
the income effect associated to an increase in the price of ψ raise demand for upstream
trades and reduce demand for other downstream trades. When firms have multi-unit de-
mand for both upstream and downstream trades, there are in fact upstream (resp. down-
stream) trades other than ζ (resp. ψ) whose demand can be reduced. Hence, as the two
income effects must coincide under NF, the FS and NF conditions combine to rule out
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income effects along the locus of prices at which they have multi-unit demand for both
upstream and downstream trades.

We begin our analysis of trading networks without frictions by recalling the definition
of strong group stability, which is the most demanding cooperative solution concept from
the literature on matching with contracts. A strongly group stable outcome is immune to
blocks by coalitions of firms that can commit to better, new contracts and maintain any
existing contracts with each other and with firms outside the blocking coalition.

DEFINITION E.3—Hatfield et al. (2013): An outcome A is strongly unblocked if there
do not exist a non-empty set Z ⊆X \A and sets of contracts Yf ⊆Af ∪Zf for f ∈ F such
that Yf ⊇ Zf and Uf(Y f ) > Uf(Af ) for all f ∈ F with Zf �= ∅. An outcome is strongly
group stable if it is individually rational and strongly unblocked.

In Definition E.3, Yf is the set of contracts that f signs in the block. Note that Yf need
not be f ’s best choice from the set of available contracts. In particular, strong group stabil-
ity rules out blocks in which firms only improve their utility by selecting all of the blocking
contracts. Hence, as Hatfield et al. (2013) showed, strong group stability is stronger than
stability. Moreover, Yf can contain existing contracts that the counterparties no longer
want. In particular, strong group stability rules out blocks in which different members of
the blocking coalition can make selections from the set of existing contracts that are in-
compatible with one another or involve firms outside the coalition. Hence, strong group
stability also refines properties such as (strong) setwise stability (Echenique and Oviedo
(2006), Klaus and Walzl (2009)) and the core. As pointed out by Hatfield et al. (2013),
strong group stability also refines strong stability (Hatfield and Kominers (2015)) and
group stability (Konishi and Ünver (2006)).

Our next result shows that competitive equilibria are strongly group stable in trading
networks without frictions.

THEOREM E.2—First Welfare Theorem: Under NF, competitive equilibrium outcomes
are strongly group stable.

Theorem E.2 extends Theorem 5 in Hatfield et al. (2013)—which shows that compet-
itive equilibrium outcomes are strongly group stable—to settings with income effects.
Since strongly group stable outcomes are stable and in the core, Theorem E.2 implies
that competitive equilibrium outcomes are stable and in the core in trading networks
without frictions. As core outcomes are Pareto-efficient, Theorem E.2 is a version of the
First Welfare Theorem (Debreu (1951)).

PROOF: We prove the contrapositive. Let [Ξ;p] be an arrangement and suppose that
A= κ([Ξ;p]) is not strongly group stable. If A is not individually rational, then clearly
[Ξ;p] is not a competitive equilibrium. Thus, we can assume that A is not strongly
unblocked—that is, that there exists a non-empty set of contracts Z ⊆X \A and, for each
f ∈ F with Zf �= ∅, a set of contracts Yf ⊆Zf ∪Af with Yf ⊇Zf and Uf(Y f ) > Uf(Af )
(see Definition E.3).

We let F ′ = {f ∈ F |Zf �= ∅}. For each f ∈ F ′, we let

Mf = sup

{
t̃

∣∣∣∣∣ ũf
(
τ
(
Yf

)
�

∑
ω∈τ(Yf )f→

pω −
∑

ω∈τ(Yf )→f

pω − t̃
)

≥Uf(Af )

}
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denote the negative of the compensating variation for f from the change from τ(Af) to
τ(Y f ) at price vector p. For ω ∈ τ(Z), let qω be the unique price such that (ω�qω) ∈ Z.
Define qω = pω for ω ∈Ω \ τ(Z). The definition of Yf ensures that

ũf
(
τ
(
Yf

)
�

∑
ω∈τ(Yf )f→

qω −
∑

ω∈τ(Yf )→f

qω

)
>Uf(Af )

for all f ∈ F ′. It follows that

Mf >
∑

ω∈τ(Yf )f→

pω −
∑

ω∈τ(Yf )→f

pω −
∑

ω∈τ(Yf )f→

qω +
∑

ω∈τ(Yf )→f

qω

=
∑

ω∈τ(Yf )f→

(pω − qω)+
∑

ω∈τ(Yf )→f

(qω −pω)�

Because pω = qω for ω /∈Z and Zf ⊆ Yf , we have that

Mf >
∑

ω∈τ(Zf )f→
(pω − qω)+

∑
ω∈τ(Zf )→f

(qω −pω)�

Summing over f ∈ F ′, we have that
∑

f∈F ′ Mf > 0. Hence, there exists a firm f ∈ F ′

with Mf > 0. For such f , we have that

uf
(
τ
(
Yf

)
�
(
pτ(Yf )f→� (−p)τ(Yf )→f

�0Ωf \τ(Yf )
))
>Uf(Af)

= uf (Ξf�
(
pΞf→� (−p)Ξ→f

�0Ωf \Ξ
))
�

so Ξf /∈Df(pΩf ). Therefore, [Ξ;p] is not a competitive equilibrium. Q.E.D.

Combining Theorem E.2 with our results on trading networks with frictions, we ob-
tain that all of the solution concepts described in this paper are essentially equivalent in
trading networks without frictions (under FS and BWP).

COROLLARY E.3: Under FS, BWP, and NF, competitive equilibrium outcomes, trail-stable
outcomes, stable outcomes, chain-stable outcomes, strongly group stable outcomes exist and
coincide.

PROOF: Competitive equilibrium outcomes exist and coincide with trail-stable out-
comes by Corollary 2, and are strongly group stable by Theorem E.2. Strongly group
stable outcomes are always stable, and stable outcomes are always chain-stable. Chain-
stable outcomes are trail-stable by Proposition E.1. Q.E.D.

Under NF, we can also restate BCV more simply using only net transfers, since firms
are indifferent regarding the sources of transfers.

ASSUMPTION 2′—Bounded CVs under NF (BCV-NF): For all f ∈ F , we have that

inf
(Ξ�t̃)|ũf (Ξ�t̃)≥ũf (∅�0)

t̃ >−∞�
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In frictionless markets, under FS and BCV-NF, we obtain an equivalence between com-
petitive equilibrium, stability, chain stability, and strong group stability.

COROLLARY E.4: Under FS, BCV-NF, and NF, competitive equilibrium outcomes, stable
outcomes, chain-stable oucomes, strongly group stable outcomes exist and coincide.

PROOF: Competitive equilibria exist by Theorem 1. Competitive equilibrium outcomes
are strongly group stable by Theorem E.2. Strongly group stable outcomes are always sta-
ble, and stable outcomes are always chain-stable. Chain-stable outcomes lift to competi-
tive equilibria by Theorem E.1. Q.E.D.

Corollary E.4 generalizes Theorem 5 and the first part of Theorem 9 in Hatfield
et al. (2013), which deals with transferable utility economies. Ikebe, Sekiguchi, Shioura,
and Tamura (2015), Candogan, Epitropou, and Vohra (2017), and Hatfield et al. (2018)
proved similar equivalence results for transferable utility economies. In contrast, Corol-
lary E.4 applies in the presence of income effects.
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